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We present a new exactly divergence-free and well-balanced hybrid finite volume/finite el-
ement scheme for the numerical solution of the incompressible viscous and resistive mag-
netohydrodynamics (MHD) equations on staggered unstructured mixed-element meshes in 
two and three space dimensions. The equations are split into several subsystems, each 
of which is then discretized with a particular scheme that allows to preserve some fun-
damental structural features of the underlying governing PDE system also at the discrete 
level. The pressure is defined on the vertices of the primary mesh, while the velocity field 
and the normal components of the magnetic field are defined on an edge-based/face-based 
dual mesh in two and three space dimensions, respectively. This allows to account for the 
divergence-free conditions of the velocity field and of the magnetic field in a rather natural 
manner. The non-linear convective and the viscous terms in the momentum equation are 
solved at the aid of an explicit finite volume scheme, while the magnetic field is evolved in 
an exactly divergence-free manner via an explicit finite volume method based on a discrete 
form of the Stokes law in the edges/faces of each primary element. The latter method is 
stabilized by the proper choice of the numerical resistivity in the computation of the elec-
tric field in the vertices/edges of the 2D/3D elements. To achieve higher order of accuracy, 
a piecewise linear polynomial is reconstructed for the magnetic field, which is guaranteed 
to be exactly divergence-free via a constrained L2 projection. Finally, the pressure subsys-
tem is solved implicitly at the aid of a classical continuous finite element method in the 
vertices of the primary mesh and making use of the staggered arrangement of the velocity, 
which is typical for incompressible Navier-Stokes solvers. In order to maintain non-trivial 
stationary equilibrium solutions of the governing PDE system exactly, which are assumed 
to be known a priori, each step of the new algorithm takes the known equilibrium solution 
explicitly into account so that the method becomes exactly well-balanced. We show nu-
merous test cases in two and three space dimensions in order to validate our new method 
carefully against known exact and numerical reference solutions. In particular, this paper 
includes a very thorough study of the lid-driven MHD cavity problem in the presence of 
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different magnetic fields and the obtained numerical solutions are provided as free sup-
plementary electronic material to allow other research groups to reproduce our results 
and to compare with our data. We finally present long-time simulations of Soloviev equi-
librium solutions in several simplified 3D tokamak configurations, showing that the new 
well-balanced scheme introduced in this paper is able to maintain stationary equilibria ex-
actly over very long integration times even on very coarse unstructured meshes that, in 
general, do not need to be aligned with the magnetic field.

© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY-NC-ND license (http://creativecommons .org /licenses /by-nc -nd /4 .0/).

1. Introduction

The equations of viscous and resistive magnetohydrodynamics (MHD) describe non-ideal plasma flows in the continuum 
limit and can be seen as a particular case of the more general Maxwell-Vlasov-Boltzmann system. The structure of viscous 
and resistive MHD is the one of the Navier-Stokes equations coupled with the Faraday law (induction equation), supple-
mented by appropriate closure relations for the stress tensor in the momentum equation and for the electric field in the 
induction equation. In the frame of classical parabolic models for the non-ideal (dissipative) effects in viscous and resistive 
MHD, the viscous stresses inside the fluid are modeled via the usual rheology of Newtonian fluids, while the resistivity can 
be described via an extra term in the electric field that is proportional to the curl of the magnetic field. If present, heat 
conduction is modeled via the usual Fourier law. More general first order hyperbolic formulations that describe general elec-
tromagnetic wave propagation in moving dielectric continuous media and which reduce to the viscous and resistive MHD 
equations in their stiff relaxation limit can be found in [1,2]. Potential practical applications of the MHD equations range 
from astrophysics over solar physics to nuclear fusion applications on Earth, such as magnetic confinement fusion (MCF) in 
tokamak or stellarator devices, see e.g. [3–7] and references therein.

It is well-known that the MHD equations are endowed with a stationary differential constraint which states that the 
divergence of the magnetic field must remain zero for all times, i.e., that no magnetic monopoles can exist. Typically, the 
full compressible MHD equations are considered, and there is an extensive literature on the topic. It is out of the scope 
of this paper to give an exhaustive overview. We only list some main representatives of typical discretization schemes. 
Numerical methods for handling the divergence constraint of the MHD equations can essentially be divided into two main 
classes: i) the first class which preserves the divergence-free condition of the magnetic field exactly at the discrete level, e.g.
using appropriately staggered meshes, see, e.g. [8–12] and references therein, and ii) the second class which satisfies the 
divergence-free condition only approximately at the discrete level. A very well-known representative of the second class is 
the Godunov-Powell approach [13,14], which consists in adding multiples of the divergence constraint to the original gov-
erning PDE system, making use of the original ideas of Godunov on the symmetrization and thermodynamic compatibility 
of the MHD equations [15,16]. However, when using the Godunov-Powell method on the discrete level, exact momentum 
and total energy conservation are, in general, lost. Another classical representative of the second class of methods is the 
generalized Lagrangian multiplier (GLM) approach of Munz et al., [17,18], where the original MHD system is augmented 
via an additional PDE for an artificial cleaning scalar that is coupled to the induction equation via a grad - div pair of dif-
ferential operators and which allows transporting divergence errors in the magnetic field away via acoustic-type waves so 
that they cannot accumulate locally. Unlike the Powell approach, the original GLM divergence cleaning for MHD conserves 
momentum and total energy exactly at the discrete level, but it is not thermodynamically compatible in the sense of Go-
dunov. Very recently, in [19] it has been shown that the GLM approach can also be rigorously cast into a thermodynamically 
compatible and fully conservative form, while previous thermodynamically compatible versions of GLM for MHD violate the 
conservation of momentum and total energy at the discrete level, see, e.g. [20–22]. In this paper, we will develop an exactly 
divergence-free scheme, but we also show how parts of our algorithm, in particular the new well-balancing strategy for 
MHD, can be used in the context of the hyperbolic GLM divergence cleaning framework.

As already mentioned before, most of the well-established numerical schemes used for the solution of the MHD equa-
tions address the full compressible MHD system and are typically explicit, of the upwind finite volume or finite difference 
type, based on Riemann solvers and use collocated meshes, see, e.g. [23–33]. More recently, also high order discontinuous 
Galerkin finite element schemes have been developed for MHD, see [34–38,20,39].

A totally different numerical framework is semi-implicit schemes on staggered meshes, which are by now a well-
established standard for the numerical solution of the incompressible Navier-Stokes equations [40–46], and there exist also 
a few extensions of semi-implicit schemes to magnetohydrodynamics, see, e.g. [47–57]. For implicit structure-preserving 
schemes for the incompressible MHD equations, the reader is referred to [58–62] and references therein.

In order to preserve stationary equilibrium solutions exactly, a numerical method must be well-balanced. The concept of 
well-balancing was introduced for the first time in [63] for the shallow water equations and in [64] for the compressible Eu-
ler equations with gravity. Subsequently, many substantial contributions have been made to the literature on well-balanced 
methods, and an exhaustive overview is impossible and clearly out of the scope of the present paper. For an incomplete list 
of references related to the topic of well-balancing, the interested reader is referred to [65–80] and references therein. So 
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far, there are only very few well-balanced schemes available for the MHD equations, see, e.g. [81], but the method presented 
there is explicit, and it is only available on Cartesian meshes.

The objective of this paper is therefore to design a new structure-preserving scheme for the non-ideal viscous and resis-
tive magnetohydrodynamics equations that is at the same time exactly divergence-free, well-balanced in order to maintain 
arbitrary, but a priori known, equilibrium solutions exactly at the discrete level and which is able to run on general un-
structured mixed-element meshes in two and three space dimensions, see also [82,83]. The general unstructured grids are 
necessary in order to deal with complex geometries like those of tokamaks or stellarators. To ease the development and the 
presentation of the method, in this paper, we restrict ourselves to the incompressible MHD equations, while the extension 
to the full, compressible case is left to future work.

The rest of this paper is organized as follows. In Section 2, we briefly present the governing partial differential equations. 
In Section 3, a new well-balanced and exactly divergence-free semi-implicit hybrid finite volume / finite element scheme is 
designed for the solution of the incompressible viscous and resistive MHD equations on general unstructured mixed-element 
meshes. Numerical results are shown in Section 4 for a large set of test problems in two and three space dimensions, 
including also an application of the method to simplified 3D tokamak geometries. The paper closes with some concluding 
remarks and a brief outlook to future work given in Section 5.

2. Governing partial differential equations

The incompressible viscous and resistive MHD equations have been shown to describe many dynamical properties of hot, 
strongly magnetized plasma in the low Mach number regime. This model consists of the coupling of the conservation of 
momentum with the Faraday (induction) equation of electrodynamics:

∂t (ρu) + ∇· (Fu −Fμ

)+ ∇ p = 0, (1)

∂tB+ ∇×E = 0. (2)

Above, ρ is the constant fluid density, p denotes the pressure, E corresponds to the electric field vector and u = (u1, u2, u3)

and B = (B1, B2, B3) are the fluid velocity and the magnetic field vectors, respectively. The inviscid flux tensor Fu and 
the viscous stress tensor Fμ will be specified later. Since we assume an incompressible fluid, the velocity field must be 
divergence-free, i.e.

∇·u = 0. (3)

Eqn. (3) is what remains from the pressure equation of the compressible Navier-Stokes equations when the Mach number 
tends to zero, see [84–87], and the fluid pressure p in the momentum equation (1) can be seen as a Lagrange multiplier 
that assures that the divergence-free condition of the velocity field (3) is always satisfied. The coupling of (1) with (3) leads 
to the well-known elliptic pressure Poisson equation, i.e. the pressure adjusts globally and instantaneously so that (3) is 
guaranteed everywhere.

Instead, a direct consequence of the Faraday law (2) is that the magnetic field must remain divergence-free for all times, 
if it was initially divergence-free, hence

∇·B = 0. (4)

The physical meaning of (4) is that magnetic monopoles cannot exist, and the mathematical justification is that the di-
vergence of the curl is zero. Although apparently similar, the two divergence-free conditions above are totally different in 
nature. While the magnetic field is automatically guaranteed to remain divergence-free for all times as a mere consequence 
of (2) and standard vector analysis identities, the divergence-free condition of the velocity field is the PDE that is needed 
to determine the pressure in (1). The governing equations (1)-(2) with (3) are a coupled system of non-linear hyperbolic-
parabolic-elliptic PDE.

To close the system, we still need to provide the definitions for the electric field and the two flux tensors. The electric 
field vector, E, is given by

E = −u× B+ η∇×B, (5)

where the first term on the right-hand side corresponds to the electric field in ideal MHD, and the second term includes 
the dissipative effects in non-ideal, resistive MHD, with η the electric resistivity. In (1), Fu = Fu(ρ, u, B) is the tensor of 
inviscid fluxes, which include the non-linear advection and the Lorentz force, while the tensor Fμ = Fμ(μ, ∇u) contains 
all the purely dissipative fluxes, i.e., the viscous stresses. More specifically, we have

Fu := ρu⊗ u+ 1

2
B2 I− B⊗ B, Fμ =Fμ (μ,∇u) := μ

(
∇ u+ ∇ uT

)
, (6)

where I is the identity matrix, and μ is the dynamic viscosity. For simplicity, in this work, the fluid viscosity and resistivity 
are supposed to be some non-negative constants. Moreover, the density is assumed to be constant in space and time, so 
that (3) can be replaced by
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∇·ρu = 0, (7)

with ρu := ρu the linear momentum.
It will turn out to be useful to introduce also the corresponding conservative form of the Faraday equation, i.e.

∂tB+ ∇· (FB −Fη

)= 0, FB := B⊗ u− u⊗ B, Fη = Fη(η,∇B) := η
(
∇ B− ∇ BT

)
. (8)

Therefore, the PDE system (1), (8) may also be written as

∂tρu+ ∇· (Fu(Q) −Fμ(μ,∇u)
)+ ∇ p = 0, (9a)

∂tB+ ∇· (FB(Q) −Fη(η,∇B)
)= 0, (9b)

where Q := (ρu,B)T is the vector of conservative variables, and ρ is a given constant parameter.

3. Well-balanced numerical method

To develop the new well-balanced semi-implicit hybrid finite volume / finite element method for the discretization of 
the system (1)-(4), we first introduce an equilibrium solution pe and Qe := (

ρue,Be
)T , with ρue = ρeue that we assume to 

be a priori known, either analytically, or approximately. Note that the fluid density is a given constant parameter, hence we 
can choose ρe = ρ . Taking into account that Qe is assumed to be a stationary solution of the governing partial differential 
equations, that must be preserved exactly also at the discrete level, [63,88–90,76,91,79,92], we have ∂tQe = 0, hence

∇· (ρue)= 0, (10)

∇·Fu
(
Qe)− ∇·Fμ

(
μe,∇ue)+ ∇ pe = 0, (11)

∇·FB
(
Qe)− ∇·Fη

(
ηe,∇Be)= 0. (12)

Subtracting the former relations from (7) and (9), we get

∇· (ρu− ρue)= 0, (13)

∂tρu+ ∇·Fu (Q) − ∇·Fu
(
Qe)− ∇·Fμ (μ,∇u) + ∇·Fμ

(
μe,∇ue)+ ∇ (p − pe)= 0, (14)

∂tB+ ∇·FB (Q) − ∇·FB
(
Qe)− ∇·Fη (η,∇B) + ∇·Fη

(
ηe,∇Be)= 0. (15)

For the construction of a semi-implicit discretization, the above PDE system (13)-(15) is now split into a convective and 
viscous subsystem, a magnetic (Faraday) subsystem and a pressure subsystem as follows:

Convective and viscous subsystem

∂tρu+ ∇·Fu (Q) − ∇·Fu
(
Qe)− ∇·Fμ (μ,∇u) + ∇·Fμ

(
μe,∇ue)= 0. (16)

Faraday subsystem

∂tB+ ∇×E− ∇×Ee = 0. (17)

Pressure subsystem

∇· (ρu− ρue)= 0,

∂tρu+ ∇ (p − pe)= 0. (18)

Next, after performing a discretization in time only, keeping space still continuous, see, e.g. [93–96], the semi-discrete 
version of the previous subsystems reads as follows:

Convective and viscous subsystem; auxiliary conservative evolution system of the magnetic field

1

�t

(
ρu∗ − ρun)= −∇·Fu

(
Qn)+ ∇·Fu

(
Qe)+ ∇·Fμ

(
μ,∇un)− ∇·Fμ

(
μe,∇ue)− ∇ (pn − pe) , (19a)

1

�t

(
Bn+1 − Bn)= −∇·FB

(
Qn)+ ∇·FB

(
Qe)+ ∇·Fη

(
η,∇Bn)− ∇·Fη

(
ηe,∇Be) . (19b)

Faraday subsystem

1

�t

(
Bn+1 − Bn)= −∇×E(Bn,un) + ∇×E(Be,ue), (20)
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Pressure subsystem

∇· (ρun+1 − ρue)= 0, (21a)

1

�t

(
ρun+1 − ρu∗)+ ∇ (pn+1 − pn

)= 0. (21b)

Combination of the two pressure equations above leads to the pressure Poisson equation

−∇2 (pn+1 − pn
)= − 1

�t
∇· (ρu∗ − ρue) , (22)

which now also takes into account the stationary equilibrium solution in order to obtain the well-balanced property of our 
new scheme. Note that in (21a) and (22) the divergence of the equilibrium velocity has been deliberately subtracted from 
the equations because in general one can assume ∇·ρue = 0 to hold only at the continuous level, but not on the discrete 
level. By subtracting ∇·ρue explicitly we guarantee the method to be well-balanced even if the discrete velocity divergence 
does not vanish. This is a peculiar feature of the new scheme proposed in this paper.

The auxiliary variable ρu∗ introduced above denotes an intermediate momentum accounting only for the convective and 
viscous terms, without the contribution of the pressure gradient at the new time. In general, the intermediate velocity field 
ρu∗ is not yet divergence-free. Therefore, equation (21b) will be employed not only to build the pressure system but also, 
to obtain the final momentum ρun+1.

To introduce the spatial discretization, we make use of unstructured staggered mixed-element grids, where the staggered 
dual mesh is of the edge-type in 2D and of the face-type in 3D. These dual cells are the so-called diamond cells in the 
discrete duality finite volume framework (DDFV) [97,98]. The same face-based dual control volumes have also been used 
in [99,100] and [101,102]. One valuable improvement with respect to former hybrid FV/FE methods, presented in [93–96,
103–106], is that the unstructured grids considered are now of mixed elements, i.e., they may potentially contain triangles 
and quadrilaterals in 2D and tetrahedra, hexahedra, square pyramids and triangular prisms in 3D simultaneously. This new 
feature helps on the design of meshes for complex domains and when requiring the grid to be aligned with specific fields 
as classically done in the simulation of tokamaks, see [107–109], although more recently also non field-aligned unstructured 
meshes have been used in the context of high order discontinuous Galerkin finite element schemes, see, e.g. [110].

Regarding the numerical method applied to the hydrodynamics part, i.e., without the magnetic field, a major difference 
with respect to [93,94,103,111] are the spaces used to discretize the different variables. Even if staggered dual grids are 
also employed in the method proposed in this paper, in order to avoid stability issues such as checkerboard phenomena, all 
variables are computed on the primal grid, and then an interpolation between the primal and the dual grid is applied to 
the momentum unknowns. Besides, the main contributions of the method proposed in this paper are that it is designed to 
work on general unstructured mixed-element meshes, it is built to be well-balanced for stationary equilibria, and that it is 
exactly divergence-free for the magnetic field.

In what follows, we first introduce the employed staggered grids in two and three space dimensions and the related 
notation (Section 3.1), we then present the overall algorithm and describe each of its stages.

3.1. Staggered mixed-element unstructured meshes

To discretize the spatial domain � ⊂ Rd , with d the number of space dimensions and ∂� its boundary, general un-
structured mixed-element staggered faced-based grids are employed in this work. The use of staggered face-type grids is a 
well-documented approach when employing semi-implicit schemes, both in the framework of discontinuous Galerkin and 
hybrid FV/FE methods, see, e.g. [112,101,104,106]. Here, we extend this type of staggered grids to a wider variety of primal 
elements.

For the 2D case, we assume the primal elements to be triangles or quadrilaterals, see the left image in Fig. 1. Meanwhile, 
in the 3D case, we have tetrahedra, hexahedra, quadrilateral pyramids, and triangular prisms, as shown in the top left plots 
in Figs. 3, 4, and 5. We denote by Ti a generic primal element, i ∈ {1, . . . ,Nel}, with Nel the total number of primal elements, 
composed of vertices Vip ≡ Vk , with p the local vertex number inside element Ti and k ∈ {1, . . . ,Nver} the associated global 
vertex number, while Nver is the total number of primal vertices. The faces in 3D are denoted by �im ≡ � f , with m the 
local face number in element Ti , f ∈ {1, . . . ,Nface} the global face number, and Nface the total number of primal faces. The 
common face shared by two elements Ti and T j is also denoted by ∂Tij = �i j = Ti ∩ T j , while the boundary of element 
Ti is given by the union of its faces, i.e. ∂Ti = ∪

m
�im = ∪

j
�i j , with T j the neighbors of Ti . The edges in 3D are denoted by 

�iq ≡ �e , see Fig. 2, with q the local number of the edge inside element Ti , e ∈
{
1, . . . ,Nedge

}
the global edge number, and 

Nedge the total number of primal edges. In two space dimensions, the faces of the elements reduce to the edges and the 
edges reduce to the vertices. To avoid confusion, we note that throughout this paper we refer to the equilibrium solution 
with a superscript e, as in Qe, while we refer to the edge numbers with a subscript e, like in �e , for example.

The local number of vertices, edges, and faces by element depends on the element type and has been recalled in Table 1. 
Note that, to ease the 2D/3D presentation of the method, we will employ the term faces even when referring to the edges 
in 2D if their role corresponds to the one played by the faces in 3D. The volume/area of a primal element is denoted by |Ti |, 
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Table 1
Number of local vertex, Niv , local edges, Nie , and local faces, 
Ni f , for each primal element type.
Dimension Element type Niv Nie Ni f

2D
Triangle 3 3 3
Quadrilateral 4 4 4

3D

Tetrahedron 4 6 4
Hexahedron 8 12 6
Square pyramid 5 8 5
Triangular prism 6 9 5

Fig. 1. Construction of a dual mixed-element mesh. Left: primal mesh made of two triangles, T1, T2, and two quadrilaterals, T3, T4. The vertices are iden-
tified with Vk while the edges are denoted by � f . Center: the barycenters of primal elements are obtained and used to define the triangular subelements 
related to the faces. Right: merging of the two subelements related to each face results on the corresponding dual element, Ci . Interior cells are denoted 
by C2, C3, C5, C8. Boundary dual cells, C1, C4, C6, C7, C9, C10, are constructed to be equal to the boundary subelement.

the outward pointing normal to its boundary, ∂Ti , is ni , and ñi j := ∣∣∂Tij
∣∣ni j refers to the normal at face ∂Tij , the common 

face between Ti and T j , with ni j the unit normal and 
∣∣∂Tij

∣∣ the area/length of the face. Moreover, Ni is the set of neighbor
elements of Ti on the primal mesh which share a common face.

To construct the dual grid, we proceed as follows. First, the barycenters of all primal elements, xi , are computed as

xi =

∫
Ti

xdx∫
Ti

dx
. (23)

This allows the division of each element Ti in as many subelements, Ti f , as it has faces, Ni f . Therefore, for the 2D case 
(center image of Fig. 1) the subelements are triangles with basis one of the faces of the primal element and the opposite 
vertex the barycenter of the primal cell. In 3D, if the corresponding face is a triangle, then the resulting subcell is a 
tetrahedron, having the triangular face as a basis and as the opposite vertex, the barycenter of the primal cell, see Fig. 5. 
Instead, for a quadrilateral face, we get a pyramid with the quadrilateral primal face as basis and the opposite vertex being 
the barycenter of the element, see Figs. 3-4. We denote by Tij the subelement of Ti associated with the face �i j that is 
in common with the neighbor primal element T j , and by T ji the subelement of the primal element T j having in common 
the face � ji = �i j with the element Ti . In consequence, |Tij | represents the volume/area of the subelement Tij . The dual 
elements, Ck , k ∈ {1, . . . ,Ndual}, are then built by merging the two subelements generated at each side of a face, see Figs. 1, 
3, 4 and 5. For the faces on the boundary of the computational domain, the dual element will simply be the subelement 
related to the face, see right panel of Fig. 1. Hence, the vertex of each dual element will be the vertex of the face used to 
build it and the two barycenters of the elements containing that face. In 2D, all interior dual elements will be quadrilaterals, 
see Fig. 1, while in 3D, we have two types of interior elements: one coming from merging two pyramids, see Figs. 3-4, and 
another one when gluing two tetrahedra, see Fig. 5. In this case, the dual elements on the boundary of � are either pyramids 
or tetrahedra, depending on the shape of the boundary face.

3.2. Overview of the overall algorithm

Before presenting all the details of the new method, we first give a brief overview of the overall algorithm. Taking into 
account the performed splitting of the equations, the dual mesh structure, and the combination of finite volume (FV) and 
finite element (FE) discretization, the proposed algorithm can be divided into four main stages:

6
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Fig. 2. Notation of a three-dimensional primal element T1: the vertices are identified with Vk (left), the edges are denoted by �e (center) and the faces are 
denoted by � f (right).

Fig. 3. Construction of a dual element in 3D based on a face belonging to a hexahedron and a square pyramid. Top left: primal hexahedron (left), primal 
square pyramid (right), and primal vertex (black dots). Top center: construction of the barycenters of the primal elements. Top right: each barycenter is 
connected to the vertex of the common face (shadowed in grey), generating a pyramid on each side of the face with basis the grey face and opposite vertex 
the barycenters. Bottom left: the lateral faces of the generated pyramids are shaded in light green (left, inside the hexahedron) and sea green (right, inside 
the primal pyramid). Bottom center: the vertex of the two new pyramids are marked with green dots; continuous and discontinuous green lines indicate 
visible and shadow edges when merging both pyramids. Bottom right: the new dual element corresponds to the volume generated by merging the two 
pyramids constructed. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

• Well-balanced reconstruction at time tn . To obtain a second order accurate well-balanced reconstruction, piecewise 
linear polynomials are reconstructed for the fluctuations around the known equilibrium solution [76,79,92], making use 
of the cell-centered velocity and magnetic field. In order to guarantee a locally and globally exactly divergence-free 
reconstruction for the magnetic field, the constrained L2 projection algorithm of [113] is employed (see Section 3.4.3), 
using face averages of the normal magnetic field as constraints.

• Transport-diffusion stage (Section 3.3). Based on the well-balanced reconstruction, system (19) is solved at the aid of 
an explicit second-order accurate FV method in the primal grid, obtaining an intermediate momentum, ρu∗ , which in 
general, does not yet verify the divergence-free condition of the velocity field. The explicit transport-diffusion stage also 
includes the effects of the Maxwell stress tensor and of the viscous stresses in the momentum equation. Furthermore, 
an auxiliary cell-centered value of the magnetic field is computed, which is corrected and overwritten in the divergence-
free reconstruction stage.

• Divergence-free update of the magnetic field (Section 3.4). In order to verify the divergence-free condition for the 
magnetic field exactly at the discrete level, the induction equation (20) is solved inside the faces of the primal mesh, 
providing a natural and exactly divergence-free evolution of the normal component of the magnetic field via a discrete 
Stokes theorem inside each face, see [8,113]. For the discrete Stokes law, the electric field is needed at the edges 
of each face and is provided by a multi-dimensional Riemann solver and a discrete curl term, including the physical 

7
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Fig. 4. Construction of a dual element in 3D based on a face belonging to a hexahedron and a triangular prism. Top left: primal hexahedron (left), primal 
triangular prism (right), and primal vertex (black dots). Top center: construction of the barycenters of the primal elements. Top right: each barycenter is 
connected to the vertex of the common face (shadowed in grey), generating a pyramid on each side of the face with basis the grey face and opposite vertex 
the barycenters. Bottom left: the lateral faces of the generated pyramids are shadowed in light green (left, inside the hexahedron) and sea green (right, 
inside the primal pyramid). Bottom center: the vertex of the two new pyramids are marked with green dots; continuous and discontinuous green lines 
indicate visible and shadow edges when merging both pyramids. Bottom right: the new dual element corresponds to the volume generated by merging the 
two pyramids constructed.

Fig. 5. Construction of a dual element in 3D based on a face belonging to a square pyramid and a tetrahedron. Top left: primal square pyramid (left), 
primal tetrahedron (right), and primal vertex (black dots). Top center: construction of the barycenters of the primal elements. Top right: each barycenter is 
connected to the vertex of the common face (shaded in grey), generating a tetrahedron on each side of the face with basis the grey face and opposite vertex 
the barycenters. Bottom left: the lateral faces of the generated tetrahedra are shadowed in light green (left, inside the hexahedron) and sea green (right, 
inside the primal pyramid). Bottom center: the vertex of the two new tetrahedra are marked with green dots; continuous and discontinuous green lines 
indicate visible and shadow edges when merging both tetrahedra. Bottom right: the new dual element corresponds to the volume generated by merging 
the two tetrahedra constructed.

resistivity. This allows computing the new magnetic field Bn+1
� on the faces, which will be used as a constraint for the 

divergence-free reconstruction of the magnetic field. As an alternative to the exactly divergence-free evolution, also a 
simpler hyperbolic GLM divergence cleaning approach [17,18] can be applied, see Section 3.5.

• Projection stage (Section 3.6). The new pressure, pn+1, is computed at the vertices of the primal grid by solving the 
pressure Poisson equation (22) using classical continuous P1 Lagrange finite elements. To build the corresponding right-
hand side term, the intermediate momentum ρu∗ is interpolated from the primal elements to the dual cells.

• Post-projection stage (Section 3.7). The intermediate momentum ρu∗ is now corrected using the pressure gradient 
coming from the previous projection stage. As a consequence, the momentum at the new time step, ρun+1, is obtained 
by evaluating (21b).

8
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pn pn+1

Qn
i Qn(x) Q∗

i Qn+1
i

Bn
� Bn+1

�

Post-proj. stage

Rec. FV

Proj. stage

Bn+1
i =B∗

i

E=−u×B+η∇×BL2 proj.

Faraday

Diagram 1. Overall well-balanced and divergence-free FV/FE scheme for the magnetohydrodynamics equations.

The workflow of the proposed well-balanced divergence-free methodology is depicted in Diagram 1.

3.3. Transport-diffusion stage on the primal mesh

The transport diffusion system (19) is solved by employing explicit finite volumes in the primal grid. Accordingly, we 
integrate the corresponding PDEs on a control volume Ti and apply Gauss theorem, obtaining:

ρu∗
i = ρun

i − �t

|Ti|
∫

∂Ti

Fu
(
Qn) · ni dS+ �t

|Ti|
∫

∂Ti

Fu
(
Qe) · ni dS+ �t

|Ti|
∫

∂Ti

Fμ

(
μ,∇un) · ni dS

− �t

|Ti|
∫

∂Ti

Fμ

(
μe,∇ue) · ni dS− �t

|Ti |
∫
Ti

∇ (pn − pe)dV, (24)

B∗
i = Bn

i − �t

|Ti|
∫

∂Ti

FB
(
Qn) · ni dS+ �t

|Ti |
∫

∂Ti

FB
(
Qe) · ni dS+ �t

|Ti |
∫

∂Ti

Fη

(
η,∇Bn) · ni dS

− �t

|Ti|
∫

∂Ti

Fη

(
ηe,∇Be) · ni dS, (25)

where ρu∗
i denotes the discrete intermediate momentum and B∗

i is the auxiliary magnetic field in cell Ti , while ρun
i and 

Bn
i , are the cell-averaged momentum and magnetic fields at time tn ,

ρun
i = 1

|Ti|
∫
Ti

ρu(x, tn)dV, Bn
i = 1

|Ti|
∫
Ti

B(x, tn)dV .

To compute the convective flux terms contribution, the boundary integrals are divided into the sum of the fluxes over the 
primal element faces∫

∂Ti

Fu
(
Qn) · ni dS ≈

∑
T j∈Ni

∣∣∂Tij
∣∣FNF

u

(
Q−
i j ,Q

+
i j ,ni j

)
,

∫
∂Ti

FB
(
Qn) · ni dS ≈

∑
T j∈Ni

∣∣∂Tij
∣∣FNF

B

(
Q−
i j ,Q

+
i j ,ni j

)
,

with ∂Tij = �i j the common face of two neighboring cells, Ti and T j , and a numerical flux function FNF that depends on 
the left and right boundary extrapolated values Q−

i j and Q+
i j , respectively, and which can be chosen, for instance, as the 

classical Rusanov numerical flux function,

FRus
u (Q−

i j ,Q
+
i j ,ni j) = 1

2

(
Fu(Q

−
i j ) + Fu(Q

+
i j )
)

· ni j − αc
i j

(
ρu+

i j − ρu−
i j

)
, (26)

FRus
B (Q−

i j ,Q
+
i j ,ni j) = 1

2

(
FB(Q

−
i j ) + FB(Q

+
i j )
)

· ni j − αc
i j

(
B+
i j − B−

i j

)
, (27)

or the Ducros flux function,

FDuc
u (Q−

i j ,Q
+
i j ,ni j) = ρui j

(
ui j · ni j

)− Bi j
(
Bi j · ni j

)+ ni j
1

2

(
Bi j · Bi j

)− αc
i j

(
ρu+

i j − ρu−
i j

)
, (28)

FDuc
B (Q−

i j ,Q
+
i j ,ni j) = Bi j

(
ui j · ni j

)− ui j
(
Bi j · ni j

)− αc
i j

(
B+
i j − B−

i j

)
, (29)

ui j = 1

2

(
u−
i j + u+

i j

)
, Bi j = 1

2

(
B−
i j + B+

i j

)
,

9
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where, instead of directly considering the conservative variables coming from the previous time step, we introduce their 
reconstructed values, Q, ρu, B, which come from a well-balanced reconstruction in space and time, a detailed description 
of which is provided in Section 3.3.

In the above expressions, the upwind coefficient, αc
i j = max

{∣∣λc
i

∣∣ , ∣∣∣λc
j

∣∣∣}, represents the maximum signal speed at the 
interface and depends on the maximum absolute value of the eigenvalues of the convective system for the left and right 
states to the face, 

∣∣λc
i

∣∣, ∣∣∣λc
j

∣∣∣, respectively. Since we are considering the complete MHD system, those eigenvalues depend 
both on the velocity field and the magnetic field, being:

λc
1 = u − c f , λc

2 = u − ca, λc
3,4,5 = u, λc

6 = 2u, λc
7 = u + ca, λc

8 = u + c f , (30)

where

u = |u| , ca =
√

1

ρ
(B · n)2, c f =

√
1

ρ
B · B. (31)

The flux term contribution related to the equilibrium solution is then computed by directly evaluating the convective 
physical flux at each face barycenter as∫

∂Ti

Fu
(
Qe)ni dS ≈

∑
T j∈Ni

∣∣∂Tij
∣∣Fu(Qe) · ni j,

∫
∂Ti

FB
(
Qe)ni dS ≈

∑
T j∈Ni

∣∣∂Tij
∣∣FB(Qe

i j) · ni j, (32)

with

Qe
i j =

(
ρue

i j,B
e
i j

)T
, ρe

i j = ρ, ρue
i j = ρue (xi j) , Be

i j = Be (xi j) (33)

and xi j are the coordinates of the barycenter of face �i j .
On the other hand, the viscous terms are approximated as∫

∂Ti

Fμ

(
μ,∇un)ni dS ≈

∑
T j∈Ni

∣∣∂Tij
∣∣FNF

μ (μ,∇u−
i j ,∇u+

i j ,u
−
i j ,u

+
i j ,ni j), (34)

∫
∂Ti

Fη

(
η,∇Bn)ni dS ≈

∑
T j∈Ni

∣∣∂Tij
∣∣FNF

η (η,∇B−
i j ,∇B+

i j ,B
−
i j ,B

+
i j ,ni j), (35)

where the numerical flux functions for the viscous flux are given according to [114] by

FNF
μ (μ,∇u−

i j ,∇u+
i j ,u

−
i j ,u

+
i j ,ni j) = 1

2

(
Fμ(μ,∇u−

i j ) + Fμ(μ,∇u+
i j )
)
ni j − αv

i j

(
u+
i j − u−

i j

)
, (36)

FNF
η (η,∇B−

i j ,∇B+
i j ,B

−
i j ,B

+
i j ,ni j) = 1

2

(
Fη(η,∇B−

i j ) + Fη(η,∇B+
i j )
)
ni j − αv

i j

(
B+
i j − B−

i j

)
, (37)

with the penalty coefficient αv
i j = 2

hi+h j
max

{∣∣λv
i

∣∣ , ∣∣∣λv
j

∣∣∣} and the upper bound of the viscous eigenvalues λv = μ

ρ
+ η. Once 

again, to compute the numerical fluxes, the reconstructed values are employed.
In case the well-balanced scheme or a pressure correction approach is considered, the gradient of the pressure at the 

previous time step must be accounted for in the explicit stage. To approximate it, the integral of the gradient on the control 
volume is also transformed into the sum of integrals on the element faces. Consequently, we have∫

Ti

∇ (pn − pe)dV =
∫

∂Ti

(
pn − pe)ni dS =

∑
T j∈Ni

∣∣∂Tij
∣∣ (pnij − pe

i j

)
ni j (38)

where the pressure at the cell faces, pnij , is computed as the average pressure defined at the face vertices:

pnij =
1

|Vi j|
∑
Vk∈Vi j

pnk , (39)

with Vi j the set of vertices of face �i j and |Vi j| its cardinality.
As described above, the scheme would only be of first order in space and time. To improve the accuracy of the method, 

we compute an extrapolation of the data at the neighboring faces and perform a half in time evolution as usual in the 
MUSCL-Hancock method, [115,116], and the ADER approach, [116,117]. Moreover, special attention is paid to have also a 
well-balanced reconstruction and to guarantee the divergence-free condition of the magnetic field.

10
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Well-balanced reconstruction For attaining a second order scheme, we consider the half in time evolved extrapolated values 
of the left and right states at a face �i j , Q−

i j and Q+
i j , respectively, when approximating the fluxes, (26), (28), (36), instead of 

the cell-averaged states coming from the previous time step, Qn
i , Q

n
j . Accordingly, at each cell face, �i j , we define the two 

piecewise linear space-time reconstruction polynomials inside the elements Ti and T j as

Qi(x, t) = Qe
i j +Q′

i + ∇ Q′
i · (x− xi) + ∂tQ

′
i

(
t − tn

)
, ∀x ∈ Ti, (40)

Q j(x, t) = Qe
i j +Q′

j + ∇ Q′
j ·
(
x − x j

)+ ∂tQ
′
j

(
t − tn

)
, ∀x ∈ T j, (41)

with Q′
i = Qn

i − Qe
i , Q

e
i j the equilibrium solution at the face barycenter xi j , and xi the barycenter of the primal element 

Ti . Moreover, we denote ∇ Q′
i the spatial gradient of the fluctuation Q′ in Ti and ∇ Qe

i j the gradient of the equilibrium 
solution at the face barycenter. In case ∇ Qe

i j is not analytically known, it is approximated using finite differences. The 
boundary-reconstructed values are then given by

Q−
i j = Qi

(
xi j, t

n + 1

2
�t

)
, and Q+

i j = Q j

(
xi j, t

n + 1

2
�t

)
. (42)

The slopes at cell Ti , ∇ Q′
i , are approximated using a least square approach. First, we compute the difference between the 

states at cell Ti and its neighbors, taking into account the equilibrium solution and the distance between the neighboring
cell barycenters as

�Q′
i j =

1∣∣T j
∣∣
∫
T j

∇Q′
i · (x− xi)dx = ∇Q′

i · �xi j, ∀ T j ∈ Si, (43)

with

�Q′
i j :=

(
Qn

j −Qe
j

)
− (

Qn
i −Qe

i

)
, �xi j := x j − xi (44)

and Si the stencil for the reconstructed solution, that, due to the use of a least squares approach, may involve more cells 
than the minimum necessary number to reconstruct a polynomial, see [118–120] for further details. Besides, the integral 
has been approximated via the mid-point rule, which is enough for up to second order accurate integration. Then, applying 
least squares, we get the associated system of normal equations

A∇Q′
i = B, A = (

�xi j
) · (�xi j

)T
, B = (

�xi j
) ·
(
�Q′

i j

)T
(45)

which provides an optimal approximation of the gradient at the cell minimizing the errors committed with respect to the 
local-face approximated gradients. In general, the spatial reconstruction polynomial for the magnetic field Bi(x, tn) obtained 
via the reconstruction detailed in (40)-(45) is not yet divergence-free, hence we denote it for the moment by the preliminary 
symbol B̃i(x, tn). Later, in Section 3.4.3 we show how to make the reconstruction polynomial of the magnetic field truly 
divergence-free, which will then be denoted by Bi(x, tn).

Finally, following the classical MUSCL-Hancock and ADER approach [116,121,122], and taking into account the equilib-
rium solution, the contribution of the time derivative, ∂tQ′

i , is obtained by applying the Cauchy-Kovalevskaya procedure. 
Accordingly, it is replaced by spatial derivatives taking into account the momentum equation (14), as

∂tρu′
i = − 1

|Ti |
∑

T j∈Ni

∣∣∂Tij
∣∣ (Fu (Qi j

)+ Fμ

(
μ,∇Qi j

)− Fu
(
Qe
i j

)
− Fμ

(
μe,∇Qe

i j

)
+ pij

)
· ni j, (46)

and the conservative form of the Faraday equation (15),

∂tB
′
i = − 1

|Ti|
∑

T j∈Ni

∣∣∂Tij
∣∣ (FB (Qi j

)+ Fη

(
η,∇Qi j

)− FB
(
Qe
i j

)
− Fη

(
ηe,∇Qe

i j

))
· ni j, (47)

with the boundary-reconstructed data from within element Ti at time tn given by

Qi j = Qe
i j +Q′

i + ∇ Q′
i ·
(
xi j − xi

)
. (48)

To introduce the non-linearity needed to avoid spurious oscillations related to the second order approach, a limiting 
strategy should be employed. For instance, the classical Barth and Jespersen limiter, [123], or ENO and WENO methods, 
[124,125,120,126] could be selected. Furthermore, as an alternative to the use of classical ADER schemes, the local space-
time predictor ADER approach could have been used, thus avoiding the Cauchy-Kovalevskaya procedure, [127,128].
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3.4. Divergence-free evolution of the magnetic field and constrained L2 projection

In this section, we propose a novel well-balanced algorithm for the divergence-free evolution of the Faraday equation 
at second order of accuracy. For every cell Ti , we consider a magnetic field B in the space Pr(Ti)

d , which is the space of 
d-vector valued polynomials of degree r on Ti . It is said to be divergence-free if, for each element of the domain Ti ∈ �, we 
have the pointwise identity

∇·B = 0, ∀x ∈ Ti . (49)

Then, considering the full domain �, the discrete solution, which consists of piecewise polynomials, is represented in a non-
conforming space of solutions. Inspired by the work of [113], we introduce a divergence-free reconstruction operator that 
is conforming in the sense of the face-averaged magnetic fluxes, i.e., prescribing a discrete scalar field for the face-averaged 
normal component B f on face � f , which is defined as

B f = 1

|� f |
∫
� f

B · n f dS, ∀� f . (50)

For this section we need some auxiliary notation, that we now introduce. Each face � f has an intrinsic orientation 
induced by the face normal vector n f pointing from the left element T� attached to the face to the right element Tr asso-
ciated with face � f = ��r . Moreover, if Ti is an element and � f = �i j is one of its faces, we define the relative orientation 
σi f ∈ {−1, 1} of Ti and � f via the formula ni j = σi jn f , or, equivalently, σi j = ni j ·n f . Similarly each edge �e has an intrinsic 
orientation induced by the direction of its tangent vector te . If the edge �e belongs to the boundary of the face � f , then 
we define their relative orientation σ f e as equal to 1 if �e is oriented counterclockwise with respect to � f , and −1 if it is 
oriented clockwise. Given an edge �e , we define Te (resp. Fe) as the set of elements (resp. faces) that share the common 
edge �e and we denote by |Te| (resp. |Fe|) its cardinality. Moreover, if Ti is an element containing e, we denote by Fei the 
subset of Fe supported in Ti . Note that Fei contains exactly two faces, say � f +

e
and � f −

e
, such that

σi f +
e
σ f +

e e + σi f −
e
σ f −

e e = 0.

Finally, let xe denote the coordinates of the barycenter of the edge �e .

3.4.1. Divergence-free evolution of the normal components of the magnetic field
First, we derive a discrete equation for the (scalar) averaged magnetic fluxes B f in each face � f . Given any face � f of 

the primary mesh, the Faraday equation reveals the time-evolution of B f as

d

dt

∫
� f

B · n f dS +
∫
� f

∇×E · n f dS = 0.

Then, after the application of Stokes theorem and time integration, one may derive a consistent discrete equation for the 
face-averaged magnetic fluxes in the form of

B
n+1
f = B

n
f − �t

|� f |
∑

�e∈� f

σ f e |�e| Ee, (51)

where the sum is taken over the edges �e which delimit the boundary of the face � f .
Here, for any edge �e in the mesh, we define the averaged tangential component of the electric field along �e as

Ee = 1

|�e|
∫
�e

E · te dλ. (52)

In the next section, we describe how to compute the edge-averaged electric field Ee from the given velocity and magnetic 
fields. We now show that the averages obtained with equation (51) are divergence-free in the sense∑

� f ∈Ti

σi f |� f |Bn+1
f = 0, ∀Ti . (53)

This follows from a standard induction argument provided that the initial condition satisfies∑
� f ∈Ti

σi f |� f |B0
f = 0, ∀Ti, (54)

12
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and from the straightforward computation∑
� f ∈Ti

σi f

∑
�e∈� f

σ f e|�e|Ee =
∑

�e∈Ti

∑
� f ∈Fei

σ f e|�e|Ee

=
∑

�e∈Ti

(σi f σ f +
e e + σi f σ f −

e e)|�e|Ee = 0.

To ensure that the initial face averages of the magnetic field are divergence-free in the sense (54), we initialize them as

B
0
f = 1

|� f |
∑

�e∈� f

σ f e |�e| Ae,

where

Ae = 1

|�e|
∫
�e

A(x,0) · te dλ,

is the averaged tangential component of the magnetic potential A.

3.4.2. Computation of the electric field
First, we recall how to construct the barycentric dual face �∗

e with respect to the edge �e . Such barycentric dual control 
volumes are also typically used in Godunov-type schemes for Lagrangian hydrodynamics, see e.g. [129–133]. For � f ∈ Fe , let 
us denote by �∗

l f e (resp. �∗
r f e) the triangle spanned by the barycenters of the element, face and edge, denoted by Tl (resp. 

Tr ), � f and �e . Then we set

�∗
e =

⋃
f ∈Fe

�∗
r f e ∪ �∗

l f e,

see Fig. 6. We denote by t∗e the unit tangent vector to the boundary edges of the dual face �∗
e . From the definition of the 

electric field (5), we evaluate the average of the tangent component along �e as

Ee = − 1

|Te|
∑
Ti∈Te

1

|�e|
∫
�e

ui

(
x, tn+ 1

2

)
× Bi

(
x, tn+ 1

2

)
· te dλ

+ η

|�∗
e |
∑
Ti∈Te

∫
�∗

ei

Bi

(
x, tn+ 1

2

)
· t∗e dλ + ηh

|�∗
e |
∑
Ti∈Te

|�∗
ei |Bi

(
xe, t

n+ 1
2

)
· t∗ei, (55)

with the corner tangent vector t∗ei defined as

|�∗
ei |t∗ei =

∫
�∗

ei

t∗ dλ, |�∗
ei | =

∫
�∗

ei

dλ. (56)

The electric field Ee is the sum of three terms. The first is the averaged electric field for ideal MHD, where the average 
accounts for all elements Ti attached to the edge. The second term is a discretization of the physical resistivity term, which 
is proportional to the curl of B. It is computed as a line integral on the edges of the dual face �∗

e , which is delimited by 
piecewise linear edges �∗

ei that connect the barycenters of all Ti ∈ Te around �e . Each edge �∗
ei of the dual face �

∗
e consists 

of two pieces inside element Ti , i.e. the dual edge �∗
ei itself is piecewise linear inside Ti : one piece starting in the barycenter 

xi of Ti , pointing towards the barycenter of the face in common between Ti and the previous element T−
i in the ordered 

set Te . Likewise, the second piece of �∗
ei inside Ti points from xi to the barycenter of the common face between Ti and the 

next element T+
i in the ordered set Te . We assume that all elements in Te are ordered counter-clockwise around the edge 

�e , i.e. according to the right hand rule with respect to the vector te . For a sketch of the notation related to this edges in the 
2D framework see Fig. 6. The third term in (55) is a stabilization term, written under the form of an artificial resistivity. It is 
inspired by the expressions obtained from approximate multi-dimensional Riemann solvers for MHD, see e.g. [12,134–138]. 
The numerical resistivity ηh is similar to the artificial viscosity of a standard Rusanov (or local Lax-Friedrich) numerical 
flux, which provides an upwind-type stabilization. Here ηh is an artificial resistivity defined as ηh = smax |�∗

e |/|∂�∗
e |, where 

smax = max
{∣∣λc

i

∣∣} is the maximum wave speed estimated over all elements Ti ∈ Te . Note that, for uniform meshes, ηh scales 
with the mesh size.
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Fig. 6. Dual vertex-based mesh structure employed for the computation of the electric field in 2D. Left: the primal elements are the black triangles and 
quadrilaterals T1, T2, T3, and T4 with x1, x2, x3, and x4 their corresponding barycenters (dark blue). Center: the blue points denote the barycenters of the 
primal faces related to �1 and are connected with the barycenters of the primal elements to construct �∗

1 (light blue). Right: �∗
11, �∗

12, �∗
13, �∗

14 identify 
the four edges, each one defined by gathering the two linear pieces inside each primal element of the boundary of �∗

1, and the corresponding unitary 
corner tangent vectors t∗11, t∗12, t∗13, t∗14.

3.4.3. Constrained L2 projection
For every cell Ti , we define a functional as the L2-distance between the final divergence-free polynomial Bi = Bi

(
x, tn+1

)
and the polynomial reconstruction B̃i = B̃i

(
x, tn+1

)
, described previously in Section 3.3 and based on the auxiliary cell-

centered magnetic field B∗
i , which in general is not yet divergence-free, as follows:

U (Bi) :=
∫
Ti

∥∥∥Bi − B̃i

∥∥∥2 dV . (57)

We then state the following local optimization problem: look for a polynomial Bi ∈Pr(Ti)
d that minimizes U (Bi) subject to 

the following constraints:

∇·Bi = 0, ∀x ∈ Ti, (58)∫
�i j

Bi · ni j dS = σi f |�i j| Bn+1
f , ∀�i j ∈ ∂T⊂

i , (59)

with ∂T⊂
i = ∂Ti \ �̂i j the set of faces of Ti from which one arbitrary face �̂i j has been removed. Note that for the entire 

boundary ∂Ti of Ti the constraints are not linearly independent, as we now show. Fix an arbitrary face �̂i j in ∂Ti , then∫
�̂i j

Bi · ni j dS =
∑

�i j∈∂Ti

∫
�i j

Bi · ni j dS −
∑

�i j∈∂T⊂
i

∫
�i j

Bi · ni j dS

=
∫
Ti

∇·Bi dV −
∑

�i j∈∂T⊂
i

∫
�i j

Bi · ni j dS = 0 −
∑

�i j∈∂T⊂
i

∫
�i j

Bi · ni j dS.

Note that the second equality follows from the Gauss theorem. Therefore, we impose the constraint (59) only on the 
subset ∂T⊂

i = ∂Ti \ �̂i j and not on all faces of Ti , see also [113]. The optimization problem is then easily solved by the 
following Lagrangian-multiplier method:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

L
(
Bi, λ,λi j

) := U (Bi) + λ∇·Bi +
∑

�i j∈∂T⊂
i

λi j

⎛⎜⎝∫
�i j

Bi · ni j dS − σi f |�i j| Bn+1
f

⎞⎟⎠ ,

∂L
∂Bi

= 0,
∂L
∂λ

= 0,
∂L
∂λi j

= 0, ∀�i j ∈ ∂T⊂
i .

(60)

The magnetic field Bi(x, tn+1) is assumed to be piecewise linear (i.e. r = 1) and can be written with respect to its 
barycentric value and the corresponding slopes, i.e. for every element Ti ∈ � we may write

Bi = Bi
(
x, tn+1)= Bn+1

i + ∇Bn+1
i (x− xi) . (61)
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Note that, for up to second order accurate methods, the barycentric value Bn+1
i coincides with the corresponding cell-

average. In general Bi can be written as

Bi = Bi
(
x, tn+1)= Bn+1

i,� ψ�(x) (62)

where ψ�(x) form a basis for Pr(T )d and Bn+1
i,� is the corresponding array of degrees of freedom, which includes the 

barycentric value Bn+1
i as well as the slope ∇Bn+1

i . In particular, we have chosen a modal basis, hence the degrees of 
freedom are the first moments of B, i.e. the cell average and the local spatial-slopes. Here, x is the vector position in 
Cartesian coordinates in the physical space. Hence, in three space dimensions, the approximation of the final divergence-
free magnetic field has 12 free-parameters, namely the three cell-averages and the nine slopes. Using (62), the extremum 
conditions may be rewritten as

∂L
∂Bn+1

i,�

= 0,
∂L
∂λ

= 0,
∂L
∂λi j

= 0, ∀�i j ∈ ∂T⊂
i . (63)

Since the selected functional U is convex and we are imposing only linear constraints, the resulting matrix is symmetric 
and invertible and the unique solution of the linear system will be a minimizer. Moreover, since such matrix depends only 
on the mesh, its local inverse can be pre-computed, stored and directly used in the simulation, see [113] for further details. 
At the end, the auxiliary cell-average of the magnetic field B∗

i computed from (25) is overwritten by the result of the new 
cell-average coming from the constrained L2 projection. Then the scheme can proceed with the next time-step.

3.4.4. Well-balancing
The previously-described divergence-free algorithm is not yet well-balanced. To obtain a well-balanced divergence-free 

scheme, we must subtract the discretization of the stationary equilibrium equation. Indeed, on the continuous level one has

∇×E(ηe,Be,ue) = 0, since ∂tB
e = 0. (64)

The well-balancing procedure proposed in this paper is extremely simple, and it may drastically reduce the diffusive and 
dispersive numerical errors around the chosen analytical or (numerically) approximated equilibrium solution, as shown 
later in our numerical results. As a consequence, long-time stability is obtained with respect to any analytical or numerical 
solution, for any prescribed structured or unstructured grid, and almost independently on the order of accuracy of the 
method. It is important to notice that this is not a linearization, since the PDE are solved in their original non-linear form, 
from which only a discretization of the stationary version of the PDE (64) has been subtracted.

The final well-balanced discretization of (20) reads

B
n+1
f = B

n
f − �t

|� f |
∑

�e∈� f

σ f e |�e|
(
Ee − E

e
e

)
, (65)

with the electric field in the equilibrium defined as

E
e
e = − 1

|Te|
∑
Ti∈Te

1

|�e|
∫
�e

ue (x) × Be (x) · te dλ

+ η

|�∗
e |
∑
Ti∈Te

∫
�∗

ei

Be (x) · t∗ dλ + ηh

|�∗
e |
∑
Ti∈Te

|�∗
ei |Be (xe) · t∗ei . (66)

It is obvious that when the discrete solution coincides with the a priori known equilibrium, we have Ee = E
e
e and therefore 

the numerical method produces Bn+1
f = B

n
f , hence the method is well-balanced. To the best of our knowledge, this is the 

first well-balanced exactly divergence-free finite volume scheme for the discretization of the MHD equations on general 
mixed-element unstructured meshes. At this point we would like to emphasize again that the proposed method does not
require the knowledge of an analytical equilibrium, but it is enough if the equilibrium solution can be approximated numer-
ically with sufficient accuracy, see also [139,140,79,141] concerning well-balanced schemes for hyperbolic balance laws with 
complex equilibria that are computed numerically.

3.5. GLM divergence cleaning

A hyperbolic Generalized Lagrangian Multiplier (GLM) divergence cleaning technique can be used as a simpler alternative 
to the former exactly divergence-free scheme. Although GLM does not lead to an exactly divergence-free discretization, it 
avoids the accumulation of divergence errors in the magnetic field and also allows long-time stable simulations. Due to its 
simplicity, we present it here, although the main focus of this paper is on the exactly divergence-free scheme introduced 
above.

15



F. Fambri, E. Zampa, S. Busto et al. Journal of Computational Physics 493 (2023) 112493

pn pn+1

Qn
i ,ψ

n
i Q∗

i ,ψ
n+1
i Qn+1

i

Post-proj. stage

FV

Proj. stage

Bn+1
i =B∗

i

Diagram 2. Overall well-balanced FV/FE scheme for the magnetohydrodynamics equations with a GLM divergence cleaning approach.

Following the ideas of Munz et al. [17,18], we construct an augmented system of (1)-(4) by introducing the cleaning 
variable ψ . It serves as a generalized Lagrangian multiplier and it is coupled to the induction equation via a grad - div pair 
of differential operators. This generates artificial acoustic-type waves in ψ and B that propagate away divergence errors that 
will arise due to numerical discretization errors inside a general-purpose scheme. The augmented GLM-MHD system reads:

∇·ρu = 0, (67a)

∂tρu + ∇·Fu (Q) − ∇·Fμ (μ,∇Q) + ∇ p = 0, (67b)

∂tB+ ∇·FB (Q) − ∇·Fη (η,∇Q) + ∇ ψ = 0, (67c)

∂tψ + ∇·
(
c2hB

)
= 0, (67d)

with Q = (ρu,B,ψ)T the extended vector of unknowns, Fu , Fμ , FB , and Fη , the fluxes given in (6) and (8), and ch the 
divergence cleaning speed. For a thermodynamically compatible formulation of GLM for MHD, the reader is referred to [19].

The main novelty of this section is the introduction of the well-balanced feature inside the hyperbolic GLM divergence-
cleaning method. To the best of our knowledge, a well-balanced GLM method for MHD does not exist yet. As done for the 
original system, to develop a well-balanced scheme, we assume a divergence-free stationary solution to be known, hence 
∇·Be = 0 and therefore ψe = 0. Then, after subtracting the equilibrium solution (10)-(12) from the MHD-GLM system (67), 
we obtain

∇· (ρu − ρue)= 0, (68a)

∂tρu+ ∇·Fu (Q) − ∇·Fu
(
Qe)− ∇·Fμ (μ,∇Q) + ∇·Fμ

(
μe,∇Qe)+ ∇ (p − pe)= 0, (68b)

∂tB+ ∇·FB (Q) − ∇·FB
(
Qe)− ∇·Fη (η,∇Q) + ∇·Fη

(
ηe,∇Qe)+ ∇ ψ = 0, (68c)

∂tψ + ∇·
(
c2hB

)
− ∇·

(
c2hB

e
)

= 0. (68d)

As for the original system, the augmented GLM-MHD system from which the equilibrium solution has been subtracted, (68), 
is now solved with exactly the same explicit finite volume approach introduced in Section 3.3. We only need to modify the 
eigenvalues, which for the augmented system also include ch and read:

λc
1 = u − c f , λc

2 = u − ca, λc
3,4 = u, λc

5 = 2u, λc
6 = u + ca, λc

7 = u + c f , λc
8 = −ch, λc

9 = ch. (69)

As shown in Diagram 2, within this approach the transport diffusion stage does not make use of the divergence-free 
reconstruction of the magnetic field any more and there is also no exactly divergence-free evolution of the magnetic field 
in the faces as the one introduced in Section 3.4. Instead, the scheme directly employs the value computed at the previous 
time step for the well-balanced reconstruction performed within the finite volume method (Section 3.3). Once the solution 
of the transport-diffusion stage is obtained, the projection stage is performed to get the new pressure and the momentum 
is corrected with the contribution of the pressure gradient. As such, the implementation of the GLM-MHD system is much 
simpler than the exactly divergence-free scheme presented before.

3.6. Projection stage

The projection stage is devoted to the solution of the pressure subsystem (21), i.e., the pressure Poisson equation (22). To 
this end, we need the intermediate solution ρu∗ computed in the transport-diffusion stage, which contains the convective 
and viscous terms. Moreover, as has been indicated before, its interpolation between the primal and the dual mesh is 
essential to avoid stability issues. Since in the previous stage ρu∗ was computed on the primal mesh, where also the 
pressure will be approximated, its value is now interpolated onto the dual mesh. In general, knowing the value of a certain 
variable in the primal mesh Q i , ∀ i ∈ {1, . . . ,Nel}, its value on a dual cell C j , Q j , is computed as

Q j = 1

|C j|
∑
i∈K j

Q i |Tij|, (70)
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where K j identifies the set of subelements of the dual element C j , 
∣∣Tij

∣∣ is the area/volume of subelement Tij , Tij ⊂ Ti , 
Tij ⊂ C j . Analogously, to interpolate data from the dual to the primal cells, we compute

Q i = 1

|Ti|
∑
j∈Di

Q j |T ji |. (71)

Here Di is the set of subelements contained in the primal element Ti . Directly applying (70) to ρu∗ inevitably leads to an 
excessive numerical dissipation of the Lax-Friedrichs-type, see [56] for details. To avoid it, instead of directly interpolating 
ρu∗ we will only account for the variation with respect to the previous time step, i.e., we average only δQ i := δρui =
ρu∗

i − ρun
i from the primal mesh to the dual one, hence obtaining ρu∗

j = δρu j + ρun
j for the intermediate momentum 

on the dual mesh. Once the intermediate momentum is obtained on the dual cells we can efficiently address the pressure 
system using continuous finite elements.

Inserting (21a) into (21b) leads to the pressure Poisson equation (22) to be solved for each time step, which can be more 
compactly written as

∇2δp = 1

�t

(∇·ρu∗ − ∇·ρue) , (72)

where δp = pn+1 − pn is the sought pressure correction.
Multiplying (72) by a test function z ∈ V0 = {

z ∈ H1(�) : ∫
�
zdV = 0

}
, integrating on the computational domain �, and 

applying Green’s formula, leads to

Find δp ∈ V0 such that

�t

∫
�

∇ δp · ∇ zdV =
∫
�

(ρu∗ − ρue) · ∇ zdV−
∫
∂�

(ρu∗ − ρue) · n zdS, ∀z ∈ V0. (73)

This weak problem is discretized using classical P1 Lagrange finite elements in the primal mesh. Regarding the right-hand 
side, the integrals are computed by employing the value of the momentum in the dual control volumes. The resulting linear 
system is solved using a matrix-free conjugate gradient algorithm.

3.7. Post-projection stage

A final correction step must be carried out at the end of each time step, since the contribution of the term related 
to pn+1 is not yet included in the intermediate approximations obtained within the transport-diffusion stage. In order to 
accomplish this, first the gradient of the pressure jump is calculated on the half dual cells, using the corresponding basis 
functions, and weighted averaged to get its approximation on the dual cell, ∇δp j . These values are then interpolated to the 
primal cells using (71), thus setting Q j := ∇δp j in (71) in order to obtain ∇δpi on the primal mesh. Consequently, the final 
momentum on the dual grid is given by

ρun+1
j = ρu∗

j − �t ∇δp j, (74)

while the momentum on the primal mesh is updated as

ρun+1
i = ρu∗

i − �t ∇δpi . (75)

This closes the description of the algorithm.

3.8. Non well-balanced scheme and algorithm without pressure correction

The numerical method presented in the former sections is designed to be well-balanced in each step. To get a non well-
balanced scheme with a pressure correction approach, it suffices to neglect the terms which depend on the equilibrium 
solution Qe, pe throughout the proposed well-balanced scheme. Moreover, to get a non well-balanced scheme without the 
pressure-correction approach we would also cancel the explicit pressure term pn in the transport-diffusion equation (24), 
solve the pressure system in Section 3.6 directly for the new pressure, pn+1, instead than for δp = pn+1 − pn , and then the 
momentum will be directly updated as ρun+1 = ρu∗ − �t∇pn+1.

3.9. Discrete boundary conditions

In this section, we describe the discrete boundary conditions as they have been implemented and tested at the scope 
of the numerical validation. Whenever considering compact domains, different kinds of boundary conditions may be con-
sidered. In this work, we can distinguish between two types of non-trivial boundary conditions: Dirichlet and Neumann 
boundary conditions, i.e. for a given variable q ∈ Q = (ρ, u1, u2, u3, p, B1, B2, B3)
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q
N

q = Dq(x) x ∈ ∂�
q
D

(76)

where ∂�N and ∂�D are assumed to be the complementary partition of the domain boundary ∂�. In this work, for a given 
position on the boundary x ∈ ∂� we may consider different (either Dirichlet or Neumann) boundary conditions for any 
component of the state array Q. For this reason we introduce the state variable (q, ∇q ·n) ∈ (Q, ∇Q ·n). In the following lines, 
we describe first the discrete boundary conditions for the finite-volume scheme, second for the finite-element scheme used 
to solve the discrete pressure Poisson equation, and finally for the divergence-free discretization of the Faraday equation.

3.9.1. FV scheme for the convection-diffusion subsystem
In the finite-volume step, there are three stages where boundary conditions are needed, namely during the reconstruction 

stage in system (45), the divergence-free correction of the reconstruction (60) and the evaluation of the numerical flux at 
the boundary cell-interfaces, see equations (26)-(29) and (36). In particular, without loss of generality we assume that the 
internal state is (q−

i j , ∇q−
i j · n) while the external state is (q+

i j , ∇q+
i j · n) that has to be chosen depending on the prescribed 

boundary conditions (76). Here, we kept the same index notation from the reference equations of the numerical fluxes 
(26)-(29) and (36), i.e. i is a label for the internal element Ti , and j can be viewed as the label of an auxiliary ghost-element 
T j , neighbor of Ti . It is clear that, even if either the solution q or the gradient ∇q is prescribed by the boundary conditions, 
the full state (q+

i j , ∇q+
i j · n) is needed to close the discrete equations. For this reason we define a new state (q∗

i j, ∇q∗
i j · n) as 

the effective discrete solution that we would like to impose at the boundaries. Then, since either the Dirichlet q∗
i j = Dq(xij)

or the Neumann state ∇q∗ · n = N q(xij) are given by the prescribed boundary conditions (76), we close the definition of 
the effective boundary state (q∗

i j, ∇q∗
i j · n) by assuming a first-order finite-difference formula

∇q∗
i j · n = q∗

i j − q(xi)

xij − xi
. (77)

In this way, (76)-(77) fully define (q∗
i j, ∇q∗

i j ·n). Finally, the external FV state (q+
i j , ∇q+

i j ·n), which is needed in the FV scheme, 
is obtained by the centered averages

q∗
i j = q∗

i j(q
+
i j ,q

−
i j ), ∇q∗

i j = ∇q∗
i j(∇q+

i j ,∇q−
i j ). (78)

These last equations univocally define the FV boundary state (q+
i j , ∇q+

i j · n), and complete the description of the adopted 
boundary conditions in the FV scheme. Note that, the discrete finite-volume equations are automatically well-balanced by 
subtracting the corresponding equilibrium solution at the boundary and after a sufficient requirement that q∗

i j = q∗
i j(q, q) = q

and ∇q∗
i j = ∇q∗

i j(∇q, ∇q) = ∇q. In this work, we employed the centered averages

q∗
i j =

1

2

(
q+
i j + q−

i j

)
, ∇q∗

i j =
1

2

(
∇q+

i j + ∇q−
i j

)
. (79)

3.9.2. FE scheme for the pressure Poisson equation
Regarding the discrete pressure Poisson equation (73), the implementation of the boundary conditions is standard for 

finite-elements. In this work we only considered Dirichlet and homogeneous Neumann pressure boundary conditions. In 
particular, the nodal values of the pressure lying on ∂�

p
D are imposed in eq. (73). Since we solve for the pressure corrections 

δp, the equation is well-balanced thanks to the definition of the right-hand side in which the equilibrium is subtracted. The 
equilibrium obviously also needs to be subtracted in the boundary conditions. Indeed, when ρu∗ = ρue one has δp = 0. This 
also means that well-balancing is ensured also in those cases where the prescribed discrete equilibrium velocity ue is not 
exactly divergence-free. This is a very important feature of our scheme, because allows the preservation of any analytical or 
numerical equilibrium by construction.

3.9.3. Faraday equation
In the discrete Faraday equation (51), the boundary conditions are imposed very easily by only specifying the discrete 

tangential components of the electric field Ee , through its definition

Ee = 1

|�e|
∫
�e

E · te dλ, ∀�e ∈ ∂�. (80)

Note that, in this way, (50) means that we automatically impose also the normal component of the magnetic field B f on 
a boundary face � f . Again, well-balancing is easily achieved by subtracting the corresponding equilibrium solution at the 
boundary.
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Fig. 7. Left: 2D unstructured mixed-element grid M50, used in the domain � = [0, 2π ]2, with 4079 elements in total: 2204 triangles and 1875 quadrilateral 
elements. Right: 3D unstructured grid M3D

40 , used in the domain � = [0, 10]2 × [0, 1], with 21433 elements in total: 3200 Cartesian elements, 320 pyramids 
and 17913 tetrahedra.

4. Numerical results

The proposed methodology is assessed at the aid of a large set of test problems with known exact or numerical refer-
ence solutions. The numerical convergence and the well-balanced property are both analyzed within a pure hydrodynamics 
framework (i.e., setting B = 0) and also for the complete MHD system. Then, some classical test problems, including a 
current sheet test, a magnetic field loop advection, the classical lid-driven cavity for the incompressible Navier-Stokes equa-
tions as well as a new version including also viscous and resistive MHD, the double shear layer, and the viscous and resistive 
Orszag-Tang vortex are run. Finally, a more complex 3D MHD test case of the Grad-Shafranov equilibrium in simplified 3D 
tokamak-type torus geometries is studied.

Unless stated otherwise, the density is set to ρ = 1, and the time step for all test cases is calculated according to the 
CFL-type condition

�t = CFL min
Ti

{
hi

max
∣∣λc

i

∣∣ + 2
hi

max
∣∣λv

i

∣∣
}

, (81)

with CFL < 1
d , d the number of space dimensions, hi the incircle diameter of the primal element Ti and 

∣∣λc
i

∣∣, ∣∣λv
i

∣∣ its 
corresponding absolute eigenvalues for the convective and viscous subsystems, respectively.

4.1. Numerical convergence tests and verification of the well-balanced property

To check the order of convergence of the proposed hybrid FV/FE method via numerical experiments, we perform two 
types of simulations: the first type, where we solve the incompressible Navier-Stokes equations, and the second, where we 
check the experimental order of convergence by solving the incompressible ideal MHD equations. We also carry out a series 
of numerical experiments in order to verify the well-balanced property of our new family of hybrid FV/FE schemes.

4.1.1. 2D Taylor-Green vortex without magnetic field
First, we solve the incompressible Euler equations with μ = 0 and consider the Taylor-Green vortex benchmark in the 

two-dimensional domain � = [0,2π ]2. The well-known exact solution for this test is

u (x, t) =
(

sin(x) cos(y)
− cos(x) sin(y)

)
, p (x, t) = 1

4
(cos(2x) + cos(2y)) . (82)

To run the simulations, the computational domain is discretized by using unstructured mixed-element primal grids formed 
by triangles and quadrilateral elements. The left plot of Fig. 7 shows, as an example, one of the used meshes (M50), with 
a total amount of 4079 primal elements, 2204 of which are triangles and 1875 are quadrilateral elements. Table 2 con-
tains some details about the grids used for the convergence analysis: the number of elements per edge in each coordinate 
direction, Nx = Ny , and the number of vertices and elements of the primal mesh, including the number of triangles and 
quadrangles of the grid. The subscript in mesh name states the number of elements in each direction (Nx). Periodic bound-
ary conditions are set everywhere. Moreover, the time step is automatically computed at each time step according to (81)
with CFL = 0.1. Table 3 contains the L2 error norms for each mesh at time t = 0.1 for the pressure, p, at the vertex of the 
primal mesh and for both components of the velocity u1 and u2. These results were obtained using the scheme without 
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Table 2
Main features of the computational grids and time steps considered to perform the convergence analysis in 2D of the hybrid 
FV/FE method.

Mesh Nx = Ny Elements Vertices Triangles Quadrangles �t

M20 20 666 524 366 300 5.00 · 10−3

M40 40 2626 1994 1426 1200 2.50 · 10−3

M50 50 4079 3078 2204 1875 2.00 · 10−3

M60 60 5872 4407 3172 2700 1.67 · 10−3

M80 80 10380 7751 5580 4800 1.25 · 10−3

M100 100 16174 12038 8674 7500 1.00 · 10−3

M200 200 64382 47592 34382 30000 5.00 · 10−4

M300 300 145724 107213 78224 67500 3.33 · 10−4

M400 400 262220 191911 142220 120000 2.50 · 10−4

Table 3
Spatial L2 error norms and convergence rates at time t = 0.1 for the Taylor-Green vortex benchmark in 2D obtained using 
the hybrid FV/FE scheme with the Rusanov flux function, without well-balancing and with pressure correction. The time 
step is computed at each time step with CFL = 0.1.

Mesh L2� (p) O (p) L2� (u1) O (u1) L2� (u2) O (u2)

M20 1.0804 · 10−1 3.4570 · 10−2 3.4540 · 10−2

M40 2.6207 · 10−2 2.04 8.3340 · 10−3 2.05 8.3769 · 10−3 2.04
M50 1.6236 · 10−2 2.15 5.3056 · 10−3 2.02 5.3379 · 10−3 2.02
M60 1.1122 · 10−2 2.07 3.6704 · 10−3 2.02 3.6930 · 10−3 2.02
M80 6.1260 · 10−3 2.07 2.0525 · 10−3 2.02 2.0700 · 10−3 2.01
M100 3.8184 · 10−3 2.12 1.3166 · 10−3 1.99 1.3225 · 10−3 2.01
M200 9.3826 · 10−4 2.02 3.3338 · 10−4 1.98 3.3572 · 10−4 1.98
M300 4.2127 · 10−4 1.97 1.4988 · 10−4 1.97 1.5128 · 10−4 1.97
M400 2.3384 · 10−4 2.05 8.5443 · 10−5 1.95 8.6616 · 10−5 1.94

Table 4
L2 errors for the Taylor-Green vortex benchmark at time t = 0.1 with different 
machine precisions for the well-balanced scheme.

Rusanov

Precision L2� (p) L2� (u1) L2� (u2)

Single 9.4478 · 10−6 1.0821 · 10−6 1.0930 · 10−6

Double 3.4167 · 10−13 2.7140 · 10−14 2.7030 · 10−14

Quadruple 3.8884 · 10−27 2.6880 · 10−28 2.6827 · 10−28

Ducros

Precision L2� (p) L2� (u1) L2� (u2)

Single 1.1771 · 10−6 1.0872 · 10−6 1.0880 · 10−6

Double 5.8481 · 10−13 2.7159 · 10−14 2.7014 · 10−14

Quadruple 2.5070 · 10−27 2.6881 · 10−28 2.6827 · 10−28

well-balancing and considering the pressure correction approach. The differences between the errors computed by using 
either Rusanov or Ducros numerical fluxes are negligible, so the errors are shown only for the Rusanov flux. Since we are 
using a second order MUSCL-Hancock method in the explicit finite volume part of the scheme, the second order of accuracy 
for the pressure and the velocity fields is reached, as expected.

In order to illustrate that the well-balanced property of our new hybrid FV/FE scheme is satisfied and that the proposed 
method preserves stationary equilibrium solutions, some simulations of the 2D Taylor-Green vortex have been run using 
different machine precisions and imposing the exact solution (82) as prescribed equilibrium solution. Table 4 reports the 
errors obtained when the simulation is run with single, double, and quadruple precision when considering the Rusanov and 
Ducros numerical flux functions. The errors are all of the order of machine precision, and therefore, clearly confirm the 
well-balanced property of the method.

We now repeat the simulation, but this time prescribing as equilibrium solution a vortex defined by

p = −1

2
e−(r2−1), u1 = u0 − re− 1

2 (r2−1) sin(φ), u2 = u0 + re− 1
2 (r2−1) cos(φ), (83)

where φ is the angle that satisfies tanφ = (y − u0t − y0)/(x − u0t − x0), r = √
(x− u0t − x0)2 + (y − u0t − y0)2 is the 

distance to the center of the computational domain (x0, y0) in the x − y plane and u0 is a constant background velocity. In 
this case, we set u0 = 0 and x0 = y0 = π and impose Dirichlet boundary conditions on all boundaries. The discrete initial 
condition and the discrete equilibrium solution are both initialized by evaluating the exact expressions given in (82) and 
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Table 5
Spatial L2 error norms and convergence rates at time t = 0.1 obtained with the well-balanced hybrid FV/FE scheme with 
Rusanov flux for the Taylor-Green vortex in 2D for an equilibrium solution given by (83) with u0 = 0 and x0 = y0 = π .

Mesh L2� (p) O (p) L2� (u1) O (u1) L2� (u2) O (u2)

M20 8.5532 · 10−1 2.2665 · 10−2 2.3562 · 10−2

M40 2.2320 · 10−2 1.94 6.0195 · 10−3 1.91 6.2974 · 10−3 1.90
M60 1.0051 · 10−2 1.97 2.8050 · 10−3 1.88 2.9340 · 10−3 1.88
M80 5.7917 · 10−3 1.92 1.6042 · 10−3 1.94 1.7008 · 10−3 1.90
M100 3.7256 · 10−3 1.98 1.0515 · 10−3 1.89 1.1271 · 10−3 1.84

Table 6
Main features of the computational grids and time steps considered for the three-dimensional convergence tests.
Mesh Nx = Ny = Nz Elements Vertices Bricks Pyramids Tetrahedra �t

M3D
20 20 2659 1343 400 80 2179 5.00 · 10−3

M3D
30 30 9445 3947 1350 180 7915 3.33 · 10−3

M3D
40 40 21433 8413 3200 320 17913 2.50 · 10−3

M3D
50 50 41223 15454 6250 500 34473 2.00 · 10−3

M3D
60 60 68833 25308 10800 720 57313 1.67 · 10−3

M3D
80 80 154580 55614 25600 1280 127700 1.25 · 10−3

Table 7
Spatial L2 error norms and convergence rates at time t = 0.1 obtained using the hybrid FV/FE scheme with Ducros flux for 
the stationary vortex in 3D without well-balancing and with pressure correction approach.
Mesh L2� (p) O (p) L2� (u1) O (u1) L2� (u2) O (u2)

M3D
20 1.3256 · 10−1 5.8970 · 10−2 5.9710 · 10−2

M3D
30 4.7849 · 10−2 2.51 2.4526 · 10−2 2.16 2.6704 · 10−2 1.98

M3D
40 2.3492 · 10−2 2.47 1.4635 · 10−2 1.79 1.4955 · 10−2 2.02

M3D
50 1.4215 · 10−2 2.25 9.5686 · 10−3 1.90 9.7160 · 10−3 1.93

M3D
60 9.7048 · 10−3 2.09 6.7876 · 10−3 1.88 6.8443 · 10−3 1.92

M3D
80 5.2921 · 10−3 2.11 4.0781 · 10−3 1.77 4.1803 · 10−3 1.71

(83) and then performing five projection steps with time step �t = 10−7 in order to make sure that the discrete divergence 
errors of the velocity field in the initial condition are small. Table 5 contains the L2 error norms for each mesh at time 
t = 0.1 when we consider the initial condition (82) together with the equilibrium (83), which obviously do not coincide. As 
expected, when far from the prescribed equilibrium, the method converges to the exact solution of (82) again with second 
order of accuracy.

4.1.2. 3D Euler vortex
Now, a stationary vortex in a three-dimensional domain is considered. We solve the incompressible Euler equations 

without magnetic field (B = 0, μ = 0) in the computational domain � = [0,10]2 × [0, 1], which is discretized by using 
unstructured primal grids formed by bricks, pyramids, and tetrahedra. Table 6 provides the main features of the three-
dimensional grids used: the number of elements per edge in each coordinate direction, Nx = Ny = Nz , and the number 
of vertices and elements of the primal mesh, including the number of bricks, pyramids and tetrahedra. The right plot of 
Fig. 7 shows one of the used meshes M3D

40 , with 21433 primal elements. The exact solution for this test is defined by (83)
with u0 = 0 and x0 = y0 = 5. The simulation is performed with u0 = 0 until t = 0.1, and periodic boundary conditions are 
set everywhere. The simulations are run for the scheme without well-balancing and considering the pressure correction 
approach. The numerical convergence rates reported in Table 7, show that second order of accuracy is reached for all 
variables, as expected.

4.1.3. 2D MHD vortex
The first MHD test considered is a stationary MHD vortex in the domain � = [0, 10]2. The equilibrium solution is defined 

by

u (x, t) = e
1
2 (1−r2)

(
y0 − y
x− x0

)
+
(
u0

0

)
,

p (x, t) = 1+ 1

2
e
(
1− r2e−r2

)
, B (x, t) = e

1
2 (1−r2)

(
y0 − y
x− x0

)
,

(84)

where r =√
(x− u0t − x0)2 + (y − u0t − y0)2 is the distance to the center of the computational domain (x0, y0) in the x − y

plane, and u0 is a constant background velocity. For this test, we set u0 = 0 and x0 = y0 = 5. Periodic boundary conditions 
are imposed on all boundaries, and the time step is fixed according to the mesh refinement.
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Table 8
Spatial L2 error norms and convergence rates at time t = 0.1 obtained using the hybrid FV/FE scheme with Rusanov flux for 
the MHD vortex benchmark in 2D without well-balancing. The time step is computed at each time step with CFL = 0.1.

Mesh L2� (p) O (p) L2� (u1) O (u1) L2� (u2) O (u2)

M20 1.6688 · 10−1 8.3906 · 10−2 8.3849 · 10−2

M40 4.0246 · 10−2 2.05 2.0062 · 10−2 2.06 2.0212 · 10−2 2.05
M50 2.5276 · 10−2 2.08 1.2571 · 10−2 2.09 1.2623 · 10−2 2.11
M60 1.7313 · 10−2 2.08 8.5654 · 10−3 2.10 8.5949 · 10−3 2.11
M80 9.6121 · 10−3 2.05 4.6832 · 10−3 2.10 4.7305 · 10−3 2.08
M100 6.0844 · 10−3 2.05 2.9572 · 10−3 2.06 2.9802 · 10−3 2.07
M200 1.4973 · 10−3 2.02 7.1296 · 10−4 2.05 7.2394 · 10−4 2.04
M300 6.6671 · 10−4 2.00 3.1886 · 10−4 1.98 3.2319 · 10−4 1.99
M400 3.7512 · 10−4 2.00 1.8426 · 10−4 1.91 1.8686 · 10−4 1.90

L2� (B1) O (B1) L2� (B2) O (B2)

M20 1.3933 · 10−1 1.4204 · 10−1

M40 3.3321 · 10−2 2.06 3.3687 · 10−2 2.08
M50 2.1052 · 10−2 2.06 2.0979 · 10−2 2.12
M60 1.4464 · 10−2 2.06 1.4319 · 10−2 2.09
M80 7.9216 · 10−3 2.09 7.9553 · 10−3 2.04
M100 5.0374 · 10−3 2.03 5.0167 · 10−3 2.07
M200 1.2236 · 10−3 2.04 1.2309 · 10−3 2.03
M300 5.4143 · 10−4 2.01 5.4470 · 10−4 2.01
M400 3.0469 · 10−4 2.00 3.0661 · 10−4 2.00

Table 9
L2 errors for the MHD vortex benchmark at time t = 0.1 with different machine precisions when the simulation is carried 
out with the well-balanced scheme.

Rusanov

Precision L2� (p) L2� (u1) L2� (u2) L2� (B1) L2� (B2)

Single 1.0089 · 10−5 9.1549 · 10−7 8.9882 · 10−7 5.7389 · 10−7 5.7724 · 10−7

Double 6.3177 · 10−13 4.6600 · 10−14 4.6360 · 10−14 5.7500 · 10−14 5.7894 · 10−14

Quadruple 1.1115 · 10−27 4.6578 · 10−28 4.6304 · 10−28 5.7644 · 10−28 5.7856 · 10−28

Ducros

Precision L2� (p) L2� (u1) L2� (u2) L2� (B1) L2� (B2)

Single 9.4873 · 10−6 8.7277 · 10−7 8.9653 · 10−7 5.7455 · 10−7 5.7729 · 10−7

Double 7.5255 · 10−13 4.6622 · 10−14 4.6357 · 10−14 5.7497 · 10−14 5.7889 · 10−14

Quadruple 4.6333 · 10−27 4.6579 · 10−28 4.6305 · 10−28 5.7644 · 10−28 5.7856 · 10−28

We start performing a numerical convergence analysis using the grids and the time steps described in Table 2. The 
results, reported in Table 8, show that the expected second order of accuracy is achieved for all variables.

We now verify the well-balanced property by repeating the numerical experiment described in Section 4.1.1 but for the 
MHD equations. We run some simulations of the MHD vortex with different machine precisions imposing (84) as prescribed 
equilibrium solution. Table 9 reports the errors obtained with both the Rusanov and the Ducros fluxes with single, double, 
and quadruple precision. The errors are of the order of the machine precision, confirming the expected well-balanced 
property of the new algorithm proposed in this paper.

4.1.4. 3D MHD vortex
We repeat the numerical convergence analysis for the same MHD vortex given in (84), but now inside a three-

dimensional computational domain � = [0, 10]2 × [0, 1]. We use the grids and the time steps listed in Table 6, starting 
from M3D

40 . The exact solution of this problem is (84) with u0 = 0 and x0 = y0 = 5. The simulation is performed until a final 
time of t = 0.1 and periodic boundary conditions are set everywhere. The differences between the results obtained with 
Rusanov and Ducros fluxes are negligible, therefore we report only the errors obtained from the former flux. In Table 10 we 
observe that second order of convergence is reached, as expected.

4.2. Small perturbation of an equilibrium solution without and with magnetic field

In order to show the clear benefit of the well-balanced scheme over the non well-balanced one, we now carry out a set 
of numerical simulations where a small perturbation is added to a given equilibrium solution, one without magnetic field 
and one with magnetic field. The computational domain used for this test is � = [0, 10]2 discretized with mesh M40 and 
considering periodic boundary conditions everywhere.
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Table 10
Spatial L2 error norms and convergence rates at time t = 0.1 obtained with hybrid FV/FE scheme with Rusanov flux for the 
MHD stationary vortex in 3D.
Mesh L2� (p) O (p) L2� (u1) O (u1) L2� (u2) O (u2)

M3D
40 2.7716 · 10−2 1.4473 · 10−2 1.5287 · 10−2

M3D
50 1.7843 · 10−2 1.97 9.5332 · 10−3 1.87 9.9961 · 10−3 1.90

M3D
60 1.2930 · 10−2 1.77 6.8011 · 10−3 1.85 7.2149 · 10−3 1.79

M3D
80 7.6015 · 10−3 1.85 4.2458 · 10−3 1.64 4.4381 · 10−3 1.69

L2� (B1) O (B1) L2� (B2) O (B2)

M3D
40 1.9685 · 10−2 2.0359 · 10−2

M3D
50 1.2675 · 10−2 1.97 1.3154 · 10−2 1.96

M3D
60 9.0085 · 10−3 1.87 9.3240 · 10−3 1.88

M3D
80 5.2800 · 10−3 1.85 5.5552 · 10−3 1.80

Fig. 8. Comparison of the exact solution with the non well-balanced and the well-balanced hybrid FV/FE scheme for a small perturbation of the 2D vortex 
problem (83) with u0 = 10−3 and u0 = 10−6, and x0 = y0 = 5 at time t = 10 using mesh M40. Left: 1D cut along the x-axis through the velocity field u2. 
Right: 1D cut along the x-axis through the pressure field p.

Table 11
Spatial L2 error norms obtained at t = 10 on mesh M40 with the new well-balanced hybrid FV/FE 
scheme and with the classical non well-balanced scheme for the simulation of two small perturba-
tions (u0 = 10−3 at the top and u0 = 10−6 at the bottom of the table) of the stationary 2D vortex 
without magnetic field (83).
numerical scheme u0 L2� (p) L2� (u1) L2� (u2)

WB hybrid FV/FE scheme 10−3 4.4592 · 10−3 6.5385 · 10−3 5.3461 · 10−3

non WB hybrid FV/FE scheme 10−3 7.3003 · 10−1 6.1650 · 10−1 7.7860 · 10−1

WB hybrid FV/FE scheme 10−6 4.4540 · 10−6 6.5294 · 10−6 5.3220 · 10−6

non WB hybrid FV/FE scheme 10−6 7.2997 · 10−1 6.1566 · 10−1 7.7759 · 10−1

2D vortex without magnetic field The initial condition is now given by the vortex (83) with x0 = y0 = 5, adding two small 
perturbation u0 = 10−3 and 10−6 to the velocity field. The equilibrium solution is given by the stationary vortex (83)
without velocity perturbation, i.e., with u0 = 0. Simulations are run with the well-balanced hybrid FV/FE method and with 
the non well-balanced scheme with pressure correction until a final time of t = 10, which corresponds to one full advection 
period through the domain. A 1D cut through the numerical solutions and the exact solution along the x-axis is presented 
in Fig. 8, while the spatial L2 error norms at time t = 10 are listed in Table 11. As it can be observed, in the non well-
balanced scheme the errors remain constant regardless of the perturbation amplitude whereas for the well-balanced scheme 
the error norms scale proportionally with the magnitude of the perturbation. As expected, from the obtained numerical 
results, we clearly see the much better performance of the well-balanced scheme compared to the non well-balanced one 
when studying small perturbations around stationary equilibria. While the overall computational cost of both methods is 
comparable, the errors obtained with the well-balanced scheme are two orders of magnitude better than those of the simple 
non well-balanced method.
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Fig. 9. Comparison of the exact solution with the non well-balanced and the well-balanced hybrid FV/FE scheme for a small perturbation of the 2D MHD 
vortex problem with u0 = 10−3 and u0 = 10−6 at time t = 10 using mesh M40. Left: 1D cut at x = 5 through the pressure field p. Right: 1D cut at x = 5
through the first component of the magnetic field B .

Table 12
Spatial L2 error norms obtained at t = 10 on mesh M40 with the new well-balanced (WB) hybrid FV/FE scheme and with 
the non well-balanced (non WB) scheme for the simulation of a small perturbation (u0 = 10−3, top, u0 = 10−6, bottom) of 
the stationary 2D MHD vortex.
numerical scheme u0 L2� (p) L2� (u1) L2� (u2) L2� (B1) L2� (B2)

WB scheme 10−3 2.8265 · 10−3 2.9601 · 10−3 2.9670 · 10−3 3.0437 · 10−3 2.9271 · 10−3

non WB scheme 10−3 2.8023 · 10−1 2.7146 · 10−1 2.9858 · 10−1 2.6876 · 10−1 2.9065 · 10−1

WB scheme 10−6 2.8507 · 10−6 2.9547 · 10−6 2.9626 · 10−6 3.0364 · 10−6 2.9121 · 10−6

non WB scheme 10−6 2.8012 · 10−1 2.7121 · 10−1 2.991 · 10−1 2.6842 · 10−1 2.9102 · 10−1

2D vortex with magnetic field We now repeat the same numerical experiment with the MHD vortex (84), with u0 =
10−3, 10−6 for the initial condition and u0 = 0 for the equilibrium solution. The simulations are run until a final time 
of t = 10 so that the vortex completes one entire advection period throughout the domain. A 1D cut of the numerical solu-
tion and the exact solution is shown at x = 5 in Fig. 9, while the spatial L2 errors computed at the final time are listed in 
Table 12.

Also for this second test problem, which adds the presence of a magnetic field compared to the first one, the error 
norms of the new well-balanced hybrid FV/FE scheme have the same order of magnitude of the perturbations. In particular, 
they are two and five orders of magnitude lower than those of the classical non well-balanced method. As expected, in the 
case of simulations of small perturbations around a stationary equilibrium, the obtained computational results clearly show 
the substantially increased accuracy of the new well-balanced hybrid FV/FE scheme proposed in this paper compared to the 
same but non well-balanced scheme.

4.3. First problem of Stokes and current sheet test

In this section, we solve the first problem of Stokes in the computational domain � = [−1, 1] × [−0.1, 0.1]. The initial 
condition is given by

p (x,0) = 1, u1 (x,0) = 0, u2 (x,0) =
{−0.1 if x ≤ 0,

0.1 if x > 0.

The exact solution for the velocity in the y-direction reads, see [142],

u2 (x, t) = 1

10
erf

(
x

2
√

μt

)
. (85)

Three different viscosities are considered μ ∈ {10−2,10−3,10−4
}
. In the y-direction, periodic boundary conditions are con-

sidered, and Dirichlet conditions for the momentum are imposed on the left and right boundaries. In this case, we have 
employed a mixed-element mesh: for x ∈ [−1, 0] we have a Cartesian arrangement, and for x ∈ [0, 1], we have a triangular 
grid (see Fig. 10). The simulations are carried out up to a final time of t = 1, considering the non well-balanced scheme 
with pressure correction. Fig. 11 shows the numerical results for μ = 10−2, μ = 10−3, and μ = 10−4 in the left, center, 
and right plots, respectively. There, 1D cuts along y = 0 are plotted and the results obtained with the proposed method are 
compared with the exact solution given by (85).
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Fig. 10. Unstructured mix grid for the first problem of Stokes in 2D.

Fig. 11. Velocity along the cut y = 0 for the first problem of Stokes in 2D at time t = 1. Comparison between the values computed with the non well-
balanced scheme with pressure correction and the exact solution (85) for μ = 10−2 (left), μ = 10−3 (center), and μ = 10−4 (right).

Fig. 12. Left: Mesh considered for the first problem of Stokes in 3D. Right: Velocity along the cut y = 0, z = 0 for the first problem of Stokes in 3D at time 
t = 1. Comparison between the values computed with the non well-balanced scheme, considering the pressure correction, and the exact solution (85) for 
μ = 10−2.

We also consider the first problem of Stokes in 3D, where � = [−0.5, 0.5] × [−0.05, 0.05] × [−0.05, 0.05]. Again, the 
simulations are performed with the non well-balanced scheme with the pressure correction approach. The left plot of Fig. 12
shows the grid considered, formed by hexahedra, tetrahedra, and pyramids, while the right plot reports the numerical results 
for μ = 10−2. More precisely, the 1D cut along y = 0 and z = 0 of the solution at time t = 1 is shown in comparison with 
the exact solution given by (85).

As second test within this section, we consider a current sheet problem, similar to the first problem of Stokes, but for 
the magnetic field. The initial condition is given by

p (x,0) = 1, u (x,0) = 0, B1 (x,0) = 0, B2 (x,0) =
{−0.1 if x ≤ 0,

0.1 if x > 0.

The exact solution for the magnetic field in the y-direction is the right-hand side of (85) with η instead of μ. We solve the 
problem in the computational domain � = [−1, 1] × [−0.1, 0, 1] for different magnetic resistivities: η ∈ {10−2, 10−3, 10−4}. 
We consider the grid shown in Fig. 10, and impose periodic boundary conditions in the y-direction and Dirichlet boundary 
conditions in the x-direction. The results of this test are shown in Fig. 13.

The test is repeated in the three-dimensional domain � = [−0.5, 0.5] × [−0.05, 0.05] × [−0.05, 0.05] discretized with 
the mesh shown in Fig. 12 on the left. For this test, we set η = 10−2 and we impose Dirichlet boundary conditions in 
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Fig. 13. Magnetic field along the cut y = 0 for the current sheet problem in 2D at time t = 1. Comparison between the values computed with the proposed 
methodology and the exact solution (85) with η = 10−2 (left), η = 10−3 (center), and η = 10−4 (right).

Fig. 14. Magnetic field along the cut y = 0, z = 0 for the current sheet problem in 3D at time t = 1. Comparison between the values computed with the 
proposed methodology and the exact solution (85) with η = 10−2.

the x-direction and periodic boundary conditions in the y- and z-directions. The obtained results are shown in Fig. 14. A 
very good agreement between the numerical and the exact solutions is observed for both the two and three-dimensional 
simulations.

4.4. Magnetic field loop advection in 2D and 3D

We consider the classical magnetic field loop advection problem, see [23,113,56]. The initial condition is given by

p (x,0) = 1, u1 (x,0) = 2, u2 (x,0) = 1,

A3 (x,0) =
{
10−3 · (0.3− r (x)) if r(x) ≤ 0.3,
0 if r(x) > 0.3,

where r(x) =√
x2 + y2 and A3(x, 0) is the z-component of the vector potential A, such that B = ∇ × A. The domain � =

[−1, 1] ×[−0.5, 0.5] is discretized with the unstructured mixed-element grid shown in Fig. 15. Periodic boundary conditions 
are imposed everywhere.

We run the simulation until t = 1 in order to complete one advection period. The numerical solution at the end time, 
shown in Fig. 15, is in good qualitative agreement with previous results reported in the literature, e.g. [23,113,56]. The 
results obtained for same test but run on a three-dimensional domain � = [−0.5, 0.5]2 × [0, 0.1] is shown in Fig. 16.

4.5. Lid-driven cavity

We now solve the classical lid-driven cavity problem for the incompressible Navier-Stokes equations, i.e., without 
magnetic field, see [143] for more details. This test is classically used to validate incompressible flow solvers and com-
pressible ones in the low Mach number regime [102,95,96]. We consider the two-dimensional computational domain 
� = [−0.5, 0.5] ×[−0.5, 0.5]. The fluid is at rest at the initial time, u = 0, and the lid velocity at the top boundary is chosen 
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Fig. 15. Contours lines of the magnetic field strength at time t = 1 for the magnetic field loop advection in 2D.

Fig. 16. Numerical results for the MHD advection loop in a 3D domain. Left: sketch of the mixed structured-unstructured mesh. Right: contour lines of the 
magnetic field strength at time t = 1.

as u = (1, 0)T . No-slip walls are set on the remaining boundaries, and the viscosity parameter is chosen as μ = 10−2, which 
yields a Reynolds number equal to 100 based on the size of the domain and the lid velocity.

The computational domain has been discretized with an unstructured mixed-element grid composed of triangular and 
quadrilateral elements, more specifically using M40 (see the left plot of Fig. 7). This simulation is run with the non well-
balanced scheme using the pressure correction approach. The left graph in Fig. 17 reports the values of u1 at time t = 10, 
displayed over the mesh M40. The right graph in Fig. 17 shows cuts for both velocity components along the x and y axes, 
respectively, compared to the reference solution provided in [143]. We can observe an excellent agreement between the 
reference solution and the numerical results obtained with the new hybrid FV/FE method proposed in this paper.

4.6. Lid-driven cavity with magnetic field

This test is a variant of the traditional lid-driven cavity test in which a horizontal or a vertical magnetic field is imposed. 
The computational domain is again � = [−0.5, 0.5] × [−0.5, 0.5], and the initial and boundary conditions for velocity, 
density, and pressure are the same of Section 4.5. The walls are assumed to be perfectly-conducting and the following 
boundary conditions are imposed for the magnetic and electric field, respectively:

B ·nnn = B0 ·nnn, E×nnn = 000.

By using the Ohm law, we get
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Fig. 17. Lid-driven cavity at Reynolds number Re = 100 at time t = 10. Contours of u1 (left) and 1D cuts of the velocity along the x- and y-axis (right) in 
comparison with the reference solution [143].

(−u× B+ η∇ × B) ×nnn = 000.

The initial magnetic field is either horizontal, i.e., B0 = (B0,x, 0)T , or vertical, i.e., B0 = (0, B0,y)
T . If we consider a vertical 

magnetic field, then at the lid the following Neumann boundary condition on the tangential component of the magnetic 
field holds

∂B1

∂ y
= − vB0,y

η
.

Note that large values of B0,y , or small values of η, will generate a very steep boundary layer at the wall. Because of this, 
the domain is discretized with the rather fine unstructured mixed-element mesh M100 described in Section 4.5, except for 
B0,y ≥ 0.5, for which we use an even finer Cartesian 200 × 200 grid. The test is run for μ = η = 0.01 and different values 
of B0,x and B0,y until a final time of t = 20 when the solution has been checked to become stationary. The stream-lines of 
velocity and magnetic field for the horizontal test are shown in Figs. 18 and 19, respectively, while those for the vertical 
tests are shown in Figs. 20 and 21. We can observe how the effect of the moving lid is damped as the strength of the 
magnetic field increases.

In Fig. 22, 1D cuts of the solution along the x-axis and the y-axis are shown for the numerical solution obtained with the 
new hybrid FV/FE method, while the reference solution has been computed with the semi-implicit divergence-free method 
introduced in [56]. A very good agreement between the numerical and reference solutions is obtained. In order to allow 
other research groups to reproduce our results and to compare with them, all results are available in electronic format1

in the supplementary material provided with this paper. In Appendix A, a detailed description of the available data files is 
given.

4.7. Double shear layer

We now consider the double shear layer test case, [144], a classical benchmark used to analyze the behavior of incom-
pressible flow solvers. The initial flow is characterized by the presence of important velocity gradients, which lead to the 
formation of vortex-shaped patterns. We consider an initial condition given by

p (x,0) = 104

1.4
, u1 (x,0) =

{
tanh

[
ρ̂( ŷ − 0.25)

]
if ŷ ≤ 0.5,

tanh
[
ρ̂(0.75− ŷ)

]
if ŷ > 0.5,

u2 (x,0) = δ sin
(
2π x̂

)
, x̂ = x+ 1

2
, ŷ = y + 1

2
,

in the computational domain � = [−1, 1]2 with periodic boundary conditions everywhere. Moreover, we set the laminar 
viscosity to μ = 2 · 10−4 while ρ̂ = 30 and δ = 0.05 are the parameters that determine the slope of the shear layer and 
the amplitude of the initial perturbation. The simulation is run up to time t = 3.6 with CFL = 0.5 employing four different 

1 The supplementary material is licensed under a Creative Commons “Attribution-NonCommercial-ShareAlike 3.0 Unported” license. cbna.
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Fig. 18. Stream-lines of the velocity field at time t = 20 for the MHD lid-driven cavity with horizontal magnetic field B0 = (B0,x, 0)T for B0,x ∈
{0.1,0.25,0.5,1} (top-left, top-right, bottom-left, and bottom-right, respectively).

grids in order to check the versatility of the proposed scheme to deal with different shapes of primal elements. All meshes 
have been generated defining 100 divisions along each boundary; the different grid configurations designed are depicted in 
Fig. 23. The vorticity contours obtained for different time instants using an unstructured mixed-element grid are shown in 
Fig. 24. A reference solution, computed using the original hybrid FV/FE scheme on triangular simplex grids based on a com-
pletely staggered approach where the momentum is effectively computed in the dual grid, see [94,95,103], is also included 
for comparison. Furthermore, the solution obtained with all four grids at the final time, t = 3.6, is reported in Fig. 25. A 
good match between the numerical solution obtained with the new hybrid FV/FE scheme on four different unstructured 
mixed-element meshes and the reference solution is observed.

4.8. Viscous and resistive Orszag-Tang vortex; ideal Orszag-Tang vortex

The two-dimensional incompressible viscous and resistive Orszag-Tang vortex, see e.g. [37,56], is a well-known configu-
ration for testing both the robustness and the correct convergence of a numerical scheme for MHD. Indeed, in this test, the 
non-linear advection, viscous and resistive dissipations, incompressibility of the fluid and the divergence-free condition of B
all play an important role. The initial condition reads

u (x,0) = √
4π (− sin (y) , sin (x) ,0)T , B (x,0) = (− sin (y) , sin (2x) ,0)T ,

p (x,0) = p0 + 15

4
+ 1

4
cos(4x) + 4

5
cos(2x) cos(y) − cos(x) cos(y) + 1

4
cos(2y),
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Fig. 19. Stream-lines of the magnetic field at time t = 20 for the MHD lid-driven cavity with horizontal magnetic field B0 = (B0,x, 0)T for B0,x ∈
{0.1,0.25,0.5,1} (top-left, top-right, bottom-left, and bottom-right, respectively).

while the computational domain is the two-dimensional box � = [0, 2π ]2 that has been discretized with an unstructured 
mixed-element mesh composed of skewed quadrilaterals and triangles. The initial condition is taken from [56,57], but 
a very-high constant pressure p0 = 105 has been added in the background to reach the incompressible regime in the 
compressible flow solvers [56,57]. The mesh is built by choosing 200 points on every (periodic) boundary edge and about 
200

√
2 points on the diagonal that separate the skewed quads (south-east region) from the triangles (north-east region). A 

numerical reference solution has been computed by using the divergence-free semi-implicit method presented in [56] on a 
uniform Cartesian grid composed of 10002 elements. Here, the fluid viscosity and the magnetic resistivity are chosen to be 
ν = η = 10−2. The stream-lines of velocity and the magnetic field lines of the numerical solution obtained with the new 
hybrid FV/FE method are plotted in Fig. 26, achieving a very good agreement with the reference solution.

We now repeat the Orszag-Tang vortex test and let it run until a much longer final time of t = 10. We use a simple 
Cartesian mesh of 200 × 200 elements. We run the test first with ν = η = 10−2 as before, and then, in order to assess the 
behavior of our new numerical scheme in the ideal MHD limit we run it also with μ = η = 0. The computational results 
are shown in Fig. 27. We first of all observe that the inviscid computation is stable, thanks to the use of an approximate 
Riemann solver in the nonlinear convective subsystem and thanks to the use of the numerical resistivity (approximate multi-
dimensional Riemann solver) in the discrete Faraday equation. We also observe that the nonlinear dynamics of the vortex 
is quite different and more complex in the ideal limit compared to the viscous and resistive MHD equations, as expected. 
In the end, the test shows that the numerical scheme proposed in this paper is robust enough to deal also with the ideal 
MHD equations.
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Fig. 20. Stream-lines of the velocity field at time t = 20 for the MHD lid-driven cavity with vertical magnetic field B0 = (0, B0,y)
T for B0,y ∈ {0.1,0.25,0.5,1}

(top-left, top-right, bottom-left, and bottom-right, respectively).

4.9. Grad-Shafranov equilibrium in a torus

The aim of this last section is to show the applicability of the new well-balanced and divergence-free semi-implicit 
hybrid FV/FE scheme, presented in this paper, to more complex 3D problems related to continuum modeling of plasmas 
in 3D tokamak geometries and magnetic confinement fusion (MCF) applications. In particular, we show that the scheme is 
well-balanced and long-time stable for a non-trivial steady state solution on a 3D torus-shaped domain, including perfectly 
conducting wall boundary conditions. In the first part, we outline how the analytical solution is calculated and we then 
show the obtained numerical results.

The so-called MHD equilibrium describes the steady state of a plasma that is confined by a strong torus-shaped magnetic 
field, either in tokamak devices, being axisymmetric, or non-axisymmetric stellarator devices. It is derived from the ideal 
MHD equations (μ = η = 0) with the assumption u = 0, which subsequently reduce to the force balance equation (∇×B) ×
B = ∇p. Hence, the magnetic forces balance the pressure gradient inside the plasma, and the contours of constant pressure 
form a set of nested tori, on which the magnetic field is tangent (B · ∇p = 0). Finding solutions of the force balance 
equation is not trivial, and is simplified by restricting to toroidal axisymmetric solutions in cylindrical coordinates (R, Z , φ), 
see Freidberg [145] for a derivation. The axisymmetric magnetic field is defined as

B = F (�)

R
eφ + 1

R
∇� × eφ , (86)

with unit vector eφ , the net poloidal current profile F (�) = − I p
2π and the poloidal magnetic flux �(R, Z), which is the 

solution of the Grad-Shafranov (GS) equation, see [146,147],
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Fig. 21. Stream-lines of the magnetic field at time t = 20 for the MHD lid-driven cavity with vertical magnetic field B0 = (0, B0,y)
T for B0,y ∈

{0.1,0.25,0.5,1} (top-left, top-right, bottom-left, and bottom-right, respectively).

Fig. 22. 1D cuts through the numerical solution at x = 0 and y = 0 for the MHD lid-driven cavity at time t = 20 and comparison with the reference solution 
obtained with the numerical method introduced in [56]. Left: initially horizontal magnetic field. Right: initially vertical magnetic field. In all cases, the lid 
velocity is u = (1, 0), and the viscosity and resistivity have been set to μ = η = 10−2.
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Fig. 23. Sketch of the four different grids employed to run the double shear layer test case. Top left: Cartesian grid made of 10000 primal elements, MCart. 
Top right: grid made of 15000 skewed quadrilaterals, MSkew. Bottom left: mixed mesh of 16174 skewed quadrilaterals and triangles, MMix. Bottom right: 
purely triangular grid made of 23056 primal elements, MTria.

R∂R

(
1

R
∂R�

)
+ ∂2

Z� = −μ0R
∂p(�)

∂�
− 1

2

∂ F (�)2

∂�
, (87)

with the pressure profile p(�). In general, the GS equation is non-linear since the right-hand side depends on the solution. 
Under the assumption of Soloviev profiles [148], which are linear p ∼ �, F ∼ �, the GS equation becomes a linear inhomo-
geneous PDE. Under this assumption, Cerfon and Freidberg [149] constructed a class of analytical equilibrium solutions of 
(87) as a series of polynomials. The coefficients of the series are defined by a profile parameter C , a global scaling factor 
�0, and a parametrized shape of the contour � = 0, which becomes the boundary of the plasma domain. The boundary is 
parametrized as

R = R0 (1+ ε cos (ϑ + arcsin(δ) sin(ϑ))) , Z = R0εκ sin(ϑ) , ϑ ∈ [0,2π ], (88)

with major radius R0, inverse aspect ratio ε, triangularity δ, and elongation κ . All parameter symbols are chosen to match 
those in [149].
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Fig. 24. Vorticity contour plots of the double shear layer test case at times t ∈ {1.6,2.4,3.6} (from top to bottom). Left: proposed hybrid FV/FE scheme on 
general grids, mesh MMix. Right: reference solution [103], mesh MTria .
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Fig. 25. Vorticity contours of the double shear layer benchmark obtained at t = 3.6 using the proposed hybrid FV/FE scheme on grids: MCart , top left; MSkew, 
top right; MMix, bottom left; MTria, bottom right.

For our numerical tests, we define two analytic equilibrium solutions with a circular and a D-shaped cross sections, 
which we will name the circular and D-shaped tokamak, respectively. The parameters are summarized in Table 13, with 
additional parameters for the profile definition. The profiles are chosen as

F (�) := F0 , p(�) := p0 + �0

R4
0

(�a − �) , �a = �(Ra, Za), (89)

with constants p0, F0 and the poloidal flux evaluated at the magnetic axis. Furthermore, the Cartesian components of the 
vector potential can be expressed analytically as

A = (a1,a2,a3) =
(−x2�

R2
,
x1�

R2
, F0 ln(R)

)
. (90)

The vector potential is needed for the initialization of a discretely divergence-free magnetic field, which must be computed 
by taking the discrete curl of the provided vector potential.

The physical domain is a torus section with angle φ ∈ [α, β] with (rotation-invariant) periodic boundary conditions, 
where β − α ∈ [0, 2π ]. The computational domain is built starting from the discretization of the cross-section. A two-
dimensional unstructured linear (non-curved) grid of quadrilaterals is built according to a prescribed characteristic mesh 
size h. The discretized cross-sections shown in Fig. 28 correspond to a characteristic mesh-size h = 0.1, for the circular 
and the D-shaped tokamak, respectively. Then, a linear extrusion is performed in the toroidal direction by considering 
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Fig. 26. Stream-lines of velocity (top row) and magnetic field (bottom row) at time t = 2 for the viscous and resistive Orszag-Tang vortex problem. Numerical 
solution obtained with the proposed hybrid FV/FE scheme on a mixed skew-quadrilateral and triangular mesh (left column), compared to the reference 
solution computed with the divergence-free semi-implicit method outlined in [56] on a 10002 Cartesian grid (right column).

Table 13
Parameters that characterize the analytical equilibrium solutions from [149] and additional parameters for the profile defi-
nition, (89).
cross-section μ0 R0 ε κ δ C �0 F0 p0 (Ra, Za)

circular 1. 5. 0.20 1.0 0.0 1. 29.07886925004631 5. 0.02 (5.12189635817554,0.)
D-shaped 1. 5. 0.32 1.7 0.33 1. 30.31531619122962 5. 0.08 (5.22719821635024,0.)

angles �φ = (β − α)/Nφ , Nφ being the discretization number in the toroidal direction. The resulting 3D mesh is a linear 
unstructured grid composed of hexahedra. In Fig. 29, two different axonometries of the same 3D mesh for a section of a 
D-shaped tokamak are shown. In case the cross section is meshed via a mixed-element mesh of triangles and quadrilaterals, 
the resulting 3D mesh will be composed of hexahedra and triangular prisms.

In the following numerical tests, long-time 3D simulations with and without well-balancing are compared with each 
other, for both, the circular and the D-shaped tokamaks. In all cases, perfectly-conducting wall boundary conditions are 
imposed.

In Figs. 30-31 the contour plots of velocity and pressure along some poloidal and toroidal planes are shown for the 
numerical solution at the final time t = 1000 of the prescribed equilibrium solution. These solutions have been obtained 
after choosing a characteristic mesh size h = 0.1 for the 2d discretization of the circular cross-section, while Nφ = 150
elements are used in the toroidal direction. As expected, for long times the non well-balanced scheme significantly deviates 
from the equilibrium, while the well-balanced scheme, despite the use of a very coarse grid that is not necessarily aligned 
with the equilibrium magnetic field, can properly preserve the stationary equilibrium solution up to machine precision. For 
a quantitative analysis, the time evolution of the L2-error norms of some physical variables are plotted in Fig. 32. In the left 
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Fig. 27. Stream-lines of velocity (top row) and magnetic field lines (bottom row) at time t = 10 for the ideal (left) and for the viscous and resistive (right) 
Orszag-Tang vortex problem. Numerical solution obtained with the proposed hybrid FV/FE scheme on a 200 × 200 Cartesian mesh.

subplot, we compare the results obtained for four different long-time simulations of the same equilibrium solution: the new 
exactly divergence-free scheme proposed in this paper versus the simpler non exactly divergence-free scheme based on the 
hyperbolic GLM-cleaning procedure [17,18] are tested and compared with each other, with and without well-balancing. The 
stationary equilibrium solution is properly preserved for both well-balanced schemes, independently of the precise strategy 
that is used for the treatment of the divergence-free condition of the magnetic field, (4), at the discrete level. In the right 
subplot, the full torus simulation with h = 0.1 is compared with a half-torus simulation that has a higher mesh resolution 
h = 0.05, to show that the numerical error of the well-balanced scheme is stable in both cases and grows only linearly with 
the number of time-steps, due to the accumulation of round-off errors related to finite precision arithmetics. Indeed, for 
the finer mesh a more restrictive CFL condition applies, and a smaller time-step was used for the simulation. This means 
that the growth of the errors of the well-balanced simulation of an equilibrium is not improved by a mesh-refinement, but 
depends only on the number of operations performed within every single time-step.

To complete this section, a long-time simulation of the equilibrium in a section of the D-shaped tokamak is depicted in 
Fig. 29. Also in this case, the equilibrium is correctly preserved over long times when using the well-balanced scheme, with 
a stable linear growth of the L2 error norms that are only due to round-off errors. In Fig. 33, the contour plots of pressure 
and velocity are shown. For the well-balanced scheme the magnetic field lines remain parallel to the contour lines of the 
pressure profile, while the velocity is a small perturbation of zero. On the contrary, for the non well-balanced scheme, the 
pressure profile and the contour lines of the magnetic-field are distorted, and spurious secondary-flows are generated. For 
a quantitative comparison, the solution is interpolated on a uniform distribution of hundred points along the segment in 
the poloidal plane with x ∈ [3.4, 6.6], y = 0 and z = 0. In Fig. 34, pressure and velocity profiles are plotted to compare 
the well-balanced and the non-well-balanced scheme next to the reference solution. The well-balanced solution cannot be 
distinguished from the prescribed reference equilibrium, as expected. Encouraged by these promising results, in the future 
we plan to apply our new scheme to non-ideal MHD in more complex 3D tokamak and stellarator geometries.
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Fig. 28. Cross section of the mesh of the circular (left) and D-shaped (right) tokamak, for which the analytical equilibrium solutions are defined. The 
boundary is also analytically defined, (88).

Fig. 29. Two different axonometries of the same 3D unstructured linear grid for the D-shaped tokamak, with φ ∈ [−π, π ]/15, a characteristic mesh size 
h = 0.1, Nφ = 10.

5. Conclusions

We have introduced a novel well-balanced and exactly divergence-free semi-implicit hybrid finite volume / finite element 
scheme for the solution of the incompressible viscous and resistive MHD equations on staggered unstructured mixed-
element meshes in two and three space dimensions. The method is able to deal with mixed conforming triangular and 
quadrilateral meshes in 2D and with mixed conforming unstructured 3D meshes composed of tetrahedra, prisms, pyramids, 
and hexahedra. Since a staggered grid arrangement is quite common in both incompressible Navier-Stokes solvers, as well 
as in exactly divergence-free schemes for the Maxwell and MHD equations, the corresponding edge-based / face-based dual 
meshes are created by connecting each edge / face with the barycenters of the two elements sharing the same edge / face. 
In the paper, several examples have been shown on how to construct the appropriate dual meshes from a given mixed-
element primary mesh. The approach presented here is a substantial generalization of the one introduced in [93–96], which 
was so far limited to the use of simplex meshes.

The overall governing PDE system is split into several subsystems, each of which is then discretized with a different 
numerical method that is appropriate for each subsystem. The non-linear convective and the viscous terms as well as the 
Maxwell stress tensor in the momentum equation have been discretized at the aid of a well-balanced explicit second order 
finite volume scheme that is run on the primal mesh. The resulting intermediate momentum, which does not yet take into 
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Fig. 30. Numerical results at t = 1000 for the long time 3D simulation of the equilibrium solution in a circular tokamak. The numerical mesh is sketched 
together with the pressure contours: non well-balanced scheme (top) and the well-balanced scheme (bottom). For this test, the full geometry has been 
simulated.

account for the new pressure field, is then averaged onto the staggered dual mesh, where it is used in the computation 
of the right-hand side of the pressure Poisson equation. The latter is solved at the aid of classical conforming Lagrange 
finite elements, which are known to be well-suited for the solution of elliptic problems on general unstructured meshes. 
However, a peculiar feature of the pressure Poisson solver presented in this paper is that the scheme is exact for stationary 
equilibrium solutions. The magnetic field is evolved in an exactly divergence-free and well-balanced manner making use of a 
discrete form of the Stokes theorem inside the edges / faces of the primary mesh. The electric field, which is needed for this 
purpose, is computed in each vertex / edge by taking into account the data of all elements around a vertex / edge, adding 
the proper amount of numerical resistivity that is needed to stabilize the scheme and also adding the physical resistivity, 
present in the governing PDE system. To achieve high order of accuracy, piecewise linear polynomials of the magnetic field 
are reconstructed, which are then corrected via a constrained L2 projection that guarantees that the obtained magnetic field 
is exactly divergence-free inside each element and that the integral average of its normal component is continuous across 
each edge / face, see [113]. We stress again that each step of the algorithm presented in this paper is constructed in a 
well-balanced manner and is able to maintain any general but a priori known stationary equilibrium solution exactly at the 
discrete level.

We show numerous numerical test cases in two and three space dimensions in order to validate our new method 
carefully against known exact and numerical reference solutions. We also show numerical evidence that confirms the well-
balancing of our new scheme and that the magnetic field remains exactly divergence-free. As a special feature, this paper 
includes a very thorough study of the lid-driven MHD cavity problem in the presence of different magnetic fields, and 
the obtained numerical solutions are provided as free supplementary electronic material to allow other research groups to 
reproduce our results and to compare with our data easily. In several numerical examples, we demonstrate that the well-
balancing allows performing accurate and stable long-time simulations for simplified 3D tokamak geometries even on very 
coarse meshes and, in particular, on general unstructured meshes that do not need to be aligned with the magnetic field. In 
addition, we also show stable long-time simulations carried out by a simpler version of our scheme in which the magnetic 
field is not evolved in an exactly divergence-free manner but via the augmented generalized Lagrangian multiplier (GLM) 

39



F. Fambri, E. Zampa, S. Busto et al. Journal of Computational Physics 493 (2023) 112493

Fig. 31. Numerical results at t = 1000 for the long-time 3D simulation of the equilibrium solution in a circular tokamak. The numerical mesh is sketched 
together with the absolute value of the velocity: well-balanced scheme (top) and non well-balanced scheme (bottom). For this test, the full geometry has 
been simulated.

Fig. 32. Numerical results for the long-time 3D simulation of the equilibrium solution in a circular tokamak. The time evolution for the L2 norms of the 
error of some primitive variables is plotted. Left: L2 norms of the error in the pressure field for the well-balanced versus the non-well-balanced scheme as 
a function of time up to t = 1000, together with the corresponding solution obtained by using the hyperbolic GLM divergence cleaning approach. Right: L2
norms of the error in (u, p, B1) for the well-balanced versus the non-well-balanced scheme as a function of the time-steps nt until nt = 106.
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Fig. 33. Numerical results for the long-time 3D simulation of the equilibrium solution in a D-shaped tokamak at t = 1000. Pressure contours together with 
the stream-lines of the poloidal magnetic field (top). Contours of the toroidal component of velocity (u2) together with the stream-lines of the poloidal 
vector field (u1, u3) (bottom). In both rows, the left plot corresponds to the well-balanced scheme, while the right image reports the solution for the non 
well-balanced scheme. For this test, only a small section, with periodic boundary conditions, is simulated. The plotted solution refers to a 2D cut at y=0. 
Velocity stream-lines are omitted for the well-balanced scheme because the velocity is zero up to round-off errors.

divergence cleaning approach introduced in [17,18]. Our numerical results indicate that the well-balancing seems to be the 
key feature for accurate and stable long-time simulations on coarse meshes.

Future work will concern the extension to higher order of accuracy in space and time [101,150,151] and to the weakly 
compressible case [102,95,96]. We also plan to develop thermodynamically compatible and provably nonlinearly stable 
schemes following the framework introduced in [19,152,153], as well as a three-split semi-implicit extension that allows to 
get rid of the CFL time step restriction based on the Alfvén wave speed [57].
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Fig. 34. Numerical results for the long-time 3D simulation of the equilibrium solution in a D-shaped tokamak at t = 1000. The numerical solution has been 
interpolated over a uniform distribution of hundred points along the segment x ∈ [3.4, 6.6], y = 0 and z = 0. Pressure (left) and velocity (right) profiles are 
plotted to compare the well-balanced and the non-well-balanced scheme next to the reference solution. For the well-balanced scheme and the reference 
solution, only one curve is referred in the line-legend, because it coincides for the all three components up to round-off error.
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Appendix A. Supplementary material

This appendix contains a brief description of the supplementary material provided to the reader to ease comparison of 
the obtained results for the MHD lid driven cavity problem. The supplementary files can be downloaded from the online 
version of the article and are licensed under a Creative Commons “Attribution-NonCommercial-ShareAlike 3.0 Unported” 
license cbna.

The data files contain the solution of the lid-driven cavity with magnetic field, presented in Section 4.6. We recall that 
this test is a variant of the traditional lid-driven cavity in which an initial horizontal or a vertical magnetic field is imposed, 
i.e., B0 = (B0,x, 0)T or B0 = (0, B0,y)

T . We consider the lid velocity at the upper boundary u = (1, 0), a viscosity μ = 0.01
and a resistivity η = 0.01. A more detailed description of the contents of each data file, as well as the scripts made available 
to plot these data, in Tecplot®, gnuplot, Matlab® and Python™, is given below.
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Available data files

Description: Data files containing the 1D cut of the magnetic field B2 (and the velocity u2) along the x-axis for the 
MHD lid-driven cavity test presented in Section 4.6. These results have been obtained using the hybrid FV/FE approach
introduced in this paper imposing a horizontal magnetic field. Different values of Bx,0 are considered.
File names: Initial horizontal field Bx,0
HorizontalB_HybridFVFE_xBy_B0_010.dat Bx,0 = 0.1
HorizontalB_HybridFVFE_xBy_B0_025.dat Bx,0 = 0.25
HorizontalB_HybridFVFE_xBy_B0_050.dat Bx,0 = 0.5
HorizontalB_HybridFVFE_xBy_B0_100.dat Bx,0 = 1.0

Description: Data files containing the 1D cut of the magnetic field B1 (and the velocity u1) along the y-axis for the 
MHD lid-driven cavity test presented in Section 4.6. These results have been computed with the proposed hybrid FV/FE 
approach for an initially imposed horizontal magnetic field. Different values of Bx,0 are considered.
File names: Initial horizontal field Bx,0
HorizontalB_HybridFVFE_yBx_B0_010.dat Bx,0 = 0.1
HorizontalB_HybridFVFE_yBx_B0_025.dat Bx,0 = 0.25
HorizontalB_HybridFVFE_yBx_B0_050.dat Bx,0 = 0.5
HorizontalB_HybridFVFE_yBx_B0_100.dat Bx,0 = 1.0

Description: Data files containing the 1D cut of the magnetic field B2 (and the velocity u2) along the x-axis for the MHD 
lid-driven cavity test presented in Section 4.6. These results have been obtained using the semi-implicit divergence-free 
method introduced in [56] when a horizontal magnetic field is imposed. Different values of Bx,0 are considered.
File names: Initial horizontal field Bx,0
HorizontalB_Reference_xBy_B0_010.dat Bx,0 = 0.1
HorizontalB_Reference_xBy_B0_025.dat Bx,0 = 0.25
HorizontalB_Reference_xBy_B0_050.dat Bx,0 = 0.5
HorizontalB_Reference_xBy_B0_100.dat Bx,0 = 1.0

Description: Data files containing the 1D cut of the magnetic field B1 (and the velocity u1) along the y-axis for the MHD 
lid-driven cavity test presented in Section 4.6. These results have been obtained using the semi-implicit divergence-free 
method, introduced in [56], for an initial horizontal magnetic field. Different values of Bx,0 are considered.
File names: Initial horizontal field Bx,0
HorizontalB_Reference_yBx_B0_010.dat Bx,0 = 0.1
HorizontalB_Reference_yBx_B0_025.dat Bx,0 = 0.25
HorizontalB_Reference_yBx_B0_050.dat Bx,0 = 0.5
HorizontalB_Reference_yBx_B0_100.dat Bx,0 = 1.0

Description: Data files containing the 1D cut of the magnetic field B2 (and the velocity u2) along the x-axis for the 
MHD lid-driven cavity test presented in Section 4.6. These results have been obtained using the hybrid FV/FE approach
introduced in this paper when a vertical magnetic field is imposed. Different values of B0,y are considered.
File names Initial vertical field B0,y
VerticalB_HybridFVFE_xBy_B0_010.dat B0,y = 0.1
VerticalB_HybridFVFE_xBy_B0_025.dat B0,y = 0.25
VerticalB_HybridFVFE_xBy_B0_050.dat B0,y = 0.5
VerticalB_HybridFVFE_xBy_B0_100.dat B0,y = 1.0

Description: Data files containing the 1D cut of the magnetic field B1 (and the velocity u1) along the y-axis for the 
MHD lid-driven cavity test presented in Section 4.6. These results have been computed with the hybrid FV/FE approach
introduced in this paper if a vertical magnetic field is initially considered. Different values of B0,y are studied.
File names: Initial vertical field B0,y
VerticalB_HybridFVFE_yBx_B0_010.dat B0,y = 0.1
VerticalB_HybridFVFE_yBx_B0_025.dat B0,y = 0.25
VerticalB_HybridFVFE_yBx_B0_050.dat B0,y = 0.5
VerticalB_HybridFVFE_yBx_B0_100.dat B0,y = 1.0
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Description: Data files containing the 1D cut of the magnetic field B2 (and the velocity u2) along the x-axis for the MHD 
lid-driven cavity test presented in Section 4.6. These results have been obtained using the semi-implicit divergence-free 
method introduced in [56] when a vertical magnetic field is imposed for different values of B0,y .

File names: Initial vertical field B0,y
VerticalB_Reference_xBy_B0_010.dat B0,y = 0.1
VerticalB_Reference_xBy_B0_025.dat B0,y = 0.25
VerticalB_Reference_xBy_B0_050.dat B0,y = 0.5
VerticalB_Reference_xBy_B0_100.dat B0,y = 1.0

Description: Data files containing the 1D cut of the magnetic field B1 (and the velocity u1) along the y-axis for the MHD 
lid-driven cavity test presented in Section 4.6. These results have been obtained using the semi-implicit divergence-free 
method introduced in [56] when a vertical magnetic fields is imposed. Different values of B0,y are considered.
File names: Initial vertical field B0,y
VerticalB_Reference_yBx_B0_010.dat B0,y = 0.1
VerticalB_Reference_yBx_B0_025.dat B0,y = 0.25
VerticalB_Reference_yBx_B0_050.dat B0,y = 0.5
VerticalB_Reference_yBx_B0_100.dat B0,y = 1.0

Scripts for data visualization

File name: Hybrid_vs_RefSol_horizontalMagField.lay
Description: Tecplot® layout to plot the 1D cuts of the magnetic fields B2 and B1 (and the velocity fields u2 and u1) 
along the x− and the y-axis, respectively, for the MHD lid-driven cavity test, presented in Section 4.6. The plots compare 
the solution computed using the hybrid FV/FE approach presented in this document and the semi-implicit divergence-
free method introduced in [56] when a horizontal magnetic field is imposed, considering different values of Bx,0.
Requirements: Tecplot® 360.

File name: Hybrid_vs_RefSol_verticalMagField.lay
Description: Tecplot® layout to plot the 1D cuts of the magnetic fields B2 and B1 (and the velocity fields u2 and u1) 
along the x− and the y-axis, respectively, for the MHD lid-driven cavity test, described in Section 4.6. The plots display 
both the solution computed using the hybrid FV/FE approach presented in this work and the semi-implicit divergence-
free method introduced in [56] when initially a vertical magnetic field is considered, for different values of B0,y
Requirements: Tecplot® 360.

File name: plot_LDC_MHD_gnuplot.txt
Description: Script to plot, with the program gnuplot, the 1D cuts of the magnetic fields B2 and B1 (and the veloc-
ity fields u2 and u1) for the MHD lid-driven cavity test, described in Section 4.6, if horizontal (left plot) and vertical 
(right plot) magnetic fields are imposed initially. Running the script, we can see the comparison between the solution 
calculated using the hybrid FV/FE approach and the one obtained with a semi-implicit divergence-free method.
Requirements: Gnuplot.
Running from a command window: gnuplot plot_LDC_MHD_gnuplot.txt

File name: plot_LDC_MHD_MATLAB.m
Description: MATLAB® script to plot the 1D cuts of the magnetic fields B2 and B1 (and the velocity fields u2 and u1) for 
the MHD lid-driven cavity test, described in Section 4.6, if horizontal (left plot) and vertical (right plot) magnetic fields 
are imposed initially. The plots display the solution calculated using the hybrid FV/FE approach and that obtained with 
a semi-implicit divergence-free method.
Requirements: MATLAB® 2016 or higher.
Running from a command window: matlab plot_LDC_MHD_MATLAB.m
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File name: plot_LDC_MHD_python.py
Description: Python™ script to plot the 1D cuts of the magnetic fields B2 and B1 (and the velocity fields u2 and u1) 
for the MHD lid-driven cavity test, described in Section 4.6, while the left plot shows the results when a horizontal 
magnetic field is initially imposed, the right one displays the results if a vertical magnetic field is initially considered. In 
both cases, figures show the comparison between the solution computed following the hybrid FV/FE approach and the 
one calculated using a semi-implicit divergence-free method.
Requirements: Python™ 3 and the libraries numpy and matplotlib.
Running from a command window: python plot_LDC_MHD_python.py

Appendix B. Supplementary material

Supplementary material related to this article can be found online at https://doi .org /10 .1016 /j .jcp .2023 .112493.
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