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Abstract

Studying newborns in the first days of life prior to experiencing the world provides remarkable

insights into the neurocognitive predispositions that humans are endowed with. First, it

helps us to improve our current knowledge of the development of a typical brain. Secondly, it

potentially opens new pathways for earlier diagnosis of several developmental neurocognitive

disorders such as Autism Spectrum Disorder (ASD). While most studies investigating early

cognition in the literature are purely behavioural, recently there has been an increasing

number of neuroimaging studies in newborns and infants.

Electroencephalography (EEG) is one of the most optimal neuroimaging technique to inves-

tigate neurocognitive functions in human newborns because it is non-invasive and quick

and easy to mount on the head. Since EEG offers a versatile design with custom number of

channels/electrodes, an ergonomic wearable solution could help study newborns outside

clinical settings such as their homes. Compared to adult EEG, newborn EEG data are differ-

ent in two main aspects: 1) In experimental designs investigating stimulus-related neural

responses, collected data is extremely short in length due to the reduced attentional span of

newborns; 2) Data is heavily contaminated with noise due to their uncontrollable movement

artifacts. Since EEG processing methods for adults are not adapted to very short data length

and usually deal with well-defined, stereotyped artifacts, they are unsuitable for newborn EEG.

As a result, researchers manually clean the data, which is a subjective and time-consuming

task. This thesis work is specifically dedicated to developing (semi-) automated novel signal

processing methods for noise removal and for extracting reliable neural responses specific

to this population. The solutions are proposed for both high-density EEG for traditional

lab-based research and wearable EEG for clinical applications.

To this end, this thesis, first, presents novel signal processing methods applied to newborn

EEG: 1) Local Outlier Factor (LOF) for detecting and removing bad/noisy channels; 2) Ar-

tifacts Subspace Reconstruction (ASR) for detecting and removing or correcting bad/noisy

segments. Then, based on these algorithms and other preprocessing functionalities, a robust

preprocessing pipeline, Newborn EEG Artifact Removal (NEAR), is proposed. Notably, this is

the first time LOF is explored for EEG bad channel detection, despite being a popular outlier

detection technique in other kinds of data such as Electrocardiogram (ECG). Even if ASR is

already an established artifact real algorithm originally developed for mobile adult EEG, this
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Chapter 0 Abstract

thesis explores the possibility of adapting ASR for short newborn EEG data, which is the first

of its kind. NEAR is validated on simulated, real newborn, and infant EEG datasets. We used

the SEREEGA toolbox to simulate neurologically plausible synthetic data and contaminated a

certain number of channels and segments with artifacts commonly manifested in develop-

mental EEG. We used newborn EEG data (n = 10, age range: 1 and 4 days) recorded in our lab

based on a frequency-tagging paradigm. The chosen paradigm consists of visual stimuli to

investigate the cortical bases of facelike pattern processing, and the results were published in

2019. To test NEAR performance on an older population with an event-related design (ERP)

and with data recorded in another lab, we also evaluated NEAR on infant EEG data recorded

on 9-months-old infants (n = 14) with an ERP paradigm. The experimental paradigm for these

datasets consists of auditory stimulus to investigate the electrophysiological evidence for

understanding maternal speech, and the results were published in 2012. Since authors of

these independent studies employed manual artifact removal, the obtained neural responses

serve as ground truth for validating NEAR’s artifact removal performance. For comparative

evaluation, we considered the performance of two state-of-the-art pipelines designed for older

infants. Results show that NEAR is successful in recovering the neural responses (specific to

the EEG paradigm and the stimuli) compared to the other pipelines.

In sum, this thesis presents a set of methods for artifact removal and extraction of stimulus-

related neural responses specifically adapted to newborn and infant EEG data that will hope-

fully contribute to strengthening the reliability and reproducibility of developmental cognitive

neuroscience studies, both in research laboratories and in clinical applications.

Key words: Developmental Cognitive Science, EEG, Signal Processing, Artifacts, Frequency-

tagging (FT), Stead-State Visually Evoked Potentials (SSVEP), Local Outlier Factor (LOF),

Artifacts Subspace Reconstruction (ASR), Canonical Correlation Analysis (CCA), Wearable

EEG, Neural Networks.
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1 Introduction

Studying early brain development and functioning has signi�cant theoretical implications

as it provides unique opportunities to understand the origins of human cognitive functions

(Reynolds and Richards, 2005, Buiatti et al., 2019). Progress in this research area could be

helpful in two main aspects: 1) We acquire more knowledge on the neurocognitive predispo-

sitions humans are endowed with by studying typical human brains. 2) Understanding how

typical and atypical brains differ in early cognition and perception could help us discover new

pathways for early diagnosis and treatment of various cognitive developmental disorders such

as aphasia, dyslexia, attention de�cits, or autism (Johnson, 2014).

1.1 Importance of studying newborns

Let us consider Autism Spectrum Disorder (ASD) as a use case to motivate the objectives

set for this thesis. ASD is a neurodevelopmental disorder highlighted by impairments in

social communication skills and the presence of restricted and repetitive behaviour and

interests (American Psychiatric Association, 2013). Some critical behavioural traits of ASD

have been linked to impairments in the social brain, a network of cortical areas and subcortical

structures responsible for processing social stimuli. Several behavioural studies demonstrated

substantial evidence of social communication de�cits in ASD-developing infants. For example,

de�cits in the initiation of social interaction are observed in infants between 12 and 14 months

of age, which include: decreased showing and pointing, fewer gestures, lower rate of joint

attention initiation, and less gaze alteration (Barbaro and Dissanayake, 2012; Landa, 2007;

Macari et al., 2012; Sheppard et al., 2015; Talbott et al., 2015; Zwaigenbaum et al., 2004).

Further, between 6 and 12 months of age, infants who develop ASD begin to show decreased

attention to faces and reduced response to their own names (Chawarska et al., 2013; Feldman,

2012; Nadig et al., 2007). Such de�cits in attention become more pronounced by 12 months of

age when high-risk infants are identi�ed with reduced social smiling, poor gazing to faces, less

directed vocalisation, and less attention to their mothers (Hutman et al., 2010; Luyster et al.,

2009; Ozonoff et al., 2010; Wan et al., 2012). It can be concluded from this brief review that

social communication de�cits are evident by 12 months of age, while language de�cits begin
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to emerge. In sum, these studies show that robust behavioural differences are noticeable by

the second year of life in high-risk infants, with less certainty in the �rst year. This means that

a reliable clinical diagnosis is only possible in the second year of age.

Despite this evidence, the developmental origins of such abnormalities were unclear. Were the

impairments in the social brain already present during birth or developed during infancy? A

critical hypothesis is that the unusual development of the social brain in ASD individuals may

be due to a modi�cation and delay in the early activation of subcortical orienting mechanisms

(Johnson, 2014). However, this hypothesis was challenged by two major studies, where infants

of 2 months old demonstrated normal visual orientation to the presented social stimulus but

were later diagnosed with ASD (Jones and Klin, 2013); and autistic adults have a functional

subcortical orienting mechanism as typical adults. These studies were conducted in infants as

old as two months of age or adults and, therefore, cannot be conclusive as the participants

already had plenty of visual exposure to social stimuli. Therefore, direct evidence by studying

newborns and young infants before their exposure to the outside world is crucial. To sum up,

investigating early social cognition in newborns (before their exposure to the outside world)

will bring invaluable knowledge of the underlying developmental origins of autism and also

possibly help in earlier diagnosis (i.e., within the �rst year of life, when the developing neural

system is more plastic for intervention).

According to the infant-sibling model of ASD, infants with one older sibling with ASD are at

20% risk of developing ASD, while infants with more than one older sibling with ASD are at

33-50% risk of ASD (Messinger et al., 2013; Ozonoff et al., 2010). Following this model, familial

risk newborns can be studied from birth which can provide a remarkable opportunity to study

the earliest manifestation of atypical brain development. Such studies can help identify the

predictive markers of social communication de�cits, guide the appropriate implementation of

earlier behavioural interventions, and shed light on the developmental origins of the disorder.

To this end, recently, Italian scientists conducted a behavioural study to investigate the inborn

predisposition to pay attention to multiple classes of social stimuli, including face preference

(Di Giorgio et al., 2016). The study, performed in 17 high-risk and 17 low-risk newborns,

provided the �rst evidence that visual attention to social stimuli impairments are present very

early in newborns with high familial risk for ASD.

While all the research discussed so far are purely behavioural, neural-based biomarkers for

ASD in newborns would enable an additional screening test facilitating a reliable earlier diag-

nosis system. Thanks to the recent emergence of high-quality Electroencephalography (EEG)

systems with innovative paradigms suitable for newborns paved the way for an increasing

number of investigations on the neural bases of such predispositions with EEG (Beauchemin

et al., 2010; Buiatti et al., 2019; Fifer et al., 2010; Ronga et al., 2021). EEG applied to de-

velopmental research may provide an irreplaceable source of knowledge to understand the

temporal dynamics of cognitive processes in typical and atypical populations (Hervé et al.,

2022). However, preprocessing newborn EEG data is challenging, especially when a visual

stimulus is involved in the study. Until this work, there was no standard and/or automated
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preprocessing procedure for this data. Currently, developmental researchers perform time-

consuming manual processing of data, which hinders progress in this �eld. This thesis aims to

resolve this problem by presenting an automated pipeline comprising robust artifact removal

methods adapted to newborn EEG. The proposed methods are validated both on high-density

(aimed for lab-based research) and low-density EEG data (useful for clinical applications). In

the next section, we will expand on current challenges in newborn EEG studies.

1.2 Challenges in Newborn/Infant EEG Studies

1.2.1 Short Recording Time

Newborns and infants have limited visual attention within the �rst year of life (Atkinson and

Braddick, 2012), and they have reduced tolerance for testing compared to healthy adults. For

these reasons, the experimental paradigms/protocols designed for these populations have

far shorter EEG acquisition times than the ones designed for adults. Usually, the researchers

present repeated trials (each comprised of short duration) as long as the infant is attentive (see

Table 1.1 (Column "Stimulus Duration")). Moreover, the experimental stimuli are carefully

chosen to keep their attention as long as possible (Parise and Csibra, 2012; Tran et al., 2004).

Study Mean Age Usable
Files

Stimulus
Duration

Unusable
Files

Beauchemin et al., 2010 21 hours 16 212 ms NS
Fifer et al., 2010 40 hours 30 1 s 4

Ronga et al., 2021 52.5 hours 25 200¹ s NS
Buiatti et al., 2019 60 hours 10 50 s 44
Hoehl et al., 2008 108 days 15 3 s NS

Parise and Csibra, 2012 277 days 28 2 s 21
Pomiechowska and Csibra, 20221 369 days 16 10 s 7
Pomiechowska and Csibra, 20222 375 days 16 12 s 8
Pomiechowska and Csibra, 20223 368 days 16 10 s 3
Pomiechowska and Csibra, 20224 375 days 16 10 s 10

Percio et al., 2022 69.6 years 145 3-5 min. NS

Table 1.1: Descriptive Statistics in EEG-based Cognitive Studies. For newborns and young
infants, the stimulus duration of each experimental trial is shorter compared to a randomly
chosen recent adult study (last row). The number of participants is signi�cantly higher in the
adult study compared to newborn/infant studies. Moreover, the unusable EEG �les due to
poor data quality and inattention of participants are higher in developmental EEG compared
to the adult study. NS = Not Speci�ed.

Most infant studies are based on the Event-Related Paradigm (ERP), in which the neural

responses to speci�c events are extracted from EEG. According to the presented stimuli

and the experimental objectives, relevant ERP components (e.g., N170 is a face-speci�c

3



Chapter 1 Introduction

ERP component; P300 represents higher cognitive functions such as working memory and

decision-making) are extracted for concluding the experimental results. Since ERP data

segments also contain the background EEG activities, the stimulus-speci�c trials are usually

averaged to remove them. The background EEG noise decays approximately as 1 /
p

N , where

N is the number of trials. Therefore, the higher the number of trials, the better the EEG

background cancellation. However, acquiring many trials is not always practically feasible in

developmental EEG studies.

Recently, a novel EEG paradigm called Frequency-tagging (FT) was introduced to newborns'

EEG (Buiatti et al., 2019). A visual or auditory stimulus is presented periodically at a speci�c

temporal frequency in the FT design. The resultant neural response is observed as a sharp peak

in the EEG power spectrum at the same frequency. Since the response is narrowband, and

the background EEG and artifacts are broadband in frequency, the FT response can be easily

discriminated from the background brain activity. This implies that a higher Signal-to-Noise

Ratio (SNR) is possible even with a short amount of data compared to the one obtained with

ERPs. Therefore, the challenge of extracting a reliable stimulus-related neural response from

shorter data is partially addressed.

1.2.2 Artifacts Removal

Newborns and infants cannot follow instructions to refrain from making movements during

data acquisition. Therefore, the developmental EEG data have the highest levels of artifact

contamination. The most frequent artifacts are caused by various movements (head, arms,

frowning, sucking), which generate non-stereotyped artifacts that constantly vary in topog-

raphy and temporal dynamics (see Figure 1.1 for a comparison between a typical adult and

newborn EEG segment). For this reason, quite often, developmental researchers exclude a

certain number of collected EEG �les as they contain more noise than stimulus-speci�c neural

information (see Table 1.1 (last column)).

A widely used algorithm for artifact removal is Independent Component Analysis (ICA), which

ef�ciently removes stereotypical artifacts (Makeig et al., 1995). While ICA is an automated

artifacts removal solution for adults and older infants (Leach et al., 2020; Mognon et al., 2011),

considering the dominant presence of non-stereotypical artifacts in newborns, ICA is unreli-

able. Further, ICA requires a considerable amount of samples for a reliable decomposition

(Onton et al., 2006), which is generally not possible in newborn EEG (as discussed in the above

Section 1.2.1). For these reasons, processing newborns' EEG for artifact removal is an arbitrary

and time-consuming task.

1.2.3 Need for Standardization

One might motivate the need for standardisation in processing newborn data by considering

two pillars for reliable science: Reproducibility and Replicability. Reproducibility involves
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(a) Adult EEG.

(b) Newborn EEG.

Figure 1.1: Comparison of a sample adult and newborn EEG.

sharing data and the relevant code for analysis such that other researchers can reproduce

the same scienti�c results obtained by the original authors. As a scienti�c community, we

can be con�dent that our knowledge base is built on the contributions of several research

groups. By demonstrating reproducibility, we show integrity, build trust and encourage reuse.

Replicability is �nding similar results by repeating a previously established study on a new data

set. By proving that the results are consistent for a given experimental hypothesis, researchers

build con�dence in the scienti�c merit of the results. In sum, reproducibility focuses on

replicating the same results using the same data and encourages transparency; replicability

focuses on proving the generalizability robustness of scienti�c outcomes on newly collected

data.

As we can imagine, the subjective nature of analysing the data leads to important scienti�c

issues. Firstly, the results obtained through manual data correction are sometimes not re-

producible by other researchers. Second, since the thresholds (derived by visual inspection)
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applied to each dataset may be too speci�c for the considered data, using the same thresholds

on new datasets might not lead to replicable outcomes. This has been quite an issue, especially

in cognitive science/psychology, including the developmental community (Klapwijk et al.,

2021). This thesis aims to address this challenge by proposing a standardised, objective and

automated pipeline for preprocessing newborn/infant EEG. This promises both replicability

and reproducibility, thereby ensuring reliable scienti�c outcomes.

1.2.4 Mobile EEG for Developmental Cognitive Neuroscience

Neurocognitive Developmental Disorders such as ASD are known to impact the brain's cogni-

tion and perception across the lifespan. As motivated earlier, identifying sensitive and speci�c

neural-based biomarkers of atypical brain developments could help in earlier diagnosis and

more ef�cient intervention. This could mitigate the life-long challenges typically associated

with these disorders.

Understanding developmental neural signatures of typical and atypical brains require peri-

odical, longitudinal, large-scale EEG studies. Such studies can be interfered with for several

reasons, including the absence of some participants for some sessions. Thanks to the high

versatility and �exibility of modern EEG systems and tremendous improvement in signal

processing strategies, it is nowadays possible to record high-quality EEG data outside the clini-

cal/research settings (for example, newborns' homes or children's schools). However, most

of the EEG devices available on the market do not have adapted shapes for newborns' heads

despite an emerging interest from the industry to develop custom EEG devices designed for

neonatal populations. This motivates the need for developing custom EEG devices explicitly

designed for neurodevelopmental populations.

Further, given the short attention span of newborns, the mobile EEG devices should be tailored

to optimal experimental paradigms (e.g., FT). Depending on the experimental paradigm (e.g.,

visual or auditory), the location of the electrodes should be decided. Dry and soft electrodes

can quicken the setup time and provide comfort to the sensitive skin of newborns. Remarkably,

such devices must ensure a long recording time such that several successful trials (where

success implies appropriate attention of newborns) can be acquired once the EEG cap is worn.

Given all these constraints, novel signal processing techniques might be required as traditional

methods that work in high-density EEG and in adults might be sub-optimal or unsuitable.

1.3 Contributions

As mentioned earlier, this thesis work attempts to address the challenges in newborn EEG

studies, namely, artifacts removal and mobile EEG solutions, with much more emphasis on

the former than the latter.
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1.3.1 Novel Methods for Artifacts Removal in High-Density EEG

Traditionally, artifacts are removed in two subsequent steps. First, bad channels are detected

and removed. Second, bad portions of the data are rejected or corrected. My preliminary

analysis proved that the existing approaches (developed for adult or older infant EEG) are

over-sensitive and less speci�c in identifying artifacts (therefore, high false positive rate) in

newborn EEG. These results motivated the need for novel approaches deliberately designed

or adapted for newborn EEG characteristics (shorter data + heavier artifacts contamination).

Towards this end, I introduced, for the �rst time, the Local Outlier Factor (LOF), a robust outlier

detection algorithm to the context of EEG for bad channel detection problems (Kumaravel,

Buiatti, et al., 2022). The algorithm is described in Section 2.3.1, and a robust technique

for �nding optimal user-de�ned parameter is presented in Section 2.5.1.1. LOF is evaluated

in newborn, infant and adult EEG, proving its adaptability in different EEG settings. The

validation results are presented in Section 2.5.1.2.

For the �rst time, I explored and successfully adapted Artifacts Subspace Reconstruction (ASR),

a component-based artifacts reduction technique, to removing/correcting bad portions of

newborn EEG data (Kumaravel, Farella, et al., 2022). The algorithm is described in detail in

Section 2.2.2. ASR is primarily intended for mobile adult EEG data that usually contain severe

motion artifact contamination, which is conceptually similar to artifacts present in newborn

EEG. I implemented a data-oriented automatic method to calibrate crucial user-de�ned

parameters such as ASR parameter k and ASR processing mode (Correction or Rejection).

Finally, with the calibrated parameters, I validated the adapted version of ASR on newborn

and infant EEG datasets, and the results are presented in Section 2.5.2.2.

LOF and ASR algorithms are integrated with other preprocessing functionalities, such as

data import, �ltering, etc., to compose a fully automated pipeline for newborn/infant EEG

preprocessing. Chapter 3 is dedicated to presenting the details of the proposed pipeline (NEAR:

Newborn EEG Artifact Removal) and its validation results on simulated and real EEG datasets.

1.3.2 Portable Low-Density Hardware-Software Design for Newborns EEG

Once proposed artifact removal methods for high-density EEG data are proven successful,

we attempt to implement them in a portable low-density EEG device. This part of the thesis

is executed in collaboration with the University of Bologna as a part of the European ERC

Proof-of-Concept Grant NeuroSoNew (https://cordis.europa.eu/project/id/842243/it). We

�rst identi�ed the BioWolf platform (Kartsch et al., 2019) as an optimal hardware solution

for developmental populations because of its high versatility and quality of acquired signals

using dry and skin-friendly electrodes. Then, we acquire data from adults with clean and

arti�cially contaminated trials using the FT paradigm to validate artifact removal techniques.

The hardware architecture of BioWolf, including the choice of electrodes, is described in

Section 4.1. In addition to the disadvantages of ICA mentioned earlier, ICA is also unreliable

for low-density systems such as BioWolf. A possible solution to clean artifacts in such systems
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is ASR. For effective artifact removal using ASR, a standard EEG system with at least 20 channels

is (empirically) recommended (Chang et al., 2018). For a systematic evaluation, I explored ASR

for the �rst time on data collected using an ultra-low density portable and wireless EEG setup

(8 electrodes, (Kumaravel, Kartsch, et al., 2021)). Further, I calibrated the ASR parameters (ASR

cut-off parameter k , and processing mode) on this dataset. The validation results and optimal

ASR user-de�ned parameters are presented in Section 4.2.3. In parallel, we also proposed

preliminary NN-based solutions for EEG bad channel detection (Kumaravel, Paissan, and

Farella, 2021; Paissan et al., 2022). The network architectures and the results are presented in

Section 4.3.

While it has been found that ASR is a reliable artifact removal even if the number of electrodes

is far less (Ç 32 electrodes in which ASR was previously validated), ASR is a computationally

intensive algorithm to be implemented in embedded hardware such as BioWolf. As our initial

efforts in simplifying the model did not yield promising results, we focused on developing a

novel feature extraction algorithm to detect the stimulus-speci�c neural response automat-

ically. Importantly, we aimed to develop an algorithm that is robust to noise and requires

minimal preprocessing (Kartsch et al., 2022). Our ideal choice was Canonical Correlation

Analysis (CCA), the current state-of-the-art algorithm for online frequency-tagging BCI appli-

cations (Hakvoort et al., 2011). We propose a novel frequency-normalized CCA-based index to

correctly and rapidly identify the tagged response without any artifacts removal or channel

selection. The validation results on data acquired using BioWolf are presented in Section 4.4.6.

Indeed, much progress is needed to develop a fully online portable setup suitable for inves-

tigating cognition and perception in human newborns and young infants. The conclusions

chapter discusses some of the open challenges and possible solutions.
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2 Artifact Removal Methods for Develop-
mental EEG

Generally, artifact preprocessing in EEG comprises two main steps: bad channel detection/re-

moval and bad segment rejection or correction. First, we review existing algorithms and we

discuss why they do not produce optimal results when applied to newborn/infant EEG. Then,

we introduce novel methods for bad channel detection (LOF) and bad segment detection

(Adapted ASR) speci�cally designed to clean artifacts in developmental EEG. Evaluation of the

LOF algorithm for bad channel detection is straightforward - it requires bad channel labels

annotated by EEG experts (ground truth). The list of detected/predicted bad channels can

then be compared against these ground truth labels. However, validating ASR is tricky because

it is uncommon to �nd datasets with annotated bad segments of data. Therefore, indirect

yet ef�cient ways of validating ASR include analysing the quality of data (in terms of SNR)

and comparing the statistical effect of recovered neural responses with that of obtained in the

original paper after ASR preprocessing. In this chapter, we describe the complete validation

of LOF on newborn, infant, and adult EEG. Instead, we present qualitative results achieved

using ASR cleaning. Detailed validation including the statistical evaluation of experimental

effects is presented in the next chapter, where we will compare a preprocessing pipeline

based on LOF and Adapted ASR with the state-of-the-art preprocessing pipelines validated on

developmental EEG data.

This chapter is organised as follows: Sections 2.1, and 2.2 present an overview of bad channel

and segments removal methods along with their implementation details, respectively. Then,

in the section 2.3, we introduce the proposed algorithms explicitly designed or adapted for

newborn EEG. The experimental datasets and validation results are presented in sections 2.4,

and 2.5 respectively. The materials used in this chapter are published in (Kumaravel, Farella,

et al., 2022) and (Kumaravel, Buiatti, et al., 2022), under a CC license.

2.1 Overview of Bad Channel Removal Methods

EEG channels/sensors that have a poor signal-to-noise ratio (SNR) due to biological or tech-

nical artifacts contaminating a larger portion of the recording are commonly termed "bad
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channels". In a broad sense, EEG bad channel detection is an anomaly detection problem. It

is the process of �nding records that signi�cantly deviate from the regular or usual data. In

most cases, the total number of anomalies is lower than the regular ones in a given dataset.

Bad channel detection is crucial in removing artifacts for the following reasons:

(i) Removing noisy segments of EEG in the presence of bad channels can lead to severe

data loss due to a misleading overall rejection threshold.

(ii) The presence of bad channels can produce a strong bias on the overall statistics of the

extracted neural features leading to the wrong interpretation of the experiments.

(iii) Further, bad channels can also bias the source level analysis as they often suppress the

information from the adjacent good channels, resulting in a wrong source reconstruc-

tion.

Here, we discuss the widely used bad channel detection methods in the literature.

2.1.1 Kurtosis

Kurtosis is a higher-order statistical measure that re�ects the Gaussianity of a distribution.

Positive kurtosis indicates a super-Gaussian distribution, while negative kurtosis denotes

a sub-Gaussian distribution. Despite being a simple measure, it has been widely used as a

reliable feature for several artifact removal methods in EEG (Delorme et al., 2007; Greco et al.,

2006; Mahajan and Morshed, 2015). For the implementation, we used the EEGLAB function

pop_rejspecto detect bad channels with default parameter settings. In particular, the kurtosis

values computed for each channel were normalised to have zero mean and unit standard

deviation (i.e. using Z-score). Channels with a Z-score of more than 5 were identi�ed as bad

channels.

2.1.2 Fully Automated Statistical Thresholding for EEG artifact Rejection (FASTER)

FASTER is a fully automated pipeline that transforms raw EEG data into processed �les for

further analysis, with artifact rejection steps implemented at three levels (channels, segments,

independent components) (Nolan et al., 2010). FASTER detects bad channels by �rst comput-

ing the temporal correlation between channels, followed by their variance and a score based

on the Hurst exponent. Usually, heavily contaminated channels tend to demonstrate poor

correlation with their closest neighbours. Sometimes, a group of noisy channels can exhibit a

higher correlation among themselves. To capture them, the second metric, variance, is used.

The �nal measure Hurst exponent explains the biological phenomenon (a value of at least 0.5

indicates the presence of time-series components in the data). Once all these measures are

computed, FASTER applies a Z-score threshold of 3 to detect the list of bad channels.
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2.1.3 Clean_RawData EEGLAB Plugin (CRD)

The default EEGLAB function clean_rawdata (CRD, https://github.com/sccn/clean_rawdata)

is adopted from BCILAB (Kothe and Makeig, 2013; Mullen et al., 2015). It contains several

methods to detect bad channels; in particular, it deals with �at-line channels, channels

contaminated with high-frequency noise and channels uncorrelated with their neighbours.

CRD considers a given channel as bad if either one of the following conditions is met: i) A

channel recorded a �at-line (no signal) for at least 5 s; ii) A channel that contains predominant

electrical power-line interference (50 or 60 Hz) more than 4 noise standard deviations; iii) A

channel that is poorly correlated with its neighbours (correlation threshold < 0.8).

2.1.4 Harvard Bad Channel Detection (HAPPE)

A preprocessing step within the Harvard Automated Processing Pipeline for EEG (HAPPE;

Gabard-Durnam et al., 2018) �nds bad channels by computing the joint probability of the av-

erage logarithmic power between 1 and 125 Hz across channels (Gabard-Durnam et al., 2018).

Implementation-wise, HAPPE bad channel detection uses EEGLAB's function pop_rejchan

(Delorme and Makeig, 2004) but with a change in Z-score threshold (= 3, instead of the original

threshold of 5). Since HAPPE is designed for highly contaminated infant datasets, this process

is run twice on the same �le to ensure complete channel artifact removal.

2.1.5 Drawbacks of Existing Bad Channel Detection Approaches

The aforementioned bad channel detection methods and their corresponding thresholds

are initially developed for adult EEG. Applying them with their default rejection threshold

to a noisier infant or newborn data will more likely reject good channels along with bad

ones (leading to a higher false positive rate), leading to unfair data analysis. This is because

the default thresholds designed for relatively cleaner adult data are generally too strict for

developmental data. This is because the statistical structure of the data is generally different.

Also, in some cases, the measures used on infants are more robust to artifacts than the

ones used to calibrate the thresholds on adults. Indeed, in HAPPE, where the bad channel

detection method pop_rejchan (developed for adult EEG) is adapted to infant EEG, the authors

reduced the threshold from 5 to 3 and incorporated a two-stage thresholding approach to

avoid unnecessary data removal. Reducing the detection thresholds is a possible way to adapt

infant/newborn data methods. But, there is a risk of missing out on bad channels (leading to a

higher misdetection rate) in comparatively less noisy datasets. More importantly, all these

methods assume a normal distribution for EEG data and therefore impose thresholds based on

distribution statistics such as mean, standard deviation, or Z-score. First, this assumption can

no longer hold given the short amount of newborn data with high-level noise contamination.

Secondly, as we know, such distribution-based thresholds are sensitive to the outliers in the

data; hence, they are less resilient to outliers. Given these, we might all agree that a novel bad

channel technique is required for identifying bad channels in newborn and infant EEG data.
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Notably, this method should not assume an underlying data distribution, and the derived

outlier measure should be robust against outliers.

2.2 Overview of Bad Segment Rejection/Correction Methods

The most common approach to deal with artifacts in adult data is to

(i) identify and remove paroxysmally artifacted segments by visual inspection of the raw

data;

(ii) correct the remaining data by removing the residual artifacts with Independent Compo-

nent Analysis (ICA; Delorme and Makeig, 2004; Makeig et al., 1995), assuming that those

artifacts are spatiotemporally stereotypical.

However, ICA may not deal with some types of artifacts, especially non-biological artifacts that

are dif�cult to model and caused by head/cable movements (Chang et al., 2018) commonly

present in newborn/infant EEG. To deal with such artifacts, a recently emerging successful

technique is Artifacts Subspace Reconstruction (ASR). ASR is an unsupervised component-

based algorithm to remove high-amplitude, transient samples that may manifest in EEG due

to the contamination of artifacts of any kind. Further, ASR is an online cleaning algorithm

validated on high-density mobile EEG (Mullen et al., 2015), whereas, ICA is a computationally

demanding algorithm primarily designed for of�ine use.

In this section, we will review both algorithms in detail.

2.2.1 Independent Component Analysis (ICA)

ICA is one of the Second-Order Blind Identi�cation (SOBI) approaches (Bell and Sejnowski,

1995; Lee et al., 1999), which considers relationships between multiple time points to identify

maximally independent source distributions. ICA was successfully applied to multi-channel

EEG for noise reduction for the �rst time in 1995 (Makeig et al., 1995) with the assumption

that EEG may be plausibly modelled as a linear mixture of the activities of multiple brain

(and non-brain such as eyes) sources with (quasi-) independent time courses. Therefore,

the obtained independent components can be further classi�ed as "brain" or "non-brain"

depending on their electrical activities. The implementation of ICA for EEG data is available

within EEGLAB (Delorme and Makeig, 2004) and MNE-Python (Gramfort, 2013) platforms.

Once suf�ciently high-pass �ltered (see Onton et al., 2006 for �ltering recommendations)

EEG data of n channels and t samples are fed into the ICA algorithm, it performs a blind

separation of the data (A) based only on the criterion that the resulting source time courses

(B) are maximally independent. To be speci�c, like other component-based methods, ICA

�nds an 'unmixing' component (W) that, when multiplied by the original data (A), yields the

independent components (B):
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B = W A (2.1)

where A and B are c £ t matrices that represent input EEG and independent component

activated EEG, respectively, and W is c £ c representing the 'mixing' matrix whose columns

contain the relative weights of the component projects to each of the channels c. By simple

linear algebra, the equation 2.1 implies that

A = W ¡ 1B (2.2)

The portion of the input EEG data (A) that generates the i th independent component (IC) is

the outer product of two vectors, the i th column of W and the i th row of B:

Ai = Wi
¡ 1Bi (2.3)

The original data (A) can be retrieved back by summing the back-projected ICs ( Bi ) as follows:

X =
X

Xi where i = 1, 2,...n (2.4)

In theory, each IC is representative of a speci�c signal generator producing electric �elds

with a stable spatial projection pattern across the recording channels. However, perfect

separation of source signals is only sometimes possible in practice, and it is dif�cult to verify

without simultaneous invasive recordings. Traditionally, the independent components ICs are

classi�ed as "brain" and "artifactual" by visually inspecting the temporal and spatial patterns

of the decomposed IC activations. Thanks to the recent efforts in the community, there have

been a few successful automated methodologies to solve the IC classi�cation problem. Here,

we will have a brief overview of these techniques.

1. FASTER:As we saw earlier, FASTER is a fully-automated preprocessing pipeline that

cleans raw EEG data. Within the FASTER pipeline, there exists an implementation of

IC labelling, which considers a given IC as "artifactual" if any of the computed features

deviate from the dataset average by more than 3 standard deviations (Nolan et al., 2010).

2. ADJUST: Automatic EEG artifact Detection based on the Joint Use of Spatial and

Temporal features (ADJUST) computes stereotyped artifact-speci�c spatial and tempo-
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ral features on the decomposed ICs (Mognon et al., 2011). These features are optimised

to capture the most common artifacts in the data, such as blinks, eye movements,

and generic discontinuities. Data-centric automatic thresholding is derived using the

Expectation-Maximization technique for each feature, and bad components are de-

tected.

3. Adjusted-ADJUST: Since ADJUST is con�gured for typical adult EEG electrode montage

con�guration (a standard international 10-20 system), a modi�cation was required

to make it suitable for high-density EEG setup (geodesic nets) that is commonly used

for pediatric data. The adjusted-ADJUST classi�cation method is a part of the MADE

pipeline, which we will see in the section 3.1.2. The changes with respect to the original

methodology ADJUST are related to features for detecting blinks and horizontal eye

movements (Leach et al., 2020).

4. MARA: Multiple Artifact Rejection Algorithm (MARA) is a machine-learning algorithm

that classi�es the ICA-derived components into the brain and artifactual groups (Win-

kler et al., 2014). MARA exploits six features based on spatiotemporal and spectral

information to assign artifact probability to each IC. Since MARA has been trained on

manual component rejections, it aims to capture a wide range of artifact categories,

whereas ADJUST focuses on speci�c artifacts like eye movement and signal discontinu-

ities. Even though MARA was trained on adult data, several features of MARA support its

application to infant data (such as MARA computes spatial features for a 10-20 electrode

system, which is highly consistent across adult and infant brains (Kabdebon et al., 2014)).

Therefore, MARA was used in HAPPE preprocessing pipeline (which we will see in the

section 3.1.1).

5. ICLabel: ICLabel is a recent machine learning-based technique for IC component clas-

si�cation. ICLabel learns based on a crowd-sourced labelling (https://labeling.ucsd.

edu/tutorial), where researchers across the globe can visualise the IC spatiotemporal

and spectral patterns and categorise them as one of seven different classes. To provide

a generalised solution, the training data contains EEG acquired using a multitude of

paradigms. The pretrained model is open-source software within the EEGLAB environ-

ment (Pion-Tonachini et al., 2019).

2.2.2 Artifacts Subspace Reconstruction (ASR)

ASR is an adaptive spatial �ltering technique to automatically detect/remove transient high-

amplitude artifacts in continuous EEG data (Kothe and Jung, Google Patent WO2015047462A9,

Jun. 2014). The approach is loosely connected to Principal Component Analysis (PCA), a

popular dimensionality-reduction technique. Initially, ASR is proposed as an online artifacts

removal method in the BCILAB software (Kothe and Makeig, 2013), but it is also available

as an EEGLAB plug-in function ( clean_rawdata ) for of�ine processing. ASR was validated

extensively on simulated data, and real EEG was acquired using a mobile setup from adult
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participants (Kumaravel, Kartsch, et al., 2021; Mullen et al., 2015). Thanks to its ef�cient

artifact removal, ASR is now considered one of the defaults in preprocessing algorithms within

the EEGLAB framework. Here, we will see how ASR processes artifacts:

(i) ASR requires calibration data ( Xc), which is a portion of original data ( X), ideally free

from artifacts. In cases where it is not possible (for example, from clinically-ill patients

or newborns), ASR automatically �nds cleaner portions of data (i.e., calibration data)

by �tting input data chunks into a prede�ned Gaussian distribution representative of

EEG-like data. The data chunks with a tolerable �tting error are concatenated to form

the calibration data.

(ii) ASR applies PCA on the obtained calibrated data ( Xc) to decompose it into principal

components, each explaining a certain level of variance in the time series data.

(iii) A spatially varying threshold is then computed using the mean and standard deviation

of the individual principal components as follows:

Ti = ¹ i Å k.¾i (2.5)

where Ti the threshold, ¹ i is the mean and ¾i is the standard deviation of the component

i , respectively and k is a user-de�ned parameter also known as ASR cut-off parameter .

(iv) Since the threshold T is computed from the calibrated data; it is representative of

artifact-free EEG data. As such, a subspace of artifact components in a given chunk of

data from X is removed if its variance exceeds T .

(v) Finally, ASR imputes each removed component with a linear combination of activ-

ity of the remaining non-artifact components and back-projects the signal from the

component space to channel space.

2.2.3 Drawbacks of Existing Bad Segment Rejection Approaches

All ICA-based methods might not apply to newborn or infant EEG for the following reasons: 1)

ICA is suitable for detecting the artifacts/noise components that are stereotypical (and easy

to model), such as eye blinks or eye movements and heart activities. 2) There is an empirical

limitation of applying ICA to short-duration EEG: ICA demands more data for high-density

EEG setup – which is the norm for the developmental population. For example, EEG acquired

using a 256-channel setup with a sampling rate of 256 Hz, ICA requires at least 85 minutes of

recording for a reliable decomposition (Onton et al., 2006). Since developmental EEG data are

short and contaminated with non-stereotypical artifacts that are dif�cult to model, ICA is not

an ideal solution for these data.
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ASR is a real-time artifacts cleaning algorithm for mobile EEG acquisitions recorded outside

laboratory conditions. As such, it deals with non-stereotypical artifacts and aims to remove

transient high-amplitude artifacts even in a small segment of data (i.e., 1 s). Even if both

features of ASR �t very well for developmental EEG, it is unexplored in developmental data

to prove its effectiveness. Further, it needs to be made clear which are the optimal user-

de�ned parameters adapted for developmental EEG. To answer these questions, an extensive

evaluation is required.

2.3 Proposed Methods for Newborn/Infant EEG

This section presents a novel method for bad channel detection and an adapted version of an

existing algorithm for bad segment correction or rejection.

2.3.1 Local Outlier Factor (LOF)

LOF is a local density-based outlier detection approach (Breunig et al., 2000) that measures the

degree of isolation of a given EEG channel with respect to its local neighbourhood (where the

neighbourhood is de�ned using the k-neighbours algorithm (Fix and Hodges, 1989) computed

from the activity vectors associated with each channel). As a result, LOF assigns an outlier

score for each channel by computing its local density, where the k-neighbours algorithm

de�nes locality. Thanks to this property, LOF is a robust technique compared to traditional

methods that employ global measures of uncertainty.

2.3.1.1 LOF Algorithm

The LOF algorithm quanti�es the outlierness of each electrode in the multidimensional activity

space where each electrode is associated with a vector representing its EEG activity (not to be

confounded with its physical location on the scalp). The algorithm is described as follows:

1. The optimal k value (i.e., the number of nearest neighbours) is �rst computed using the

Natural Neighbors algorithm (NaN; Q. Zhu et al., 2016), a data-centric non-parametric

approach.

2. For a given channel p, the LOF algorithm identi�es k neighbour channels based on the

prede�ned distance metric (e.g., Euclidean) using the k-nearest neighbours algorithm

(Fix and Hodges, 1989).

3. Then, a reachability distance is computed between channels. For example, let us con-

sider two channels, namely p and o. The reachability distance between p and o is

computed as follows:
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reach-dist k (p,o) = max{k-distance( o),d (p,o)} (2.6)

where k-distance (o) is computed using the knnsearch function (MATLAB, 2018) and

d(p,o) is the Euclidean distance between two channel vectors. Intuitively, if channel p

is far from o, the reachability distance is their actual Euclidean distance. Instead, if they

are suf�ciently close, the Euclidean distance is replaced by the k-distance of channel o

(see Figure 2.1). Considering the k-distance rather than the actual distance reduces the

statistical �uctuations for the points existing within the k neighbourhood.

Figure 2.1: An example scenario for the computation of reachability distance using k = 3. The
dotted circle represents k neighbourhood of point o. Blue points represent the data samples.
For the demonstration, let us consider two points p1 (that exists within the k neighbourhood)
and p2 (that exists outside the k neighbourhood). The reachability distance between the point
p1 and o will be the k-distance ( knnsearch, MATLAB, 2018), whereas the reachability distance
between the point p2 and o will be the Euclidean distance between them.

4. Once the reachability distance of each channel with respect to its neighbours is com-

puted, then the local reachability density (LRD) is determined as follows:

LRDk(p) = 1/
µP

o2Nk(p) reach-dist k(p,o)
¯
¯Nk(p)

¯
¯

¶
(2.7)

where Nk (p) refers to the total number of k neighbors of p. To put it in words, the LRD of

the channel p is the inverse of the average reachability distance based on the k-nearest
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neighbours of p. Intuitively, channel p will have a lower LRD if it were an outlier (i.e.,

bad) channel because it is not easily "reachable" by most of its neighbours.

5. As a �nal step, the local outlier factor (LOF) is computed as follows:

LOFk (p) =

P
o2Nk (p)

LRDk (o)
LRDk (p)

¯
¯Nk (p)

¯
¯ (2.8)

The LOF of channel p is the ratio of the average LRD of k neighbours of p to the LRD

of p. The lower p 's LRD is, and the higher the LRD of p 's k -nearest neighbours are, the

higher the LOF value of p is (and, therefore, possibly an outlier). In other words, an

outlier channel would display a lower LRD (thus, widely separated in the distance) than

its neighbours (on average). If channel p has a similar LRD value compared to its k

neighbours, the LOF score would be approximately 1.

2.3.1.2 LOF Threshold Computation

In an ideal scenario where the objects (or samples) form a uniform or a Gaussian cluster,

inliers would yield LOFs approximately equal to 1, as can be inferred from Equation (2.8).

As such, any object (or sample) that exceeds a LOF score of 1 can be considered an outlier.

However, this criterion might vary in real-world data, where the distribution of objects is

unknown and less likely to be uniform or Gaussian. A thorough investigation of the decision

boundary is required as there are different EEG settings (populations, experimental paradigms,

and so on) and the de�nition of outliers varies according to the settings. Therefore, it is

necessary to consider the LOF Threshold (LOF thr ) as a hyperparameter to be optimised using

the conventional supervised methods such as train/test split or k-fold cross-validation.

2.3.2 Adapted ASR

As mentioned in the Section 2.2.3, while ASR seems a promising technique to deal with non-

stereotypical artifacts manifested due to movements, it is still unexplored in developmental

EEG. For the �rst time, this thesis work attempted to evaluate the sensitivity and speci�city of

artifact removal processing using ASR on EEG acquired from developmental populations. The

bad channel detection method (CRD, described in the Section 2.1.3) suggested by EEGLAB

as a preliminary step to ASR processing removes nearly half of the channels in newborn EEG.

Therefore, in this work, CRD bad channel detection is replaced by the proposed LOF algorithm.

Further, an empirical analysis showed that the prede�ned (or default) ASR parameters (that

work well for adult EEG) are too aggressive for this population. Therefore, this work is focused

on calibrating ASR parameters before a systematic validation. There are two crucial user-

de�ned parameters of ASR, which are described as follows:
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2.3.2.1 ASR Cut-off Parameter ( k )

ASR de�nes an upper-bound threshold for a PC representing EEG-like components based on

the mean and variance of PCs extracted from the cleaner portion of the data (see Equation

(2.5)). Therefore, the components exceeding this threshold are most likely artifactual. From

the Equation (2.5), it can be observed that a lower k implies a lower threshold and, therefore, a

strict artefact detection (i.e. more artifacts are detected); a higher k indicates a looser cleaning

of the data (i.e. less artifacts are detected). The optimal k values for adult EEG lie between

20 and 30 (Chang et al., 2018). However, the ASR parameter k has never been studied on

developmental data.

2.3.2.2 Processing Mode

Using the clean_rawdata plugin, ASR can be operated in two distinct modes: ASR Correction

(hereafter indicated as ASRC throughout this thesis), in which the bad portions of the data

are corrected to `EEG-like' data, and ASR Removal (indicated as ASRR) in which the detected

bad portions are removed from the data. From a theoretical standpoint, ASR C is a preferred

mode for short newborn EEG data such that the original length of data remains unchanged.

On the other hand, ASR R removes a certain number of artifactual samples depending on the

quality of the data and the ASR cut-off parameter k . This might not be favourable, given

that newborn EEG is already short and cannot undergo further removal of data. However, a

systematic evaluation is required to study the differences in ASR modes in terms of the quality

of ASR-cleaned data.

2.4 Experimental Datasets

This section describes the datasets considered for calibrating and validating the proposed

methods.

2.4.1 Newborn EEG

Newborn training and test datasets belong to two independent studies performed at the

Neonatal Neuroimaging Unit (CIMeC, University of Trento) installed in the maternity ward of

Rovereto Hospital “Santa Maria del Carmine” (Rovereto, Italy). These studies were conducted

at different periods and for different purposes; as such, no single newborn participated in

both study. The local ethical committee approved both studies for clinical research (Comitato

Etico per le Sperimentazioni Cliniche, Azienda Provinciale Servizi Sanitari, Province of Trento,

Italy); parents were informed about the content and goal of the study and gave their written

informed consent.

Both datasets were recorded by an EGI EEG system (GES400, Electrical Geodesic, Inc, Eugene,

OR, USA) with 125 channels. Scalp voltages were referenced to the vertex, ampli�ed, and
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digitised at 250 Hz. Electrode impedances were kept below 100 k
 . Newborns were tested in a

calm, dimly illuminated space in the maternity ward, seated on the lap of a trained researcher

in front of a 60 cm x 33.8cm LCD screen (distance eyes-screen: about 30 cm) while wearing

the EEG cap. Video recording from a hidden camera on the top of the screen provided online

monitoring of the infant. The newborn's parents, when present, were off the sight of the

infant (separated by a curtain) and instructed to keep silent during the recordings. For both

datasets, visual stimuli were presented dynamically with sinusoidal contrast modulation (the

visibility of each stimulus gradually rises with respect to the grey background from 0% at

the beginning of the cycle to 100% at mid-cycle, then gradually decreases to 0% towards the

end of the cycle (see Figure 1 in (Buiatti et al., 2019)), at a rate of 0.8 Hz (frequency-tagging

paradigm). We used sinusoidal contrast modulation instead of squared on–off dynamics to

minimise nonlinear effects in the brain frequency response (Norcia et al., 2015) and make the

stimulation more pleasant for babies (de Heering and Rossion, 2015). The slow presentation

rate (0.8 Hz) was chosen to ensure newborns fully perceived the stimulus at each cycle of the

periodic, peekaboo-like presentation.

The training dataset for ASR parameter calibration is part of an ongoing study investigating the

neural bases of number perception in newborns (Buiatti et al., in preparation). Visual stimuli

consisted of a set of 4 or 12 coloured simple geometrical shapes, presented in blocks of 50 s or

until the subject stopped attending to them; shape, number, and spatial arrangement were

constant within each block and randomly changed between blocks. For the whole duration of

the study, an auditory stimulation consisting of sequences of syllables was simultaneously

presented (the response to the auditory stimulation will not be considered here). The training

dataset includes all the subjects that attended at least 15 s of visual stimulation, independently

whether they attended one or both number conditions (11 newborns, six males; mean age

40§ 16 hours; all were healthy [APGAR(1 min) ¸ 8, APGAR(5 min) = 10 for all subjects] and

born full-term (gestation age, 39.9 § 0.9 weeks; weight, 3.26§ 0.30 kg).

The test dataset belongs to a study investigating the cortical bases of facelike pattern processing

(Buiatti et al., 2019). Visual stimuli consisted of a white head-shaped form containing three

black squares. They differed only in the spatial con�guration of the three squares to form

the three stimuli (upright face, inverted face, and scrambled face). Stimuli were presented in

blocks of 50 s or until the subject stopped attending them. Subjects were ten healthy newborns

(six males; mean age 60§ 22 hours). All were healthy [APGAR(1 min) ¸ 8, APGAR(5 min) =

10 for all subjects ] and born full-term (gestation age, 39.7§ 1.5 weeks; weight, 3.41§ 0.28 kg).

Further details in (Buiatti et al., 2019).

We applied a low-pass FIR �lter for both datasets with a cut-off frequency of 40 Hz (using

EEGLAB's default �lter). Subsequently, we used a non-causal high pass �lter between 0.15 and

0.3 Hz and a stop-band attenuation of 80 dB.
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2.4.2 Infant EEG

Infant training and test datasets belong to a study investigating semantic understanding of

common nouns in preverbal infants, performed at the Cognitive Development Center (CDC,

Central European University) and whose results are published in (Parise and Csibra, 2012).

The original study had 2 experimental conditions, namely, the Mother-Speech condition

and the Experimenter-Speech condition. No single infant participated in both conditions

simultaneously. Ethical approvals were obtained from the ethics committee of the Central

European University, Budapest; parents were informed about the content and goal of the

study and gave their written informed consent. All infants were born full term (gestational

age: 37–41 weeks) in the normal weight range ( È 2500 g).

The training and the test dataset included 14 healthy infants (Training: 6 females; mean age =

278 days, range = 266–285 days. Test: 5 females; mean age = 277 days, range = 269–286 days).

Both datasets were acquired using an EGI ampli�er (GES 300, Electrical Geodesic, Inc, Eugene,

OR, USA) at a sampling rate of 500 Hz with a low-pass �lter at 200 Hz. Continuous EEG was

recorded by 125-channel Geodesic Sensor Nets referenced to the vertex. Infants were tested in

a quiet, dimly illuminated room in the CDC BabyLab, sitting on a high chair 70 cm in front

of a 9-inch, 800 × 600, 100 Hz CRT monitor. The infants were video-recorded from a hidden

camera below the presentation monitor throughout the session. The infant's mother and an

experimenter sat on chairs on either side of the infant.

For both datasets, each trial started with a live auditory stimulus delivered either by the

experimenter (Training dataset) or the infant's mother (Test dataset). In contrast, a dynamic

�xation stimulus (a colourful rectangle 343 ×363 pixels) was presented on top of an occluder.

After the live auditory stimulus ended, the �xation stimulus stopped moving, and the display

remained frozen for 600–800 ms. Then the �xation stimulus disappeared, and the occluder

started to fall forward (a 90 ± rotation on the basis-hinge), revealing an object behind it (see

Figure 1 in Parise and Csibra, 2012). The object, laying on a black background, was fully visible

for 1000 ms before the occluder began to rise, hiding the object again. This was followed by

an intertrial interval lasting 1100 to 1300 ms. The pictures of 15 different objects were used;

their average size was 302.5× 321.6 pixels. Trials were presented as long as the infants were

attentive. The minimum inclusion criterion for the infants was at least 10 artifact-free trials in

each of the two experimental conditions—further details in (Parise and Csibra, 2012).

Both datasets were band-pass �ltered between 0.3 and 30 Hz using the default EEGLAB �lter.

2.4.3 Adult EEG

We used the data from the study (Schneider, Pereira, Tonin, and del R. Millán, 2019) validating

alpha-power lateralisation as feedback to enhance visual covert attention tasks. Fourteen

subjects (seven male, seven female) with a mean age of 23 years (SD = 1.52 years) took part

in the recordings on three different days, resulting in 130 EEG �les (refer Schneider, Pereira,
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Tonin, and del R. Millán, 2019 for more details related to the experimental setup). EEG was

recorded with a 64-channel HIamp EEG system (g.tec, Austria) at a sampling rate of 512 Hz.

The electrodes were positioned in the standard international 10-10 system. All datasets are

available on the OpenNeuro platform (Schneider, Pereira, Tonin, and del R. Millan, 2019). Out

of 130 �les, only 113 were usable, and others were found corrupted due to import issues. Before

applying the LOF algorithm, we �ltered the data at 40 Hz to remove the high-frequency noise

components and subsequently, a high-pass �lter was used to remove DC drifts. The ground

truth bad channels are labelled via visual inspection by authors of the original study and

indicated as "bad" in the channel description for each EEG �le on the OpenNeuro platform.

2.5 Experimental Evaluation

This section describes the experiments conducted to validate the ef�ciency of the abovemen-

tioned algorithms: LOF and ASR, on different datasets. To recap, LOF is evaluated for bad

channel detection, and ASR is considered for bad segment rejection. For the bad channel

detection part, a robust evaluation metric F1 Score (de�ned in the Section 2.5.1.1) is used to

account for the class imbalance (number of bad channels ÈÈ number of good channels). As

an evaluation metric, an SNR measure of the neural response (de�ned in Section 2.5.2.1) is

used for the bad segment rejection.

As this thesis introduces LOF for EEG bad channel detection, it is validated in adult EEG, in

addition to newborn and infant EEG. Instead, since ASR has been validated on adult EEG

acquired using both standard and mobile EEG (Blum et al., 2019; Kumaravel, Kartsch, et al.,

2021; Mullen et al., 2015), this thesis presents the �rst-time validation of ASR in developmental

EEG. In particular, this section presents the preliminary results achieved using newborn EEG.

As a later development, extensive validation of ASR with statistical analysis on both newborn

and infant EEG will be presented in the next chapter.

2.5.1 Bad Channel Detection using LOF

2.5.1.1 LOF Threshold Calibration

Before detecting bad channels, it is essential to calibrate the rejection threshold as described

in the Section 2.3.1.2. Therefore, we consider the LOF thr as a hyperparameter to be optimised

using the supervised approach (i.e., with bad channels annotated by the respective authors as

the true labels). Precisely, we utilised the k-fold cross-validation technique (Pedregosa et al.,

2011) to systematically identify the optimal LOF thr (exhaustive search in the range between 1

and 5, in steps of 0.1) at which the F1 Score is maximised. F1 Score is de�ned as follows:

F1 =
2¤ T P

2¤ T P Å FP Å F N
(2.9)
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where TP, TN, FP, and FN indicate the number of true positives, true negatives, false positives,

and false negatives, respectively.

Figure 2.2: A working example of the group shuf�e split cross-validation technique with test
size = 50%. Thex-axis represents the channel indices. The brown vertical lines in the Classrow
indicate bad channels, while the blue background represents good channels. Groups indicate
the subjects, each containing a different number of sessions. For illustration purposes, we
restricted the number of folds to �ve and the number of subjects ( Groups) to seven. Note that
no group simultaneously takes part in training and test sets in any given fold, thereby avoiding
subject-speci�c data leakage.

We used the number of folds k = 10, a common choice in machine learning (James et al.,

2013; Kuhn and Johnson, 2013), and for each fold, 50% of the data are used for testing on

both newborns and infants datasets. As the considered adult EEG contains multiple sessions

from the same subject (see Section 2.4.3), and to avoid subject-speci�c leakage in the training

set, we used the group shuf�ing procedure (using the GroupShuf�eSplit method from SciKit

(Pedregosa et al., 2011)) rather than using the default random shuf�ing in each fold. An

example is shown in Figure 2.2. For visualisation purposes, we show only �ve folds and

seven groups (i.e., seven subjects with diverse sessions each). The 'Class' label indicates two

classes: good and bad channels (indicated as vertical lines in orange). The 'Groups' label

shows different colours for each subject, and the number of channels in each group varies

(depending on the number of EEG recording sessions for each subject). It can be seen that

the groups used as the training set for a particular fold are not used as the testing set (thereby

avoiding data leakage). In each fold, different combinations of groups are used for training to

effectively validate LOF on the limited EEG samples (113 �les with 62 channels each leading to

a total of 7006 EEG channels).
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2.5.1.2 Experimental Results

We performed 10-fold cross-validation (Kuhn and Johnson, 2013) for each population dataset

(with group shuf�ing (Pedregosa et al., 2011) for adult data and random shuf�ing for infants

and newborns data). The average F1 Score across all folds is summarised in Figure 2.3. The

numerical values are also reported in Table 2.1.

LOF unequivocally outperformed the other methods in all kinds of data, proving its robustness

to different SNR ranges of real data obtained using distinct experimental paradigms. For

newborns (Figure 2.3a) and infants (Figure 2.3b), we observed improved performance of

up to 40% compared to other SoA methods. For adults (Figure 2.3c), an improvement in

performance up to 87.5% was observed.

Data/Method
Mean F1 Score (s.e.m.)

Kurtosis FASTER CRD HAPPE LOF

Newborn 0.30 (0.022) 0.40 (0.014) 0.38 (0.019) 0.45 (0.016) 0.63 (0.018)

Infant 0.23 (0.012) 0.17 (0.011) 0.21 (0.006) 0.25 (0.008) 0.35 (0.007)

Adult 0.14 (0.008) 0.15 (0.006) 0.11 (0.008) 0.24 (0.006) 0.45 (0.016)

Table 2.1: a) Using F1 Score Performance of LOF across different datasets.

We then investigated how the optimal LOF thr varies within and across populations using 10-

fold cross-validation (see Figure 2.4). For newborns (noisy data, frequency-tagging paradigm),

on average, the optimal threshold was identi�ed as 2 .6§ 0.16. For infants (mildly noisy data,

ERP paradigm), it was 1.6§ 0.24. For adults (relatively clean data, event-related design with

spectral power analysis), a further relaxed threshold of 1 .4§ 0.07 was identi�ed to be optimal.

2.5.1.3 Discussion

Most current bad channel measures rely on distribution-based statistics (Mean, Variance,

Kurtosis). The primary drawback of such measures is that the underlying EEG data distribution

is not purely Normal/Gaussian. Therefore, �tting the data into standardised distributions

might not produce satisfactory results. Further, these methods have been calibrated and

validated on only one kind of EEG (i.e., either adult EEG or infant EEG). Given the differences

in EEG signal quality according to the population and experimental design, these measures

might not be reliable for other kinds of EEG than the ones they are intended for.

This work introduced a unique, robust measure (Local Outlier Factor) for detecting bad

channels adapted to EEG acquired in any setting. LOF is an unsupervised outlier detection

initially proposed for suspicious activity detection in Knowledge Discovery in Database (KDD)

applications. However, there needs to be a clear indication of which should be the decision

threshold to detect outliers. In theory, a data object (in our case, an EEG channel) is an outlier

if it has a LOF score of more than 1.0. Our preliminary analysis suggested that this threshold is
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(a) Newborn EEG. (b) Infant EEG.

(c) Adult EEG.

Figure 2.3: Performance of bad channel detection methods using the 10-fold cross-validation
technique. The error bars represent the s.e.m. across validation folds.

too strict (resulting in higher false alarms) for EEG data, which motivated the need to �nd the

optimal LOF threshold. In this study, we showed how to �nd the optimal LOF threshold using

a single dataset (employing a 10-fold cross-validation) to get the best results. Our analysis

notably suggested that an optimal threshold for LOF lies around 2.5 for noisier data (newborns

EEG) and approximately 1.5 for relatively cleaner data (infants and adults EEG). We strongly

recommend the users follow a similar procedure to calibrate the LOF threshold for their own

data. Precisely, we suggest the users take a portion of datasets to be analysed (or previously

collected datasets using similar EEG settings) and visually inspect for the bad channels to

calibrate the LOF threshold. In cases where it is impossible (due to the unavailability of labelled

data), we suggest an initial threshold of 1.5 for infant and adult EEG and 2.5 for newborn EEG

based on our study results. In the future, it is desirable to have variants of LOF or other local

outlier detection algorithms without the subjectivity of the decision threshold. To this end, it

is worth investigating the algorithms proposed in (Yuen and Mu, 2012; Yuen and Ortiz, 2017)
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Figure 2.4: Summary of the optimal range of LOF thr for different populations. For newborns
(low SNR data), a relaxed threshold of 2.6 is optimal, whereas for infants (better SNR data), a
value of 1.6 is found to be optimal. Finally, for adults (high SNR data), a conservative threshold
of 1.4 is optimal.

for EEG bad channel detection.

Since LOF is a density-based approach, we also investigated the in�uence of the number

of channels on the algorithm's performance. Our empirical results in both simulated and

real adult EEG data suggest that LOF suits high-density EEG setups with at least 32 channels.

Therefore, we recommend that users not use the proposed approach on low-density EEG (i.e.,

less than 32 channels). Further developments in the future are required to make LOF suitable

even for low-density EEG.

A desirable property of LOF is that it does not assume any distribution for the raw EEG data.

The LOF measure is loosely coupled to clustering algorithms (such as the k-nearest neighbour's

algorithm (Fix and Hodges, 1989)) and is computed using the relative density of the identi�ed

clusters (Breunig et al., 2000). Thanks to this, LOF is adaptable to EEG acquired in different

settings. With optimal parameters, LOF succeeded in detecting the annotated wrong channels

compared to the traditional methods, such as Kurtosis, FASTER, and CRD, which assume a

normal distribution for the EEG signal.

Remarkably, the second-best performing algorithm was HAPPE (Gabard-Durnam et al., 2018)

in all datasets. This merit is likely because HAPPE is designed to deal with low SNR datasets

(infants and children EEG). At the same time, other methods were validated on adult EEG

(where the data quality is comparatively better). We also highlight that it is the only algo-

rithm that uses normalised power values (i.e., frequency domain) to detect bad channels. All

other methods use time-series measures (e.g., Hurst Exponent, Pearson Correlation, Channel

Variance). This observation suggests that the frequency-speci�c measure is more ef�cient in
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detecting artifacts at the channel level.

Given the outstanding performance of LOF, it is a promising bad channel detection in EEG

acquired in any context from any population. Thanks to its versatility, LOF can be integrated

into other existing EEG artifact removal pipelines, such as FASTER (for adult EEG) or HAPPE

(for infant EEG), by replacing their respective bad channel techniques with LOF, which might

lead to better overall artifact removal. We made the source code freely available as an EEGLAB

plugin (Kumaravel, 2022). Even though we have not investigated the performance of LOF on

Magneto-encephalography (MEG) data, LOF can also bene�t MEG artifact removal.

2.5.2 Bad Segments Rejection using ASR

ASR requires a preliminary bad channel removal step executed using the LOF algorithm.

Hence, the results presented in this section include the overall validation performance of LOF

and ASR in newborn EEG.

2.5.2.1 ASR Parameters Calibration and Validation

Our considered newborn EEG data are collected using the frequency-tagging paradigm (see

Section 2.4.1). To quantify the stimulus-related EEG response for both ASR parameter cali-

bration and validation, we used the measure Frequency-Tagged Response (FTR) as de�ned in

(Buiatti et al., 2019). FTR at the tag frequency (0.8 Hz) was calculated as the ratio between the

power spectrum at the tagged frequency and the background power, i.e. the value at 0.8 Hz

of the power-law �t of the power spectrum estimated from the six neighbouring frequency

bins (§ 0.3 Hz), where the power-law �t was computed by �tting a line to the logarithm of the

power at the six neighbouring frequency bins ( poly�t function (MATLAB, 2018)).

EEG data were segmented in partially overlapping epochs of 10 s (overlap varied between one-

half and three-fourths of epoch length to adjust to the variable length of clean data segments).

For each electrode, each epoch's Fourier transform F( f ) was calculated using a fast Fourier

transform algorithm (FFT function (MATLAB, 2018)). To avoid rejecting data segments shorter

than 10 s but potentially containing relevant neural signals, zero-padding to 10 s was applied

before FFT for data segments between 5 s and 10 s. Data segments shorter than 5 s were

discarded. The power spectrum was calculated from these Fourier coef�cients as the average

over epochs of the single-epoch power spectrum:

PS(f)= <F(f) £ F*(f )>ep

2.5.2.2 Experimental Results

To identify the optimal ASR parameter k and processing mode, we applied ASR on the newborn

training dataset while systematically varying ASR parameter k between 1 and 100 for both

27



Chapter 2 Artifact Removal Methods for Developmental EEG

modes of processing (bad segment removal (ASR R) and correction (ASR C)). As a validation

measure, after a preliminary bad segment removal by visual inspection, we identi�ed a broad

occipital cluster of electrodes showing a visual response (Figure 2.5, top inset); we then

computed the average visual response FTR in this prede�ned occipital cluster for each k and

processing mode. Results show that both processing modes achieve a similar maximum value

of FTR by (t (10) = ¡ 0.28, p = 0.78), but for different k values: k = 24 for removal mode, k = 13

for correction mode. One possible explanation of this difference is that while for k between

20 and 30, the correction is not very effective, for k Ç 15, the removal mode rejects too many

segments, providing too few samples for the computation of FFT. Since the two processing

modes offer equivalent results to their optimal k , we will test both modes in the validation

phase.

Figure 2.5: A grid-search analysis to �nd the best ASR parameter settings on the newborn
Training Dataset: Average visual response (FTR) on a prede�ned occipital cluster of electrodes
(topography in top inset) as a function of ASR Parameter k and Processing Mode, computed
on the Training Dataset ( n = 11). The mean FTR is maximum at k = 13 for ASR Correction
(ASRC) and k = 24 for ASR Removal (ASRR). The shaded portion represents the standard error
mean (s.e.m.) across subjects.

One out of ten subjects was discarded from further analysis as there were not enough samples

to compute the FFT after ASR removal (ASR R, k = 24). To have a fair comparison, this subject

is also excluded from other methods, such as manual and ASR C processing. The results are

summarised in the Figure 2.6. Compared to the golden standard manual preprocessing, ASR

improves the considered neural response FTR for some subjects (3, 4, 5, 9) and degrades for

some subjects (7, 8). However, on average, the neural response FTR is comparable across all
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methods (Figure 2.6c) for both experimental conditions. Among the ASR processing modes,

ASRR slightly outperformed ASR C. This shows that ASR preprocessing, despite being an

automated method, works well for newborn data after a systematic parameter calibration.

(a) Upright Face Condition (b) Inverted Face Condition

(c) Summary

Figure 2.6: Performance comparison of Manual, ASR C, and ASRR artifacts preprocessing
using the neural measure: FTR. The error bars represent standard error mean (s.e.m.) across
subjects.

2.5.2.3 Discussion

ASR is an ef�cient artifacts removal algorithm but strongly depends on two crucial user-

de�ned parameters. The selection of these parameters is not univocal: the most systematic

investigation on this issue (Chang et al., 2018) proposes that the optimal value of the ASR k

parameter for adults lies “between 20 and 30", implicitly suggesting that it may be variable.

Indeed, the preliminary results (presented in the Section 2.5.2.2) con�rm that ASR perfor-

mance signi�cantly depends on the choice of both ASR Parameter k and processing mode.

Therefore, a systematic calibration of these parameters is necessary on a subset of EEG data

(a.k.a. training set) under study. In our case, we used the FTR measure, a Signal-to-Noise

Ratio (SNR) metric for the frequency-tagged EEG datasets. In general, the evaluation metric

for ASR calibration depends on the experimental paradigm and the application and must be

carefully chosen to quantify the signal denoising ef�ciency. Given the comparable perfor-

mance of ASR with respect to the golden standard manual processing, ASR can be considered
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a potential replacement for subjective, time-consuming manual processing. As an automated

approach, ASR ensures reproducible results, which is compromised in manual processing.

Finally, among the ASR processing modes, ASRR results in effective cleaning, even if it usually

shortens the original data length. ASR C preserves the data length while the correction of

artifactual samples is not yielding the best results (evident in subjects 2, 3, 4, 5, and 9). This is

most likely because ASRC alters the neural response together with artifacts. Importantly, the

statistical signi�cance of experimental effects is preserved and similar to the manual rejection

of artifacts in the original study (Buiatti et al., 2019). The overall evaluation results of the NEAR

pipeline (integrating LOF and ASR algorithms) are presented in detail in the next chapter.

2.6 Conclusion

Typical EEG preprocessing comprises two main steps for artifact removal. They are 1) Bad

channel rejection and 2) Bad segment rejection. In this chapter, we discussed the existing

techniques in each category and why they might not be suitable for newborn/infant EEG. We

have introduced a novel algorithm based on the LOF technique for EEG bad channel detection

problems. Among the advantages, unlike other methods, LOF does not assume a normal

distribution and assigns an outlier score for each channel based on its nearest neighbours.

Since this is the �rst time that LOF has been applied to EEG for bad channel detection, we

analysed its performance on developmental EEG and extended it to an adult EEG dataset. In all

cases, LOF showed a robust performance proving its adaptability to different kinds of EEG data.

The results are published in the MDPI Sensors Journal (Kumaravel, Buiatti, et al., 2022). Then,

we successfully adapted the ASR algorithm to newborn EEG for the bad segment detection

problem. Crucially, for the �rst time in the literature, we formally de�ned the standard ways to

calibrate the ASR parameters (see Section 2.5.2.1) and showed that adapting the algorithm in

different contexts with optimal parameters is possible. The preliminary results discussed in the

Section 2.5.2.2 are partially published in the Journal of Developmental Cognitive Neuroscience

Special Issue (Kumaravel, Farella, et al., 2022).
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Analysis

In this chapter, we propose NEAR (Newborn EEG Artifact Removal), a fully/semi-automated

pipeline for ef�cient artifact removal from raw newborn/infant EEG data. NEAR consists

mainly of two algorithms (LOF and ASR, discussed in the previous chapter) in addition to

standard EEG preprocessing steps such as �ltering, interpolating removed channels, and

re-referencing. We start this chapter by providing an overview of two existing pipelines for

developmental EEG (Section 3.1), and subsequently, we present the NEAR pipeline (Section

3.2) and its validation results (Section 3.5). Finally, we provide a general discussion of the

proposed pipeline in Section 3.6. The materials presented in this chapter are published in

(Kumaravel, Farella, et al., 2022).

3.1 Overview of Existing Pipeline for Developmental EEG

3.1.1 Harvard Automated Processing Pipeline for EEG (HAPPE)

The Harvard Automated Processing Pipeline for EEG (HAPPE) is a standardised, automated

pipeline for developmental EEG with a high degree of artifact contamination and often short

recording lengths (Gabard-Durnam et al., 2018). HAPPE pipeline consists of 9 steps, includ-

ing bad channel rejection using pop_rejchan.m (Delorme and Makeig, 2004) and wavelet-

integrated ICA decomposition to recover artifactual segments. Bad ICs are classi�ed automat-

ically using MARA (Winkler et al., 2014). HAPPE has been validated on resting-state devel-

opmental EEG data (age between 3 and 36 months). HAPPE is unsuitable for event-related

designs (Gabard-Durnam et al., 2018), so we will only compare it with NEAR on continuous

datasets.

3.1.2 Maryland Analysis of Developmental EEG (MADE)

The Maryland Analysis for Developmental EEG (MADE) is an automated, standardised pre-

processing pipeline speci�cally developed for developmental populations (Debnath et al.,

2020). MADE uses FASTER (Nolan et al., 2010) to remove bad channels and ICA to correct
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data from artifacts. Bad ICs are classi�ed automatically using Adjusted-ADJUST (Leach et al.,

2020), an adapted version of ADJUST (Mognon et al., 2011) for infant data. Residual epochs

contaminated by ocular artifacts are removed using a prede�ned amplitude threshold. MADE

was validated on infants starting from 1 year of age to childhood (3–6 years old) and late

adolescence (16 years old).

3.1.3 Drawbacks of HAPPE and MADE applied to Newborn EEG

First of all, neither of these existing preprocessing pipelines for developmental EEG was

validated on newborns or infants less than 3 months old. To �ll this gap, either these pipelines

should be evaluated on newborn EEG or new pipelines should be developed. Secondly,

despite the authors of these pipelines mentioning the drawbacks of ICA applied to short

and heavily contaminated infant EEG, they eventually proposed modi�ed versions of ICA

(Wavelet-integrated ICA in HAPPE (Gabard-Durnam et al., 2018) and Adjusted-ADJUST ICA

detection (Leach et al., 2020)). Further efforts are required to �nd alternatives to ICA as there

might be better solutions for this data.

3.2 Proposed Pipeline: NEAR

NEAR preprocessing pipeline consists of a set of custom MATLAB scripts that can be executed

as a fully automated EEG preprocessing within the EEGLAB (Delorme and Makeig, 2004)

framework. The core, innovative parts of the pipeline integrating EEGLAB scripts with original

custom scripts consist of the artifact removal processing block: preliminary calibration of the

bad channel detection threshold (LOF) and of the ASR cut-off parameter, bad channel detec-

tion using LOF algorithm and correction/removal of bad segments using ASR, both endowed

with original visualisation of the outcomes. In addition, we provided the scripts (based on

EEGLAB functions) for a fully automated EEG processing from raw to clean data: importing

and �ltering raw data, interpolating removed channels and re-referencing. Depending on the

application requirements, these auxiliary steps can easily be modi�ed. Figure 3.1 shows the

steps involved in the NEAR preprocessing pipeline. In the following sections, we describe each

step in detail. A step-by-step tutorial, including �gures illustrating the main steps of NEAR

artifact removal, is presented in the Appendix B of this thesis.

3.2.1 Import Raw Data

NEAR supports import functionality of four main formats: .mff, .raw, .set and .edf. We consid-

ered these formats because most developmental EEG raw data fall into one of these categories.

Users can import the data with EEGLAB importing tools for other formats and use NEAR with

the resulting EEGLAB format .set.
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