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Abstract This work discusses an approach to estimate the likelihood of
occurrence and evolution in time of software security issues. First, soft-
ware vulnerability assessment is revised under the light of recent studies.
Then, guidelines are proposed that allow for (formal) modelling stochas-
tic aspects of cybersecurity-relevant scenarios. This opens a connection
to the field of formal methods, where automated tools like statistical
model checkers can estimate the value of property queries characterising
such scenarios. But exploitable vulnerabilities and attacks in cybersecu-
rity are rare events, which calls for specialised tools. In view of this, the
work finalises presenting FIG, a statistical model checker specialised on
rare event simulation. FIG, an open source software tool freely available
at https://git.cs.famaf.unc.edu.ar/dsg/fig, can be used to estimate the
probability of an attack within the next release cycle.

Keywords: Statistical model checking; Formal models for safety and
security; Cybersecurity analysis; Rare event simulation.

1 Introduction

Taken-for-granted technologies in today’s digital societies include personal health-
care appliances, assisted-driving cars, ais that start to chat too well, nightly-
build continuous integration/continuous deliveries, etc. Distributed data storage
with a central access point stands among these feats. In fact, from the digi-
tal technologies mentioned, cloud storage is arguably the one with the biggest
immediate impact in our everyday lives. Having your account stolen in social
media apps is a twenty-first century bonfire story, not to mention the more seri-
ous implications of this happening with accounts that contain e.g. your banking
data.

These modern dreadful scenarios often portray cybersecurity as the guardian
angel that will keep our data safe at all costs. Unfortunately, black and white
hats alike have long ago realised that the central access point, that makes cloud
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technologies so useful for everyone, is often what also makes them prone to
attacks. So much so that cryptography, which is the discipline that studies how
to use a user-private password to turn our data into undecipherable mangled bits
and back†, is the most broadly taught subjects across cybersecurity curricula in
European countries today—see e.g. recent studies by Dragoni et al. [16].

1.1 Uneducated mob

The above could sound encouraging. However, cryptography is but one of the
many topics that cast a protective mail between our data and its attackers.
Interestingly, it is not the weakest link in that mail—rather the opposite. The
bigger picture shows several further disciplines which must function in synchrony,
in order to deny unauthorised parties access to sensitive digital information.

For instance, [16, Fig. 4] shows the ten best-covered disciplines by Euro-
pean M.Sc. programs. However, a complete education must also include topics
in Component Procurement, Deployment and Maintenance, Distributed System
Architectures, compliance to Policies, etc. Current higher education and profes-
sional training cover these last examples only marginally [16, 19].

Perhaps a specially worrying case is human security, also known as the human
factor, which is intimately connected to cybersecurity as it concerns how attacks
to persons—rather than to machinery, code, or protocols—can compromise the
security of individuals and even entire corporations. Human security includes
disciplines such as Identity Management, Compliance to Policies and Norms,
and (defence against) Social Engineering. And even though these aspects are
evidently crucial to keep our data safe—it matters little if our PCs have an AES
chip, when a colleague can shoulder-surf us with a latte macchiato—it has been
known for over a decade that education is falling behind in these topics [19, 31].

As a result, good practices for access and human security which used to be
suggestions, such as strong password keys and multi-factor authentication, are
now downright enforced into (rather than expected from) users. Unfortunately,
not every practice can be enforced, since high-security and ease-of-use typically
stand on opposite sides of the user-experience spectrum [34]. Therefore, enforce-
able user-sided security has limited reach at best, so system administrators (and
companies in general) must operate under the assumption that the users will
not do the cybersecurity heavy-lifting.

1.2 Fifty shades of cybersecurity

The picture appears dire. “But”—we tell ourselves—“this will not happen to
me, whose security hygiene can put the CIA’s to shame.” Things are, of course,
not that simple, with a complexity that soars as world-wide distributed servers
(that store our data) run on heterogeneous hardware and firmware.
†This is rather encryption, a sub-field of cryptography. For a more precise (and serious)
understanding of cryptography we refer the interested reader to e.g. [4, chs. 1 and 3].
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Figure 1: Higher volume of library dependencies in the owned code (higher max
direct leverage in the y-axis) is correlated with higher number of vulnerabilities
faced in the lifetime of a software project [28].

This poses a challenge to backend developers, namely efficiency (and in-
telligible documentation, one would hope). In turn, frontend developers are in
charge of improving user experience, by offering everyone an homogeneous and
equally-responsive interface. Cybersecurity appears here as a third layer, whose
developers strive to achieve a common minimal degree of protection. And max-
imising this minimum is crucial, since attackers accessing data in the server are
effectively bypassing any user-sided cryptographic barrier.

Ideally, system design can achieve good and homogeneous protection in a
manner resilient to software heterogeneity and evolution, even in the face of un-
documented “efficient” code. Unfortunately, developers seldom have the chance
to design a system from scratch. More often than not companies must work with
legacy software, so the choices available to developers—already constrained w.r.t.
enforceable user-side security—are restricted even more. In fact, it is not uncom-
mon that the only feasible choice is which new library version to update to [33].
The impact in security is apparent, as recent studies show correlations between
the use of libraries and the number of security vulnerabilities affecting a software
project—see Fig. 1 and related works [28, 32, 35].

These are practical reasons why cybersecurity cannot be Boolean, e.g. a social
media platform is not either cyber-safe or -unsafe. Any software is ultimately
susceptible to cyberattacks, which motivates concepts like cyber resilience: the
ability to continuously deliver a service/product despite adverse cyber events,
or to quickly and fully recover from such events [28, 33, 38].

Therefore, for companies it boils down to investment strategies: how to spend
resources in a manner that reduces the risk of cyberharm, viz. the degree of
protection mentioned above. Such investments range from buying specialised
hardware and software, or implementing security policies, up to training attack-
response teams. The ultimate goal is to lower the risk of enduring or recovering
from impactful attacks: the more vulnerable the system, the higher the invest-
ment needed. Together with the increasing pressure by (inter-) national regula-
tory treaties—gdpr, hippa, pci dss, etc.—this has turned the estimation
of software vulnerability into an increasingly hot research topic [28, 36].
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Technically, however, vulnerability estimation comes with many theoretical
and practical hurdles. One of the hardest to overcome is the sheer unpredictabil-
ity of future technologies. In fact, most endeavours take an ostrich approach
here and focus on known vulnerabilities, typically zero-day attacks, avoiding to
speculate on issues to come. This line of action is mainly chosen due to the com-
plexity of the field, where a seemingly innocuous code fragment can be exploited,
but only when accessed via a specific browser with certain plugin installed.

In the face of such complexity, it is extremely difficult to determine from
existent code which fragments can become vulnerable in the future, or even how
many vulnerabilities one should expect later at project-level (but see [39, 45] for
time-series approaches that count vulnerabilities in code-agnostic manners).

This work discusses how an abstraction step can be taken to analyse a for-
malised model of the system’s security. This can be used to estimate, with
an arbitrary degree of accuracy, the likelihood and time lapse between the
exploitation of code-specific vulnerabilities.

Outline. The rest of this paper is structured as follows. First, § 2 briefly revises
related work. Then, a minimal introduction to model checking and its statistical
variant are given in §§ 3 and 4, showing why the latter is a feasible approach to
estimate (future) security vulnerabilities. However, simulation-based approaches
are computationally inefficient when studying rare events, which is the category
in which exploited vulnerabilities fall into. That is why § 5 presents fig: a
statistical model checker specialised in rare event simulation, that offers a unique
solution to the estimation-by-simulation problem. This work concludes in § 6.

2 Related work

Studies to find software vulnerabilities date at least from the early 2000’s. Most
works propose a statistical approach, often demonstrating its capabilities in con-
crete and complex case studies or large datasets, depending on the specific ob-
jective. This has been changing from classic statistical analyses—e.g. confidence
interval comparison and hypothesis tests—to modern Machine Learning (ml)
approaches, ranging from concrete algorithms (support vector machines, random
forests, linear regression, etc.) to full disciplines like deep learning.

For example, works like [3, 13, 29, 30, 42] study code and code-activity metrics
to either correlate them to reported vulnerabilities, or identify vulnerable code
fragments (i.e. the prime suspects of cybersecurity police). The features studied
to find these correlations and suspicious code include average length of functions,
cyclomatic complexity, nano-patterns, commit code churn, number and seniority
of committers, peer comments in code and in commits, etc.

The degree of success of these approaches is variable. While most achieve
relatively high sensitivity, precision is a different matter due to the high rate
of false positives [2, 26, 43]. Not to mention the difficulty of extrapolation to
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different projects and languages—see [35] for a discussion, and [23] for the al-
ternative solution of anti-fragile systems. Interestingly, [35] also reports that in
their study of 450 projects written in Java, Python, and Ruby, “There is no
clear relationship between dependency vulnerability count with attributes of the
commit including author experience”.

Data mining and ml approaches have been surveyed in [21]. Recent works
like [1, 7, 12, 20, 27] try to predict vulnerabilities∗ not only from software metrics
but also e.g. the dependency tree, the abstract syntax tree (of function call), code
cloning, etc. The main disadvantage of these approaches is the black-box models
they produce: despite their accuracy, it can be hard for developers to understand
why a library dependency is deemed vulnerable. In contrast, white-box models
and indicators such as [26, 28, 33, 35] are better in communicating the source of
the issue, which helps both developers and managers in making decisions, e.g.
which dependencies to adopt, avoid, or simply update—see also [23].

All the works mentioned above attempt to detect vulnerabilities that exist in
the code. Instead, the current work proposes a way to generate models that can
be used to foretell vulnerabilities that may occur in the future. This is in line with
the objectives of [39, 45], which use time-series analysis akin to those employed
in the stock market—e.g. ARIMA—to estimate the number of security issues
that a project may eventually face. In that sense, [39, 45] suffer from the same
critique than ml: the models produced are black-box and cannot explain why
is a code vulnerable, or which fix to apply. In contrast, using a formal approach
as discussed in § 4 would produce white-box (formal) models that can identify
the dependencies from which the estimated vulnerabilities emerge.

3 Model checking and cybersecurity

Formal system modelling and analysis is based on mathematical specifications of
systems, whose properties are queried using (typically) temporal logic formulae.
The field is vast, and a large part of it deals with model checking due to its
attractive push-button approach, where formal checks can be fully automated [5].

3.1 Model checking

The fundamental steps for model checking are:
1. defining a model M that describes the system to be analysed;
2. defining a property φ that describes the query to perform;
3. checking whether (or the degree to which) the model satisfies the property,

which is typically denoted M |= φ .

∗In ml, predict refers to classification, i.e. identify code affected by a CVE or known
vulnerable pattern. This is not the same as foretelling the occurrence of vulnerabilities
in the future, e.g. a yet-to-come CVE. Here we are interested in estimating the latter.
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The subsequent formal guarantees on the automatically computed answer have
resulted in many success stories of model checking applied to safety analysis—a
trend that continues to this day [18, 24, 37].

For example, in [37], the question from step 3 above is “what is the probability
that the power supply noise of my NoC surpasses the safety threshold”. It is
compelling to see the resemblance of such queries to measuring the degree of
(cyber-) security resilience. This has in fact started to be noticed, as researchers
begin to apply model checking for general cybersecurity studies [17, 41].

But there is a zeroth step that precedes modelling and is often assumed:

Selecting the formalism in which M and φ will be given semantics is crucial,
because it determines the type of questions that can be asked.

For example, the semantics on which the model M is interpreted must be
able to speak about the passing of time (formally, allow for a continuous state
space) if one desires to ask about the duration of events. Also, and quite to
the point of attack-resilience, the chosen formalism must allow for probability
measures, to query about the likelihood of an event taking place. We now discuss
these matters for cybersecurity analysis.

3.2 Semantic basis

In automata theory, many mathematical formalisms can express either time or
probabilities [22]. Arbitrary combinations of these aspects are less common, in
part because the complexity of the resulting models quickly reaches undecid-
ability even for reachability properties. That is, if the semantics are chosen to
be too expressive, there may be no algorithm that can compute e.g. whether
a vulnerable situation is reachable. Computational efficiency is also a factor to
consider: the more flexible the model, the more computation steps (and runtime)
it will take for an algorithm to find the answer to a query.

Simply put, the modelling formalism must be chosen as expressive as needed—
to answer all relevant questions—and as simple as possible.

For software vulnerabilities we are interested in two types of questions:
• “what is the probability of an attack in a defined time window?” ,
• “what is the expected time between independent attacks?”.

Both questions are stochastic in nature, and the second one requires the
estimation of potentially continuous time intervals. The simplest formalism from
the literature that can cope with both continuous probability measures and time
are Stochastic Automata, a subset of sta [14, 22].

A Stochastic Automaton M can encode the occurrence of attacks, according
to probability distributions fitted from empirical data coming from real-
world measurements. Then, a pctl-like property φ can query the time-
bounded probability of observing relevant events in the foreseeable future.
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This regards steps 1 and 2 from the model checking procedure. However,
step 3 encounters the extra requirement of verifying arbitrary distributions,
which come from approximations of the empirical attack information and prob-
abilities observed in the real world. Such typically non-Markovian behaviour
rules out traditional (probabilistic) model checking, whose numerical approxi-
mation algorithms—e.g. value iteration and its variants—rely on the memoryless
property. Workarounds like using face-types to approximate the empirical dis-
tributions have short reach, since they increase the number of states to visit, in
an already NP-hard problem of known exponential size.

Instead, the analysis of non-Markovian stochastic systems is typically ap-
proached with Monte Carlo simulation. Embedded in a formal methods setting
this is usually called statistical model checking (smc [46]).

4 Statistical model checking for cybersecurity

smc integrates Monte Carlo simulation with formal methods. Via discrete event
simulation it generates traces, which are samples of the states that a stochastic
model M can visit. Via the generation and analysis of these stochastic samples,
smc estimates the degree to which M satisfies different properties.

4.1 Monte Carlo simulation: an informal primer

Resorting to smc brings an extra semantic requirement: the model must be
fully stochastic and hence be free of nondeterministic behaviour. The following
gives an intuition of what this means; formal treatments are e.g. in [5, 15, 22].

For our purposes it suffices to consider the model M as consisting of a (pos-
sibly infinite) set of states S = {s0, s1, s2, . . .}, and transitions si → sj among
them. Each state represents a general configuration of the modelled system, so
for instance if we are studying how our server processes calls via its web api,
s0 can represent the idle state, s1 the reception of a message via method foo(),
s2 the process of stripping the header from the payload, etc. The transitions in
the model represent how the system passes from one state to another; in our
example this could be s0 → s1 → s2.

A simulation trace in the model M is as a sequence of states σ = si0si1si2 · · ·
where for any two consecutive states sij

sij+1 there exists a transition sij
→ sij+1

in the model M . The trace σ thus models “a run in the system”, describing how
it evolves from certain initial state onwards. For simplicity we let s0 be the initial
state, but one could also choose a set of initial states S0 ⊊ S.

Roughly speaking, a simulation of Monte Carlo is the process of generating a
trace σ. This is done several times, generating a collection of traces {σj}m

j=i that
model how the system usually operates. Each trace can then be tested against
the property, e.g. φ = “sensitive data has been leaked”, to see whether the trace
makes φ true. This results in a statistical answer to M |= φ, e.g. “our server
leaks data on average 0.0021% of the time, with a standard deviation of 5.2e-4”.
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Note however that the transitions in our model are not necessarily determin-
istic. For example, imagine that our web API has a bar() method, and let s42
represent the reception of a message via bar(). This is modelled by the transi-
tion s0 → s42 in M , which means that from the idle state there are at least two
possible choices: s0 → s1 (foo) vs. s0 → s42 (bar). This is called branching.

To be able to use smc, all branching in the model must be probabilistic.

In the example above this means that there must be probabilistic weights
in the transitions from s0 to either of its two possible successors. In general,
these probabilities need not be discrete: for continuous state spaces one would
use stochastic distributions, as Stochastic Automata do. However, the generic
definition of Stochastic Automata is not fully probabilistic [14]. Its representa-
tion of stochastic time periods via clocks allows nondeterministic behaviour, viz.
where branching arises for which there is no quantification whatsoever of which
path to follow. Then Monte Carlo cannot generate traces, because when faced
with a nondeterministic choice it does not know how to continue.

But there is a subset of Stochastic Automata known to be modular and
fully probabilistic: Input/Output Stochastic Automata, and its weakly-nonde-
terministic variant with so-called urgent actions (iosa [15]). This means that
iosa models allow arbitrary distributions, and permit the formal analysis of
properties via smc, to estimate statistical quantities such as the probability of
leaking sensitive data via web API calls.

iosa models have all desired properties to study cybersecurity via smc.

4.2 Modelling considerations and guidelines

Regarding the design of models for cybersecurity, it is up to the modeller to
decide which kind of information is encoded in the states S. The specific choice
depends on the behaviour of interest—some straightforward options are: (a)
the first-level libraries that a main project depends on, (b) the number of known
vulnerabilities for the own codebase and also for these libraries, (c) the criticality
of these vulnerabilities, (d) the time since their publication, and (e) whether any
of these codebases is currently under attack.

In turn, there are many interfaces to represent the states and transitions of
M for (statistical) model checking. To avoid reinventing the wheel, any suitable
pre-existent modelling syntax must be tried first: cybersecurity is no exception,
so syntaxes that can model security-relevant situations should be explored.

Attack trees (ats) are a simple example [44]: they are structural decompo-
sitions of the steps needed to perpetrate a (security) attack, and can be used for
cybersecurity. ats can, for instance, model option (a) above, under the assump-
tion that a security vulnerability in a dependency can also compromise the code
that uses it. Technically, the root of the tree would be an OR gate that represents
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toplevel "MainLib";
"MainLib" or "own_code" "depend_1" "depend_2";
"own_code" fail~weibull(k=2.3,β=125);
"depend_1" fail~exponential(λ=8.07E-3);
"depend_2" fail~lognormal(µ=30,σ=90);

Code 1: Kepler at for library & dependencies
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Figure 2: Attack pdfs

the main library, and the leaves would be BASes with relevant information, e.g.
the empirical probability distribution of vulnerability disclosure.

There are modern syntaxes to describe (fault and) attack trees, for instance
Kepler [11], that can be re-interpreted to model cybersecurity scenarios. Code 1
shows one such at for a library with two dependencies, whose hypothesised
fitted pdfs for vulnerability disclosure are shown in Fig. 2.

Code 1 proposes a way to declare models for option (a) above. In contrast,
option (e) is speculative and defines the goal of the simulations. More precisely,
a temporal logic property φ can query the probability of transitioning from the
current safe state, to a state in which one or more of the codebases is under
attack, before T days have passed. smc can estimate this value (the step M |=
φ) by generating several samples via Monte Carlo simulation, and computing
the proportion of them that suffered an attack before T days.‡ Here, φ is said to
characterise a subset of the states Sφ ⊂ S, whose reachability we are estimating.

Thus, from M and φ, an smc analysis yields an estimate γ̂ ∈ [0, 1] of the
actual probability γ with which the model satisfies φ, e.g. the likelihood of an
attack. Besides producing γ̂, smc can quantify the statistical error incurred via
two numbers, δ ∈ (0, 1) and ε > 0, such that γ̂ ∈ [γ −ε, γ +ε] with probability δ.
Thus, if n ∈ N traces are sampled, the full smc outcome is the tuple (n, γ̂, δ, ε).

This statistical quantification is usually returned as a confidence interval
(ci) around γ̂, and conveys an idea of the quality of the estimation. The usual
approach is to fix the confidence δ prior to experimentation: then higher quality
means smaller ε and thus a narrower ci, achieved by drawing more samples.

4.3 Computational considerations

Although flexible and automatic, the smc approach is hindered by rare events.
That is, if there is a very low probability γ to satisfy φ, then most traces sampled
by smc will not visit Sφ. The result is then either an incorrect estimate γ̂ = 0
or, if a few traces do visit Sφ, the confidence interval computed is very wide and
hence uninformative.

This can affect cybersecurity analyses, since the likelihood of observing an
exploit of a vulnerability is quite low in practice. To counter such phenomena,
the number of samples n must increase as γ decreases. Unfortunately, for the
sample mean, this causes n to increase in inverse proportion to the square of γ,
‡Transitions among states are governed by stochastic distributions, that describe the
jump probabilities from past evidence. Stochastic Automata encode this via “clocks”.
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which quickly results in unacceptably-long run times. To tackle this issue, rare
event simulation (res) methods have emerged in many scientific disciplines [40].

4.4 Rare Event Simulation

Roughly speaking, res can be divided in importance sampling and importance
splitting (isplit). The former modifies the stochastic transitions of the model,
in a way that can later be undone when computing the estimate γ̂. This is not
clearly feasible for cybersecurity, where the transition distributions are arbitrary
as they come from empirical data.

In contrast, isplit methods are not directly affected by such matters, which
makes them more attractive to our purposes. A caveat is that isplit tradition-
ally requires expert knowledge to split the state space S of the model M . This
has limited the use of smc+isplit as an automatic approach in general, and
specifically for cybersecurity analysis, since it necessitates (specialised) user in-
put beyond the definition of M .

However, novel theories are emerging to finally automate this step [6, 8].
Next and to conclude this work, a statistical model checker that implements
automatic res is briefly presented.

5 The FIG tool

5.1 Main characteristics

The Finite Improbability Generator, fig, is an smc tool publicly available at
https://git.cs.famaf.unc.edu.ar/dsg/fig. It uses the formal definitions of
M and φ to derive the so-called importance function f and thresholds {ℓi}M

i=1
[9], which act as an oracle guiding simulation traces towards the rare event in a
tractable manner, i.e. keeping a measure of the bias introduced¶. These are the
core components needed by isplit to speed up the statistical convergence for
the computation of the estimate γ̂ [25].

For this, fig runs a breadth-first search from Sφ on the inverted transitions of
M . This computes the number-of-transitions distance from each state to Sφ. The
heuristic importance function of fig, f⋆, is the inverse of this distance, stored as
an array of size |S|. To avoid the state explosion, fig works on iosa modules,
deriving a local f⋆

i for each Mi whose parallel composition forms M [15]. f⋆ is
an aggregation of these functions, which in its most basic form adds the local f⋆

i

of every Mi whose variables appear explicitly in φ [8, 10].
Function f⋆ is solely based on the distance measured in number of transitions

of M . All stochastic behaviour that is omitted by f⋆, such as probabilistic weights
in the transitions, is captured in the thresholds ℓi. To choose these thresholds
automatically, fig runs dynamic analyses using either Expected Success or a
¶A more in-depth introduction to the concept of importance function requires to for-

mally define state spaces, nondeterministic vs. probabilistic branching, and simulation
traces in formal models—we refer the interested reader to e.g. [25, 8].

https://git.cs.famaf.unc.edu.ar/dsg/fig
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1 module Foo
2 recv : clock; // receive a call to foo()
3 proc : clock; // process a call to foo()
4 comm : [0..2]; // communicate with backend
5 busy : [0..2] init 0; // processing call
6 [rc!] busy==0 @ recv -> 0.1: (recv’=µ) // package lost
7 + 0.9: (comm’=1) & (busy’=busy+1);
8 [c??] busy==1 -> (busy’=2) & (proc’=ν); // callback
9 [pc!] busy==2 @ proc -> (comm’=2) & (busy’=0) & (recv’=µ);

10 [b!!] comm==1 -> (comm’=0); // communicate: busy!!
11 [d!!] comm==2 -> (comm’=0); // communicate: done!!
12 endmodule

Code 2: iosa module of foo() web API call for fig 1.3

variant of the Sequential Monte Carlo algorithm [10]. In both cases finite-life
simulations start from the initial state, to estimate roughly the probability to
reach states with higher importance via lightweight statistical analyses.

5.2 IOSA models

fig is designed to run either crude Monte Carlo or res simulations on iosa
with urgency [15]. We (briefly) revise the syntax to define these models, as a
reference to future cybersecurity implementations—for further details see [9].
Modular composition. An iosa model is composed of one or more synchro-
nising modules, which contain local continuous random variables called clocks.
Every clock samples a positive value according to its probability distribution. As
time evolves, the clocks in all modules count down at the same rate, and the first
to reach zero is said to expire. On expiration a clock can trigger (a) local events in
its active module—e.g. new sampling of clock values, variables assignment—and
(b) synchronisations with other passive modules. The single active module whose
clock expired broadcasts an output action, that synchronises with homonymous
input actions in the passive modules. iosa is an input-enabled formalism.
Example. Code 2 shows a simplistic fig module that represents the reception
of a message via the foo() method of a web api. It consists of variable decla-
rations (lines 2–5) that define its possible internal states, and transitions (lines
6–11) that define the transitions between these states.

Generally speaking, the different situations in which the model can be (wait-
ing for a message to arrive, expecting the callback, processing the message, etc.)
are modelled by the different combination of values of the variables comm and
busy. Instead, the clocks recv and proc govern the transition between these pos-
sible states, i.e. the changes in the values of the variables. This is said to happen
“stochastically” by sampling their next expiration times and expiring as de-
scribed above. The next paragraph gives a sample walk-through of the resulting
behaviour for the iosa model from Code 2.

A simulation starts at state comm==0,busy==0 and, informally speaking, waits
some time until a message is received. This is governed by the expiration of the
clock recv in lines 6–7, represented by the code “@ recv”. When this happens,
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the code to the right of the arrow -> in line 6 represents a 10% change to lose the
message (e.g. due to data corruption), in which case we will repeat the process
by waiting until the next message is received. With the remaining 90% chance
the model will instead process the package: first it broadcasts a signal (b!! in
line 10) to indicate that it will be busy for a while; then it waits for the backend
to inform that the message is to start being processed (c?? in line 8). This then
makes the model wait for the expiration of clock proc (line 9), which indicates
the end of the processing. When this happens, a signal is broadcast to indicate
that we are done (d!! in line 11), after which the full procedure starts over.

Next we give a more technical explanation of the parts that compose the
model from Code 2, and any iosa model that can be simulated by fig

State variables. iosa variables in fig have module-local scope and can be of
type clock, bool, or ranged integer (e.g. [0..2]). Constants can also be of type
float—though not clock—and have global-scope. fig supports array variables
and can compute e.g. a-random or the-smallest value from an array.

Transitions. Besides the declaration of state variables, an iosa module is
composed of transitions that describe its behaviour. Each transition is formed by:
a (possibly empty) action in square brackets; a Boolean precondition; a clock iff
the action is (non-urgent) output; and a postcondition, formed of a probabilistic
choice (after -> and separated by +) where single options have probability 1.

Synchronisation actions. Every transition starts with a (possibly empty) ac-
tion declaration. Decorators ?/! at the end of the action name mark it as input
or output, e.g. rc! in line 6 is an output action. Double decorators are for ur-
gency, e.g. c?? in line 8 is an urgent input. Output actions (timed or urgent)
are emitted by the module, and listened to by other iosa modules in the sys-
tem. Input actions (timed or urgent) are received by the module, when another
module in the system emits them.

Clock expiration. Time passes at the same speed for all iosa modules. Each
clock samples a value from its corresponding distribution, e.g. µ for recv in
Code 2, and counts down (at the global speed of time passage) until its value
reaches zero: then the clock expires. Character @ in a transition represents this
event. If the clock of a transition expires, and the precondition is satisfied, the
postcondition of the transition is applied. For instance, [rc!] busy==0 @ recv-> · · ·
(line 6) tells that if clock recv expires, and busy==0, then the module will output
action rc and proceed to execute the postcondition that follows the arrow ->.

Postconditions. A postcondition is composed of one or more options, each
weighed with a discrete probability value. Each option, chosen probabilistically,
is a sequence of effects concatenated by &. The left-hand side of = in an effect is
a variable name with a ’ suffix. If the variable is a clock, the right-hand side is a
distribution: e.g. recv’=µ in line 6 samples a new clock value. Else, the right-hand
side is an arithmetic expression: e.g. in line 7 the value 1 is assigned to variable
comm, and busy+1 is assigned as new value to variable busy.
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5.3 Demonstration
Finally, we show the command-line interface (cli) and capabilities of fig to
study rare-event properties in two small examples from its test suite.

fig offers many options to simulate on iosa models, for the estimation
of rare properties specified in subsets of continuous-time stochastic logic (csl,
for steady-state properties) or probabilistic computation tree logic (pctl, for
transient properties). A full description of this cli is out of scope, but users can
get it by invoking the --help option of fig, after downloading it from https://
git.cs.famaf.unc.edu.ar/dsg/fig and following the installation instructions.

The first example that we will showcase is a triple tandem queue with Erlang
service times: the iosa model file is publicly available in the official website of
fig in the following path: tests/models/3tandem_queue.sa.

We compare crude Monte Carlo (cmc) and two res strategies with the
monolithic importance function, i.e. f⋆ built on the composition of all iosa
modules. The first strategy uses all of fig default parameters, and the second
one requests Expected Success to build thresholds, and the restart engine
with level-2 prolongations. The corresponding commands are:

>_ fig --stop-time 5m 3tandem_queue.sa --cmc
fig --stop-time 5m 3tandem_queue.sa --amono
fig --stop-time 5m 3tandem_queue.sa --amono -t es -e restart2

We estimated the csl-like property φ = S(q3>=7), which asks the proportion
of time that the third queue contains more than 7 elements. Comparisons were
done for a fixed simulation budged, namely a wall-clock time of 5 minutes. When
the time is due, simulations stop and cis are reported: the estimation that
achieves the narrowest ci for a fixed confidence level is the most efficient one.

Running these experiments in an Intel(R) Xeon(R) E-2124G CPU @ 3.40GHz
(Linux kernel 5.14.8-arch1-1) resulted in the following 95% cis: [3.81e-6, 4.52e-6]
for cmc, [4.15e-6, 4.36e-6] for fig defaults, and [4.25e-6, 4.40e-6] for the custom
command. The widths of these intervals are 7.13e-7, 2.12e-7, and 1.53e-7 resp.

All cis overlap and contain the expected value 4.25e-6. However and as
expected, res can achieve tighter estimates for the same simulation budget.
We highlight that the default fig command is as bare as crude Monte Carlo,
yet it produced an estimate more than three times more precise.

Finally we experiment with a second model: a small repairable Fault Tree
with non-Markovian failure and repair times (FT.sa), also available in the website
of fig as tests/models/resampling_tiny_FT.sa. The distribution families include
exponential, Erlang, normal, and lognormal.

The case is quite interesting since isplit has limited applications in ft
analysis. Importance functions such as f⋆, that only observe failures and repairs
of components, result in efficient res applications iff the dominant failure can
be layered, e.g. as the result of the conjunctive failure of many subcomponents.
To exploit this, we have developed heuristics that automatically derive a com-
position strategy from the ft structure. A similar approach is envisioned for
cybersecurity studies, using the closely related theory of attack tree analysis.

https://git.cs.famaf.unc.edu.ar/dsg/fig
https://git.cs.famaf.unc.edu.ar/dsg/fig
https://git.cs.famaf.unc.edu.ar/dsg/fig#installation-instructions
https://git.cs.famaf.unc.edu.ar/dsg/fig/-/raw/21e1d30b25043b943151a840c7a0aa3b026bd2ee/tests/models/3tandem_queue.sa
https://git.cs.famaf.unc.edu.ar/dsg/fig/-/raw/21e1d30b25043b943151a840c7a0aa3b026bd2ee/tests/models/resampling_tiny_RFT.sa
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For this case, we estimated the time-bounded probability of observing a
system failure before 150 time units. Again we compare cmc and two res
strategies: fig with the --ft switch, Expected Success thresholds, Fixed Effort
simulation engine, and (a) the default compositional importance function, and
(b) the heuristic ft-structure importance function. The commands are:

>_ fig --stop-time 5m FT.sa --cmc
fig --stop-time 5m FT.sa --ft -t es -e sfe --acomp +
fig --stop-time 5m FT.sa --ft -t es -e sfe --acomp \

‘BE_0+max(BE_1,BE_2)+BE_4’

These experiments resulted in the 95% cis: [1.93e-4, 3.02e-4], [2.28e-4, 3.12e-4],
and [2.39e-4, 2.70e-4], whose widths are 1.09e-4, 8.41e-5, and 3.12e-5. As before,
all cis contain the expected value (2.65e-4), and res achieved the tightest inter-
vals for the same simulation budget. In this case, however, the difference between
cmc and the default compositional strategy of fig is much less pronounced
than in the previous example. This is expected given the low redundancy required
to cause a system failure (three components must be simultaneously failed).

Yet in spite of this, the heuristic composition strategy performed significantly
better, producing a ci almost an order of magnitude narrower than cmc. Per-
haps the most appealing feature of this strategy is that it is automatic: it is
computed from the ft structure, from which also the iosa modules were cre-
ated. In other words, this is effectively a fully-automatic deployment of res. In
subsequent research we intend to apply analogous approaches to study properties
of models that encode cybersecurity problems.

6 Conclusions

This work discussed the use of Statistical Model Checking to study problems rel-
evant for cybersecurity practices. smc is a formal approach to model analysis via
Monte Carlo simulation. Input/Output Stochastic Automata semantics are pro-
posed as underlying formalism: they combine continuous time and probabilities,
as required to estimate the likelihood and time of occurrence of future attacks.
The need for rare event simulation is identified to achieve efficient computations,
and the academic tool fig is presented, which can deploy it automatically.
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