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Abstract: The present work develops an innovative methodology for fixing deep nulls in radiation
patterns of symmetrical thinned arrays while maintaining a low side lobe level (SLL) and a high
directivity, implementing an optimization strategy based on the simulated annealing algorithm (SA).
This procedure optimizes a cost function that has a term for each characteristic of the desired radiation
pattern and can distinguish between the deep nulls and the filled ones depending on whether they
are on the Schelkunoff unit circle or not. Then, a direct extension of the methodology for planar arrays
based on the separable distribution procedure is addressed. Consequently, some examples with
half-wavelength spacing are presented, where the fixing of one, two, or three deep nulls in arrays
of 40, 60, and 80 elements are illustrated as well as an extension to a 40 × 40-element planar array
with rectangular grid and rectangular boundary, with two deep nulls fixed on each one of its main
axes. Additionally, a comparison of the obtained results with a genetic algorithm (GA) alternative is
performed. The main advantage of the proposed method is its ability to fix deep nulls in the radiation
patterns, while maintaining an easy feeding network implementation.

Keywords: linear array antennas; array thinning; Schelkunoff unit circle; null fixing; directivity

1. Introduction

The performance of antenna arrays regarding low side lobe level (SLL) and high
directivity, at the same time that there is a far field depression on a certain range of their
radiation pattern, represents a very interesting concern on antenna array designs with
impact not only on radar [1] and space applications [2], but also in the new design strategies
for the future 5G communication deployment [3,4], where options such as metamaterial-
based antenna designs are becoming of high interest in recent literature [5]. In this same
framework, but concerning channel coding design, low density parity check (LDPC) coding
is attracting great attention for improving transmission reliability [6,7].

Nowadays, suppressing power in precise angular regions of the radiation pattern
of high-performance antennas still represents a challenge for the antenna community.
In such a way, to have control over these above-mentioned parameters by altering the
element excitations and configuration, results in a complex problem with a variety of
approaches [8–10]. Numerical optimization methods are commonly used in order to find
the appropriate solution with the desired characteristics without extensively checking all
the possibilities in the solution space.

Array thinning is a technique for the design of antenna arrays, based on removing (or
turning off) some elements of an array without significantly changing its beamwidth [8] (p. 92).
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Consequently, as is well-known, the directivity of the array will be directly related to the
area of illumination of the aperture, therefore, a reduction in a fraction of the level at the
filled case is expected, by means of the elements removed. In such a case, it may be possible
to exploit this strategy to build moderate high directive arrays. In this framework, after
analyzing the different possibilities regarding the cost savings of complex power divider
networks, uniform illumination represents a potentially good alternative for feeding these
solutions. Therefore, by restricting the excitation possibilities from a continuous problem to
a binary one, the number of solutions is decreased to a finite combination of zeros and ones.

Therefore, when analyzing the literature, it can be seen that extensive studies lowering
the SLL of the pattern while maintaining a high directivity in thinned arrays have been
developed. For instance, examples of using genetic algorithms (GA) [11,12], fast Fourier
transform techniques (FFT) [13], ant colony optimization (ACO) [14], differential algo-
rithm (DA) [15], pattern search algorithms (PS) [16], and biogeography-based optimization
(BS) [17] correspond to interesting approaches included within the literature.

At the same time, as has already been mentioned, avoiding interference with a receiv-
ing signal by suppressing the radiation pattern in a certain direction or range is also of
great interest. Several approaches to this optimization problem have also been addressed
in the literature from achieving a certain region of the radiation pattern under a desired
level by altering the thinned pattern of the array [18] to using optimization algorithms in
order to minimize the value of the radiation pattern in a certain direction, where examples
based on GA [19] or the whale optimization algorithm (WO) [20] by altering the excitation
amplitudes and phases or the interelement spacing can be reported.

On the other hand, the placement of deep, analytic, nulls of the radiation pattern is
a very interesting approach since it represents a more accurate method of guaranteeing
the presence of a null position on the radiation pattern. Examples of works achieving this
placement via the control of the interelement spacing using particle swarm optimization
(PSO) [21] can be highlighted. Alternatively, methods of controlling nulls through formula-
tions involving changes in amplitude and phase of each element in the array [22,23] can
be reported.

In the present work, thinned uniform arrays are proposed to maintain low cost and
ease of implementation of the feeding network. To this aim, the use of the seminal work
of Schelkunoff [24], in order to represent the roots of the array as in [25], is proposed to
discern between the deep analytical nulls and the filled ones. Therefore, we can optimize
our pattern by minimizing the distance from a desired deep null to the closest one from
our pattern lying on the unit circle, while maintaining a high directivity and low SLL with
the simulated annealing algorithm (SA). To the best knowledge of the authors, none of the
previous methodologies described in the literature have simultaneously dealt with deep
null fixing and array thinning in array pattern synthesis.

2. Materials and Methods
2.1. Linear Arrays

Let us consider an equally spaced linear array of N isotropic elements laid out along
the z-axis. In such a case, the expression of the array pattern or array factor F(θ) follows [26]

F(θ) =
N

∑
n=1

Inej(n−1)kd cos(θ) (1)

where k is the wavenumber; d the spacing between the elements; In the relative excitation
of the n-th element; and θ is the polar angle.

2.2. Array Pattern Nulls

The null of the far field radiation pattern of an equispaced linear array can be analyzed
by means of a change of variables in (1) by introducing ψ = kd cos(θ) and ω = ejψ as is
shown in [27]. Thus, the array factor becomes F(ω) = IN f (ω), where f (ω) is given by



Sensors 2022, 22, 893 3 of 15

f (ω) =
N

∑
n=1

In

IN
ωn =

N−1

∏
n=1

(ω−ωn) (2)

where ωn is the n-th complex root of the polynomial produced by the array factor. In order
to exploit this property and understand how null control can be developed, these roots can
be represented on the complex ω plane [24] (see Figure 1).
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Figure 1. Example of the representation of a set of complex roots on the Schelkunoff unit circle.

All the roots that lie on the unit circle correspond to deep nulls of the pattern and,
following the mathematical description for obtaining (2), the angular position of these
complex roots is linked to the angular position on the far-field pattern by means of the
expression ψ0,n = kd cosθ0,n as described in Figure 1. Therefore, the null fixing here
proposed is implemented by calculating the roots of the relative excitation polynomial of
the antenna and transforming the angular position (ψ0,n) of the roots that lie on the unit
circle to the angular position (θ0,n) on the radiation pattern. Then, for each selected null
position, a term expressing the minimum distance from one of the actual pattern nulls to
the desired null can be introduced within the cost function of an optimization strategy.

2.3. Directivity of Linear Arrays

To evaluate the quality of the radiation pattern produced by a linear array, the peak
directivity is calculated from the relative excitation vector itself, following the approach
in [26] (pp. 153–154). More precisely, in the case of an isotropic equally spaced (d = λ/2)
element pattern, the expression is simplified to

Dmax =

(
∑N

n=1 In

)2

∑N
n=1 I2

n
(3)

where Dmax is the peak directivity. This simplification allows us to obtain the peak directiv-
ity of the linear arrays without calculating any integrals of the radiation pattern, drastically
reducing the computation time. Therefore, particularly in the present work, uniform excita-
tions were addressed aiming to a practical feasibility of the feeding network. In such a case,
the directivity can be calculated simply by counting the number of active elements in the
linear array. Therefore, in this work, the normalized peak directivity of the antenna array
was calculated by comparing it to the directivity of the uniform solution (that is, with all
the elements of the array turned on). Thus, this normalized peak directivity corresponds to
the percentage of active elements, which is calculated dividing the directivity between the
total number of elements of the linear array.
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2.4. Optimization Strategy

In order to achieve different improvements in the radiation pattern such as lowering
SLL, thinned antenna arrays are proposed here. Such kinds of arrays have some elements
turned off in order to achieve some pattern properties. Therefore, each element can then
be in two states: 0 (or turned off) and 1 (or turned on). The number of solutions or turned
on-turned off combinations increases very fast with the number of elements as there are
2N combinations for an N element array. We decreased this number from the beginning
by restricting our study to symmetrical arrays to have 2N/2 possible solutions for an array
of N elements. One last restriction imposed over the relative excitation vectors is that the
last element of the arrays must be necessarily turned on to guarantee arrays of determined
effective length and a certain main lobe width. In other words, the last element of the
edge is always on, attending to the premise that a linear array of N elements with the
last element turned off is actually a linear array of N − 1 elements. This results in 2N/2−1

combinations for an array of N elements.
Even with this simplification, the number of possible combinations is too large for big

arrays, so checking all the possible combinations is discarded as it would not be an effective
method. We need a way to navigate the solution space and look for the best combination
without checking every solution. In such a way, a procedure has been envisaged, where a
cost function (defined in Section 2.4.4) is minimized by means of a optimization algorithm
iteratively until the radiation pattern has the desired characteristics, as shown in Figure 2.
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(SA). M represents the number of deep null angular positions to be fixed by the method.
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Attending the optimization strategy, an algorithm that does not stop at a local mini-
mum of the solution space and looks for the global best solution of the problem is needed.
The chosen algorithm was hybrid SA [28], which is based both on the behavior of the
downhill simplex, a local optimization method, and the SA, a global one. In order to
explain the algorithm, both methods will be described first.

2.4.1. Simulated Annealing

Simulated annealing is a global optimization method based on the behavior of a slowly
settling thermodynamic system. A solid body that cools down slowly has a big solution
space for particle configurations, on which the crystal lattice configuration is the one with
the lowest energy (global solution of the problem), but other amorphous configurations
(local minima of the solution space) are also possible. The system will only reach the state
with the lowest energy if the temperature decreases slowly enough for each individual
particle to find the perfect placement.

The thermodynamic process is governed by the distribution of probability of Maxwell–
Boltzmann, which relates to the probability that the system reaches a certain state with
the internal energy of that state and the temperature of the system. In order to apply this
method to other optimization problems, we must define a cost function that evaluates the
“goodness” or energy of each state. We must also define the probability of jumping from
a certain state to a newly generated one, based on the cost (internal energy) of each state
and the temperature of the system, which will be reduced slowly as the program runs. The
probability of going from a state with energy E1 to one with energy E2 can be described by

p = e−
(E2−E1)

kBT (4)

where kB is the Boltzmann constant and T is the temperature of the system. As we can
derive from the formula, if E2 < E1, then the probability is larger than one, so the transition
will always happen. If E2 > E1, then the probability of jumping from state 1 to state 2
belongs to the interval (0, 1) and decreases as the temperature decreases. This number
will be compared to a randomly generated number between 0 and 1 and the transition
between states will only take place if the calculated probability is bigger than the randomly
generated number.

2.4.2. Downhill Simplex

Downhill simplex is an iterative local optimization method based on the construction
of successive geometrical figures denominated simplex. A simplex in a N-dimensional
space is a polytope of N + 1 vertices and the corresponding edges and faces linking them.
In order to use this mathematical object for our optimization purposes, let us suppose a
cost function f (x) we must optimize, where x is a vector of dimension N. A simplex is
created with N + 1 vertices of positions x1, x2, . . . xN+1. The cost value for each vertex
is now calculated and the one with the higher cost is moved to a new position through
the opposite face of the simplex (see reflection in Figure 3b). If the cost of the new point
is lower than the previous one, the algorithm will move it away further through the line,
expanding the volume of the simplex (see expansion on Figure 3c). If the cost of the new
position is higher, the algorithm will move it closer toward the simplex, reducing its volume
(see contraction on Figure 3d). To summarize, a set of the different possible movements
of the simplex is illustrated in Figure 3. This happens for every new configuration of the
simplex, each time moving the vertex with the higher cost value toward a new point, and
increasing or decreasing the total volume depending on how close to the solution each step
takes us. When the volume of the simplex decreases to a minimum, it means it has found
a local minimum of the function, because any step in any direction would only increase
its volume.
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Figure 3. Simplex possible moving steps: (a) Simplex with the vertex with the highest cost represented
with a red dot; (b) Reflection of the position of the vertex with the highest cost through the opposite
face of the simplex; (c) Expansion of the simplex by moving the vertex away from the volume in the
case that the reflected position achieved in (b) has a lower cost than the original position from (a);
(d) Contraction of the simplex by moving the vertex toward the volume, in the case that the reflected
position achieved in (b) has a higher cost than the original position from (a).

2.4.3. Hybrid Simulated Annealing

Consequently, as inferred from the previous subsections, the hybrid method used
in this study mixes the local optimization behavior of the downhill simplex, introducing
the temperature parameter from the SA, T, which also decreases slowly in this case, and
allows the algorithm to find global minima and not get stuck in local ones. In this method,
instead of comparing the cost of a vertex directly with the cost of the previous position, we
included a term depending on the temperature. In such a way, the simplex will navigate
the solution space more freely at the beginning and slowly settle into a minimum.

The algorithm includes a final strategy in order to avoid falling into a local minimum of
the function, which is based on reiterations. We forced the algorithm to run (re-iteratively)
five times, starting at a different randomized position each, so the final solution will be the
best one achieved in all five re-iterations. This is an extra step that helps to guarantee the
global minimum of the function.

In order to transform the continuous values resulting from the algorithm operations
into binary values for the relative excitation vectors, a discretization method must be
implemented. In our case, we summed the vector of small perturbations generated by the
algorithm (positive and negative values) divided by a factor of 1000, to a uniform excitation
vector with all values equal to 0.5. After this operation takes place, we looped over every
element of the resulting vector and if its value was higher than 1, we set it to 1, and if it
was lower than 0, we set it to 0. We then ran one last time over all the elements, setting its
value to 1 if it was equal or higher than 0.5, and setting it to 0 if it was lower than 0.5.

2.4.4. Cost Function Definitions

The cost function for each state must include all the parameters we want to optimize
in our antenna arrays. As highlighted in Figure 2, we focused this study on three main
factors: lowering the SLL, maintaining a high directivity, and fixing M nulls of the pattern
at certain angles (θd

0,1, . . . , θd
0,M).

The cost term associated to the SLL is multiplied by a Heaviside function, defined
in (5), where argument t is the difference between the obtained SLL (SLLo) and the desired
one (SLLd) in order to only try to improve this aspect of the radiation pattern if the result
was above a defined threshold.
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H(t) =
{

1 if t ≥ 0
0 if t < 0

(5)

Alternatively, concerning the directivity control of the far field pattern generated by
the linear array, a Heaviside function concerned on looking solely for improvements in
the case of being at a higher level of a desired directivity is proposed. This use becomes
optional if certain directivity has to be fixed (for comparative purposes).

The complete mathematical expression of the cost function multiplies each contribu-
tion by a coefficient in order to change the relative importance of each term. In our case,
the coefficients were chosen following the criterion of fixing a certain directivity with the
most importance, then fixing null angular positions and finally lowering the SLL, as there
was no point in our experiment to obtain a low SLL if we did not meet the other required
specifications. Therefore, the final expression of the cost function is

C = c1|SLLo − SLLd|2H(SLLo − SLLd) + c2|ηo − ηd|2H(ηo − ηd) + c3

(
M

∑
i=1

∣∣∣θo
0,i − θd

0,i

∣∣∣)2

(6)

where SLLo and SLLd are the obtained and desired SLL, respectively; ηo and ηd are ob-
tained and desired normalized directivity on broadside; H(·) is the Heaviside function;
M corresponds to the number of desired nulls to be fixed; θo

0,i and θd
0,i are the obtained

and desired null position by means of their polar angles and, finally, c1, c2, and, c3 are the
different weights of the cost function. As can be noted from (6), the cost function squares
the terms in order to increase the convergence speed by enlarging the differences between
costs of different input vector (In).

2.5. Extension to Planar Arrays: Separable Distributions

Once we obtained optimized linear arrays that maximize the SLL and directivity with
a certain number of fixed nulls in the pattern, we can synthesize a rectangular grid and
rectangular boundary planar array with separable distributions by placing one optimized
array on the x-axis and another on the y-axis, achieving the value for the relative excitation
of the rest of the elements of the planar array by multiplying the values of the elements
in the x and y projections. By using this method, the relative excitation amplitude of each
element of the planar array is given by:

Imn = Im × In (7)

where m and n are the indices in the x and y directions for the elements in the planar array
and Im and In are the relative excitation vectors for the linear arrays placed in the x-axis
and y-axis, respectively.

This method allows us to fix nulls in the ϕ = 0◦ and ϕ = 90◦ planes (as the radiation
pattern in these planes will correspond to the ones from each introduced array) without
losing the binary property of each element relative excitation. The main advantage of
the separable distributions is the feeding network practical implementation, which can
be simplified to a set of equal linear arrays fed from the left side of the planar array as
described in [29].

The array factor considering a separable planar array synthesized from two linear
symmetrically excited arrays lying on the x− y plane is given by the expression from [26]
(p. 207):

F(θ, ϕ) = 4
Nx

∑
m=1

Ny

∑
n=1

Im Incos
[
(2m− 1)

2
kdxsinθcosϕ

]
cos
[
(2n− 1)

2
kdysinθsinϕ

]
(8)

where Nx and Ny are half of the elements of the arrays on the x and y-axis, respectively; In
and Im are the relative excitation patterns for the arrays; dx, dy are the interelement spacings
of x and y directions; and θ and ϕ are the polar and the azimuth angles, respectively.
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In order to calculate the peak directivity of the planar arrays, we used the following
expression extracted from [26] (p. 205), as the simplified Equation (3) is only valid for
linear arrays:

D(θ0, ϕ0) =
4πF(θ0, ϕ0)F∗(θ0, ϕ0)∫ 2π

0

∫ π/2
0 F(θ, ϕ)F∗(θ, ϕ)sin(θ)dθdϕ

(9)

where (θ0, ϕ0) is the angular position of the maximum radiation and, in this case, it corre-
sponded to the peak directivity. As (9) requires a relevant computational cost, especially
attending optimization processes, simplifications based on half-wavelength spacing as
derived in [26] (p. 206) become necessary. Otherwise, as the particular scope of this work
regarding planar arrays is to analyze the extension of optimized linear arrays, the use of (9)
was adopted. In the case of developing an optimization strategy involving explicitly the
directivity of planar arrays, the particularized case here described is mandatory.

3. Results

In the following, all the described examples are based on linear and planar arrays
with interelement spacings of λ/2, and regarding the optimization stage, coefficients
of the cost function implemented to obtain the optimized values in each case were
c1 = 4, c2 = 2000, and c3 = 100. The values of these coefficients have been set after tuning
of the parameters to obtain the results reported in this work.

3.1. Fixing One Null

In order to study the variation in the SLL, an optimized array achieving the lowest
SLL and maximizing directivity, without fixing any nulling direction, was defined as the
reference. After this, a sweep was made, fixing one null every 2◦, from 2◦ to 88◦, keeping
the directivity to the one of the reference array. This process has been conducted for two
different sized arrays: one with 40 elements and another with 80 elements.

3.1.1. 40-Element Linear Arrays

The optimized reference array, calculated without fixing any nulls, resulted in a SLL
of −17.27 dB, with a normalized peak directivity of 0.9 (which corresponds to 15.56 dB and
36 elements turned on).

In the sweep, all the obtained arrays were able to fix the same desired directivity as
the reference array. The distance between the desired nulling direction and the achieved
one, for every calculated direction, is shown in Figure 4a. The SLL variation with the one
achieved in the reference array is reported in Figure 4b.

The average distance between the desired null and the obtained one was 0.63◦, with
a standard deviation of 0.83◦. The average difference between the obtained SLL and the
reference one was 1.49 dB, with a standard deviation of 1.98 dB. The high deviations
obtained for cases near the edge of the array pattern (θ < 18◦) report serious difficulties in
fixing the angular positions of the nulls and lowering the SLL due to the last element of
the array always being on, as explained in Section 2.4. Thus, it can be noted how fixing
nulls near the edge of the radiation pattern, guaranteeing the same directivity and number
of elements, which leads to a null filling of worst performance. On the other hand, fixing
nulls near the central region of the pattern is also difficult due to the vicinity to the main
beam. Therefore, we restricted this analysis to a more realistic range from 18◦ to 84◦ as the
average distance between the desired null and the obtained one was 0.34◦, with a standard
deviation of 0.23◦, and the average difference between the obtained SLL and the reference
one was 0.82 dB, with a standard deviation of 0.65 dB.

3.1.2. 80-Element Linear Array

The optimized reference array, calculated without fixing any nulls, presents a SLL of
−19.85 dB, and a normalized peak directivity of 0.83 (which corresponds to 18.20 dB and
66 elements turned on).
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Figure 4. Results for the null fixing sweep for the linear array of 40 elements: (a) Deviation of the
closest null in the pattern to the desired nulling direction; (b) Difference between the obtained SLL in
every linear array of the sweep and the SLL of the reference linear array.

In the sweep, all the obtained arrays were able to fix the same desired directivity as
the reference array. The distance between the desired nulling direction and the achieved
one, for every calculated direction is shown in Figure 5a. The SLL variation with the one
achieved in the reference array is reported in Figure 5b.
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Figure 5. Results for the null fixing sweep for the linear array of 80 elements. (a) Deviation of the
closest null in the pattern to the desired nulling direction. (b) Difference between the obtained SLL in
every linear array of the sweep and the SLL of the reference linear array.

The average distance between the desired null and the obtained one was 0.5◦, with
a standard deviation of 0.78◦. The average difference between the obtained SLL and the
reference one was 1.77 dB, with a standard deviation of 3.07 dB. As for the previous
example, if we restrict the calculation to the best working region of the sweep (which in
this case was from 12◦ to 88◦), now the average distance between the desired null and
the obtained one is 0.25◦, with a standard deviation of 0.21◦, and the average difference
between the obtained SLL and the reference one is 0.88 dB, with a standard deviation of
0.56 dB.
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3.2. Fixing Multiple Nulls

By introducing multiple terms in the sum of the nulling directions cost, we can fix
more than one deep null in our pattern. Four examples are shown in Figure 6, fixing two
and three nulling directions, close together, and with a wide separation between each
desired deep null.
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one resulting in real, symmetric values, consisting of ones and zeros for the relative exci-
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Figure 6. Examples of patterns with the achieved multiple nulling directions represented with red
dots: (a) Two deep nulls close together at 38.94◦ and 41.09◦; (b) Two deep nulls separated at 39.94◦

and 80.02◦; (c) Three deep nulls close together at 55.11◦, 56.25◦, and 57.53◦; (d) Three deep nulls
separated at 39.95◦, 60.20◦, and 80.51◦. The patterns with two deep nulls were generated by a linear
array of 40 elements, while the patterns with three deep nulls were generated by a linear array of
60 elements. The right side of the symmetrical relative excitation vector of the elements is shown at
the top of each generated pattern. Only the values for the deep nulls at the left side of the pattern are
explicitly shown due to the symmetry of the pattern. The angular positions for the symmetrical nulls
are obtained by θ

sym
0,i = 180◦ − θ0,i.

Examples shown in Figure 6a,b consist of 40-element arrays. In the first example, nulls
at positions 39◦ and 41◦ were desired, and the closest achieved nulling directions were
38.94◦ and 41.09◦, respectively. The normalized peak directivity of the resulting pattern
was 0.75 (which corresponds to 14.77 dB and 30 elements turned on) and the SLL was
−13.78 dB. In the example from Figure 6b, the desired nulling directions were 40◦ and
80◦, and deep nulls at 39.94◦ and 80.02◦ were achieved, with a normalized peak directivity
of 0.85 (which corresponds to 15.31 dB and 30 elements turned on), resulting in a SLL of
−12.9 dB.
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Figure 6c,d correspond to 60-element arrays with three desired nulling directions. In
the example shown in Figure 6c, deep nulls at angles of 55◦, 56◦, and 57◦ were desired, and
the closest obtained nulling directions were 55.11◦, 56.25◦ and 57.53◦, with a normalized
peak directivity of 0.73 (which corresponds to 16.41 dB and 44 elements turned on) and
a SLL of −11.24 dB. In the pattern from Figure 6d, three separated deep nulls at 40◦, 60◦,
and 80◦ were desired, and nulls at angles of 39.95◦, 60.20◦, and 80.51◦ were achieved. A
graphical representation of the roots of the pattern with the Schelkunoff unit circle, high-
lighting the ones corresponding to the fixed deep nulls lying on the unit circle, is reported
in Figure 7. The normalized peak directivity in this case was 0.83 (which corresponds to
16.97 dB and 50 elements turned on) and the SLL = −17.84 dB.
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Figure 7. Representation by means of the Schelkunoff unit circle of the roots of the relative excitation
distribution associated with the pattern of Figure 6d. The angular positions of the deep nulls 1–3,
which generates the far-field radiation pattern of Figure 6d in this representation corresponds to
ψ0,n = π·cos(θ0,n). Only the values for the deep nulls at the upper side of the unit circle are explicitly
reported due to the symmetry of the pattern. The angular positions for the symmetrical nulls are
obtained by θ

sym
0,i = 180◦ − θ0,i.

The roots of the radiation pattern from Figure 6d, shown in Figure 7, are either exactly
on the Schelkunoff unit circle, or are given by pairs, with the same ψ0,n, one inside and one
outside. The study made in [30] addressed this, concluding on the existence of a multiplicity
of solutions, corresponding to different relative excitation vectors of the array, resulting in
the same contributions to the amplitude of the radiation pattern. Although this is applicable
in our case, it has been checked that the case here reported is the only one resulting in real,
symmetric values, consisting of ones and zeros for the relative excitation vector.

3.3. Binary GA Comparison

To develop a crosscheck and comparing the performance of the present method,
a binary GA algorithm [11,31] has been introduced in the same optimization strategy
including the same null fixing method and cost function (6). Both optimizations were
encoded in MATLAB R2021b by Mathworks Inc. (Natick, Apple Hill Campus, MA, USA)
and all calculations were performed in a personal computer with an AMD A10-9600P
processor running at 2.40 GHz and 12 GB of RAM.

The obtained antenna arrays with the GA presented similar deviations from the
desired characteristics of the pattern in all the mentioned examples, with a population size
of 350, single-point crossover with a crossover fraction of 0.8, roulette selection, mutation
of bits with a probability of 0.01 and one elite individual per generation.
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Although this method a priori represents the most natural way of facing thinned linear
arrays of uniform relative excitations, due to its binary nature, it results in a considerable
time difference with the hybrid SA. Similar running times can sometimes be achieved
for small arrays up to 40 elements in size, as shown in Table 1, but our experimentation
showed a great increase in the difference for arrays with more elements, up to a factor of
approximately nine times the running time of the SA for a 200-element array.

Table 1. Comparison of the average execution times for each implemented algorithm.

Algorithm Average Execution Time (s)

1 Deep Null 2 Deep Nulls 3 Deep Nulls

40-Element Array 80-Element Array 40-Element Array 60-Element Array

SA 45.84 314.41 111.39 130.03

GA 111.48 562.79 134.98 255.36

3.4. Planar Arrays with Separable Distribution

Extending the result obtained for two 40-element linear arrays, each one optimized
by the method here reported fixing two different nulling directions, so we calculated the
relative excitation pattern for a planar array with a rectangular grid and boundary with a
separable distribution.

For the x-axis (ϕ = 0◦), an array with desired nulling directions in θd
0,1 = 40◦ and

θd
0,2 = 45◦ was calculated, achieving deep nulls at θo

0,1 = 39.61◦ and θo
0,2 = 45.02◦. The

normalized peak directivity of this pattern was 0.85 (which corresponds to 15.31 dB and
34 turned on) and the SLL was −16.02 dB. For the y-axis (ϕ = 90◦), an array with desired
nulling directions in θd

0,1 = 50◦ and θd
0,2 = 60◦ was synthesized, obtaining deep nulls

at θo
0,1 = 50.03◦ and θo

0,2 = 60.00◦ with a normalized peak directivity of 0.9 (which
corresponds to 15.56 dB and 36 turned on) and a SLL of −16.37 dB. Both relative excitation
vectors for the arrays are shown in Table 2.

Table 2. Right side of the symmetrical relative excitation vector for the linear arrays used in the
design of the planar separable distribution.

Array in ϕ = 0◦ Array in ϕ = 90◦

11111111111101011011 11111111111101111011

The corresponding relative excitation pattern for the planar array generated by the
separable distribution procedure is shown in Figure 8a, while its corresponding normalized
far-field radiation pattern is shown in Figure 8b.

We must highlight the fact that our linear arrays are optimized lying on the z-axis,
so when we produce the planar array on the x− y plane, the null positions of our linear
patterns are shifted 90◦ in the θ coordinate, aside from one of them (the one chosen to be
in the y-axis) turned 90◦ around the z-axis, in the ϕ coordinate. The radiation diagram
shown in Figure 8b uses the coordinate system u = sin(θ)cos(ϕ) and v = sin(θ)sin(ϕ), so
with the described shifts resulting from the movement of the linear arrays, our deep nulls
are now at (ux

0,1, vx
0,1) = (±0.7069, 0), (ux

0,2, vx
0,2) = (±0.7705, 0), (uy

0,1, vy
0,1) = (0,±0.5000),

and (uy
0,2, vy

0,2) = (0,±0.6424), where the plus and minus sign comes from the symmetry
of the linear array patterns. The resulting far field pattern from the planar array presents
a SLL of −16.37 dB, and a normalized peak directivity of 0.69 (which corresponds to a
peak directivity of 35.35 dB and 1224 elements turned on), where the peak directivity of the
uniformly excited planar array of the same size was used in the normalization.
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Figure 8. (a) Relative excitation pattern for the elements of the planar array with rectangular grid
and boundary with separable distribution. (b) Normalized far-field radiation pattern of the planar
array from Figure 8a with the achieved deep nulls represented with arrows.

4. Discussion

In the present work, an innovative method for fixing deep nulls in radiation patterns
of symmetrical linear arrays based on the hybrid SA global optimization algorithm was
implemented. This method is able to synthesize required radiation patterns restricting
the possible relative excitation values for the arrays to a binary possibility of zero or one,
facilitating the feeding network implementation. To the best knowledge of the authors, this
approach represents the first achievement of simultaneously including both array thinning
and deep null fixing in the array pattern synthesis framework.

The algorithm shows a great ability for fixing a single nulling direction in a big range
of the pattern, maintaining a fixed desired directivity, while keeping the SLL close to the
one from the optimized array without any fixed deep nulls. In the case of the 40-element
array, an average deviation of 0.34◦ from the desired nulling direction was achieved in
the range θ ∈ [18◦, 84◦], and the average difference between the obtained SLL and the
reference one was 0.82 dB. For the 80-element array, an average deviation of 0.25◦ from
the desired nulling direction was achieved in the range θ ∈ [12◦, 88◦], and the average
difference between the obtained SLL and the reference one in this case was 0.88 dB.

In order to show the flexibility of the procedure, examples with multiple nulling
directions have been also analyzed, both in angles close together and presenting a large
separation between them. In such a case, it is important to highlight the increased difficulty
for each added deep null, resulting in worst fixing precision or higher SLL of the pattern
produced by the method.

Regarding computational costs, it can be concluded that running time differences
between the present methodology and GA-based alternatives increase considerably with
the number of elements of the arrays.

An extension for fixing certain nulling directions in planar arrays, while keeping the
relative excitations of the antenna array elements binary (zeros and ones) was implemented
by using separable distributions, obtaining the desired radiation patterns with fixed nulls
in the ϕ = 0◦ and ϕ = 90◦ planes. This method leads to the desired nulling patterns in the
mentioned planes, but reduced SLL elsewhere with a consequent beam broadening and
reduced directivity. Separable distributions are also strictly only applicable to planar arrays
with rectangular grids and boundaries, limiting their use.

As future developments for the strategy regarding linear array approaches, studies
involving non-symmetrical solutions are under consideration. To this aim, it is important
to highlight that for a sum pattern, as its amplitude distribution is always symmetrical, an
asymmetrical phase distribution becomes mandatory in addressing an asymmetrical nature
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of the pattern [26] (p. 167). Therefore, the envisaged idea is based on the introduction of an
asymmetrical phase distribution within the present methodology to improve its flexibility.

Additionally, an alternative planar extension also under consideration is based on the
collapsed distributions paradigm [29,32]. More precisely, the implementation of relative
excitations for the planar array with 0 and ±1 as boundary conditions can be proposed
as a working hypothesis. In such a way, a two-bit basis for the feeding network could
be managed: one bit regarding relative amplitudes (0 and 1), and another bit for relative
phases (0◦ and 180◦) of the active elements. A second optimization stage is here proposed,
after the generation of the linear arrays, looking for the individual relative excitation values
for each element of the planar array in order to achieve, as collapsed distributions at certain
angles, the linear arrays from the first optimization. In such a way, the invocation of the
principle of collapsed distributions will guarantee the implementation of a methodology to
project relative excitations of 1 or 0 for the equivalent linear arrays as required.
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