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Abstract

In the last 10 years, semi-supervised clustering (SSC) or cluster-
ing with side information has received significant attention from re-
searchers because of its success in many applications like document,
image clustering, etc. SSC has been shown to improve the clustering
performance substantially with just few constraints or labelled data
points as side information which are provided by an expert or an oracle
system. Most works have been done so far can be classified into one
of two SSC schemes: the a-prior scheme, and the interactive scheme.
This survey will cover these two schemes together with the impor-
tant algorithms in each scheme. Finally, the open issues will also be
summarized in the survey.

1 Introduction

Semi-supervised clustering (SSC) is the problem of clustering unlabelled data
with the support of the side information provided by a supervisor (who
can be an expert or an oracle system). And because of its great success in
recent years, SSC has received significant attention from researchers. The
side information has been shown to guide the clustering algorithms towards
the desired clustering solutions or help the clustering algorithms escape from
the local minima effectively. The side information does contribute not only
to the performance improvement but also to the complexity reduction. An
example is the car land identifying problem from GPS data where the goal
is to cluster data points into different lanes [51]. This is a difficult clustering
problem for the well-known clustering algorithm KMEANS because the lane
clusters have a very special shape which is very elongated and parallel to
the road centerline. And the KMEANS with constraints has achieved the
accuracy of 98.6% whereas the accuracy of the KMEANS with no constraints
is only 58% [51]. Some other applications of SSC can be found in [16].

The works that have been done so far can be classified into one of the
following two schemes: the a-prior scheme, the interactive scheme. In the
a-priori scheme, the side information is given once before executing the SSC
algorithm while in the interactive scheme, the side information is collected
iteratively by interacting with the supervisor. Although two excellent surveys
by Davidson et al. [16] and Basu et al. [7] have covered main aspects
of the a-priori scheme, there is still no surveys that cover also the other
scheme. Besides, some recent important algorithms are also missing from
these surveys. This survey comes to fill in that need with the hope that it
can present not only a more general view but also a deeper view of this field
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for new researchers. The algorithms presented in this paper are grouped into
common techniques for easy comparison. The pseudo-code as well as the
advantages and disadvantages of each algorithm will be presented clearly. In
addition, the open issues will be also summarized in the survey.

The outline of this paper will be as follows. In Section 2, two schemes and
the algorithms in each scheme will be briefly introduced. Then, Section 3
will present the algorithms of the a-priori scheme classified based on different
types of constraints. Next, Section 4 discusses in detail the interactive SSC
algorithms. Finally, Section 5 concludes this survey by summarising the open
issues in this field.

2 Two Schemes

Currently, there are two schemes for SSC which are the a-priori scheme,
and the interactive scheme. They are basically different by the way the
side information is collected in each scheme. In the first scheme, all side
information is given once before the SSC algorithm is executed while in the
second scheme, side information is collected iteratively by interacting with
the supervisor.

2.1 A Priori Scheme

Figure 1: A Priori Scheme

In the a priori scheme (shown in Fig. 1), the SSC algorithm reads all
side information once and uses these information to improve the clustering
performance. Many works following this scheme have been done in literature
and split into different types of side information like labelled data, instance-
level or cluster-level constraints.
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Several techniques that utilizes the side information in the form of labeled
data are:

• Seeded K-Means uses labeled examples to initialize the cluster centers
[4].

• Constrained K-Means also initializes the cluster centers by labelled
data like Seeded K-Means but keeps the labels of examples in the side
information unchanged in the assignment step of the clustering process
[4].

The algorithms which uses instance-level constraints provided by users to
improve the clustering performance are divided into three groups:

• Constraint-Based Clustering: in this group, the original clustering al-
gorithms are modified to integrate the constraints, e.g. in a constrained
agglomerative clustering algorithm, two clusters are only merged if the
merging of two clusters does not violate constraints [16], or adding
the penalty of violating the constraints into the objective function of
KMEANS [14, 37, 5]. The clustering solutions must satisfy completely
the constraints [51, 44] or some constraints can be violated [14, 37, 5].
Also, two dominant approaches of the algorithms in this group are ex-
tending the objective function of KMEANS for integrating constraints
[14, 37, 5] or adding constraints into prior distributions of probabilistic
clustering frameworks such that the clustering solutions which satisfy
constraints are given higher scores to be selected [44, 33, 6].

• Distance-Based Clustering: in this group, only the distance metric is
changed such that if two points are constrained to be in the same
cluster, their distance should be smaller than the distance of two points
constrained to be in different clusters [52, 28].

• Unified framework for constraint-based and distance-based clustering
is also proposed by Basu et al. [6].

In addition, cluster-level constraint based algorithms discussed in this
paper are divided into two main problems:

• Balanced-Clustering: where the constraint is that the variance of clus-
ter sizes is as small as possible. Two algorithms for this problem are
proposed by Banerjee et al. [1] and Demiriz et al. [18].

• Non-Redundant Clustering: in this problem, the constraint is given
as a clustering result and the goal is to find the new clustering result

4



which is as different as possible from the given clustering result. This
problem has been introduced and solved by Goldek et al. [24, 23].

The details of the algorithms mentioned in this section are presented in Sec-
tion 3.

2.2 Interactive Scheme

Figure 2: Interactive Scheme

In this interactive scheme (illustrated in Fig. 2), the SSC algorithm
presents the clustering result and a query to a supervisor who can be a
user or an oracle system. Then the supervisor studies the result and pro-
vides feedback to the SSC algorithm. The SSC algorithm in turn analyses
the feedback and adapts this information to bias the clustering process. The
interaction between the SSC algorithm and the supervisor is stopped when
some convergence condition is satisfied. The feedback can be collected in
two following ways based on the role of the supervisor and the SSC algo-
rithm. If the supervisor plays the active role, then he/she actively provides
the constraints to the SSC algorithm. In the case that the SSC algorithm is
the active role, the SSC algorithm will pose queries to the supervisor, and
the supervisor is supposed to answer these queries. The second approach
has been shown to outperform the first approach in literature. The reason
is that the first approach requires the supervisor must know which are the
most informative constraints to supply for the SSC algorithm while in the
second approach, this difficult task is on the side of the SSC algorithm, and
it is better if the SSC algorithm is allowed to ask what it is not clear than
passively receives irrelevant feedback from the supervisor. The algorithms in
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the first approach will be referred as the passive SSC algorithms, while the
ones in the second approach will be called the active SSC algorithms.

So far, only few works have been done in this scheme. A interactive
SSC algorithm integrates the constraints by changing the distance metric
[12, 11] and other active SSC algorithms which uses the farthest distance [5],
information gain [29], density [54] and co-association confidence [26] to select
the most informative constraints will be discussed in Section 4.

3 A priori scheme

The algorithms of the a-priori scheme will be divided into two main groups
based on two different types of side information which are labelled data or
constraints.

3.1 Semi-Supervised Clustering Algorithms with La-

bels

Following the notation in [3], the problem of SSC with labeled data provided
by users as side information is defined as follows. Given a dataset X, the
goal is to split this dataset into K disjoint clusters {Xh}

K
h=1 such that some

objective is minimized (often locally). Let S ∈ X be the subset of data
objects and called the seed set. The side information is given as follows: for
each xi ∈ S, the label yi = h of xi denotes the cluster Xh which xi belongs
to. The seed set S is partitioned into L disjoint set {Sh}

L
h=1 where L ≤ K. If

L = K, the seed set is called complete. Otherwise, it is the case of incomplete
seeding.

Basu et al. proposed two versions of KMeans that make use of labeled
data as side information for improving the KMeans performance [4]. In
the first algorithm Seeded-KMeans, the seed set is used to initialize cluster
centers. Each cluster center µh is computed as the mean of data objects with
the label of h in the seed set. If for some cluster Xh, there is no labelled data
objects belonging to it, its center is initialized by random perturbations of
the global center. And then the KMeans algorithm is applied on the whole
dataset as usual. The idea of Seeded-KMeans is that a good seed set can
guide KMeans towards a good region of search space. Algorithm 1 shows the
pseudo code of Seeded-KMeans.

In the Seeded-KMeans, the cluster memberships of data objects in the
seed set can be changed in the assignment step of KMeans. Therefore, in
order to keep these memberships unchanged, the data objects in the seed
set must be skipped in the assignment step. This modification leads to
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Algorithm 1: Seeded-KMeans

Input : Dataset X = {xi}
N
i=1, xi ∈ RD, seed set S = ∪L

h=1Sh

Output: K disjoint clusters {Xh}
K
h=1 of X such that K-Means

objective function is optimized
begin

1. Initialize cluster centers:
t = 0
for h from 1 to K do

if ∃xi ∈ S : yi = h then

µ
(0)
h = 1

|Sh|

∑

x∈Sh

x

else

µ
(0)
h = random perturbations of the global center

end

end

2. K-Means:
repeat

2.1 assign cluster: Assign each data object xi to the nearest
cluster h∗ (the set X

(t+1)
h∗ ) where h∗ = argmin

h∈{1,...,K}

||xi − µ
(t)
h ||2

2.2 estimate means: µ
(t+1)
h = 1

|X
(t+1)
h

|

∑

xi∈X
(t+1)
h

xi

t = t+ 1
until convergence ;

end
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the Constrained-KMeans illustrated in Algorithm 2. When the seed set is
noise-free or the user does not want the change in the labels of the seed set,
Constrained-KMeans is more suitable than Seeded-KMeans. However, if the
seed set is noisy, Seeded-KMeans is supposed to be better because it does not
need to keep the labels unchanged and then the noisy labels can be removed
by KMeans.

3.2 Semi-Supervised Clustering Algorithms with Con-

straints

In many applications, the labeled data is not available whereas the con-
straints between instances or the constraints on clusters are easier to collect.
Constraints can be divided into instance-level and cluster-level constraints.

3.2.1 Instance-Level Constraints

Instance-level constraints, also called pairwise constraints, are the constraints
between data objects. There are two types of instance-level constraints which
are must-link and cannot-link introduced by Wagstaff [51]. A must-link
c=(x, y) or a cannot-link c 6=(x, y) constraint between two objects x and y
means that these two objects must or must not be in the same cluster, re-
spectively. The must-link constraint is an equivalence relation because it is
reflexive, symmetric and transitive [16]. Besides, cannot-link constraints can
be entailed from connected components CCi where each connected compo-
nent CCi is a completely connected subgraph by must-link constraints. Two
important properties of must-link and cannot-link constraints are stated for-
mally as follows [16]:

Observation 1 Must-link constraints are transitive. Let CCi and
CCj be connected components (by must-link constraints), and let x and y
be the instances in CCi and CCj respectively. Then c=(x, y), x ∈ CCi, y ∈
CCj =⇒ c=(a, b), ∀a, b : a ∈ CCi, b ∈ CCj.

Observation 2 Cannot-link Constraints can be entailed. Let CCi

and CCj be connected components (by must-link constraints), and let x and
y be the instances in CCi and CCj respectively. Then c 6=(x, y), x ∈ CCi, y ∈
CCj =⇒ c 6=(a, b), ∀a, b : a ∈ CCi, b ∈ CCj.

Based on must-link and cannot-link constraints, Davidson and Ravi de-
fines two other types of constraints: σ-constraint and ǫ-constraint [14] as
illustrated in Fig. 3 (modified from [16]). σ-constraint (also called minimum
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Algorithm 2: Constrained-KMeans

Input : Dataset X = {xi}
N
i=1, xi ∈ RD, seed set S = ∪L

h=1Sh

Output: K disjoint clusters {Xh}
K
h=1 of X such that K-Means

objective function is optimized
begin

1. Initialize cluster centers:
t = 0
for h from 1 to K do

if ∃xi ∈ S : yi = h then

µ
(0)
h = 1

|Sh|

∑

x∈Sh

x

else

µ
(0)
h = random perturbations of the global center

end

end

2. Modified K-Means:
repeat

2.1 assign cluster:
for each xi ∈ X do

if xi ∈ S then
Assign xi to the cluster h where h = yi.

else
Assign data object xi to the nearest cluster h∗ (the set

X
(t+1)
h∗ ) where h∗ = argmin

h∈{1,...,K}

||xi − µ
(t)
h ||2

end

end

2.2 estimate means: µ
(t+1)
h = 1

|X
(t+1)
h

|

∑

xi∈X
(t+1)
h

xi

t = t+ 1
until convergence ;

end
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(a) δ-constraint (b) ǫ-constraint

Figure 3: δ-constraint and ǫ-constraint

separation constraint) requires that any pair of points which are in two dif-
ferent clusters must have a distance greater than or equal to σ. σ-constraint
is shown to be equivalent to a conjunction of must-link constraints between
all instances with the distances less than σ. As for ǫ-constraint, for each
point x in a cluster, there must exist a neighbour y of x, such that the dis-
tance between x and y is at most ǫ. In [14], ǫ-constraint is proven to be a
disjunction of instance level must-link constraints.

Typically, the instance-level constraints are exploited in the SSC algo-
rithms in two ways. In the first approach, the constraints are used to guide
the search strategy of the original clustering algorithm towards the clustering
solutions in which these constraints are satisfied as many as possible. In the
second approach, the distance function of the original clustering algorithm
is adjusted according to the constraints in such a way that the points in
the must-link pairs have small distances whereas the points in the cannot-
link pairs are far from each other. Based on this classification, the existing
SSC algorithms can be split into two classes which are constrained-based and
distance-based clustering [16].

Constraint-Based Clustering

In this approach, the original clustering algorithm is modified to integrate
the constraints so that the search strategy is biased towards the solutions
which respect these constraints as many as possible. These constraints can
be respected strictly or partially depending on the different clustering algo-
rithms. Fig. 4 shows an example of a constraint-based clustering algorithm
that satisfies all constraints. At the beginning without constraints, the clus-
tering solution will be as in Fig. 4(a). In order to satisfy the constraints as
in Fig. 4(b), the clustering solution will be as in Fig. 4(c). The SSC algo-
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(a) Input instances without
constraints

(b) Input instances and
constraints. Must-link
constraints are denoted as
solid lines, and cannot-link
constraints are denoted as
dashed lines.

(c) A clustering solution that
satisfies all constraints

Figure 4: Example of a constraint-based clustering algorithm

rithms in this section are divided into hierarchical clustering and partitioning
clustering.

The first part of this section will present the agglomerative hierarchical
clustering algorithms. Hierarchical Clustering (HC) is widely used in many
areas of science to describe the hierarchical structure of data. The goal of
HC is to construct a cluster hierarchical or a tree of clusters, also known
as dendrogram, from data objects. HC algorithms are mainly categorized
into: agglomerative (bottom-up) and divisive (top-down) approach. The
agglomerative approach starts with singleton clusters (each singleton cluster
is a data object) and recursively merge the two most similar clusters to
larger clusters until the desired number of clusters is achieved. In contrast,
the divisive approach starts with a cluster consisting all data objects, and
successively splits each cluster into small clusters until a stopping condition
is satisfied. Until now, only the agglomerative clustering is adapted to work
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with side information. The general framework of the agglomerative clustering
algorithms is summarized in Algorithm 3.

Algorithm 3: Agglomerative Clustering

Start with singleton clusters.
repeat

Calculate the similarity between clusters.
Merge the two closest (most similar) clusters into a new cluster.

until the desired number of clusters is achieved ;

As can be seen from Algorithm 3, the agglomerative clustering algorithms
are basically different from each other by their distance functions. There are
two main strategies to compute the distance between two clusters: graph
methods and geometric methods. In graph methods, the distance D(Ci, Cj)
between two clusters Ci, Cj is calculated by considering the minimal (single
linkage), average (average linkage), or maximal (complete linkage) distance
of all object pairs (x, y) where (x ∈ Ci, y ∈ Cj). SLINK [45], Voorhees’ algo-
rithm [48], CLINK [17] are one of the first algorithms in data mining which
implement single linkage, average linkage, and complete linkage, respectively.
In geometric methods, each cluster is represented by its geometric center and
the distance between clusters is calculated based on cluster centers.

The agglomerative clustering has been adapted to work with side infor-
mation, called Constrained Agglomerative clustering, by Davidson et al. [16].
The framework of constrained agglomerative clustering is presented in Al-
gorithm 4. The condition mergeable clusters of the While loop means the
merging of these clusters does not violate the cannot-link constraints. Note
that because of constraints, it is not always possible to achieve a desired
number of clusters. An effort which tries to reduce the average complex-
ity of computing distances between two clusters using a centroid distance
function is proposed by Davidson et al. [16]. The idea is to make use of
the triangle inequality. The triangle inequality of three instances a, b, c is:
|D(a, b) − D(b, c)| ≤ D(a, c) ≤ D(a, b) + D(c, b) where D is a metric func-
tion. Define the γ constraint as a restriction such that two clusters with
the distance greater than γ will not be merged. Then the combination of
the γ constraint with the triangle inequality can reduce the computational
complexity in the following case. Given three cluster centroids a, b, c and
the goal is to determine the two closest clusters to merge. If D(a, b) and
D(a, c) are computed and γ < |D(a, b) − D(a, c)|, then it can be inferred
that γ < |D(a, b)−D(a, c)| ≤ D(b, c). It means that the two clusters b and
c cannot be merged according to the γ constraint because their distance ex-
ceeds γ. In other words, the lower bound of the distance between two cluster
centroids b, c can be computed given the distances of these two cluster cen-
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Algorithm 4: Constrained Agglomerative Clustering

Input : Dataset X = {xi}
N
i=1, must-link constraints C=, cannot-link

constraints C 6=.
Output: Dendrogrami, i = kmin, ..., kmax such that each level in the

dendrogram satisfies all constraints.
begin

Construct the connected components from the must-link
constraints in C=: M1,M2, ...,Mr.
Let X1 = X − (∪r

i=1Mi). Let kmax = r + |X1|.
Construct Dendrogramkmax

including: r clusters
π1 =M1, ..., πr =Mr and |X1| singleton clusters
πr+i, i = 1, ..., |X1|, each for an instance in X1.
Set t = kmax.
while there exists a pair of mergeable clusters do

Select a closest pair πl and πm according to the specific
distance function.
Merge πl into πm, resulting in Dendrorgramt−1.
t = t− 1.

end

kmin = t.
return {Dendrogrami}

end

troids to another cluster centroid a. The function calculating the distance
between any two cluster centroids using the γ constraint and the triangle
inequality is shown in Algorithm 5. In this function, the distances between
the pivot (chosen as the first centroid in this case) and all other centroids
are computed. For any two cluster centroids (different from the pivot), if the
difference between the distances of them to the pivot is greater than γ, then
these two clusters cannot be joined and the computation of their distance is
skipped. Their distance in this case is assigned as γ + 1. However, how to
select the best pivot (instead of the first centroid) is still an open question.
Besides, in the worst case when the difference between the distances of any
two cluster centroids to the pivot is less than γ, there is no performance
improvement obtained from the algorithm.

Another approach which uses the unsupervised proximity-based cluster-
ing and integrates the constraints by changing the distance matrix is proposed
by Klein et al [31]. In this approach, the distance matrix between all data
points is modified such that two points of a must-link constraint have a small
distance whereas two points of a cannot-link constraint have a large distance.
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Algorithm 5: Distance function using the γ constraint and the triangle
inequality.

Input : γ, cluster centroids {ci}
K
i=1

Output: Dci,cj , ∀i, j.
begin

for i = 2 to n− 1 do
Dc1,ci = D(c1, ci)

end

for i = 2 to n− 1 do

for j = i+ 1 to n− 1 do

if |Dc1,ci −Dc1,cj | > γ then
Dci,cj = γ + 1

else
Dci,cj = D(ci, cj)

end

end

end

return Dci,cj , ∀i, j.

end

This modified distance matrix is then can be used in any proximity-based
clustering algorithm. The algorithm changing the distance matrix is pre-
sented in Algorithm 6. The main idea of the algorithm is to first setting the
distances between all must-linked (cannot-linked) points to be zero (a very
large distance), so that they will be assigned to the same cluster (different
clusters) by the clustering algorithm. Then, the algorithm will propagate
constraints, i.e. if two points xi and xj are very close together, then points
that are very close to xi must be also close to xj, or if two points xi and xj are
very far from each other, then points that are very close to xi must be very
far from xj. In detail, the step 2 sets all distances between points in must-
link constraints to zero. Although this step tries to bring all must-link points
close together, it ruins the triangle inequality of a metric. Therefore, the next
step corrects this by assigning the distances between all points as the short-
est paths between them (require the complexity of O(N3)). This step can
be considered as the step of propagating the must-link constraints. Finally,
the last step forces the cannot-link points to have the distance of the longest
distance plus one. This step ensures the cannot-link points have the longest
distance and will be assigned to different clusters by a clustering algorithm
but again, it destroys the triangle inequality of a metric. The authors argue
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that instead of restoring explicitly the triangle inequality, using a suitable
proximity-based clustering algorithm (e.g. complete-linkage) can propagate
the cannot-link constraints or still implicitly restore the triangle inequality
when the clustering algorithm performs a merge. For example, given three
data points xa, xb, xc and the complete-linkage agglomerative clustering al-
gorithm is used. If xa is cannot-linked to xb, and assume there is a violation
of the triangle inequality Da,b = max

i,j
Di,j > Da,c +Dc,b. Then merging clus-

ter {xa} and {xc} (resulting in {xa, xc}) will also imply that {xc} cannot
be merged with {xb} (because the distance between two clusters {xa, xc}
and {xb} is the distance of two furthest points in two clusters). Therefore,
implicitly Dc,b = max

i,j
Di,j = Da,b, and hence Da,b < Da,c +Dc,b.

Algorithm 6: Changing distance matrix

Input : a set of must-link constraints C=, and cannot-link
constraints C 6=, a set of data points X

Output: The modified distance matrix Di,j, ∀xi, xj.
begin

1. Initialize Di,j = Dj,i = D(xi, xj).
2. ∀c=(xi, xj) ∈ C= : Di,j = Dj,i = 0.
3. ∀xi, xj.Di,j = Dj,i = ShortestPath(xi, xj) using D.
4. ∀c 6=(xi, xj) ∈ C 6= : Di,j = Dj,i = max

a,b
(Da,b) + 1.

end

The rest part of this section will present the partitioning clustering tech-
niques. In stead of providing a tree of clusters as the hierarchical clustering,
the partitioning clustering (PC) splits the set of data objects into K dis-
joint clusters where K is usually provided by the user. One of the techniques
which forces the well-known PC algorithm - KMEANS satisfy the constraints
is to modify the assignment step of KMEANS so that only membership as-
signments without violating the constraints are allowed. This technique was
introduced by Wagstaff et al. [51] and the algorithm was named as COP-
KMEANS. The pseudo-code of COP-KMEANS is illustrated in Algorithm
7. COP-KMEANS is the standard KMEANS with the modification of the
assignment step. In the assignment step, each data object di is assigned to
the nearest cluster Cj only if this membership assignment does not violate
the must-link and cannot-link constraints. The main drawback of COP-
KMEANS is that it can fail to find a satisfying solution even if that solution
exists. This comes from the greedy property of KMEANS when searching for
the nearest clusters, and there is no backtracking mechanism. Also, all con-
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straints must be satisfied by the clustering solutions, therefore this requires
the constraints must be noiseless but this condition is rarely hold in practice.

Algorithm 7: COP-KMEANS

Input : data set X = {xi}
N
i=1, number of cluster K, must-link

constraints C= ⊆ X ×X, cannot-link constraints
C 6= ⊆ X ×X

Output: Clusters C1, ..., CK

begin
Initialize cluster centers µ1, ..., µK .
repeat

for xi ∈ X do
assign xi to the nearest cluster Cj such that:

6 ∃x= : (xi, x=) ∈ C=, x= /∈ Cj

and

6 ∃x 6= : (xi, x 6=) ∈ C 6=, x 6= ∈ Cj

if no such cluster Cj exists then
Failed and return {}.

end

end

for each cluster Cj do
update its center µj as the mean of all data objects xi ∈ Cj.

end

until convergence ;
return {C1, ..., CK}.

end

In order to overcome the hard constraint limitation of COP-KMEANS,
the next two KMEANS based algorithms CVQE [14] and LCVQE [37] allow
some constraints unsatisfied (soft constraints) by adding constraint viola-
tion costs into the well-known objective function Vector Quantization Error
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(VQE) of KMEANS. The VQE objective function is defined as:

V QE =
K
∑

j=1

V QEj (1)

V QEj =
∑

xa∈Cj

D(xa, µj)
2 (2)

where D(xj, ci) is the distance between a data point xj and the nearest center
ci. The CVQE algorithm add the violation cost into VQE as follows:

CV QE =
K
∑

j=1

CV QEj (3)

CV QEj =
1

2

∑

xa∈Cj

D(xa, µj)
2

+
1

2

∑

xa∈Cj ,(xa,xb)∈C=,ya 6=yb

D(µya , µyb)
2

+
1

2

∑

xa∈Cj ,(xa,xb)∈C 6=,ya=yb

D(µya , µh(yb))
2 (4)

where yi is the cluster index which the data point xi is assigned to, and h(yi)
returns the index of the nearest cluster center (other than yi) to the cluster
yi center. The first term of CVQE is VQE. The second term is used to
penalize the must-link constraints. When a must-link constraint is violated,
the penalty of the distance between two nearest cluster centers of these two
points is added to the objective function. Similarly, the violation cost of
cannot-link constraints contributes to the objective function CVQE through
the third term. The cost of violating a cannot-link constraint is computed as
the distance between the cluster center that these two points are assigned to
and the cluster center nearest to this cluster center. For each pair of points in
the constraints, the CVQE objective value is calculated for each combination
of cluster assignments, and the cluster assignments which minimally increase
the CVQE objective value is selected. In the KMEANS framework, the
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cluster assignment rules based on the CVQE objective funciton are as follows:

∀xi /∈ C= ∪ C 6= : ya = argmin
j

D(xi, µj)
2 (5)

∀(xa, xb) ∈ C= : (ya, yb) = argmin
i,j

D(xa, µi)
2 +D(xb, µj)

2 + 1[i 6= j]D(µi, µj)
2

(6)

∀(xa, xb) ∈ C 6= : (ya, yb) = argmin
i,j

D(xa, µi)
2 +D(xb, µj)

2 + 1[i = j]D(µi, µh(j))
2

(7)

where 1 is the indicator function with 1[true] = 1,1[false] = 0. And the
cluster center µj is updated as:

µj =

∑

xi∈Cj

[xi +
∑

(xi,xa)∈C=,yi 6=ya

µya +
∑

(xi,xa)∈C 6=,yi=ya

µh(ya)]

|µj|+
∑

(xi,xa)∈C=,yi 6=ya

1 +
∑

(xi,xa)∈C 6=,yi=ya

1
(8)

The idea of the cluster center update rule is that if a must-link constraint
of two points xi, xa is violated then the center of the cluster containing the
point xi in that constraint is moved towards the center of the other point
xa. Similarly, when a cannot-link constraint between two points xi, xa is
violated, the cluster center of these two points is moved towards the nearest
cluster center of the current cluster center. The most expensive step in the
CVQE algorithm is the cluster assignment step as the rules in Equ. 5, 6, 7.
Especially, the assignment rules for the must-link and cannot-link pairs in
Equ. 6, 7 require O(K2) complexity.

The LCVQE [37] modifies the CVQE objective function as in Equ. 10
by changing the penalty of violating a must-link constraint c=(xa, xb) to be
the distance from second point xb (assume the second point is the violated
point) to the center of the cluster where the first point xa is assigned to, and
the penalty of violating a cannot-link constraint c 6=(xa, xb) to be the distance
from the farthest point (with respect to the center of the cluster where xa, xb
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belong to) to another nearest center.

LCV QE =
K
∑

j=1

LCV QEj (9)

LCV QEj =
1

2

∑

xa∈Cj

D(xa, µj)
2

+
1

2

∑

(xa,xb)∈C=,ya 6=yb,ya=j

D(xb, µj)
2

+
1

2

∑

(xa,xb)∈C 6=,ya=yb,D(xa,µya )<D(xb,µyb
),j=h′(xb)

D(xb, µj)
2 (10)

where h′(xb) returns the index of the the nearest center to xb, other than
yb. LCVQE improves CVQE by not computing all possible K2 combination
assignments but only at most three reasonable assignments as shown in the
assignment rules of Equ. 11, 12, 13.

∀xi /∈ C= ∪ C 6= : ya = argmin
j

D(xi, µj)
2 (11)

∀(xa, xb) ∈ C= : (ya, yb) = argmin
[i=g(xa),j=g(xb)]∨[i=j=g(xa)]∨[i=j=g(xb)]

D(xa, µi)
2 +D(xb, µj)

2

+ 1[i 6= j]
1

2
(D(xa, µj)

2 +D(xb, µi)
2) (12)

∀(xa, xb) ∈ C 6= : (ya, yb) = argmin
[i=g(xa),j=g(xb),i 6=j]∨[i=g(xa),j=g(xb),i=j,D(xa,µi)<D(xb,µj)]

D(xa, µi)
2 +D(xb, µj)

2 + 1[i = j]D(xb, µg′(xb))
2 (13)

where g(xa) returns the index of the nearest center to the point xa and g
′(xa)

returns the index of the nearest center to the point xa, other than g(xa). The
assignment rules of LCVQE can be interpreted as follows. A must-link pair
(xa, xb) can be assigned to: a) the different nearest clusters of xa and xb, b)
the nearest cluster of xa, or c) the nearest cluster of xb, based on the penalty
in each case. A cannot-link pair (xa, xb) can be assigned to: a) the different
nearest clusters of xa and xb, or b) the same nearest cluster of both xa and xb,
based on the penalty in each case. Finally, the center update rule of LCVQE
is as follows:

µj =

∑

xi∈Cj

xi +
∑

(xa,xb)∈C=,ya 6=yb,ya=j

xb +
∑

(xa,xb)∈C 6=,ya=yb,g′(xb)=j,D(xa,µya )<D(xb,µyb
)

xb

|µj|+
∑

(xa,xb)∈C=,ya 6=yb,ya=j

1 +
∑

(xa,xb)∈C 6=,ya=yb,g′(xb)=j,D(xa,µya )<D(xb,µyb
)

1

(14)
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Another KMEANS-based algorithm which also allows soft constraints,
called PCKMEANS, is introduced by Basu et al. [5]. PCKMEANS is an
extension of KMEANS to take into account constraints, and the Vector
Quantization Error objective function is replaced by the following objective
function:

Jpckm =
1

2

K
∑

h=1

∑

xi∈Ch

||xi − µh||
2 +

∑

(xi,xj)∈C=

wij1[yi 6= yj] +
∑

(xi,xj)∈C 6=

wij1[yi = yj]

(15)

where wij is the weight of the pair constraint (xi, xj), and other notations
have the same meaning as the above notations. The first term of Jpckm is
the Vector Quantization Error term, the second and third terms are the
penalties of the constraint violation. PCKMEANS is represented in Algo-
rithm 8. The first phase of the algorithm is to initialize the cluster cen-
troids based on the constraints. From the original constraints, other con-
straints can be inferred through the transitivity of must-link constraints,
{(x1, x2), (x2, x3)} ⊆ C= ⇒ (x1, x3) ∈ C= and the entailment of cannot-link
and must-link constraints, (x1, x2) ∈ C=, (x2, x3) ∈ C 6= ⇒ (x1, x3) ∈ C 6=.
The new set of constraints will be used to build the neighbourhoods. Each
neighbourhood Np is the set of all points in which two arbitrary points xi, xj
have a must-link constraint. The second phase of the algorithm is to clus-
ter the data points by the KMEANS algorithm with the objective function
Jpckm. From the experimental results in the paper, the performance of PCK-
MEANS is approximately the same as the performance of Seeded-KMEANS
(Algorithm 1) and Constrained KMEANS (Algorithm 2) [4]. In addition,
PCKMEANS is a KMEANS-based algorithm, therefore it inherits the disad-
vantages of KMEANS like the local minima problem, empty clusters, etc.

In stead of incorporating the constraints into KMEANS like COP-KMEANS,
Shental et al. [44] propose methods for integrating the constraints into
the Gaussian Mixture Models (GMMs) under the Expectation Maximiza-
tion (EM) framework. Due to the higher integration-complexity of cannot-
link constraints, only a generalized EM algorithm using a Markov network
is proposed for handling cannot-link constraints whereas a closed form EM
algorithm is successfully obtained for must-link constraints. For both al-
gorithms, the E-step of the EM algorithm is modified to compute the ex-
pectation of the complete data log-likelihood over only cluster assignments
complying strictly the given constraints, instead of over all possible assign-
ments as in the standard EM algorithm. From the experimental results using
the datasets in the UCI repository, these algorithms are shown to outperform
the constrained KMEANS COP-KMEANS (presented above). Another in-
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Algorithm 8: PCKMEANS

Input : dataset X, set of must-link constraints C=, set of cannot-link
constraints C 6=, number of clusters K, constraint weights
{wij}ij

Output: K clusters {C1, ..., CK} such that the objective function
Jpckm is minimized

begin
1. Initialize clusters:
1a. create the λ neighbourhoods {Np}

λ
p=1 from the constraints.

1b. sort the indices in the decreasing size of Np.
1c. initialize cluster centroids:
if λ ≥ K then

initialize {µ
(0)
h }Kh=1 with centroids of {Np}

λ
p=1

else

initialize {µ
(0)
h }λh=1 with centroids of {Np}

λ
p=1

if ∃ point x cannot-linked to all neighbourhoods {Np}
λ
p=1

then

initialize µ
(0)
λ+1 with x

end

end

Initialize remaining cluster centroids randomly.
2. Cluster:
repeat

2a. Assign cluster: assign each data point xi to the cluster h∗:
h∗ = argmin

h
(1
2
||xi − µ

(t)
h ||2+

∑

(xi,xj)∈C=

wij1[yi 6= yj] +
∑

(xi,xj)∈C 6=

wij1[yi = yj])

2b. Estimate cluster centroids:
µ
(t+1)
h = 1

|C
(t+1)
h

|

∑

xi∈C
(t+1)
h

xi

2c. t = t+ 1
until convergence ;

end
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teresting result observed from the empirical results is that the performance
improvement is mostly contributed by the must-link constraints. However,
like COP-KMEANS, these two algorithms only search for the cluster assign-
ments satisfied all constraints, and therefore these two algorithms are not
suitable in the case where the constraints carry uncertainty or they are con-
flicting to each other. Another disadvantage is that these two algorithms
suppose that the data distribution in each cluster is a Gaussian distribution
which is not always true in practice and hence the performance of these two
algorithms can be poor when this condition is not hold.

In order to overcome the above limitation, Lu et al. [33] introduce an ex-
tended EM algorithm, called Penalized Probabilistic Clustering (PPC), that
integrates pairwise constraints into the GMMs under the EM algorithm to
adjust the prior distributions through a weighting function. In detail, de-
note X = {xi}, i = 1, ..., N the dataset with the latent cluster assignments
Z = {zxi

}, i = 1, ..., N where zxi
∈ [1, ..., K] and K is the number of clusters.

The weighting function g(Z,C,W ) has large values when the assignment Z
is consistent with the given pairwise constraints C and low values when Z
conflicts with the constraints C. Z is parameterized by the weights W of
constraints provided by users. Usually, a must-link/cannot-link constraint
between two data object xi, xj has the weight w(xi, xj) > 0 or w(xi, xj) < 0,
respectively. And the absolute value |w(xi, xj)| presents the importance of
this constraint. For example, a must-link constraint of xi, xj with the weight
w(xi, xj) = ∞ if the resulting clustering assignment is forced to satisfy this
constraint. Then the penalized prior distribution Pp(Z|Θ, C,W ) of the la-
tent cluster assignments Z given the configuration Θ of the GMMs and the
constraints C is defined as proportional to the product of the original prior
distribution P (Z|Θ) and the weighting factor g(Z,C,W ):

Pp(Z|Θ, C,W ) =
P (Z|Θ)g(Z,C,W )

∑

Z

P (Z|Θ)g(Z,C,W )

=
1

Ω
P (Z|Θ)g(Z,C,W ) (16)

And because the incomplete data likelihood P (X|Z,Θ), given a specific clus-
ter assignment Z, is independent of the constraints C and constraint weights
W :

P (X,Z|Θ, C,W ) = P (X|Z,Θ)P (Z|Θ, C,W )
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therefore, the penalized complete data likelihood is written as:

Pp(X,Z|Θ, C,W ) = P (X|Z,Θ)Pp(Z|Θ, C,W )

=
1

Ω
P (X|Z,Θ)P (Z|Θ)g(Z,C,W )

=
1

Ω
P (X,Z|Θ)g(Z,C,W )

where P (X,Z|Θ) is the complete data likelihood in a standard GMM. And
the expectation (E-step) and maximization step (M-step) of the EM algo-
rithm which is used to maximize the expected value of the complete data log
likelihood with respect to Θ at step t are as follows:

E-step: Evaluate Pp(Z|Θ
(t−1), C,W )

M-step: Θ(t) = argmax
Θ

Q(Θ,Θ(t−1))

where

Q(Θ,Θ(t−1)) =
∑

Z

Pp(Z|Θ
(t−1), C,W )logPp(X,Z|Θ, C,W )

As can be seen from Equ. 16, if ∀Z. g(Z,C,W ) = 1, PPC reduces to the
standard EM algorithm. If ∀Z. Z satisfies constraints C then g(Z,C,W ) =
1 and ∀Z. Z does not satisfy constraints C then g(Z,C,W ) = 0, PPC re-
duces to the case of hard constraints (constraints must be satisfied in the
resulting cluster assignments) proposed by Shental et al. [44] (presented
above). In other cases, the PPC framework allows both hard constraints
and soft constraints (constraints can be missed in the resulting cluster assign-
ments) by setting a suitable weight for each constraint in C for the weighting
function g(Z,C,W ). Therefore, the constraints can be specified even when
they are noisy. Despite of the advantage of flexibility, this framework also
suffers many disadvantages. First, like other GMM based algorithms, PPC
assumes that data objects in each cluster can be approximated by a Gaussian
distribution. However, this condition is often unsatisfied in practice and can
lead to poor results. Second, the weighting function g(Z,C,W ) are based on
the weights of constraints provided by users, and tuning these weights to have
good results is a non-trivial task. Also, the PPC framework is not a closed
form EM, therefore the update of the prior probability is approximated by
different techniques described in detail in the paper.

Another probabilistic framework based on Hidden Markov Random Fields
(HMRFs) which combines both the constraint-based and distance-based ap-
proach is proposed by Basu et al. [6, 3]. In this framework, the HMRF model
consists of the following components:
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• An observable set X = {xi}
M
i=1 of the M given data points X.

• An hidden set Y = {yi}
M
i=1 of the cluster labels of data points, and

yi ∈ {h}Kh=1 where K is the number of clusters.

• An hidden set Θ = {Θi}
K
i=1 of the generative model parameters of

clusters.

• An observable set of constraint variables C = {cij}1≤i,j≤M,i 6=j where
cij = 1 or cij = −1 means existing a must-link constraint c=(xi, xj)
or a cannot-link constraint c 6=(xi, xj) between (xi, xj), respectively and
cij = 0 if there is no constraint on the pair (xi, xj).

Figure 5: An example of modelling pairwise constraints by a HMRF

Fig. 5 shows an example of modelling constraints by the HMRF extracted
from [3]. In this example, there are 5 data points {x1, .., x5} and the goal is
to split them into 3 clusters, therefore the cluster labels yi can only be a value
in {1, 2, 3}. Also, there are 2 must-link constraints of (x1, x4), (x1, x2) and 1
cannot-link constraint of (x2, x3) and the corresponding constraint variables
are c14 = 1, c12 = 1, c23 = −1. For other pairs (xi, xj) without constraints, the
constraint variables cij = 0. A cluster assignment satisfied the constraints is
y1 = 1, y2 = 1, y3 = 2, y4 = 1, y5 = 3. Denote the neighbourhood Ni the set of
neighbours of yi and N = {Ni}1≤i≤M . In the case of pairwise constraints, Ni

is the set of cluster labels yj such that there exists a must-link or cannot-link
constraint between xi and xj. Formally, Ni is defined as:

Ni = {yj|c=(xi, xj) or c 6=(xi, xj)} (17)
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And according to the Hammersley-Clifford theorem [27], the prior probability
of a label configuration Y follows the Gibbs distribution [20]:

P (Y |Θ, C) =
1

Z
exp(−ν(Y )) =

1

Z
exp(−

∑

Ni∈N

νNi
(Y )) (18)

where Z is the normalizing term, ν(Y ) is the overall label configuration
potential function that can be decomposed into the functions νNi

(Y ) which
are the potentials for all neighbourhoodsNi in the label configuration Y . And
because the neighbourhoods Ni are defined based on pairwise constraints in
C, the prior distribution of a configuration Y in Equ. 18 can be rewritten
as:

P (Y |Θ, C) =
1

Z
exp(−

∑

i,j

ν(i, j)) (19)

where

ν(i, j) =







f=(xi, xj) if c=(xi, xj)
f 6=(xi, xj) if c 6=(xi, xj)
0 otherwise.

(20)

Here, f=(xi, xj) and f 6=(xi, xj) are the non-negative functions which penalize
the violation of must-link or cannot-link constraints, respectively. Besides,
each data point xi is assumed to be drawn i.i.d from the conditional proba-
bility P (xi|yi,Θ), hence:

P (X|Y,Θ, C) = P (X|Y,Θ) =
M
∏

i=1

p(xi|yi,Θ) (21)

From Equ. 19 and Equ. 21, the joint probability P (X, Y,Θ|C) can be written
as:

P (X, Y,Θ|C) = P (Θ|C) P (Y |Θ, C) P (X|Y,Θ, C)

= P (Θ)
1

Z
exp(−

∑

cij∈C

ν(i, j))
M
∏

i=1

p(xi|yi,Θ) (22)

where the prior distribution P (Θ|C) of the parameters Θ is independent of
C, i.e. P (Θ|C) = P (Θ). If the condition probability p(xi|yi,Θ) is restricted
to the exponential forms, then:

p(xi|yi,Θ) =
1

ZΘ

exp(−D(xi, µyi)) (23)
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where D(xi, µyi) is the distance between the data point xi and the mean µyi

of the points in a cluster with the same label yi. Substituting Equ. 23 into
Equ. 22 and taking negative logarithms gives the following cluster objective
function:

Jhmrf-kmeans =
∑

xi∈X

D(xi, µyi) +
∑

cij∈C

ν(i, j)− logP (Θ) + logZ + logZΘ (24)

Jhmrf-kmeans =
∑

xi∈X

D(xi, µyi) +
∑

c=(xi,xj)

f=(xi, xj) +
∑

c 6=(xi,xj)

f 6=(xi, xj)

− logP (Θ) + logZ + logZΘ (25)

Minimizing this function with respect to Y and Θ is equivalent to maximizing
the joint probability P (X, Y,Θ|C) in Equ. 22. In a simple form, the must-
link penalty function can be f=(xi, xj) = wij1[yi 6= yj] where wij is the weight
of violating a must-link constraint c=(xi, xj), and 1 is the indicator function
(1[true] = 1,1[false] = 0). However, this function only penalizes with the
cost of wij whenever a must-link constraint c=(xi, xj) is violated but without
considering the distance between two points xi and xj. In other words, if
two must-link constraints ci1,j1 = 1 (i.e. c=(xi1, xj1)) and ci2,j2 = 1 (i.e.
c=(xi2, xj2)) have the same violation weight wi1,j1 = wi2,j2, and D(xi1, xj1) >
D(xi2, xj2), the cost of violating the must-link constraint ci1,j1 of distant
points should be higher than of violating the must-link constraint ci2,j2 of
nearby points. Because if two must-linked points are close to each other and
the violation happens, it means that the distance function already works
correctly, the violation problem mostly comes from the clustering algorithm.
In contrast, if two must-linked points are far from each other and the violation
happens, it means that the violation problem mostly causes by the distance
function, and therefore in this case the distance function must be modified to
bring those points closer to each other. From this point of view, the must-link
penalty function is changed as:

f= = wijϕD(xi, xj)1[yi 6= yj] (26)

where ϕD(xi, xj) is the penalty scaling function and is a monotonically in-
creasing function of the distance between xi and xj according to the distance
function D. Similarly, the cost of violating a cannot-link constraint of two
near points should be higher than of two far points according to the current
distance function. The cannot-link penalty function is chosen as:

f 6= = wij(ϕDmax − ϕD(xi, xj))1[yi = yj] (27)
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where ϕDmax is the maximum value of the scaling function ϕD for the dataset.
Substituting Equ. 26, and Equ. 27 into Equ. 25 produces the cluster objec-
tive function parameterized by the distance function D together with Y and
Θ:

Jhmrf-kmeans =
∑

xi∈X

D(xi, µyi) +
∑

c=(xi,xj)

wijϕD(xi, xj)1[yi 6= yj]

+
∑

c 6=(xi,xj)

wij(ϕDmax − ϕD(xi, xj))1[yi = yj]

− logP (Θ) + logZ + logZΘ (28)

If the distance function D is parameterized by parameters ΘD, then the goal
now is to minimize the objective function Jhmrf-kmeans with respect to the
cluster parameters Θ, the cluster assignment Y and the distance function
parameters ΘD. The EM algorithm used to optimize this objective function
is shown in Algorithm 9. The HMRF-KMEANS framework in Algorithm 9 is
shown to converge to a local minimum of Jhmrf-kmeans in [6]. In addition, the
PKM (pairwise constraint KMEANS ), MKM (metric learning KMEANS ),
and MPKM (metric pairwise constraint KMEANS ) algorithm in [9] are just
special cases of this framework. Although this framework is flexible, com-
puting the global optimal solutions for Θ,ΘD, Y in the E and M steps is a
non-trivial task, hence many approximation techniques have been used to
estimate only the local optimal solutions and this can result in a poor local
optimum. Also, the cluster models must be approximately in the exponential
form to guarantee a good result.

Distanced-Based Clustering

In this approach, only the distance function is adjusted based on the
constraints such that the must-link points are placed near each other and
the cannot-link points must be far from each other.

Xing et al. [52] formalize the distance metric learning problem as an
optimization problem. The goal is to minimize the objective function which
is the sum of distances of pairs in the must-link constraints, subject to the
condition that the distances of pairs in the cannot-link constraints are greater
than a constant. The distance function dA(x1, x2) between two points x1, x2
used in the objective function is a Mahanabolis metric parameterized by a
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Algorithm 9: HMRF-KMEANS

Input : Set of data points X = xi
M
i=1, number of clusters K, set of

constraints C, distance measure D (parameterized by ΘD),
constraint violation weights W .

Output: K disjoint clusters (represented by cluster assignment Y )
such that the objective function Jhmrf-kmeans is minimized.

begin
Initialize the cluster parameters Θ.
repeat

E-step:

• fix Θ, and ΘD: minimize Jhmrf-kmeans with respect to Y .

M-step:

1. fix Y , and ΘD: minimize Jhmrf-kmeans with respect to Θ.

2. fix Y , and Θ: minimize Jhmrf-kmeans with respect to ΘD.

until convergence ;

end

matrix A. In mathematical form, the optimization problem is:

min
A

∑

(xi,xj)∈C=

d2A(xi − xj) (29)

s.t.
∑

(xi,xj)∈C 6=

dA(xi − xj) ≥ 1, (30)

A � 0 (31)

where

dA(xi − xj) = (xi − xj)
TA(xi − xj) (32)

Minimizing the objective function in Equation 29 is equivalent to search for
a matrix A such that the distances between the must-link points are as small
as possible but it still guarantees that the distances between the cannot-
link points are larger than a constant. In order to ensure that dA is a valid
metric (satisfying the non-negativity and triangle inequality properties), the
matrix A must be positive semi-definite. Also, the optimization problem
in Equation 29 is convex and differentiable, therefore it is possible to derive
efficient algorithms to find the global optimum. When A is a diagonal matrix,
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an alternative optimization problem is proposed:

min
A

∑

(xi,xj)∈C=

d2A(xi, xj)− log
∑

(xi,xj)∈C 6=

dA(xi, xj) (33)

s.t. A � 0 (34)

The Newton-Raphson method can be applied in this case to find the global
optimum. However, when the matrix A is not diagonal, the Newton-Raphson
method is very expensive (because of the computation complexity O(n6) of
the inverse of the Hessian matrix for n2 parameters), and therefore another
equivalent problem is proposed by the authors:

max
A

g(A) =
∑

(xi,xj)∈C 6=

dA(xi, xj) (35)

s.t. f(A) =
∑

(xi,xj)∈C=

d2A(xi, xj) ≤ 1 (36)

A � 0 (37)

A gradient ascent combined iterative projection algorithm is used to solve
the optimization problem in Equ 35. This algorithm is represented in Algo-
rithm 10. The projection steps of the algorithm are used to ensure that the

Algorithm 10: Gradient ascent combined iterative projection algo-
rithm.
begin

C1 = {A :
∑

(xi,xj)∈C=

d2A(xi, xj) ≤ 1}

C2 = {A : A � 0}
repeat

repeat
projection 1 A = argminA′{||A′ − A||F : A′ ∈ C1}
projection 2 A = argminA′{||A′ − A||F : A′ ∈ C2}

// where ||.||F is the Frobenius norm on matrices,
// ||M ||F = (

∑

i

∑

j M
2
ij)

1/2

until A converges ;
gradient step A = A+ α∇Ag(A)

until convergence ;

end

constraints in Equ. 36 and 37 hold. And the objective function g(A) in Equ.
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35 is optimized by the gradient step. The reason why the authors formalize
the original problem as in Equ. 35, 36, 37 is because the projection steps can
be done inexpensively (the complexity of O(n2) for the projection on C1 and
the complexity for the projection on C2 is the complexity of decomposing
A = XTΛX).

Another distance metric learning algorithm, called DistBoost, which is
an extension of the Adaboost algorithm [41, 42] to handle unlabelled data
points is proposed by Hertz et at. [28]. The distance metric learning prob-
lem is converted into a classification problem where the goal is to learn a
distance function f : X × X → [−1, 1] with X is the original dataset. A
must-link/cannot-link pair will be a data point in the product space with
the label of 1, or −1, respectively. For other pairs which are not in con-
straints, their labels are ∗. The distance function f will be the weighted
sum of all weak hypothesises ht trained at step t of the boosting scheme.
At the beginning, all pairs have the same weight. Then, the weights of the
misclassified pairs will be increased so that in the next iteration t + 1, the
weak hypothesis ht+1 will focus to satisfy these pairs. The pseudo-code of
the algorithm is illustrated in Algorithm 11. The main idea of the algorithm
is to build the weak hypothesis ht in an iteration step t from the Gaussian
Mixture Models (GMM, parameterized by Θ) trained on the original data
points xi ∈ X with weights wi, the hidden labels yi ∈ Y and equivalence con-
straints in C= and , C 6=. While the GMM is trained from the original dataset
(using the constrained GMM-EM algorithm in [44]), the weak hypothesis
ht of the boosting scheme has the domain of the product space X × X.
Then the hypothesis weight αt is computed to update the pair weights wij.
And the individual point weight wi is calculated by marginalizing over all
related pair weights wij. The weights wi of single points are incorporated
into the constrained GMM-EM algorithm by modifying the original dataset
such that a data point xi with the weight of wi will have wiN copies on
the new dataset. xi and all of its copies will form must-link constraints and
therefore will be assigned to the same cluster by the constrained GMM-EM
algorithm. From the experimental results, the DistBoost algorithm outper-
forms the Mahalanobis distance learning algorithm [52] (presented above),
the constrained GMM-EM algorithm [44] (presented in the family of the EM
based algorithms), and COP-KMEANS [51] presented in Algorithm 7.

The BoostCluster algorithm in [32] proposed by Liu et al. improves
the performance of an arbitrary clustering algorithm by using pairwise con-
straints as side information and the previous result of that clustering algo-
rithm to generate a new data representation of the clustering data at each
iteration. The main idea of BoostCluster is to project all data objects into a
subspace in which the must-link pairs are close to each other and the cannot-
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Algorithm 11: The DistBoost algorithm.

Input : data points X = {xi}
N
i=1, must-link constraints

C={pairt(xi, xj)}
ML
t=1 , cannot-link constraints

C 6={pairt(xi, xj)}
CL
t=1

Output: The final hypothesis f(xi, xj) =
∑T

t=1 αtht(xi, xj)
begin

Set labels yij of constraints as: yij =







1 if (xi, xj) ∈ C=.
−1 if (xi, xj) ∈ C 6=.
0 otherwise.

Initialize wij =
1
N2 for all xi, xj ∈ X.

for t = 1, .., T do
Update individual point weight wi =

∑

j wij.
Learn GMM parameterized by Θ on data points xi ∈ X with
weights wi, hidden labels yi ∈ Y under the constraints.
Partition X from the Maximum A Posterior assignment Y ∗ of
points, and set:
sign(xi, xj) =
{

1 if xi, xj are assigned to the same cluster.
−1 otherwise.

Build weak hypothesis:
ht(xi, xj) = sign(xi, xj)max

t1
p(yi = t1|Θ)max

t2
p(yj = t2|Θ).

Compute hypothesis weight: αt =
1
2
ln1+rt

1−rt
where

rt =
∑

1≤i,j≤N

wijht(xi, xj).

Update pair weight:

wij =

{

wijexp(−αtyijht(xi, xj)) if (xi, xj) ∈ C=, or ∈ C 6=.
wijexp(−αt) otherwise.

Normalize: wij = wij/Z where Z =
∑

i,j

wij.

end

return f(xi, xj) =
∑T

t=1 αtht(xi, xj).
end
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Figure 6: Iterative data projections of BoostClusters

link pairs are far from each other. The projected data is then used as the
input to the clustering algorithm. Fig. 6 extracted from [32] illustrates this
idea. The must-link and cannot-link constraints are the green solid lines and
the purple dotted lines, respectively. In this dataset, there are three clusters
∆, x, o. At the beginning, these three clusters are heavily overlapped. But
after each iteration, the clusters in the projected data are separated better
and better. In detail, given a dataset X = {xi}

N
i=1, a must-link constraint

set C=, a cannot-link constraint set C 6=, and denote K ∈ RN×N the kernel
similarity matrix where Kij ≥ 0 is the confidence that two points xi and xj,
the problem is to minimize the following objective function:

L(K) =
(

∑

(xi,xj)∈C=

exp(−Ki,j)
)(

∑

(xa,xb)∈C 6=

exp(Ka,b)
)

(38)

The first term of the objective function is the disagreement between the kernel
similarity matrix and the must-link constraints. Similarly, the second term
is the inconsistency between the kernel similarity matrix and the cannot-link
constraints. This objective function is minimized iteratively in a boosting
style by updating the kernel similarity matrix K(t) at step t as follows:

K(t) = K(t−1) + α(t)∆(t) (39)

where α(t) ≥ 0 is the weight combination, and ∆(t) ∈ RN×N is the incre-
mental kernel similarity matrix inferred from the clustering result C(t) of the
algorithm A on the transformed input data X(t) at step t. ∆

(t)
i,j = 1 if xi

and xj are assigned in the same cluster by C(t), otherwise ∆
(t)
i,j = 0. ∆(t)
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can be considered as a function of the clustering result C(t) or a function
of the input data X(t) at step t, given the algorithm A, i.e. ∆(t) can be
written as ∆(t) = g(C(t) = g(A(X(t))). Also, assume that the input data
X(t) at step t is the transformation of the input data X(t−1) in the previous
step by a transformation matrix P (t), i.e. X(t) = (P (t))TX(t−1). Then, the
optimization problem must be solved at each iteration t is:

min
α(t)

L(K(t−1) + α(t)∆(t)) (40)

min
α(t)

L(K(t−1) + α(t)g(A(X(t))) (41)

min
α(t),P (t)

L(K(t−1) + α(t)g(A((P (t))TX(t))) (42)

This optimization problem is solved by first computing the optimum project
matrix P (t) and then searching for the optimum value of α(t) (please re-
fer the paper for details). The BoostCluster algorithm is summarized as
in Algorithm 12. The BoostCluster algorithm is proven to converge with

Algorithm 12: BoostCluster

Input : Input data X, a must-link constraint set C=, a cannot-link
constraint set C 6=, a clustering algorithm A

Output: clustering result C(T ), transformation matrix P (T )

begin

1. Initialize K
(0)
ij = 0 for all i, j.

2. Optimize the objective function:
for t = 1 to T do

Fix α(t), optimize Equ. 42 with respect to P (t).
Fix P (t) with the optimum value found in the previous step,
optimize Equ. 42 with respect to α(t).
Transform input data: X(t) = (P (t))TX(t−1).
Run the algorithm A on X(t) to obtain a clustering C(t) and
then compute ∆(t).
Compute K(t+1) as: K(t+1) = K(t) + α(t)∆(t).

end

return clustering result C(T ), transformation matrix P (T )

end

the exponential speed. Also, the experiments shows that the combination
of BoostCluster with other popular algorithms like KMEANS, Partitional
SingleLink [30], or K-Way Spectral Clustering [36] outperforms the HMRF-
KMEANS algorithm proposed by Basu et al. [6] (presented in Section 3) in
most cases.
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3.2.2 Cluster-Level Constraints

In this section, the cluster-level constraints will be discussed. Some examples
of cluster-level constraints are: the size of all clusters must be greater than an
integer valuem, the clustering result must be different from a given clustering
result, etc. For many real-life applications, the balance property (all clusters
have approximately the same size) of a clustering result is important, e.g.
in a marketing campaign, the partitioning of customers in roughly equal
size groups make the allocating of sales teams, money to each group more
easily [46, 53], or in category management where one of key operations is to
group the products into categories with specified sizes [39]. And a scalable
framework for balanced clustering has been proposed by Banerjee et al. in [1].
In this framework, the objective is to minimize the vector quantization error
in Equ. 2 of KMEANS under the constraint that the size of each cluster must
be greater or equal to an integer value m. The framework is consists of three
steps as in Algorithm 13. From the experimental results, the performance
of the balanced clustering algorithms are slightly worse than unconstrained
clustering algorithms in the case of the unbalanced data and better in the
case of the balanced data. In both cases, the balanced clustering algorithms
guarantee the size constraint is satisfied and result in the small size variances
whereas the unconstrained clustering algorithms produce clusters with large
size variances.

Algorithm 13: A scalable framework for balanced clustering

Input : Dataset X, number of clusters K, minimal cluster-size m
Output: K disjoint clusters with the minimal cluster size greater or

equal to m
begin

Sampling from the given data to get a small representative subset
of the data.
Clustering of the sampled data by any clustering algorithm.
Populating and refining the clusters.

• Populating: assign the remaining points to the clusters (by searching
for the nearest centroids in most cases) such that the size constraint is
satisfied.

• Refining: improve the objective function by re-assign points to other
clusters.

end
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Another approach which formalizes the balanced clustering problem as
a constrained optimization problem is proposed by Demiriz et al. [18]. Let
X = {xi}

N
i=1 be the data set of N points in RD, K be the desired number of

clusters, {µi}
K
i=1 be the set of cluster centers in R

D, and Ti,h be the selection
variables where Ti,h = 1 means the data point xi is assigned to cluster h, and
zero otherwise. The standard clustering problem is formalized as:

min
µ,T

N
∑

i=1

K
∑

h=1

Ti,h||xi − µh||
2 (43)

s.t.

K
∑

h=1

Ti,h = 1, i = 1, ..., N

Ti,h ≥ 0, i = 1, ..., N, h = 1, ..., K

If the balanced constraint requires that each cluster h must contain at least

τh data points, where
K
∑

h=1

τh ≤ N , then the balanced clustering problem is

formalized as follows:

min
µ,T

N
∑

i=1

K
∑

h=1

Ti,h||xi − µh||
2 (44)

s.t.
N
∑

i=1

Ti,h ≤ τh, h = 1, ..., K

K
∑

h=1

Ti,h = 1, i = 1, ..., N,

Ti,h ≥ 0.i = 1, ..., N, h = 1, ..., K.

This constrained optimization problem is shown in [18] to have an equiva-
lent minimum cost flow (MCF) linear network optimization problem [8] with
integer optimal solutions when fixing {µi}

K
i=1. The balanced KMEANS algo-

rithm for this problem is presented in Algorithm 14. From the experimental
results, the balanced KMEANS performance is significantly worse than the
standard KMEANS performance. This comes from the fact that the input
datasets are selected such that the standard KMEANS result in many empty
clusters and therefore, the size constraints force the balanced KMEANS to
assign data points to the empty or the near empty of clusters. However, the
cluster size variance of the standard KMEANS is much larger than the one
of the balanced KMEANS. Other extensions of the formulation in Equ. 44
for other kinds of constraints are also presented in [18].
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Algorithm 14: The balanced KMEANS clustering algorithm

Input : Dataset X = {xi}
N
i=1, initial cluster centers {µ

(0)
i }Ki=1

Output: final cluster centers {µ
(t)
i }Ki=1, selection variable

Ti,h, i = 1, ..., N, h = 1, ..., K which is a local optimum of the
optimization problem in Equ. 44.

begin
t = −1
repeat

t = t+ 1
Cluster Assignment. Fix µ

(t)
h , and let T

(t)
i,h be the solution of

the following optimization problem:

min
T

N
∑

i=1

K
∑

h=1

Ti,h||xi − µ
(t)
h ||2

s.t.

N
∑

i=1

Ti,h ≤ τh, h = 1, ..., K

K
∑

h=1

Ti,h = 1, i = 1, ..., N

Ti,h ≥ 0, i = 1, ..., N, h = 1, ..., K

Cluster Update. Update µ
(t+1)
h as follows:

µ
(t+1)
h =















N∑

i=1
T

(t)
i,h

xi

N∑

i=1
T

(t)
i,h

if
N
∑

i=1

T
(t)
i,h > 0

µ
(t)
h otherwise

until µ
(t)
h = µ

(t+1)
h , h = 1, ...K ;

end
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In all SSC algorithms discussed so far, the side information is used to
guide the clustering algorithm towards the desired clustering result. In con-
trast, another SSC algorithm proposed by Gondek et al. [24], requires the
side information is an undesired clustering and the goal is to find a clustering
which is as much different as possible from this undesired clustering. The
difference between two clusters Ci and Cj is measured by the variation of
information V I(Ci, Cj) [35] and defined as follows:

V I(Ci, Cj) = H(Ci) +H(Cj)− 2I(Ci, Cj) (45)

where H is the entropy function

I is the mutual-information function

The variation of information V I(Ci, Cj) between two clusters Ci and Cj

is maximal if only if: I(Ci, Cj;X) = I(Ci;X) + I(Cj;X), i.e. Ci and Cj

are independent from each other. In this case, Ci and Cj are said to be
information-orthogonal. The problem of finding a high-quality clustering
which is different from a given clustering is also known as the non-redundant
clustering [21, 40]. Formally, the non-redundant clustering problem given
dataset X and an objective function L (usually the VQE objective function
in Equ. 2) is defined as:

max
C

L(X,Z) (46)

s.t. C is a valid clustering,

C and Z are information-orthogonal.

In practice, the last condition is too strict and often relaxed as the variation of
information of two clusters is greater than some threshold α. The application
of this problem is to detect the novel clusterings or to avoid already-known
clusterings (which can be trivial). The algorithm proposed by Gondek et al.
[24], called CondEns for Conditional Ensemble clustering, consists of three
steps. The first step is to partition the dataset into clusters Zi based on
the given clustering Z. Then, each cluster Zi will be partitioned again into
local clusters by a base clustering algorithm. The local clustering solution
for each cluster Zi is denoted as Ĉi. In the second step, each local clustering
Ĉi is extended to a global clustering Ci by assigning instances in clusters
Zj, j 6= i to the local clusters of Ĉj. Finally, the last step of the algorithm
combines all global clustering solutions Ci into the target clustering C. The
pseudo-code of the algorithm is illustrated in Algorithm 15. The idea of the
algorithm is that by starting from the local clusters of each cluster under the
undesired clustering, the target clustering will be much different from the
undesired clustering. The reason is that if under the undesired clustering,
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Algorithm 15: CondEns Algorithm

Input : Dataset X = {xi}
N
i=1, an undesired clustering

Z : X → {1, .., L}, number of clusters K in target clustering,
number of clusters Ki for each local clustering

Output: Clustering C : X → {1, ..., K}
begin

Clustering

Let Zi be the i-th cluster of X under the undesired
clustering Z: Zi = {xj : xj ∈ X,Z(xj) = i}.

Apply a base clustering algorithm to each Zi to find a local
clustering Ĉi:

Ĉi : Z
i → {1, ..., Ki}, i = 1, ..., L.

Extension

Extend each local clustering Ĉi to a global clustering Ci by
assigning instances in Zj, j 6= i to one of the local clusters of Ĉi:

Ci : X → {1, ..., K}, i = 1, ..., L.
Combination

Combine clustering solutions Ci to form the target
clustering:

C = Combine(C1, ..., CL) where C : X → {1, ..., K}.
end

38



all instances in a cluster Zi are in the same cluster, then under the target
clustering C, the instances of cluster Zi are split into different clusters. In
addition, the authors prove that ”if the target clustering is dominant and
information-orthogonal to the given clustering, then the target clustering will
be among the clustering solutions handed to the combination stage”. The
statement requires too strict assumption which is often not hold in practice.
Also, from this statement, it can be seen that the target solution should be
selected from the set of potential clusterings formed at the Extension step,
instead of combining them as in the Combination step. However, through
the experiments, the authors claim that the combination of the potential
clusterings provides a more useful clustering. Besides, a disadvantage of the
algorithm is that the potential clusterings can be the local optima obtained
by the base clustering algorithm and they can be inconsistent. Therefore,
this can lead to the poor performance when combining them to form the
target clustering.

Another algorithm which also takes into account the negative side in-
formation is called Coordinated Conditional Information Bottleneck (CCIB)
[23]. CCIB is an extension of the Information Bottleneck (IB) method [47],
an unsupervised method for extracting relevant structure from data and a
special case of the Rate Distortion theory [43, 13, 25]. The main idea of IB
is to model the structure extraction problem as a data compression problem.
Given two variables X and Y , the goal of IB is to find a compact representa-
tion C parameterized by probabilities {p(c|x)} of X such that the compact
representation C preserves the information of the relevance variable Y as
much as possible, or the mutual information I(C;Y ) between C and Y is
maximized under the constraint that the information rate I(C;X) between
C and X is less than a threshold R. The formal representation of the IB
problem is as follows:

max
p(c|x)

I(C;Y ) (47)

s.t. I(C;X) ≤ R, (48)

∀x.
∑

c

p(c|x) = 1, and ∀x, c. p(c|x) ≤ 0 (49)

In the clustering problem, X is the random variable of documents, Y is
the random variable of features and C is the random variable of clusters.
Note that p(y|x), p(x) are given or can be estimated from the dataset. And
p(y|c) = 1

p(c)

∑

x

p(x)p(c|x)p(y|x), therefore I(C;Y ) only depends on p(c|x).

Gondek et al. [22] extended the IB method for the non-redundant clustering
problem by adding the conditional variable Z where Z contains the negative
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or irrelevant side information. The idea of the conditional IB algorithm (CIB)
proposed by Gondek et al. [22] is to maximize I(C;Y |Z), the information
that C conveys about Y when given the side information Z. Intuitively, if two
clustering C1 and C2 convey the same information about Y , i.e. I(C1;Y ) =
I(C2;Y ) and the clustering C1 shares more information with Z than C2, i.e.
I(C1;Z) ≥ I(C2;Z) then I(C1;Y |Z) ≤ I(C2;Y |Z) because knowing Z gives
more information to C2 then C1 to predict Y , i.e. CIB prefers the clustering
which is more different from Z. That is the reason why Z is considered as
negative side information. Finally, CIB is formulated as follows:

max
p(c|x)

I(C;Y |Z) (50)

s.t. I(C;X) ≤ R, (51)

∀x.
∑

c

p(c|x) = 1, and ∀x, c. p(c|x) ≤ 0 (52)

However, like the local minima problem of the CondEns algorithm (Algo-
rithm 15), Gondek et al. [23] stated that given Z, there exists a set of opti-
mal clustering solutions for Equ. 50 with different quality, i.e. the preserved
information I(C;Y ) of some clustering solutions can be very small. Gondek
et al. corrected this problem by introducing the constraint I(C;Y ) ≥ Imin

[23] to ensure the performance of the clustering solutions. And the new algo-
rithm is named as Coordinated Conditional Information Bottlenack (CCIB),
and formulated as follows:

max
p(c|x)

I(C;Y |Z) (53)

s.t. I(C;X) ≤ R, (54)

I(C;Y ) ≥ Imin, (55)

∀x.
∑

c

p(c|x) = 1, and ∀x, c. p(c|x) ≤ 0 (56)

The experimental results in [24] show that the performance of CondEns is
competitive to the performance of CCIB. However, the running time of Con-
dEns is significantly smaller than CCIB. This is not surprising because the
CondEns first splits the entire dataset into pre-image sets and then per-
forms clustering on these pre-image sets independently whereas the CCIB
algorithm searching for the best clustering solution over the whole dataset.
Also, the extension and combination steps of CondEns are relatively cheap,
therefore the CondEns complexity is supposed to be less than the CCIB
complexity.
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4 Interactive Scheme

The first passive SSC algorithm with user feedback is proposed by Cohn
et al. in [12, 11]. In this approach, the user iteratively provides feedback
to a clustering algorithm. The feedback is collected in the form of cannot-
link/must-link constraints which the clustering algorithm tries to satisfy in
the next iterations by adjusting the distance metric. In detail, the naive
Bayes model is used to model the document generation and the parameters
of the model are estimated by the EM algorithm. Each document xi of the
dataset X = {xi}

N
i=1 is assumed to be a bag of words wt and generated

from one of the conditional cluster distributions p(x|c1), p(x|c2), ..., p(x|cK)
of K clusters c1, c2, ..., cK . Let V be the vocabulary set and N(wt, xi) be the
number of times the word wt occurs in the document xi. With the assumption
that all the words are independent from each other given the cluster label,
the probability p(xi) of a document xi is calculated as:

p(xi) =
K
∑

j

p(cj)p(xi|cj) =
K
∑

j

p(cj)
∏

wt∈V

p(wt|cj)
N(xi,wt) (57)

The parameters of the model are θ = {p(cj)}
K
j ∪{p(wt|cj)}wt∈V,j=1,...,K which

will be estimated by the EM algorithm. Given the model parameter θ and the
probability p(xi) of the document xi, the probabilistic cluster membership of
xi is estimated by the Bayes’ rule:

p(cj|xi) =
p(xi|cj)p(cj)

p(xi)
(58)

The EM algorithm for estimating the model parameter θ is given in Algorithm
16. Not that the word probabilities p(wt|cj) in the M-step are smoothed with
a Laplace prior (a word wt is assumed to appear in each class cj at least one)
to avoid zero probabilities. Until now, the constraints have not been inte-
grated yet. And the way the authors propose to incorporate the constraints
is by adjusting the distance metric. The distance metric is adjusted such that
the distance of cannot-link pairs is large enough to classify them into differ-
ent clusters and vice versa for the must-link pairs. The distance between
two documents x1, x2 is measured as the probability that these two docu-
ments are generated from the same multinomial and this proportional to the
Kullback-Leibler divergence to the mean of their multinomial distributions
[38]:

DM(x1||x2) = |x1|DKL(θx1 , θx1,x2) + |x2|DKL(θx2 , θx1,x2) (64)
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Algorithm 16: The EM algorithm to estimate the naive Bayes model
parameter.

Input : Dataset X, number of clusters K.
Output: The parameter model θ which maximize the log-likelihood of

the input dataset.
begin

E-step: Fix θ. For all xi ∈ X, cj ∈ C, compute:

p(xi|cj) =
∏

wt∈V

p(wt|cj)
N(xi,wt) (59)

p(xi) =
K
∑

j

p(cj)p(xi|cj) (60)

p(cj|xi) =
p(xi|cj)p(cj)

p(xi)
(61)

M-step: Fix p(cj|xi). Compute θ:

p(cj) =

|X|
∑

i=1

p(cj|xi)

|X|
(62)

p(wt|cj) =

1 +
|X|
∑

i=1

N(wt, xi)

|V |+
|V |
∑

s=1

|X|
∑

i=1

N(ws, xi)p(cj|xi)

(63)

end
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where |xi| is the length of document xi, DKL(θ1, θ2) is the standard Kullback-
Leibler diveregence of θ1, θ2, θx1 = p(wt|x1), θx2 = p(wt|x2) are the word
probabilities given x1, x2, respectively, and θx1,x2 is the following distribution:

p(wt|θx1,x2) = (p(wt|x1) + p(wt|x2))/2 (65)

In order to integrate the constraint, the standard KL divergence is parame-
terized with word weights γt as follows:

D′
KL(θx1 , θx2) =

∑

wt∈V

γjp(wt|x1)log
p(wt|x1)

p(wt|x2)
(66)

where γt is the importance of word wt to distinguish x1 and x2. Replacing
DKL by D′

KL into Equ. 64 results that the parameterized distance metric
D′

M is a function of word weights wt. Therefore, if (x1, x2) is a cannot-link
then the distance D′

M(x1, x2) between them can be increased by increasing
parameters γt following the direction of the gradient which is computed as:

δD′
M(x1, x2)

δγt
= |x1|p(wt|x1)log

p(wt|θx1,x2)

p(wt|x1)
+ |x2|p(wt|x2)log

p(wt|θx1,x2)

p(wt|x2)
(67)

These word weights are then injected into the E-step of Algorithm 16 by
replacing the document probabilities p(xi|cj) in Equ. 59 by:

p′(xi|cj) =
∏

wt∈V

p(wt|cj)
γtN(xi,wt) (68)

Other kinds of constraints like must-link constraints are integrated in the
similar way. The experimental results show that the performance of the
SSC EM algorithm is improved significantly compared to the performance
of the unsupervised clustering algorithm with only few constraints, although
in principle the EM algorithm can get stuck in some local minima. Besides,
the main drawback of the SSC EM algorithm is that the algorithm passively
receives the constraints from users (simulated by picking a random constraint
each time from a set of possible constraints) and in order to achieve a good
performance, it requires the user knows what are the most informative con-
straints to provide to the algorithm and this is not feasible in practice because
the user cannot browse thousands (or millions) of constraints to select the
best ones.

Instead of passively receiving the feedback from users, the active scheme
Explore-Consolidate in [5] tries to ask the user through queries to obtain the
most informative constraints within the limited number of queries. These
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informative constraints are used not only in the body of a SSC algorithm
to improve the clustering performance but also used to get good estimates
of the cluster centroids in the initialization phase of KMEANS based algo-
rithms. Each query is given as a pair of two data objects and then the user
replies whether these two data objects must or cannot belong to the same
cluster. The active learning scheme is divided into two phases: Explore and
Consolidate. The Explore phase tries to get K pairwise disjoint non-null
neighbourhoods as fast as possible where K is the number of clusters. A
neighbourhood is defined as a set of data objects belonging to the same clus-
ter. The first data object of the first neighbourhood is picked randomly from
the dataset. From that on, a data object x in the remaining data objects
which is farthest from the existing neighbourhoods is chosen. Then, queries
are given by pairs of x with a random data object in each neighbourhood.
If x must link (replied by the user) to one of neighbourhoods, assign x to
that neighbourhood. Otherwise, create a new neighbourhood with the first
member of x. This process is repeated until the number of queries is used up
or the number of neighbourhoods equals to K. After the Explore phase, if
the query is still allowed, the Consolidate phase is used to identify the neigh-
bourhood (cluster) for the remaining data objects. In this phase, a random
object x is picked and then the distances between x and the neighbourhood
centers are calculated and sorted in ascending order. Queries are posed as
a pair of x and a data object in each neighbourhood in the sorted order of
distances between neighbourhoods and x. When a must-link answer is ob-
tained, the algorithm continues with another data object until the number of
queries reaches the limit. The maximum number of queries needed to iden-
tify the neighbourhood for each object is K − 1. The experimental results
in the paper shows that integrating the active learning scheme into the con-
strained clustering algorithms has improved significantly the performance of
the constrained clustering algorithms.

A drawback of the Explore-Consolidate scheme is that the Consolidate
phase only selects random points different from the points selected in the
Explore phase (denoted as the skeletal points) to form queries. Mallapra-
gada et al. [34] suggested that selecting the most uncertain points in the
Consolidate phase to form the queries could improve the performance. De-
noting the set of skeletal points as Xs, the certainty ζ(xi, Xs) of a point xi
and the skeleton set Xs ⊆ X is defined as the maximum similarity sim(xi, xj)
between xi and all other points xj ∈ Xs:

ζ(xi, Xs) = max
xj∈Xs

sim(xi, xj) (69)

Therefore, in each iteration of the Consolidate phase, the point x∗ with the
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minimum certainty to the skeleton set is selected:

x∗ = argmin
xi∈X\Xs

ζ(xi, Xs) (70)

A query will be formed by the pair (x∗, xj) where xj ∈ Xs is the nearest
point to x∗. x∗ is then added to Xs for the next iteration. This process is
repeated while the query is allowed. The new scheme Explore-MinMax is
shown to outperform the Explore-Consolidate scheme through experiments
on real datasets. Although the Explore-MinMax scheme has already searched
for the representatives of clusters, they are not guaranteed to be the centroids.
Therefore, the new constraint ”xi in a dense region” is added to Equ. 70 to
force the selection process favours the centroids because often the centroids
are in dense regions [49]:

x∗ = argmin
xi∈X\Xs,xi in a dense region

ζ(xi, Xs) (71)

where a point is in a dense region if it is surrounded by an average number of
points which is greater than some threshold. The authors have also modified
Explore-MinMax for the seed selection problem (the queries are the questions
about the labels of queried points, not pair constraints), hence there are no
comparison between this scheme and Explore-MinMax. However, compared
to the random selection process, this scheme is shown to select a larger num-
ber of different labels and reduce the number of iterations for KMEANS to
converge when KMEANS uses the side information in the form of labelled
data extracted by this scheme to initialize the centroids.

Another drawback of the Explore-Consolidate scheme is the queries do
not take into account the intermediate clustering results (which can be very
useful in determining the informative constraints) because this scheme only
acquires the informative constraints which are used later by a SSC algorithm.
Also, the worst case of this scheme is the situation when in the Explore phase,
most constraints obtained are must-link constraints, while in the Consolidate
phase, most constraints are cannot-link constraints and this easily happens
when the number of clusters is high. An algorithm, named IG-KMEANS,
solving these problems by considering the intermediate clustering results to
select the most informative pairs is then proposed by Huang et al. [29]. IG-
KMEANS is an extension of KMEANS for constraints and optimizes the
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following objective function:

OIG = ρ

K
∑

k=1

∑

xi∈Ck

ψ(xi, µk)+ (72)

(1− ρ)(
∑

(xi,xj)∈C=

ψ(xi, xj)1(yi 6= yj)+

∑

(xi,xj)∈C 6=

(1− ψ(xi, xj))1(yi = yj))

ψ(xi, xj) = 1−
xixj

||xi||||xj||
(73)

where ρ is the parameter controlling the trade-off between the clustering
quality expressed in the first term and the penalty of constraint violation
expressed in the second term, and ψ(xi, xj) is the distance function between
two points xi, xj. As for the active learning, given the maximum number of
queries Q, and the number of L iterations (predetermined by users), in each
iteration, the algorithm selects the best P = Q/L document pairs to form
queries based on a gain function measuring how much information obtained
when revealing the judgements of the selected document pairs. The con-
straints formed from these queries will be used in the objective function OIG

of the extended KMEANS algorithm. Formally, the problem is represented
as an optimization problem:

Ω∗ = argmax
Ω

Λ(Ω,Θ,Φ) (74)

s.t. |Ω| = P (75)

where Ω is a set of document pairs, |Ω| is the size of Ω, Θ is the current
clustering assignments, Φ is the current set of constraints, and Λ is the gain
function measuring how much information obtained when knowing the judge-
ments of the document-pair set Ω. Given a document pair wi(x

1
i , x

2
i ) of two

documents x1i , x
2
i , the judgement of the user will be a value in J = {jm, jc}

where jm means two documents have a must-link constraint and jc means two
documents have a cannot-link constraint. The gain function can be written
as:

Λ(Ω,Θ,Φ) =
∑

~J∈JP

g(Ω,Θ,Φ, ~J)p( ~J |Ω,Θ,Φ) (76)

where ~J = {j1, ..., jP} is a possible judgement set of the document-pair set
Ω, ji is a possible judgement of the i-th document pair wi(x

1
i , x

2
i ) ∈ Ω, P is
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the number of document pairs that can be selected from the current clus-
tering assignment, g(Ω,Θ,Φ, ~J) is a judgement gain function showing how

much information obtained from the judgement ~J of the document pairs, and
p( ~J |Ω,Θ,Φ) is the probability that the judgement ~J is assigned to Ω. Un-
fortunately, searching for the optimal document-pair set Ω∗ is too expensive,
therefore the authors propose a another less accurate strategy for selecting
pairs with lower complexity as follows. S documents are randomly selected,
and ranked based on a document-gain function G(xi) returning the average
information of a document xi. Then the document x1i with the highest value
of the document gain G(x1i ) is paired with another document x2i in the same
cluster with x1i to form a pair wi(x

1
i , x

2
i ) to ask for the judgement. The pro-

cess is repeated until P pairs are selected. If all pairs are assumed to be
selected independently, the document gain information G(xi) is defined as:

G(xi) = GIG(xi) =
∑

ji∈{jm,jc}

gIG(wi(xi, µi), ji)p(ji|wi(xi, µi)) (77)

∑

ji∈J

−log(p(ji|wi(xi, µi)))p(ji|wi(xi, µi)) (78)

p(jm|wi(xi, µi)) =
s(xi, µi)

s(xi, µi) + s(xi, µ′
i)

(79)

p(jc|wi(xi, µi)) = 1− p(jm|wi(xi, µi)) (80)

s(xi, xj) =
~xi ~xj

||~xi||||~xj||
(81)

where µi is the centroid of the cluster xi belongs to, ~xi is the vector repre-
sentation of xi, ||xi|| is the L2 norm of xi, wi(xi, µi) is a pair form by xi and
µi, and µ′

i is the next nearest centroid to xi. The independent document-
gain GIG can be interpreted as the entropy of the judgement conditioned on
the pair wi(xi, µi), therefore the pair of the document xi with high value of
GIG(xi) and another document in the same cluster is supposed to give more
information when revealing its judgement. Besides, the probability that xi
belongs to the cluster with the centroid µi measured as p(jm|wi(xi, µi)) will
be high if it is very close to its cluster centroid but far from the next nearest
centroid, and low if it is also very close the next nearest centroid. If the
independence assumption of pair selection is not given, the authors define
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the document gain function as:

G(xi) = GDG(xi) =
∑

ji∈{jm,jc}

gDG(wi(xi, µi), ji)p(ji|wi(xi, µi)) (82)

∑

ji∈J

−log(p(ji|wi(xi, µi),Φ))p(ji|wi(xi, µi),Φ) (83)

p(jm|wi(xi, µi),Φ) =
sd(xi, µi|Φ)

sd(xi, µi|Φ) + sd(xi, µ′
i|Φ)

(84)

p(jc|wi(xi, µi),Φ) = 1− p(jm|wi(xi, µi),Φ) (85)

sd(xi, µi|Φ) = (1− ǫ
Q

|X|
)s(xi, µi) + ǫ

Q

|X|
max
xj∈ĉi

s(xi, xj) (86)

ĉi = {xi : xi ∈ ci, ∃xj.wi(xi, xj) ∈ Φ, p(jm|wj(xj, µi) is high}
(87)

where ci is the cluster where xi belongs to, ĉi is the previously selected doc-
uments with high probability to belong to ci, ǫ is a trade-off constant. The
main difference between GIG and GDG is the difference between two similar-
ity functions s and sd. sd(xi, µi|Φ) is called the dependent cosine similarity,
and used to measure the similarity between xi and µi given the set of previ-
ously selected documents with high probability to belong to the cluster ci. sd
is mainly different from s by the second term which computes the maximum
similarity of xi with another previously selected document xj ∈ ci. The idea
is that if in previously selected documents, there is a document xj in the
same cluster with xi and xj is very close to xi and then the judgements of
xj can provide useful information for the judgements of xi. And if the prob-
ability that wj(xj, µi) is a must-link pair is high then the probability that
wi(xi, µi) is a must-link pair is also high. The ratio Q

|X|
is used to emphasize

the contribution of each term in the equation of sd. When Q (the maximum
number of queries) is small compared with |X| (the number of documents),
then there is only a small number of previously selected documents in ci.
Therefore, the contribution of the similarity between the document xi and
its neighbour xj should be smaller than the contribution of the similarity be-
tween that document and its centroid. And vice versa for the case when Q is
large compared to |X|. Finally, ǫ is used to control the trade-off between two
contributions. The independent/dependent versions of IG-KMEANS will be
referred as IIG-KMEANS, and DIG-KMEANS, for short. The experimental
results show that the IG-KMEANS performance outperforms significantly
the PCKMEANS algorithm (a KMEANS-based algorithm, represented in
Algorithm 8) using the Explore-Consolidate scheme proposed by Basu et
al. [5] (this algorithm will be referred as Active-PCKMEANS for short).
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Also, as expected the algorithm with the dependent document-gain function
GDG has better performance than algorithm with the independent document-
gain function GIG. However, when comparing with PCKMEANS, in their
KMEAN-based algorithm, the authors do not use the same objective function
as in the Basu’s KMEAN-based algorithm, therefore it is clear whether the
improvement comes from the active learning part or the objective function.
Also, the run-time of the information-gain based algorithm is much larger
than the Active-PCKMEANS algorithm because of the high complexity of
computing the membership probabilities p(jm|wi(xi, µi),Φ).

KMEANS-based algorithms often are not suitable for discovering the non-
convex shape clusters, therefore Zhao et al. [54] have proposed a Constrained-
DBSCAN algorithm which is extension of DBSCAN [19] (a density-based
clustering algorithm) for the semi-supervised clustering problem. DBSCAN
requires two parameters: eps the radius of neighbourhoods,minPts the mini-
mum number points needed to form a cluster. DBSCAN first picks randomly
a point which has not been visited yet. If the number of points in its eps-
neighbourhood (the set of points which have a distance to that point less
than or equal to eps) is less than minPts, then that point will be labelled as
noise (although it still can be assigned to other cluster later). If this is not
the case, a cluster is formed with the initial points are the points in that eps-
neighbourhood. Next, for each point in that cluster, if its eps-neighbourhood
size greater than or equal tominPts then that neighbourhood is added to the
cluster and that point is marked as visited. This process is repeated until the
cluster is completely discovered. The next cluster or another noise point will
be discovered by continuing the above procedure with a new unvisited point.
The Constrained-DBSCAN follows the same idea of DBSCAN with the ex-
tension that adding points to a cluster must guarantee the constraints. The
pseudo-code of Constrained-DBSCAN is represented in Algorithm 17. First,
the algorithm compute the transitive closures of must-link constraints by ap-
plying the transitivity property of must-link constraints and update the set of
cannot-link constraints by the entailment property of cannot-link constraints
and must-link constraints. Then, the algorithm goes through unclassified
points and extends (if possible) the cluster of each point but still maintains
the constraints in the procedure Extend Cluster() (Algorithm 18). For each
starting point xi of the cluster, all other points which have a must-link con-
straint with xi will be added to cluster and form the set of seeds. Recursively,
for each other point (or seed) s in the seed set, the points in the transitive
closure containing s and in the eps-neighbourhood of s (only considered if
the neighbourhood size is greater than or equal to minPts) are added to the
cluster (and the seed set) if the constraints are not violated. Like the Explore-
Consolidate algorithm of Basu et al. [5], the active selecting procedure for
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Constrained-DBSCAN, named Active-Selecting-DBSCAN, is not integrated
into Constrained-DBSCAN but only used to obtain the set of informative
constraints and then passes them to Constrained-DBSCAN. The authors de-
fine two types of data points for the purpose of selecting constraints as follows.
If the size of the eps-neighbourhood of a point is greater than or equal to
minPts, then that point is a core point, otherwise it is a border point. The
main idea of Active-Selecting-DBSCAN is to try to obtain the constraints
which can help to determine the boundaries of clusters and identify at least
one core point for each cluster. Active-Selecting-DBSCAN first tries to build
the core and border point sets. Then it will identify the constraints on the
pairs of a core point and a border point for determining the cluster bound-
aries and the constraints on the pairs of two farthest core points for having
at least one core point for each cluster as fast as possible. The Active-
Selecting-DBSCAN is represented in Algorithm 19. The experimental

Algorithm 17: Constrained-DBSCAN

Input : Dataset X, the set of must-link constraints C=, the set of
cannot-link constraints C 6=, the radius eps, the minimum
number of points in a neighbourhood minPts.

Output: A set of clusters and a set of noise points.
begin

1. Initialize all objects in X as UNCLASSIFIED.
2. Preprocess the constrains: compute the set of transitive closures
TCS = {TCSi} of must-link constraints, and update the set of
cannot-link constraints C 6=.
3. clusterId := 0.
4. Discover clusters:
for each point xi ∈ X do

if yi is UNCLASSIFIED then
// Expand the cluster
Compute xi’s eps-neighbourhood Ni.
if size of Ni < minPts then

yi = NOISE
Continue the loop with the next xi.

end

Expand Cluster(X, xi, eps, minPts, TCS, C 6=, clusterId).
clusterId = clusterId+ 1.

end

end

end
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Algorithm 18: Expand-Cluster

Input : Dataset X, starting point xi, transitive closures of must-link
constraints TCS, set of cannot-link constraints C 6=, radius
eps, minimum number of points in a neighbourhood
minPts, current cluster id clusterId.

Output: The extended cluster.
begin

seeds = ∅.
if ∃CSj ∈ TCS. xi ∈ TCSj then

for each point xt ∈ TCSj do
yt = clusterId
seeds = seeds ∪ {xt}

end

else
yi = clusterId
seeds = seeds ∪ xi

end

while seeds 6= ∅ do
Get the first object s ∈ seeds.
if ∃TCSj ∈ TCS. xi ∈ TCSj then

for each point xt ∈ TCSj do

if yt is NOISE or UNCLASSIFIED then
yt = clusterId
seeds = seeds ∪ {xt}

end

end

end

Compute s’s eps-neighbourhood Ns.
if size of Ns ≥ minPts then

for each object xt ∈ Ns do
if adding xi into seeds does not violate cannot-link
constraints, and yi is NOISE or UNCLASSIFIED
then

xt = clusterId
seeds = seeds ∪ {xt}

end

end

end

seeds = seeds \ {s}
end

end
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Algorithm 19: Active-Selecting-DBSCAN

Input : Dataset X, radius eps, minimum number of points in a
neighbourhood minPts, maximum number of queries Q

Output: A set of instance-level constraints.
begin

1. Compute the core point set CS and the border point set BS in
X with respect to eps and minPts.
2. consSet = ∅. // The constraint set
3. SCS = ∅. // The selected core point set.
4. Obtain the constraints:
while queries are allowed do

// obtain cannot-link constraints.
if SCS = ∅ then

Pick the first core point xi in CS randomly, and add xi into
SCS.

else
Pick the point xi farthest from SCS.
for each point xj ∈ SCS do

Ask for the judgement (must-link or cannot-link) of the
pair (xi, xj).
Add the constraint (xi, xj) to consSet.

end

SCS = SCS ∪ {xi}.
end

// obtain the must-link constraints.
Pick the point x1 in BS which is nearest from x; ask for the
judgement of the pair (xi, x1); add the constraint (xi, x1) to
consSet.
Pick the point x2 in BS which is nearest from x; ask for the
judgement of the pair (xi, x2); add the constraint (xi, x2) to
consSet.

end

return conSet
end

52



results show that Active-Constrained-DBSCAN (Constrained-DBSCAN +
Active-Selecting-DBSCAN ) outperforms significantly Constrained-DBSCAN
in all cases. Comparing with Active-PCKMEANS [5], Active-IG-KMEANS
[29], Active-Constrained-DBSCAN is much better than Active-PCKMEANS,
and slightly better than Active-IG-KMEANS. The reason is that Active-
PCKMEANS easily uses up the number of queries if a lot of cannot-link
constraints are obtained and this happens when the number of clusters is
large. In order to compare the active selecting strategies, the authors im-
plement Constrained-DBSCAN with Explore-Consolidate scheme [5], named
EC-Constrained-DBSCAN and PCKMEANS with Active-Selecting-DBSCAN,
named Active-D-PCKMEANS. And the result is that Active-Constrained-
DBSCAN is much better than EC-Constrained-DBSCAN, Active-D-PCKMEANS
is also significantly better than Active-PCKMEANS. The reason can come
from the fact that the constraints obtained by Active-Selecting-DBSCAN
containing good information about the cluster boundaries while it is not the
case of Explore-Consolidate. Also, Active-D-PCKMEANS is slightly worse
than Active-Constrained-DBSCAN because DBSCAN is more suitable for
the case of overlapping clusters than KMEANS. Finally, the run-time of
Active-Constrained-DBSCAN (linearly with the number of constraints) is
substantially smaller than the run-time of Active-IG-KMEANS due to the
fact that the constraints are obtained for Active-Constrained-DBSCAN only
once before executing the semi-supervised clustering process while in Active-
IG-KMEANS, the selecting constraint process and the semi-supervised clus-
tering process are iterated alternatively.

An ensemble-based selection procedure for identifying the most infor-
mative constraints is proposed by Greene et al. [26]. The ensemble-based
procedure is split into two phases: imputing constraints from pairwise co-
associations and selecting informative constraints. First, the co-association
matrix A is built by τ clustering results of a base clustering algorithm on
τ samples of the input dataset X (without replacement) as in Algorithm
20. The value of a matrix cell Aij denotes the fraction of base clusterings
Ct in which two points xi and xj are assigned to the same cluster. For a
sufficient large number of base clusterings, Aij ≈ 1 indicates that xi and
xj should belong to the same cluster, while Aij ≈ 0 implies that xi and xj
should be in different clusters. When Aij ≈ 0.5, the relationship between xi
and xj is highly uncertain and this can happen when they are both at the
boundaries. Given two thresholds κm and κc of Aij where κm/κc is the mini-
mum/maximum confidence that two points are in the same cluster to form a
must-link/cannot-link constraint, the sets of imputed must-link constraints
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C ′
= and of cannot-link constraints C ′

6= are obtained as follows:

C ′
={(xi, xj)|Aij ≥ κm} (88)

C ′
6={(xi, xj)|Aij ≤ κc} (89)

Next, C= is updated as its transitive closure by applying the transitivity

Algorithm 20: Build the co-association matrix A.

Input : Input dataset X = {xi}
N
i=1, number of clusters K

Output: The co-association matrix A.
begin

1. Initialize a zero N ×N matrix A. 2.
for t = 1 to τ do

2.1 - Draw a sample of points Xt by random sampling without
replacement.
2.2 - Generate a base clustering Ct by clustering the sample Xt.
2.3 - Classify the remaining points xi ∈ X \Xt based on the
clusters in Ct.
2.4 - For each pair (xi, xj) assigned to the same cluster in Ct,
update A: Aij = Aij + 1/τ .

end

end

of must-link constraints ((xi, xj) and (xj, xt) in C= ⇒ (xi, xt) ∈ C=). Then,
the K neighbourhoods and their representatives are computed from C=. The
first representative is chosen as the median of the largest neighbourhood in
C=. Each of the remaining K−1 representatives is selected as the median of
the largest remaining neighbourhood with the condition that a cannot-link
constraint exists between that median and the previously selected represen-
tatives. This step results in an initial clustering C0 = {C0

1 , C
0
2 , ..., C

0
K} where

C0
i is the i-th cluster (or neighbourhood) of the clustering C0. The pseudo-

code of this step is illustrated in Algorithm 21. In the selection phase, the
set of constraints will be expanded by selecting the most uncertain point to
form the queries. For each point xi ∈ X and a cluster Ct

0 ∈ C0, the associa-
tion Stc of xi and C

t
0 is calculated as the average of the co-association of xi

and all member xj ∈ Ct
0:

Sit =
1

|Ct
0|

∑

xj∈Ct
0

Aij (90)
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Algorithm 21: Constraint set initialization phase.

Input : Imputed constraint sets C= and C 6=.
Output: An initial clustering C0 = {C1

0 , C
2
0 , ..., C

K
0 }.

begin
1. Update C= as its transitive closure and compute the
neighbourhoods from the updated C=.
2. Choose the first representative r1 to be the median of the
largest neighbourhood.
3.
for t = 2 to K do

Select rt as the median of the next largest neighbourhood with
the condition that a cannot-link constraint exists between rt
and each of {r1, ..., rt−1}.

end

return the clustering C0 = {C1
0 , C

2
0 , ..., C

K
0 } where rt ∈ Ct

0 together
with any other object with a must-link constraint to rt.

end

and the certainty w(xi) of assigning xi to a cluster in C0 is measured as the
margin between the cluster Ca

0 with the highest association with xi and the
cluster Cb

0 with the second highest association and formally defined as:

w(xi) =
2Sia

Sia + Sib

− 1 (91)

However, if the uncertain points are selected based on w(xi), it can result in
the situation that a lot of constraints for only a specific class are generated.
And this can lead to poor performance when the number of queries allowed
is small. The authors solve this problem by considering also cluster sizes as
weights for co-association values, and define the new certainty criterion as:

w′(xi) =
2Tia

Tia + Tib
− 1 (92)

Tit =
|Ct

0|
∑

j

|Cj
0 |
Sit (93)

where Tia, Tib are the highest and the second highest weighted object-cluster
association values of xi. The weights based on cluster sizes are added to
prioritize the objects that will be assigned to small clusters, therefore it can
reduce the effect of selecting a lot of points belonging to the same cluster
with a large size. Then, when the most uncertain point xi (the point with
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the minimum value of w′(xi)) is selected, its correct cluster will be discovered
by posing the queries about the relation of xi and the K representatives. At
mostK−1 queries are needed to identify the cluster of xi because whenK−1
cannot-link constraints between xi and K − 1 representatives are obtained,
it can be inferred that xi belong to the remaining cluster. The selection
procedure is illustrated as in Algorithm 22. With a large enough number

Algorithm 22: Constraint set expansion phase.

Input : cluster-object co-association matrix S.
Output: two sets of new constraints C ′

= and C ′
6=.

begin
C ′

= = ∅, C ′
6= = ∅.

while queries are allowed do
1. Select the most uncertain object xi with minimum value of
w′(xi), calculated as in Equ. 92.
2.
yi = UNCLASSIFIED.
for each cluster Ct

0 in descending order of Sit do
Ask the judgement for the constraint (xi, rt).
if (xi, rt) is a must-link constraint then

yi = t.
Break the for loop.

else
C ′

6= = C ′
6= ∪ {(xi, µt)}

end

if the number of queries are used up then
return C ′

=, C
′
6=.

end

end

if yi = UNCLASSIFIED then
yi = the label of the remaining cluster.

end

Assign xi the cluster with the label of yi.
C ′

= = C ′
= ∪ {(xi, µt)}.

end

return C ′
=, C

′
6=.

end

of ensembles, the experiments on real datasets show that most of imputed
constraints are correct (greater than 90% in most cases) according to the
true labels of object. Also, in some datasets, the percentage of imputed
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constraints obtained on the total number of constraints is relatively large,
e.g. 38% of the total number of constraints. Finally, compared with the
Explore-Consolidate scheme [5], this ensemble-based approach outperforms in
all datasets, and this scheme is especially better than the Explore-Consolidate
scheme on the tests with small numbers of queries.

Until now, it seems that adding constraints to a basic clustering algo-
rithm always improves performance. Unfortunately, this intuition is not al-
ways correct and proven through experiments in [26, 15]. Davidson et al. [15]
explain the adverse effect of noiseless constraints through two measures of
constraint set utility: informativeness and coherence. The informativeness
is the amount of information given by the constraint set and cannot be de-
termined by the algorithm by itself, and the coherence is the amount of the
agreement between the constraints themselves according to a given metric.
Let P ∗ be the partition (or clustering) that globally minimizes the objective
function of a clustering algorithm A with no constraints. And C∗ is a con-

straint set of

(

n
2

)

must-link and cannot-link constraints that completely

specifies P ∗. The idealized informativeness of a given constraint set C is the
fraction of constraints in C that are violated by C∗. The idea is that if the
constraint set C is noiseless, then any constraint c ∈ C which is not satisfied
by the best partition P ∗ (with no constraint) will give new information to the
algorithm A. However, in practice, P ∗ is unknown, therefore a local optimum
partition PA of the algorithm A is used instead. This leads to definition of
the approximate informativeness as follows:

IA(C) =
1

|C|

∑

c∈C

unsat(c, PA) (94)

where unsat(c, PA) is 1 if the constraint c is satisfied by P , and 0 otherwise.
In contrast to informativeness, coherence is independently defined from the
algorithm A but it is dependent on a metric D. And the definition of coher-
ence is originated from the following view. A must-link constraint c=(xi, xj)
or a cannot-link constraint c 6=(xi, xj) of xi and xj can be considered as an
attractive or repulsive force along the line connecting xi and xj, respectively.
Therefore, if a must-link constraint and a cannot-link constraint have contra-
dictory forces in the same region, they will cause a conflict. In other words,
if their forces are mostly overlapped each other, they are highly incoherent.
Consider two vectors ~a(a1, a2) and ~b(b1, b2), the projection ~p(p1, p2) of ~a on ~b
is computed as:

~p = |~a|cos(θ)
~b

|~b|
(95)
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where θ is the angel between the two vectors. And the overlap overlapbD(a)

of two vectors when projecting ~a on ~b under the metric D is calculated as:

overlapbD(a) =







0 if D(b2, b1) ≤ D(b2, p2), D(b2, b1) ≤ D(b2, p1)
D(b1, p2) if D(b2, p2) < D(b2, b1), D(b2, p1) ≥ D(b2, b1)
D(p1, p2) if D(b2, p2) < D(b2, b1), D(b2, p1) < D(b2, b1)

(96)

From the above formula, the coherence COHD(C) of a constraint set C is
defined as:

COHD(C) =

∑

m∈C=,c∈C 6=

1[overlapcD(m) = 0 and overlapmD (c) = 0]

|C=||C 6=|
(97)

where 1[true] = 1 and 1[false] = 0. Finally, from the experimental results
in the paper, it can be observed that most constraint sets with high infor-
mativeness and coherence improve the clustering performance, whereas the
incoherent sets with low informativeness result in an adverse effect.

5 Open Issues

In 2007, Wagstaff has discussed three main issues of constrained clustering
in [50]. They are the questions about how to evaluate the utility of a given
constraint set, how to reduce the cost of acquiring the constraints, and how
to propagate the constraint information to near regions to avoid collecting
redundant constraints. Most of the works in the next subsections of this
section are based on the Wagstaff’s paper [50].

5.1 How to evaluate the utility of a given constraint

set?

Davidson et al. [15] have pointed out that integrating constraints into clus-
tering algorithms does not always help to improve the performance. In some
cases, the constraints can even cause the adverse effect. Table 5.1 (extracted
from [15]) shows the fraction of 1000 randomly selected 25-constraint sets
that caused a drop in accuracy of four constrained-clustering algorithms:
COP-KMEANS [51], PKM [9], MKM [9], MPKM [9] on four UCI datasets
[10]. It can be seen that in some cases, the fraction of the constraint sets the
decrease the performance is extremely high, e.g. 87% in the case of MKM on
the Wine dataset. Two measures Informativeness and Coherence have been
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CKM [51] PKM [9] MKM [9] MPKM [9]
Data Set
Glass 28% 1% 11% 0%
Ionosphere 26% 77% 0% 77%
Iris 29% 19% 36% 36%
Wine 38% 34% 87% 74%

Table 1: Fraction of 1000 randomly selected 25-constraint sets that caused a
drop in accuracy of four constrained-clustering algorithm.

proposed by Davidson et al. [15] to evaluate the utility of a constraint set.
From the experiments, it can be observed that the constraint sets with high
informativeness and coherence often improve the performance. However, it
is not always the case that these measures can explain the constrained clus-
tering results on some datasets. Table 2 presents the experimental results on
fully coherent constraint sets with different values of informativeness (low or
high), the constraint sets with high informativeness improve significantly the
performance of all algorithms on the Iris dataset while on the Wine dataset,
these constraint sets do not show any effect on the clustering performance
[15]. Therefore, in order to evaluate the utility of a constraint set, more

CKM [51] PKM [9] MKM [9] MPKM [9]
Data Set H-Inf. L-Inf. H-Inf. L-Inf. H-Inf. L-Inf. H-Inf. L-Inf.
Ionosphere 58.9% 58.9% 58.8% 58.7% 58.9% 58.9% 93.9% 93.5%
Iris 89.2% 88.1% 88.1% 86.7% 92.9% 89.2% 93.9% 93.5%

Table 2: Average accuracy of four algorithms on two datasets with low in-
formativeness (L-Inf.) and high informativeness (H-Inf.) constraint sets.

efforts must be spent for identifying other constraint set attributes (like in-
formativeness and coherence) as well as the procedures for predicting the
utility of constraint sets from their attributes.

5.2 How to reduce the cost of acquiring the constraints?

Usually, constraints are provided once by a supervisor before executing the
constrained clustering algorithm, or obtained by asking the supervisor inter-
actively. In both cases, the number of constraints are very limited because
of the expensive cost for collecting the constraints. Hence, minimizing the
number of constraints is one of the most important issues in SSC. The studies
in literature have shown that letting the algorithm actively ask the supervi-
sor what it wants to know can reduce the number of constraints much better
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than requiring the supervisor knows what constraints he/she should supply
to the algorithm. The algorithms proposed for solving this problem have
been discussed in Section 4 like: using the farthest distance [5], informa-
tion gain [29], density [54] and co-association confidence [26] to select the
most informative constraints. However, until now, there is still no work that
integrates different types of constraint utility measures into a constraint se-
lection procedure to select the most informative constraints. Also, in the last
10 years, most works in literature only focus on exploiting the two classic
instance-level constraint types: must-link and cannot-link constraints [51].
Thus, more efficient types of high-level constraints which can be equivalent
to a batch of instance-level constraints are needed to be studied.

5.3 How to propagate the constraint information?

Some works [31, 52, 9, 2] have been done in literature to propagate the
constraints to near regions. The idea is to bring the neighbourhoods of
two points in a must-link constraint near to each other. For example, if
(xi, xj) ∈ C= and xi is very near xa then when distance metric is learned, the
distance between xi and xj will be shrunk to bring xi near to xj. Because of
the constraint propagation, the distance between xj and xa will be shrunk
too, therefore xj and xa are likely assigned in the same cluster and similarly
for the case of cannot-link constraints. This approach has been shown to
be successful when the constraints and the distance metric are consistent
[31, 52, 9, 2]. However, this condition is not always valid. A counterexample
is the UCI dataset tic-tac-toe [10]. In this dataset, each item is a 3×3 board
representing the current state of the game. x, o denote the cells occupied
by the first and second player, respectively. The goal is to classify boards
into two clusters: the cluster of boards that the first user wins, and the
other one consists of boards that the first user loses or draws. As shown
in Fig. 7 extracted from [50], although Board A and Board C are in the
same cluster, their distance is very large. In contrast, Board A and Board
B belong to different clusters, but their distance is much smaller. If there
are a cannot-link constraint for the pair (Board A, Board B) and a must-link
constraint for the pair (Board A, Board C ) then propagating constraints to
near regions in this case is supposed not to improve the performance (or even
decrease the performance) because it will bring Board B near to Board C by
propagating the must-link constraint between Board A and Board C. Then,
if not careful, Board B is even brought closer to Board C than Board A when
Board B is forced to be far from Board A but in the direction towards Board
C by the cannot-link constraint between Board B and Board A. Therefore,
identifying datasets in which propagating constraints is correct and how far
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Figure 7: Three boards of the tic-tac-toe dataset and their Hamming dis-
tances.

the constraints should be propagated are the challenging issues for this field.
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