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Abstract

Evaluation of automatic speech recognition (ASR) systems is difficult

and costly, since it requires manual transcriptions. This evaluation is usu-

ally done by computing word error rate (WER) that is the most popular

metric in ASR community. Such computation is doable only if the manual

references are available, whereas in the real-life applications, it is a too

rigid condition. A reference-free metric to evaluate the ASR performance

is confidence measure which is provided by the ASR decoder. However,

the confidence measure is not always available, especially in commercial

ASR usages. Even if available, this measure is usually biased towards the

decoder. From this perspective, the confidence measure is not suitable for

comparison purposes, for example between two ASR systems.

These issues motivate the necessity of an automatic quality estimation

system for ASR outputs. This thesis explores ASR quality estimation (ASR

QE) from different perspectives including: feature engineering, learning

algorithms and applications.

From feature engineering perspective, a wide range of features extractable

from input signal and output transcription are studied. These features

represent the quality of the recognition from different aspects and they are

divided into four groups: signal, textual, hybrid and word-based features.

From learning point of view, we address two main approaches: i) QE

via regression, suitable for single hypothesis scenario; ii) QE via machine-

learned ranking (MLR), suitable for multiple hypotheses scenario. In the

former, a regression model is used to predict the WER score of each single

hypothesis that is created through a single automatic transcription channel.

In the latter, a ranking model is used to predict the order of multiple

hypotheses with respect to their quality. Multiple hypotheses are mainly

generated by several ASR systems or several recording microphones.



From application point of view, we introduce two applications in which

ASR QE makes salient improvement in terms of WER: i) QE-informed

data selection for acoustic model adaptation; ii) QE-informed system com-

bination. In the former, we exploit single hypothesis ASR QE methods in

order to select the best adaptation data for upgrading the acoustic model.

In the latter, we exploit multiple hypotheses ASR QE methods to rank

and combine the automatic transcriptions in a supervised manner.

The experiments are mostly conducted on CHiME-3 English dataset.

CHiME-3 consists of Wall Street Journal utterances, recorded by multi-

ple far distant microphones in noisy environments. The results show that

QE-informed acoustic model adaptation leads to 1.8% absolute WER re-

duction and QE-informed system combination leads to 1.7% absolute WER

reduction in CHiME-3 task.

The outcomes of this thesis are packed in the frame of an open source

toolkit named TranscRater1 (transcription rating toolkit) which has been

developed based on the aforementioned studies. TranscRater can be used

to extract informative features, train the QE models and predict the quality

of the reference-less recognitions in a variety of ASR tasks.

Keywords

automatic speech recognition, quality estimation, acoustic model adapta-

tion, system combination

1https://github.com/hlt-mt/TranscRater
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Chapter 1

Introduction

Automatic speech recognition (ASR) has been widely studied during the

last decades (Rabiner and Juang, 1993; Jelinek, 1997; Huang et al., 2001;

Hinton et al., 2012). A lot of work has been done to overcome the barriers

of large vocabulary, language/speaker/accent variation, noise, etc (Zhan

and Waibel, 1997; Wölfel and McDonough, 2009; Kermorvant, 1999; Jalal-

vand et al., 2012). Consequent achievements have made ASR systems part

of many real-life applications. Dictation system, voice question answering

and speech translation are some of these applications. The increased us-

age of ASR systems demands for suitable procedures for evaluating their

performance.

The most common method to evaluate ASR outputs is measuring word

error rate (WER), with respect to the manual references (Jelinek, 1997).

This measure is computed by counting the number of errors in the recog-

nized string divided by the number of words in the reference.

WER =
#substitutions+ #insertions+ #deletions

#referenceWords

Besides all the proficiencies that have made this measure the most pop-

ular one in the ASR society, WER has several limitations:

• the manual reference is not always available;
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• providing manual reference is costly and

• WER is not always informative about the understandability of an

automatic transcription.

For example, if ASR system A recognizes a speech signal as ”he comes

from home” and system B recognizes as ”he comes from horse”, while

the reference is ”he comes from house”, then the WER of both systems

A and B will be equal to 0.25%. Whereas the quality of the two systems

are truly different. In fact, Wang et al. (2003a) shows that sometimes

even though the WER increases, the speech understanding measure im-

proves. On speech translation framework, Ruiz and Federico (2015) en-

counter some deficiencies of WER computation implementations. They

introduce POWER (phonetically-oriented word error rate) as a variation

of WER which incorporates the phonetic alignment as well.

When the manual reference is not available, one can measure the quality

of recognition by considering the confidence measure which is provided by

the decoder (Evermann and Woodland, 2000; Wessel et al., 2001; Seigel,

2013). However, there are two main restrictions with confidence measure.

First, not all the systems provide confidence measures (specially the com-

mercial ones). Second, confidence measure is highly biased towards the

decoder. That is, sometimes the decoder provides a very high confidence

value, even though the hypothesis is wrong. In this way, unsupervised

comparison between two ASR systems using their confidence scores will

be unreliable. Many researchers tried to increase the reliability of confi-

dence measure. Seigel (2013) uses conditional random field models with

word/sub-word features and deletion detection techniques to improve the

reliability of the confidence measure. Nevertheless, the resulting confidence

score is still highly dependent on the inner behaviour of ASR decoder and

from this point of view, unsupervised comparison between heterogeneous

2



CHAPTER 1. INTRODUCTION

systems, like traditional GMM-HMM1 versus hybrid DNN-HMM2 is not

trivial.

This thesis explores ASR quality estimation (ASR QE) from different

perspectives including:

• feature engineering,

• learning algorithms and

• applications.

Feature engineering. A wide range of features extractable from input sig-

nal and output transcription are studied. These features represent the

quality of the recognition from different aspects and they are divided into

four groups: signal, textual, hybrid and word-based features.

Learning algorithms. Two major strategies are conducted in this thesis:

i) QE via regression, suitable for single hypothesis scenario; ii) QE via

machine-learned ranking (MLR), suitable for multiple hypotheses scenario.

In the former, a regression model is used to predict the WER score of each

single hypothesis that is created through a single automatic transcription

channel. In the latter, a ranking model is used to predict the order of

multiple hypotheses with respect to their quality. Multiple hypotheses are

mainly generated by several ASR systems or several recording microphones.

Application. We introduce two applications in which ASR QE makes

salient improvement in terms of WER: i) QE-informed data selection for

acoustic model adaptation; ii) QE-informed system combination. In the

1GMM-HMM stands for acoustic models based on hidden Markov models (HMM) with Gaussian

mixture models (GMM) to compute the emission probabilities (see §2.3.1)
2DNN-HMM stands for acoustic models based on hidden Markov models (HMM) with deep neural

networks (DNN) to compute the emission probabilities (see §2.3.2)

3



1.1. THESIS SUMMARY

former, we exploit single hypothesis ASR QE methods in order to select

the best adaptation data for upgrading the acoustic model. In the latter,

we exploit multiple hypotheses ASR QE methods to rank and combine

the automatic transcriptions in a supervised manner. The experiments

on CHiME-3 task, which is consisting of Wall Street Journal utterances

recorded by multiple distant microphones in noisy environments, show that

QE-informed acoustic model adaptation and QE-informed system combi-

nation, respectively, yield 1.8% and 1.7% absolute WER reduction.

The outcomes of this thesis are packed in the frame of an open source

toolkit named TranscRater3 (transcription rating toolkit) which has been

developed based on the aforementioned studies. TranscRater can be used

to extract informative features, train the QE models and predict the quality

of the reference-less recognitions in a variety of ASR tasks.

1.1 Thesis summary

Chapter 2 depicts the architecture of an ASR system. The state-of-the-art

acoustic modeling and language modeling methods are described in more

detail.

Chapter 3 forms the main body of this thesis and it focuses on ASR QE

architecture. This chapter discusses the motivation, history and methods

to construct an efficient and applicable ASR QE system. Starting from the

first proposal by Negri et al. (2014), who explored ASR QE as a sentence-

level WER prediction, to the further extensions by Zamani et al. (2015)

who addressed it as binary classification algorithm and de Souza et al.

(2015) who tackled the problem of multi domain QE challenge. We cate-

gorized these mentioned works as single hypothesis ASR QE, because all of

them concentrate on the situation in which only one automatic transcrip-

3https://github.com/hlt-mt/TranscRater
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CHAPTER 1. INTRODUCTION

tion channel exists. ASR QE in multiple hypotheses scenario is addressed

in Chapter 3. For the first time, machine-learned ranking algorithms are

applied to an ASR task for ranking the multiple hypotheses according to

their recognition quality. At the end of this chapter, the efficacy of the

proposed methods for both single hypothesis and multiple hypotheses sce-

narios is assessed through several experiments.

Chapter 4 describes a novel application of single hypothesis ASR QE to

improve unsupervised acoustic model adaptation. The method is based on

applying pre-trained QE models to the output of the first decoding pass

and use the QE results to inform the adaptation algorithm with the quality

of adaptation data. The experiments show that self acoustic model adap-

tation using automatic transcription of test set becomes more effective, if

the part of test data with low quality is removed from the adaptation set.

The results confirm that single hypothesis ASR QE methods, described in

Chapter 3, can provide useful information about the quality of the adap-

tation set, and consequently, it helps in improving the accuracy of the new

acoustic models.

Chapter 5 explores the application of multiple hypotheses ASR QE to

system combination. The preliminary observations show that ROVER

(Fiscus, 1997), a popular ASR system combination algorithm, is sensitive

to the order of the input hypotheses. We observe that multiple hypotheses

ASR QE methods, described in Chapter 3, is capable to provide this order,

and consequently, it improves the ROVER’s output. The proposed method,

named segment-level QE-informed ROVER leads salient WER reduction

in two different tasks: combination of multiple ASR systems (IWSLT) and

combination of multiple distant microphones (CHiME-3).

5



1.2. CONTRIBUTIONS

1.2 Contributions

At the beginning of this PhD program, we concentrated on neural network

language models as the single source of knowledge to estimate the quality

of the recognized hypothesis in n-best lists and word graphs. Our efforts

in this trend led to minor contributions as listed below:

1. n-best list rescoring using recurrent neural network language model

(RNNLM) (Jalalvand, 2013).

2. using minimum error rate training (MERT) to tune the interpolation

weights of the acoustic and language model components for performing

iterative confusion network decoding by means of long-span RNNLM

(Jalalvand and Falavigna, 2013).

3. A* search stack rescoring using RNNLM. Simple n-best list rescoring

provides a limited opportunity to exploit RNNLMs. On the other

hand, word graph rescoring using long-span LMs is quite expensive

in terms of memory and time. In this work, we proposed to exploit

RNNLM for rescoring the partial hypotheses inside the A* search

stack (Jalalvand and Falavigna, 2014).

4. As the first steps towards ASR QE, we tried to detect the erroneous

words using stacked auto encoder based neural network as the classi-

fier. In this work, we exploited suitable word-level features and effi-

cient classifiers to identify the errors and to predict the approximate

sentence-level WERs (Jalalvand and Falavigna, 2015).

For the sake of brevity, we avoided to describe the above mentioned

methods and results in the main body of this dissertation. The readers are

welcomed to read the cited papers.

The major contributions of this thesis with regard to ASR QE are:

6



CHAPTER 1. INTRODUCTION

1. A comprehensive study on ASR QE including: definitions, features,

learning algorithms and applications.

2. Improving the acoustic model adaptation techniques by using ASR

QE for consciously selecting adaptation data with high quality (Jalal-

vand et al., 2015a). In this method, after the first pass of decoding,

we estimate the quality of the transcribed data and then, we filter-

out those with low quality before performing DNN-HMM adaptation

(Falavigna et al., 2016).

3. Exploring ASR QE in multiple hypotheses scenario. For the first time,

machine-learned ranking (MLR) algorithms have been used in ASR to

predict the quality of hypotheses in a competitive manner (Jalalvand

et al., 2015b).

4. Improving ROVER, a well-studied ASR system combination method,

by first increasing the granularity of the inputs from utterance (several

minutes) to segments (several seconds) and then by ordering the can-

didates at segment-level using ASR QE approaches (Jalalvand et al.,

2015b).

5. Development of TranscRater, an open source toolkit for rating the

automatic transcriptions. The toolkit is equipped with all the models

and algorithms starting from feature extraction and training to pa-

rameter tuning and quality prediction for both single hypothesis and

multiple hypotheses scenarios (Jalalvand et al., 2016).

1.3 Publications

The achievements of this PhD have been already published in the top-tier

ASR and NLP journals, conferences and workshops.
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Chapter 2

Automatic Speech Recognition

This chapter describes the architecture of an automatic speech recognition

(ASR) system. The modules that will be concentrated in the following

chapters are described in more detail. In particular, output post-processing

module will be focused in Chapter 3, where quality estimation algorithms

for ASR outputs form the main body of this thesis; acoustic modeling

module will be discussed in Chapter 4, where we will propose adaptation

methods equipped with automatic quality estimation; and finally ASR sys-

tem combination, another post-processing approach, will be concentrated

in Chapter 5, where we will apply automatic quality estimation to ASR

system combination.

2.1 Introduction

Automatic speech recognition brings together three knowledge sources:

• linguistics,

• electrical engineering and

• computer science.

Linguistic information is derived from language specific knowledge, mainly
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Figure 2.1: ASR architecture

related to phonetics, lexicon and syntax. From electronic engineering, top-

ics such as signal processing, signal enhancement, noise/echo cancellation

and acoustic analysis are required. Acoustic and language modeling, as

well as search strategies over finite state networks, require competences

from computer science.

Figure 2.1 shows the main modules of an ASR system. The speech

is first recorded by suitable microphones and digitized. Then the signal is

windowed into short frames (≈ 20ms) and from each frame, proper acoustic

features are extracted (§2.2). The decoder accepts the sequence of feature

vectors and it uses the pre-trained acoustic (§2.3) and language models

(§2.4) and the pronunciation dictionary to find the most probable sequence

of words (§2.5). The acoustic model is trained on a audio/text corpus and

the language model is trained on a text corpus for each specific language.

The output of the decoder is usually purified by post-processing approaches

such as n-best list rescoring and syntax sanity check and then the final

hypothesis is provided.

An ASR system aims to find the most probable sequence of words, Ŵ ,

generating a sequence of acoustic observations, X:
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Ŵ = argmax
W

{P [W |X]} = argmax
W

{P [X|W ]× P [W ]} (2.1)

X = x1, x2, ..., xT indicates the sequence of acoustic observations, each

represented by an acoustic feature vector (§2.2); P [X|W ] is the acoustic

model likelihood (§2.3) and P [W ] is the language model likelihood, i.e. the

a priori probability of the sequence of words, W (§2.4). Speech recognition

or decoding is the procedure for solving equation 2.1 (§2.5).

2.2 Acoustic feature extraction

The first step of speech recognition is to extract the acoustic features

X = x1, x2, ..., xT from speech signal. To this purpose, the speech sig-

nal is windowed into short frames (≈20ms) in which it is assumed to be

stationary. A time overlap (≈10ms) between subsequent windows is also

applied. Common approaches for extracting acoustic features from each

frame are based on:

• filter-bank analysis usually spaced according to a perceptual auditory

scale (MEL) (Davis and Mermelstein, 1980) and

• linear prediction coefficients (LPC) analysis (Linde et al., 1980).

In both cases, the cepstrum of resulting coefficients is computed via dis-

crete cosine transform (DCT) that respectively yield to Mel frequency cep-

tral coefficients (MFCCs) and linear prediction cepstral coefficients (LPCCs).

A combination of both above-mentioned features gives rise to perceptual

linear prediction (PLPs) (Hermansky, 1990). Usually first and second or-

der derivatives (Furui, 1981) are also added to static features (MFCCs,

LPCCs or PLPs) in order to form the observation vector for each frame.

Other types of features such as speech loudness, pitch, signal-to-noise ra-

tio are useful in other tasks like speaker identification, accent identification
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and emotion detection (Goldwater et al., 2010; Pellegrini and Trancoso,

2010).

2.3 Acoustic Modeling

An acoustic model computes P [X|W ], the probability of generating an

acoustic observation sequence given a word (or phone) sequence. Usu-

ally, the words are represented by their corresponding sequence of phones.

Each phone is in turn represented by a left-to-right hidden Markov model

(HMM) (Rabiner and Juang, 1986). An HMM is a Markov random process

that emits a symbol at each time instance (i.e. at each frame), associated

with a probability that depends on the current state and then moves to

the next state with a probability that again depends on the current state

(Jelinek, 1997). HMM states cannot be directly observed, instead, these

are the acoustic features that are observed and this is the reason for using

the term “hidden”. To compute the probability for a sequence of acoustic

observations given a sequence of states, an output observation distribution

is assigned to each HMM state s = j ∈ [1, J ]. These distributions are

traditionally modelled by means of Gaussian mixture models (GMM) or

more recently by means of deep neural networks (DNN).

2.3.1 Gaussian Mixture Model HMM

GMM computes the likelihood of the observed acoustic vector xt at time t

in state j by:

p[xt|s = j] =
M∑
m=1

cjmN (xt;µjm, Ujm) (2.2)

where, N indicates a Gaussian distribution with µjm and Ujm being re-

spectively the mean vector and covariance matrix of the m-th mixture

component of state j; cjm (cjm ≥ 0,
∑M

m=1 cjm = 1) is the weight of this
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component and M is the total number of Gaussian mixture components in

state j (De Mori and Brugnara, 1996).

2.3.2 Deep Neural Network HMM

Recently, instead of GMMs, deep neural networks are used to compute the

aforementioned likelihood. (Hinton et al., 2012).

In DNN-HMM acoustic models, the state emission probabilities are com-

puted in the output layer of a DNN. This network accepts the input acous-

tic vector (usually an acoustic counter-vector formed by the concatenation

of several frames (v0 =< ..., xi−1, xi, xi+1, ... >) and passes it through many

layers of non-linear transformations. Each neuron i at layer l processes the

input vector vl and computes hli:

hli = σ(zli(
−→
vl )) = σ(

−−−→
(wl

i)
T .
−→
vl + ali) (2.3)

In this formula, wl and al are respectively weight matrix and bias, asso-

ciated to the l-th hidden layer. The input vector vl is indeed the output of

the previous layer, vl = hl−1. Also σ(x) = 1/(1 + exp(−x)) is the sigmoid

function applied element-wise.

The state posterior probability p[s = j|xt], being xt an acoustic obser-

vation vector at time t, is converted into a state emission likelihood using

the following Bayes formula:

p[xt|s = j] = p[s = j|xt]
p[xt]

p[s = j]
1 ≤ j ≤ J (2.4)

where J is the total number of HMM states and p[xt] is discarded since it

does not depend on the state. p[s = j|xt] is computed in the output layer

L:
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p[s = j|xt] = p[s = j|vL] =
exp(
−−−→
(wL

j )T .
−→
vL) + aLj∑J

ś=1 exp(
−−−→
(wL

ś )T .
−→
vL + aLś )

(2.5)

where, vL is the output of the last hidden layer; wL and aL are respectively

the weight matrix and bias of the output layer; ś ∈ [1, J ] ranges over all

the output neurons that are indeed the representatives of the HMM states.

For training, a possible criterion for estimating weights and biases of

the DNN is to minimize the negative cross-entropy C(p̂, p) between a target

distribution p̂ and the estimated one over training utterances:

C(p̂, p) =
1

T

T∑
t=1

J∑
i=1

p̂[s = j|xt] log p[s = j|xt] (2.6)

where T is the total number of frames in the training utterances. Usu-

ally, the entries p̂[s = j|xt] in the target distribution are obtained by forced

alignment using an existing GMM-HMM-based ASR system and assuming

the value of 1 for the aligned states and zero for all the others.

2.4 Language Modeling

Language model (LM) predicts the probability of a word, given a context

of previously observed ones. Among many approaches to build an LM, two

widely-used ones are based on n-gram statistics and neural networks.

2.4.1 n-gram Language Model

An n-gram LM is based on n-gram statistics and it computes the condi-

tional probability of seeing a word, given the n− 1 previous words (Chen

and Goodman, 1999). The probability of a sequence of words P [W ] is

computed as follows:
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P [W ] = P [w1, ..., wN ] ≈
N∏
i=1

p(wi|wi−1
i−(n−1)) (2.7)

where, the n-gram probabilities are estimated through their corresponding

counts in a training text corpus:

p(wi|wi−1
i−n+1) =

count(wi
i−n+1)

count(wi−1
i−n+1)

(2.8)

One issue with Equation 2.7 is data sparseness, that is, many of the

n-grams are rare and their probability is very low or sometimes zero. To

overcome this, Katz (1987) proposed a back-off model. In this model, if

one n-gram is rare, its conditional probability will be estimated by the

back-off probability of the shorter context.

pbo(wi|wi−1
i−n+1) =

 dwi−(n−1)...wi

count(wi
i−(n−1))

count(wi−1
i−(n−1))

, ifcount(wi
i−(n−1)) > k

αwi−(n−1)...wi−1
Pbo(wi|wi−1

i−(n−2)), otherwise

(2.9)

In this formula, pbo(wi|wi−1
i−n+1) is the back-off probability of observing

wi; count(W ) is the frequency of the sequence W ; k is a threshold for

the least acceptable number of appearances and d is the Good Turing

discounting estimation. Other extensions such as modified Kneser-Ney

(Chen and Goodman, 1999) also called modified shift-beta smoothing is

widely considered the most effective method of smoothing due to its use

of absolute discounting by subtracting a fixed value from the probability’s

lower order terms to omit n-grams with lower frequencies.

2.4.2 Neural Network Language Model

Neural network LM (NNLM) has several capabilities compared to n-gram

model. NNLM alleviates the problem of unseen word sequences by learning
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Figure 2.2: RNNLM structure

a distributed representation for each word (word feature vector) along with

a probability function for word sequences (Bengio et al., 2003). Continuous-

space NNLM is able to map the words from discrete space into continuous

space thanks to its projection layer (Schwenk, 2013) that converts the one-

hot vectors into compressed vectors.

In particular, the usage of recurrent neural networks (RNN) has shown

significant performance in comparison to n-gram LMs and other types of

feed forward NNLMs. This is mainly due to the capability of RNNLMs to

consider longer contexts than n − 1 (Mikolov et al., 2010). Furthermore,

the interpolation capability of RNN allows mitigating the effects of unseen

word sequences in the training set. In addition, unlike n-gram LM that

enlarges exponentially by increasing the size of the training data, the size

of RNNLM only depends on the predefined parameters (i.e. the number of

hidden layers and the number of hidden neurons).

The structure of an RNNLM is depicted in Figure 2.2. In the input layer,
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the words are represented by one-hot vectors, i.e. by a vector with equal

dimension to the vocabulary size in which only the index of the desired

word is one and the others are zero. The output layer has the same size as

the input layer. The application of a softmax function to the output units

ensures that each value is between 0 and 1 and the sum of all the values is

1. Therefore, the i-th value in the output layer can be interpreted as the

probability of word wi.

Training procedure starts by randomly initializing the weights. By ob-

serving one word in the training set, the probability of the next word is

computed using the initial weights. An objective function computes the

cost of generating the correct word in the output layer. The cost (error) is

back-propagated through the network to update the weights. For RNNLM,

a specific type of training named back-propagation through time (BPTT)

is used (Boden, 2002).

In spite of the advantages of RNNLM, it is difficult to use this model in

the ASR decoder at the first decoding step. Because RNNLM, differently

from n-gram LM, does not account explicitly for back-off transitions. This

enlarges the search space exponentially. A method for mapping an RNNLM

into a back-off LM has been proposed in (Liu et al., 2014). Another method

for conversion of RNNLM to weighted finite state transducers (WFST) is

proposed in (Lecorvè et al., 2012). Nevertheless, the simplest and widely-

used way to take advantage of long span capability of RNNLMs is re-scoring

of n-best lists. However, the search space of the n-best list is limited to n.

As an alternative method, we propose to perform A* stack rescoring

instead of n-best list or word graph rescoring (Jalalvand and Falavigna,

2014). This method rescores the partial hypotheses inside the A* stack.

Whenever a new node is expanded and the new hypotheses are pushed

into the stack, the partial hypotheses inside the stack are rescored and

reordered by means of RNNLM. Therefore, the partial hypothesis with the
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highest score (resulted by interpolation of graph score and RNNLM score)

is positioned on the top of the stack. Correspondingly, in the next step,

this partial hypothesis will be selected as the first node to expand the path.

2.5 Decoding

In large vocabulary continuous speech recognition (LVCSR) systems, the

words are usually represented by their corresponding phones. In this way,

only a limited set of phonetic models are needed to be trained for each

language. Therefore, Equation 2.1 is modified to 2.10 in order to include

the phone units for each word sequence:

Ŵ = argmax
W

{P [X|u(W )]× P [W ]} (2.10)

In this equation, u(W ) represents either a sequence of phones or a sequence

of context-dependent phonetic unites (like triphones); P [X|u(W )] is the

acoustic likelihood and P [W ] is the language model likelihood.

In Equation 2.10, Ŵ is selected among the possible solutions in a search

space. Such space can be represented by a finite state automata (FSA)

whose arcs are assigned to n-grams. Usually the starting arc of each n-gram

has associated the corresponding LM probability1. The ”null” transitions

(i.e. transitions that do not emit any symbol) are also added to account for

back-off probabilities. Once the FSA is built, the lexical model is integrated

by means of basic sub-graph substitution. In this way, each arc (i.e. each

n-gram) in the FSA will be replaced by a sub-graph corresponding to its

phone pronunciation. In the same way each phone (or triphone) in the

FSA is replaced by its corresponding HMM model forming a finite state

network (FSN).

1This early application of LM probabilities allows achieving a more effective pruning during the forward

search.
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Figure 2.3: A state-time trellis.

The FSN is searched along a data structure called “trellis” (Rabiner and

Juang, 1993), depicted in Figure 2.3. Every trellis column holds the values

of one of the probabilities for a partial sequence ending at different time

instants, and every interval between two columns corresponds to an input

frame. The arrows in the trellis represent model transitions, composing

possible paths from the initial time instant to the final one. The computa-

tion proceeds in a column-wise manner. At every time frame, the scores of

the nodes in a column are updated by means of recursion formulas which

involve the values of an adjacent column, the transition probabilities of the

models, and the values of the output distributions for the corresponding

frame (De Mori and Brugnara, 1996).

2.5.1 Word Graph generation

A word graph (WG) is an acyclic graph whose transitions are associated

to the words in the recognition dictionary. Each transition contains infor-

mation about: starting and ending time of each transition word and its

corresponding acoustic and language model scores. A WG contains the

information about word-endings as they occur in the course of the left

to right decoding pass (Aubert et al., 1994). The approach proposed in

21



2.5. DECODING

(Aubert et al., 1994) takes full advantage of the bigram LM to constrain

the graph, without requiring any further optimization or pruning stage.

More precisely this method relies on the assumption that the position of a

word depends only on the word pair under consideration.

WG is also used to compute the word posterior probabilities. This

computation is performed in two steps. First the well known forward-

backward algorithm is used to calculate a link posterior probability for

each link in the graph. The link posterior p(l|X) is defined as the sum of

the probabilities of all paths q, passing through the link l, normalised by

the probability of the signal p(X):

p(l|X) =

∑
Ql
p(q,X)

p(X)
(2.11)

where p(X) is approximated by the sum over all paths through the lattice.

The probability of a path p(q,X) is composed by the acoustic likelihood

pacc(X|q) and the language model probability plm(W ):

p(q,X) = pacc(X|q)1/γplm(W ) (2.12)

γ is used to scale down the acoustic likelihood.

Each recognized word may include a large number of links. Therefore, in

order to obtain the word posterior, the link posteriors need to be combined,

as explained below.

2.5.2 Confidence Measure computation

The confidence score or confidence measure indicates how certain is the

ASR decoder about each word hypothesis. Word posterior probabilities,

provided in the word graph as described in the previous subsection, can be

used directly as confidence measure for the word hypothesis. Three differ-

ent ways are proposed in (Wessel et al., 2001) to calculate the confidence
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measure of word w in link l]es:

1. sum over all the links which are labelled by w and intersect with the

time boundary [s, e];

2. sum over all the links which are labelled by w and intersect with the

median time frame of link l;

3. take the maximum from the two mentioned methods. That is, once

we sum over all the links, labelled by w which intersect with [s, e]

and then we sum over all the links with label w which intersect the

median time frame of the link l and finally we take the maximum as

the confidence measure for the word w in link l.

The confidence measure for a transcribed sentence can be easily achieved

by computing the average of its word-level confidence measures. Such

score, however, tends to overestimate the word confidences. From this

point of view, confidence measure is not a proper metric to automatically

supervise the performance of different ASR systems, because each system

may generate high confidence scores for its hypotheses. Another drawback

of confidence measure is its dependency on the ASR decoder. That is, in

a black-box condition, when the inner behavior of the ASR system is not

known, we cannot compute confidence scores. This thesis addresses these

problems and it aims to evaluate the quality of the ASR output in a more

reliable manner, without access to the human-craft references.
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Chapter 3

ASR Quality Estimation

In the previous chapter, an ASR architecture was described from signal

acquisition to output production. This chapter explores ASR quality esti-

mation (QE) by discussing the motivations, architectures and methods to

construct an efficient ASR QE system. The successive chapters (4 and 5)

will introduce two applications for ASR QE that lead to significant WER

reduction.

3.1 Introduction

In a natural language processing (NLP) system, the quality of the output

can be addressed from different aspects. For instance in machine transla-

tion, three aspects for the translation quality can be considered: fluency,

adequacy and complexity (Camargo de Souza, 2016). These factors can be

extended to automatic speech recognition as well. Therefore, a recognition

is:

• fluent when it conforms the syntax and grammar of the desired lan-

guage;

• adequate when it conveys the same meaning as its source and
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• complex when the source signal is difficult to be recognized, because

of noise, echo, reverberation, accent, etc.

The evaluation methods for NLP systems can be categorized into four

groups, based on availability of information resources:

Manual reference. When the manual reference is available, system

performance can be evaluated simply by aligning the output with the ref-

erence. This alignment is usually measured by a metric such as word

error rate (WER) 1 (Jelinek, 1997) in ASR, translation error rate (TER) 2

(Snover et al., 2006) and bilingual evaluation understudy (BLEU) 3 (Pap-

ineni et al., 2002) in machine translation.

Confidence measure (CM). When there is no manual reference avail-

able, but the decoding information (such as word graphs) is available, then

CM can indicate, to some extent, the quality of the output (§2.5.2). This

measure is a function of input, output and the decoder information and it

is usually between 0 and 1. CM shows how confident is the NLP system

about the generated output.

Confidence estimation (CE). When there is no manual reference

available, but the decoding information is available, and in addition, an

external source of knowledge such as part-of-speech tag is accessible, then

the confidence measure can be estimated by an external model (Gandrabur

et al., 2006).

Quality estimation (QE). When neither the manual reference nor the

decoding information is available, then the quality of the NLP system can

1The word error rate (WER) is the minimum edit distance between an hypothesis and the reference

transcription. Edit distance is calculated as the number of edits (word insertions, deletions, substitutions)

divided by the number of words in the reference.
2TER computes the minimum amount of edit operations (insertions, deletions, substitutions and shifts

of words) required to transform the translated segment into the reference segment divided by the average

number of words in the reference(s)
3BLEU is a simple metric that matches different n-gram sizes between the MT output and one or

more references.
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be estimated using an external model with features extracted from inputs

and outputs. QE focuses on estimating absolute measures of quality with-

out access to the internal knowledge sources. This topic has been widely

studied in many NLP tasks. For example, in machine translation (MT),

QE with the goal of bypassing the need of human-created reference trans-

lations has motivated a large body of research. The motivations (cost effec-

tive quality prediction at run-time) and the methods (supervised learning,

either as regression or multi-class classification) are, indeed, the same in

all NLP tasks. For a complete overview of the current approaches to MT

QE, the reader is referred to the comprehensive overviews published within

the yearly Workshops on Statistical Machine Translation (Callison-Burch

et al., 2012; de Souza et al., 2013, 2014; Bojar et al., 2015, 2016) and to

the works dealing with quality prediction at word level (Ueffing and Ney,

2007; Bach et al., 2011), sentence level (Specia et al., 2009) and document

level (Soricut and Echihabi, 2010).

Napoles et al. (2016) investigates the utility of grammatically-based,

reference-less QE metrics for evaluation of grammatical error correction

(GEC) systems. GEC systems strongly rely on manual references. The

authors show that these QE metrics correlate very strongly with human

judgments and they are competitive with the leading reference-based eval-

uation metrics.

Another field, in which QE has been successfully used is automatic

speech recognition (Negri et al., 2014; Ng et al., 2015a,b). In spite of years

of study on ASR evaluation metrics, confidence measure and confidence

estimation, ASR QE has not been investigated sufficiently. Negri et al.

(2014) introduced ASR QE as a WER prediction problem. They analyse

different learning algorithms and features in various testing conditions. In

the successive sections, we focus on ASR QE and we review the recent

progresses.
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The current chapter, as the core of this thesis, describes the ASR QE

problem, the features and the learning algorithms. In §3.2, we describe the

structure of an ASR QE system. §3.3 introduces the features suitable for

training the QE models. Then, we explain the learning algorithms for two

different scenarios. The first one is dedicated to QE for single hypothesis

and it mainly discusses about word error rate prediction at sentence-level

(§3.4). The second one describes QE for multiple hypotheses and it refers

to the condition in which there are several transcription channels, e.g. gen-

erated by different ASR systems or several recording microphones (§3.5).

The performance of the proposed ASR QE system is evaluated through

several experiments in §3.7.

3.2 ASR Quality Estimation (ASR QE)

Everyday, million hours of speech data including TV programs, YouTube

videos, meetings, telephone conversations are automatically transcribed

into text by ASR systems. A large amount of these texts cannot be rated

because:

• the manual references are not available;

• hand-craft evaluation is too costly in terms human source;

• although one can approximately assess the quality of the ASR output

through the confidence measure (§2.5.2), in many ASR applications,

especially the commercial ones the confidence measure and the inner

information of the recognizer are not provided4.

The above mentioned issues motivate the need for an automatic ASR

evaluation algorithm that is reference-free and confidence-independent.
4Consider, for instance, the explosion of captioned YouTube videos available on the Web. As an-

nounced by Google, in 2012 about 157 million YouTube videos in 10 languages already featured captions

generated by a black-box ASR system (source: http://goo.gl/5Wlkjl).
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Negri et al. (2014) propose a supervised regression algorithm to predict the

WER of automatically transcribed audio recordings. The authors analyse

the capability of different learning algorithms with different features to pre-

dict sentence-level WER scores. They show that even in difficult testing

conditions where the training and test data are from different domains,

and also the ASR decoder information is not accessible, they can closely

approximate the true WER, by using suitable regression models, namely

extremely randomized tree (XRT) (Geurts et al., 2006) and appropriate

feature sets that are described in §3.3.

de Souza et al. (2015) explores ASR QE by focusing on the problem

of domain mismatches between training and test data. Indeed, as pointed

out by (Negri et al., 2014), simple supervised learning methods are very

sensitive to large variations in the distribution of the instances in the two

sets (both at the level of labels and at the level of features). The proposed

solution relies on multitask learning to train robust models that exploit

the similarities and differences between possibly related tasks, transferring

knowledge across them. Results show that the approach is able to take

advantage of data coming from heterogeneous domains and it significantly

improves over single-task learning baselines, both in regression and in clas-

sification. These findings suggest the reliability of ASR QE in particularly

challenging test conditions.

The contributions of this thesis make significant extensions on ASR QE

by:

• adding word-level features inspired by error detection tasks (Goldwa-

ter et al., 2010; Tam et al., 2014);

• proposing machine-learned ranking (MLR) algorithms (Hang, 2011;

Clemencon et al., 2013) for multiple hypotheses scenario;

• introducing novel applications of ASR QE to improve WER results.
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Figure 3.1 shows the architecture of an ASR QE system, starting from

feature extraction to machine learning modules. The features are extracted

from both signal and automatic transcription at sentence-level. These fea-

tures along with the corresponding true WER scores (as target values) are

used to train the QE models. The models are then applied to test feature

vectors to predict their WER scores. In the successive sections, we describe

these modules in more detail.
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Figure 3.1: The overall architecture of ASR QE.

3.3 Feature extraction

As mentioned before, one of our assumptions is that the inner informa-

tion of the ASR decoder is not available. Therefore, the only inputs to

the feature extraction module are speech signals and their corresponding

automatic transcriptions. Given these inputs, the module computes the

features that represent the quality of the transcriptions. These features

can be grouped into four major categories: signal, textual, hybrid and

word-level.

• Signal features aim to capture the difficulty of transcribing a given
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speech signal by looking at the signal as a whole. They are obtained

by analyzing the audio waveform with a window of 20ms length and

overlap of 10ms.

• Hybrid features provide a more fine-grained representation of the

difficulty of transcribing the signal by considering the time boundary

of the recognized words.

• Textual features aim to capture the plausibility (i.e. the fluency) of

a transcription.

• Word-based features aim to capture word pronunciation and recog-

nition difficulty. For each recognized word, these features are obtained

by counting the number of homophones/lexical-neighbors and by com-

puting the word-level language model probabilities. For the former,

we use a pronunciation dictionary and for the latter we use a set of n-

gram and neural network language models (Mikolov et al., 2010). Our

preliminary experiments showed that using a set of language models

trained on both in-domain and out-of-domain corpora has positive

influence in learning process (Jalalvand et al., 2015b).

A complete list of these features is reported in Table 3.1. The following

sections describe the machine learning module by taking two scenarios into

account: single hypothesis and multiple hypotheses.

3.4 Machine learning: Single hypothesis ASR QE

For this scenario, we consider two learning algorithms: regression and clas-

sification. The former aim to predict the WER of each hypothesis and the

latter aim to identify good/bad transcriptions.
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Signal

(17)

mean values of 12 Mel Frequency Cepstral Coefficients (MFCCs) removing the 0th

order coefficient is discarded (12), log energy computed on the whole segments (1),

the mean/min/max values of raw energy (3), total segment duration (1).

Textual

(10)

number of words (1), LM log probability (1), LM log probability of part of speech

(POS) (1), log perplexity (1), LM log perplexity of POS (1), percentage (%) of

numbers (1), % of tokens which do not contain only “[a-z]” (1), % of content words

(1), % of nouns (1), % of verbs (1).

Hybrid

(26)

signal-to-noise ratio (SNR) (1), mean/min/max noise energy (3), mean/min/max

word energy (3), (max word - min noise) energy (1), number of silences (#sil) (1),

#sil per second (1), number of words (#wrd) per second (1), #sil
#wrd (1), total duration

of words (Dwrd) (1), total duration of silences (Dsil) (1), mean duration of words

(1), mean duration of silences (1), Dsil
Dwrd

(1), Dwrd − Dsil (1), standard deviation

(std) of word duration (1), std of silence duration (1), mean/std/min/max of pitch5

(4), number of hesitations (1), frequency of hesitations (1).

Word

(22)

POS-tag/score of the previous/current/next words (6), RNNLM probabilities given

by models trained on in-domain/out-of-domain data (2), in-domain/out-of-domain

4-gram LM probability (2), number of phoneme classes including fricatives, liquids,

nasals, stops and vowels (5), number of homophones (1), number of lexical neighbors

(heteronyms) (1) binary features answering the three questions: “is the current word

a stop word?”/”is the current word before/after repetition?”/”is the current word

before/after silence?” (5).

Table 3.1: A complete list of 75 features for training ASR QE models.

3.4.1 Regression

This method exploits a supervised regression model to predict the WER

at sentence-level. Assume that a baseline ASR system including acoustic

model and language model is already trained on a separated training cor-

pora. This ASR system has been used to transcribe the development and

test sets. Note that this ASR system is in black-box, that is the provided

transcriptions are simply word sequences with the word level time bound-

aries. For the development set, we also have the manual reference with

which we can compute true WER scores at sentence-level. Whereas, for

the test set, there is no manual reference available. The task is to predict
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the WER of test hypotheses using a regression model that is trained on

the the results of development set.

Negri et al. (2014) compares two regression models based on support

vector regression (SVR) (Smola and Schölkopf, 2004) and extremely ran-

domized tree (XRT) (Geurts et al., 2006):

• SVR. With this model, the goal is to find a function that yields a

small deviation from the true WER for all the development data, and

at the same time, this function must be as flat as possible (Smola and

Schölkopf, 2004).

• XRT is a tree-based ensemble method for supervised classification

and regression6. In XRT, each tree can be parametrized differently.

When a tree is built, the node splitting step is done by picking the

best split among a random subset of the input features. The results of

the individual trees are then combined by averaging their predictions.

The hyper-parameters of both SVR and XRT models are optimized

using randomized search (Bergstra and Bengio, 2012). In the experiments,

we use both learning methods as implemented in the Scikit-learn package

(Pedregosa et al., 2011).

3.4.2 Classification

Instead of assigning continuous numbers (i.e. WERs) as the labels, an

alternative approach makes use of explicit good/bad labels. This has the

advantage of avoiding the user, the burden of interpreting scores in the [0,

1] interval. In particular, binary quality predictions would help in tasks

like: i) deciding if an utterance in a dialogue application has been correctly

recognized, ii) deciding if an automatic transcription is good enough for

6XRT has been also successfully used for MT quality estimation (de Souza et al., 2013; C. de Souza

et al., 2014).

33



3.4. MACHINE LEARNING: SINGLE HYPOTHESIS ASR QE

the corresponding audio recording or if it needs manual revision (e.g. in

subtitling applications), iii) selecting training data for acoustic modelling

based on active learning (Riccardi and Hakkani-Tur, 2005), and iv) retriev-

ing audio data with a desired quality for subsequent processing in media

monitoring applications.

In (Zamani et al., 2015), two classification strategies are experimented.

The first strategy, i.e. classification via regression, represents the easi-

est way to adapt the method proposed in (Negri et al., 2014). It fits a

regression model on the original training instances, applies it to the test

data, and finally maps the predicted regression scores into good/bad labels

according to a threshold τ . The second strategy, i.e. standard binary clas-

sification, can be implemented by labeling the training data into good/bad

instances according to τ , training a binary classifier on such data, and

finally applying the learned model on the test set.

Both strategies have pros and cons that are worth to consider. On one

side, classification via regression directly learns from the WER labels of

the training samples. In this way, it can effectively model the instances

whose WERs are far from the threshold τ , but at the same time, it is less

effective in classifying the instances with WER values close to τ . More-

over, in case of skewed label distributions, its predictions might be biased

towards the average of the training labels. Nevertheless, since such map-

ping is performed a posteriori on the predicted labels, the behaviour of the

model can be easily tuned with respect to different user needs by varying

the value of τ . On the other side, standard classification learns from binary

labels obtained by mapping a priori the WER labels into the two classes.

This means that the behaviour of the model cannot be tuned with respect

to different user needs once the training phase is concluded (to do this, the

classifier should be re-trained from scratch). Also, standard classification

is subject to biases induced by skewed label distributions, which typically
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results in predicting the majority class. To cope with this issue, Zamani

et al. (2015) applies instance weighting (Veropoulos et al., 1999) by as-

signing to each training instance a weight, computed by dividing the total

number of training instances by the number of instances belonging to the

class of the given utterance.

Since classification via regression and standard classification are po-

tentially complementary strategies, Zamani et al. (2015) also investigates

the possibility of joint contribution of the two strategies. To this aim, a

stacking method (Wolpert, 1992) is used that consists in training a meta-

classifier on the predictions returned by an ensemble of base classifiers. To

do this, training data is divided in two portions. One is used to train the

base estimators; the other is used to train the meta-classifier. In the eval-

uation phase, the base estimators are run on the test set, their predictions

are used as the features for the meta-classifier, and its output is returned

as the final prediction.

3.5 Machine learning: Multiple hypotheses ASR QE

In many ASR scenarios, there are several automatic transcriptions for a

single utterance. These transcriptions can be produced by several ASR

engines (Basson et al., 2003; Jalalvand et al., 2015b), by several micro-

phones (Barker et al., 2015; Vincent et al., 2013; Barker et al., 2013) or

a mixing of both. For example, in IWSLT2013 workshop7 that was ded-

icated to spoken language translation, the ASR submissions from all the

participants were combined together, in order to provide the data for the

machine translation track. In Chapter 5, it will be shown that ASR QE

can improve the combination process, by automatically ordering the input

7The International Workshop on Spoken Language Translation (IWSLT – http://workshop2013.

iwslt.org/) is a yearly workshop associated with evaluation campaign on spoken language translation.
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components according to their predicted quality.

Two strategies for ranking multiple hypotheses using ASR QE are in-

vestigated in this chapter:

• ranking by regression and

• machine-learned ranking.

3.5.1 Ranking by regression

The predicted WER scores, generated by the regression models, can be

used not only as a measure of quality for automatic transcriptions, but

also for ranking the multiple hypotheses. Ranking by regression tries to

predict the WER of each hypothesis, independently from the others. Ex-

periments show that ranking by regression is able to predict the order of

the hypotheses with a strong correlation to the oracle orders (see §3.7.2).

3.5.2 Machine-Learned Ranking

A more effective ranking strategy is based on machine-learned ranking

(MLR) algorithms that are widely exploited in information retrieval and

question answering tasks (Cao et al., 2007; McFee and Lanckriet, 2010;

Clemencon et al., 2013).

MLR performs a pairwise comparison between the candidates (Cao

et al., 2007). For each pair of automatic transcriptions, it processes the

corresponding feature vectors and decides to place one transcription ahead

of the other, returning a score for this decision. Thanks to this score, the

algorithm is able to rank more than two candidates.

In the experiments reported in this chapter, we compare two ranking

models. The first one, called RANKNET (Burges et al., 2005), makes use

of neural networks. The second one makes use of random forest (Jiang,

2011) and it is based on training multiple decision trees and ensemble.
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To train the ranking models, the samples are provided as< features,RANK >

tuples. RANK labels are computed with respect to the true WER of all

hypotheses corresponding to each utterance. The lower WER, the lower

RANK value. Note that, in this case the issue of tied ranks arises. This

issue is well addressed in the experiments in Chapter 5.

3.6 Evaluation metrics

The hyper-parameters of the prediction models such as the number of trees,

the number of leaves per tree and feature selection rate in XRT models must

be tuned with regard to appropriate metrics.

For the models in single hypothesis ASR QE, mean absolute error (MAE)

between the predicted WERs (predWER) and true WERs (trueWER) is

used. The lower MAE, the closer predicted scores to the true WERs. Given

K utterances, MAE is computed by:

MAE =
1

K
×

K∑
k=1

|predWERk − trueWERk|

For the models in multiple hypotheses ASR QE, normalized discounted

cumulative gain (NDCG) metric is used. The higher NDCG, the stronger

correlation between predicted and true rankings (Järvelin and Kekäläinen,

2002).

NDCG =
1

K

K∑
k=1

NDCGk@L

where, NDCGk@L =
DCGk@L

IDCGk@L

where, DCGk@L =
L∑
l=1

2rell − 1

log2(l + 1)
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The NDCG score on the whole dataset is computed by averaging the

NDCGk@L scores of all the utterances. L is the number of transcriptions

channels (like the number of ASR systems or the number of microphones).

NDCGk@L is obtained by dividing the DCGk@L score by the ideal score,

IDCGk@L, which is resulted by oracle ranking. To compute DCGk@L,

we define rell = L − predRANK. The reason is that in IR field, rell

refers to the relevance of the item predicted at l-th position. While in our

experiments, the item with the lower predicted rank represents the lower

WER, and therefore, it indicates higher relevance to the reference sentence.

3.7 Experiments

The performance of the proposed features and learning algorithms are eval-

uated on data collected for the 3rd CHiME challenge 8. This audio database

consists of English sentences from Wall Street Journal corpus, uttered by

four speakers in four noisy environments: bus, cafe, pedestrian area, and

street junction. These utterances are recorded by five microphones placed

on the frame of a tablet PC (a sixth one is placed on the back, mainly

for recording background noise). Development and test sets contain 1,640

and 1,320 sentences, respectively. Automatic transcriptions are produced

by a baseline ASR system, provided by the task organizers, which uses

Kaldi toolkit (Povey et al., 2011). For the details of the baseline ASR

system, please refer to (Barker et al., 2015). Note that in all the experi-

ments reported here, the recognition is performed with this ASR system

and the only available inputs are the speech signals and their automatic

transcriptions.

The first goal is to assess ASR QE performance in single hypothesis

scenario (i.e. WER prediction), when only one of the microphones (the

8http://spandh.dcs.shef.ac.uk/chime_challenge/chime2015/data.html
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5-th one) is used. The second goal is to assess ASR QE performance in

multiple hypotheses scenario (i.e. ranking prediction), when the signals

from all 5 microphones are automatically transcribed.

3.7.1 Single hypothesis

In this scenario, we train the regression models (SVR and XRT) on a

training set formed by automatic transcriptions of the development ut-

terances (1640 utterances). Three sets of features are used: SIG, TEX

and SIG+TEX. SIG contains the signal features, described in Table 3.1.

TEX is consisting of all the textual, hybrid and word-level features, again

described in Table 3.1. Finally SEG+TEX contains both groups. The

models are then used to predict the WERs of the test set formed by 1320

utterances. More detail about CHiME-3 dataset including the individual

WER results of each microphone can be found in §4.4.1. The results are

compared using MAE measure (Equation 3.6). The lower MAE indicates

that the predicted WERs are closer to the true ones.

Model-Feature SIG TEX SIG+TEX

Baseline 32.1

SVR 22.9 24.7 20.3

XRT 20.8 22.1 18.3

Table 3.2: MAE (↓) results using regression models in single hypothesis mode.

Table 3.2 shows the MAE results of different feature groups with both

XRT and SVR learning algorithms. The baseline result is obtained by

assigning the average WER of the development instances, equally to all the

test instances. In terms of MAE, SVR model with SIG features already

outperforms the strong baseline. Using TEX features also improves over

the baseline, though less than the SIG ones. A salient improvement is

achieved by combining the two groups of features, indicating that they
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carry complementary information. Finally by replacing SVR with XRT

algorithm, MAE reduction of 2% is achieved. This is in-line with the

results reported by Negri et al. (2014), where they also conclude that the

XRT algorithm outperform SVR for this task.

The best MAE result (18.3%), obtained by XRT models with all avail-

able features (SIG+TEX) is indeed 13.8 absolute points better than the

considered baseline. This confirms the efficacy of the proposed model and

features in case of single hypothesis ASR QE. Performing this last exper-

iment using the TranscRater9 toolkit on a machine with eight Intel Xeon

E3-1270 x3.40GHz processors takes 4’:15” time. This time includes 3”:30’

for extracting all the features from 1640 training and 1320 test utterances

and 45” for training and testing the XRT model with 100 iterations. It

is worth mentioning that the feature extraction time is highly dependent

on the number of signals and the size of the language models for extract-

ing the features. For these experiments, we use four language models: an

RNNLM trained on 37MW corpus provided by the CHiME-3 organizers,

an RNNLM trained on a 10MW corpus, automatically selected from news

data by using the training references as the seeds, a 4-gram LM trained on

WSJ corpus and a 4-gram LM trained on the mentioned 37MW corpus.

3.7.2 Multiple hypotheses

In this mode we use all 5 microphones provided in CHiME-3 dataset. The

QE performance is measured by the NDCG score (Eq. 3.6). The higher

NDCG value, the better ranking performance. The baseline results are

computed by averaging the NDCG scores obtained from one hundred iter-

ations of randomly ranked instances.

The results reported in Table 3.3 have been achieved using ranking by

regression §(3.5.1). In this method, the regression models are trained on

9https://github.com/hlt-mt/TranscRater
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Model-Feature SIG TEX SIG+TEX

Baseline 73.6

SVR 81.0 81.7 84.1

XRT 80.7 83.3 85.0

Table 3.3: NDCG (↑) results using regression models in multiple hypotheses mode.

1640*5=8200 samples10) from transcriptions of development set and then

we apply them to the transcriptions of the test set (1320*5=6600 samples).

Afterwards, the hypotheses are ranked according to the predicted values

and the NDCG score is computed. As expected, XRT outperforms SVR

and it shows the best performance when all the features are used. The

large NDCG improvement over the baseline (+11.4) seems to make this

combination particularly suitable for ranking by regression.

Model-Feature SIG TEX SIG+TEX

Baseline 73.6

RANKNET 83.1 85.5 87.5

RF 84.6 86.6 88.2

Table 3.4: NDCG (↑) results using ranking models in multiple hypotheses mode.

The results reported in Table 3.4 show the performance of machine-

learned ranking approaches (§3.5.2). As the ranking algorithms, RANKNET

and random forest (RF) are utilized, both are implemented in (Dang, 2013).

RANKNET with SIG features already improves over the baseline (9.5% ab-

solutely better than the baseline). TEX features results 85.5% NDCG score

which is 0.5% better than the best result obtained with ranking by regres-

sion (Table 3.3). Combination of all features makes further improvement

(87.5%), showing once again the complementarity between the SIG and

textual features. By replacing RANKNET with RF, we observe consistent

improvement in terms of NDCG score. The best result (88.2%), obtained

10As we use 5 different microphones that consequently provide 5 different transcriptions per utterance
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by RF models with all features (SIG+TEX) is indeed +14.6% absolutely

better than the baseline, 3.2% better than ranking by regression and 0.7%

better than RANKNET. The main reason that the ranking algorithms are

better than ranking by regression is in their capability to perform pairwise

comparison.

The next chapters show how ASR QE can helps in reducing WER results

in both single and multiple hypotheses scenarios.

3.8 Summary

Automatic speech recognition quality estimation (ASR QE) was studied

thoroughly in this chapter. ASR QE was addressed as an alternative for

confidence estimation (CE) when the ASR decoder is not known and de-

coding information such as word graph, N-best lists, acoustic model and

language model scores are not available. We described ASR QE from both

feature engineering and learning algorithms perspectives. We introduced

four sets of features including signal-based, textual-based, hybrid and word-

level. These features are extracted from signal and text (automatic tran-

scriptions) representing the difficulty of the recognition. We experimented

different features and learning algorithms in two scenarios: single hypoth-

esis scenario and multiple hypotheses. For single channel (i.e. when there

is only one automatic transcription for each utterance), we showed that

the quality can be reasonably estimated through WER prediction using

appropriate regression models based on extremely randomized tree (XRT).

For multiple channel (i.e. when there are several transcriptions for each

utterance, coming from several ASR systems or several microphones), we

showed that machine-learned ranking (MLR) methods based on random

forest (RF) provides a higher correlated ranking.
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Chapter 4

Single Hypothesis ASR QE for

Acoustic Model Adaptation

Chapter 3 introduced ASR QE in two scenarios based on the number of

transcription channels: single hypothesis and multiple hypotheses. This

chapter describes a novel application of single hypothesis ASR QE to im-

prove unsupervised acoustic model adaptation. The method is based on

applying pre-trained QE models on the output of the first decoding pass

and use the QE results to inform the adaptation process about the quality

of each adaptation sample. The next chapter is dedicated to the applica-

tion of multiple hypotheses ASR QE.

4.1 Introduction

Acoustic model adaptation is necessary, in automatic speech recognition,

because of the mismatches between the training and test sets. These mis-

matches are mainly due to speaker and accent variation, topic domain and

like on. Acoustic model adaptation is a method to increase the robustness

of the system towards these variations. Selecting the proper adaptation

technique, however, depends on the size of the available adaptation data

and the type of acoustic model.
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This chapter explores different ways to enhance the adaptation method

based on Kullback-Leiber divergense (KLD) (Yu et al., 2013) with auto-

matic ASR quality predictions, described in §3.4. We focus on two alter-

native solutions for enhancing the adaptation:

1. weighting the KLD regularization term with coefficients that depend

on the predicted quality of each transcribed sentence.

2. filtering the adaptation set by removing the utterances that, in terms

of predicted quality, seem to be less reliable.

This is the first time that QE-based approaches are used for unsuper-

vised DNN adaptation. The main contributions of this chapter are:

• a novel application of single hypothesis ASR QE to acoustic model

adaptation;

• an extension to the KLD regularization approach for unsupervised

DNN adaptation (Yu et al., 2013), which could be easily integrated in

the KALDI speech recognition toolkit (Povey et al., 2011);

• significant improvement over hybrid DNN-HMM acoustic models.

After a short review on acoustic model adaptation methods in §4.2,

a modified version of DNN-HMM acoustic model adaptation technique

based on KLD regularization is presented in §4.3. The proposed method

is evaluated through a range of experiments in §4.4. §4.4.3 includes the

implementation details and §4.5 discusses the results. Finally in §4.7 we

conclude this chapter.

4.2 Related work

Two popular adaptation techniques for GMM-HMM acoustic models (§2.3)

are maximum likelihood linear regression (MLLR) and maximum a poste-
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riori (MAP) (Wang et al., 2003b). MLLR computes a set of transformation

matrices that will reduce the mismatch between an initial model and the

adaptation data. In particular, MLLR estimates a set of linear transfor-

mations for the mean and variance parameters of the GMMs (Young et al.,

2002). Each transformation matrix is applied on a specific class of pa-

rameters. MAP, instead, re-estimates the parameters of the model using

the adaptation data. The sample mean/variance values are calculated over

the adaptation data. and then the new mean/variance parameters of the

model are updated toward the sample values. If the frequency of a phone is

insufficient in the adaptation data, then the model of that phone does not

change during adaptation (Wang et al., 2003b). Therefore, MAP requires

larger adaptation data than MLLR.

Neither MAP nor MLLR are not completely suitable for DNN-HMM

models, because these models usually contain a huge number of parameters

to be adapted. A DNN-HMM acoustic model usually contains several

hidden layers each including thousands of hidden neurons. This number of

parameters makes the adaptation process a challenging task.

Several adaptation techniques have been proposed for artificial neural

networks employed in ASR hybrid systems. These techniques are mostly

based on the estimation of linear transformations for different layers in-

cluding input, output or hidden layers (Gemello et al., 2007; Abrash et al.,

1995; Neto et al., 1995; Li and Sim, 2010; Siniscalchi et al., 2013). Feature

discriminative linear regression (fDLR) (Seide et al., 2011) and output-

features discriminative linear regression (oDLR) (Yao et al., 2012) are two

of these techniques. Regardless of the layer to which the transformation is

applied, in these approaches, only the weights of the linear transformations

are updated in order to optimize an objective function that is computed

on the adaptation data. In this way, the risk that DNN overfits on the

adaptation data is reduced.
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A variant of fDLR is described in (Huang et al., 2014), proposing to

adapt the DNN parameters within a maximum a posterior (MAP) frame-

work. Basically, the method adds a term representing the prior density

of the linear transformation weights to the objective function. This ap-

proach is demonstrated to be equivalent to L2 norm regularization (Li and

Bilmes, 2006), if the prior distribution of transformation weights is Gaus-

sian N (0, I). In general, adding a regularization term to the objective

function has been proven to be effective for reducing the risk of overfitting.

Another adaptation technique that is applied to the input features is fM-

LLR (Parthasarathi et al., 2015). The difference between this method and

fDLR relates to the criterion they adopt. fMLLR maximizes the likelihood

of the adaptation data, while fDLR optimizes a discriminative criterion

computed on the adaptation (e.g. it minimizes the mean squared error be-

tween target and actual output-state network distribution). Parthasarathi

et al. (2015) observe that on clean speech data:

• filter-bank features and fMLLR features achieved comparable perfor-

mance, and

• only the combination of the two types of features, either at an early

or late fusion stage, provided significant WER reductions.

We investigate the impact of both filter-bank and fMLLR features on

our proposed procedure for KLD adaptation.

In the context of speaker-adaptive training (SAT) via fMLLR (Gales,

1998), the recent approaches make use of i-vectors (Kenny et al., 2008)

as speaker representation to perform acoustic feature normalization. Miao

et al. (2015) train a neural network to convert i-vectors to speaker-dependent

linear shifts and generate speaker-normalized features for training and de-

coding with SAT-DNN models. Garimella et al. (2015) proposes to process

HMM-based i-vectors with specific hidden layers of DNN, before combin-
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ing them with hidden layers. Karanasou et al. (2015) incorporates prior

statistics (derived from gender clustering of training data) into i-vectors

estimation. They show significant performance improvement when the ap-

proach is used for DNN adaptation in a hybrid ASR system.

In (Yu et al., 2013), Kullback-Leibler divergence (KLD) between the

original distribution of the DNN outputs and the corresponding distribu-

tion estimated on the adaptation set is considered as regularization term.

Yu et al. (2013) reports significant WER reduction compared to fDLR

transformation. The weight assigned to the regularization term in the ob-

jective function is an important parameter that indicates when to use reg-

ularized learning. In this chapter, we maneuver on modifying this weight

by means of predicted sentence-level WER scores.

Rather than the algorithm of the adaptation technique, the character-

istics and quality of the adaptation data play a fundamental role. Pitz

et al. (2000) shows that significant WER reduction is achievable by using

confidence measures to remove the low confidence frames from the adap-

tation data. Thomas et al. (2013) propose an automatic sentence selection

method based on different types of confidence measures for semi-supervised

training of DNNs in a low-resource setting. However, the confidence mea-

sures are usually biased towards the decoder. From this point of view,

they are not reliable enough for data selection. To address this issue, in

this chapter we exploit single hypothesis ASR QE approach (§3.4) as a

reliable data selection method to build the adaptation data.

4.3 KLD adaptation for DNN-HMM

KLD based adaptation can be implemented by adding a regularization

component to the loss function in Equation 2.6. Yu et al. (2013) proposes

to use the Kullback-Leibler divergence between the original distribution
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and the adapted one as the regularization term.

Adding KLD regularization (that is computed on the adaptation data)

to the cross-entropy formula results in the following objective function:

D(
∗
p, p) = (1− α)C(p̂, p) + α

1

N

N∑
t=1

I∑
i=1

∗
p[si|ot] log p[si|ot] (4.1)

C(p̂, p) is the original objective function (Equation 2.6); ot∈[1,N ] are the ob-

servation frames in the adaptation data;
∗
p[si|ot] is the posterior probability

computed with the original DNN and α is the regularization coefficient. As

reported in (Yu et al., 2013), Equation 4.1 can be rewritten as follows:

D(
∗
p, p) =

1

N

N∑
t=1

I∑
i=1

P [si|ot] log p[si|ot] (4.2)

where

P [si|ot] = (1− α)p̂[si|ot] + α
∗
p[si|ot] 0 ≤ α ≤ 1 (4.3)

Equation 4.3 states that KLD regularization can be implemented through

cross-entropy minimization between a new target probability distribution

P and the current probability distribution p. The new target distribution

is obtained as a linear interpolation of the original distribution
∗
p and the

distribution p̂ computed via forced alignment with the adaptation data.

Note that, in Equation 4.3, α = 0 is equivalent to do a “pure” retraining

of the DNN over the adaptation data (i.e. completely trusting on the new

data), while α = 1 means that the output probability distribution of the

adapted DNN is forced to follow the original DNN (i.e. completely trusting

the original model). Usually, the value of α is estimated on a development

set, together with the value of learning rate, and it does not change across

the test utterances. One can expect that the optimal value of α is close
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to 0 when the size of the adaptation set is large and the transcriptions

of the adaptation sentences are not affected by errors (i.e. in supervised

conditions). Otherwise, when the size of the adaptation set is small and/or

its transcription can be affected by errors (i.e. in the case of unsupervised

adaptation), the optimal value of α should increase.

Unlike other adaptation methods, KLD-based regularization binds di-

rectly the DNN output probabilities rather than the model parameters.

In this way, the method can be easily implemented with any software tool

based on back-propagation (e.g. the KALDI toolkit), with no modification.

4.3.1 Soft DNN adaptation

Yu et al. (2013) have shown a dependency of the optimal value of α on the

size of the adaptation data. However, we believe that the optimal value of

α depends not only on the size of adaptation data, but also on their quality.

Starting from this intuition, we propose to compute α on a sentence basis,

as a function of sentence-level WERs. Since in the real-life applications,

the manual references are not available to compute the true WERs, we

take advantage of automatic WER prediction using single hypothesis ASR

QE method (§3.4).

In the proposed approach, the value of α is dynamically changed for

each adaptation sentence. For example, for the k-th sentence, the value of

α is defined as:

α(k) = pWERk, 1 ≤ k ≤ K (4.4)

where, 0 ≤ pWERk ≤ 1 is an automatic prediction of the WER for the k-

th sentence and K is the total number of adaptation sentences. Note that

in this method, if the value of K is small and pWERk
∼= 0,∀k, the original

distribution
∗
p, in Equation 4.3, is weighted by α ∼= 0 (i.e. completely
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trusting the adaptation data), augmenting the risk that the adapted DNN

overfits the adaptation data. To avoid this effect we can simply add a bias

to pWER as follows:

α(k) = β + (1− β)× pWERk , 1 ≤ k ≤ K , 0 ≤ β ≤ 1 (4.5)

In the above equation, β = 0 yields α(k) = predWERk, i.e. the reg-

ularization coefficient depends only on the sentence transcription quality;

β = 1 yields α(k) = β, i.e. the regularization coefficient remains fixed

over all adaptation sentences (this is the case of Equation 4.3). Therefore,

optimizing over β allows us to control the trade-off between the quality of

the supervision and the size of the adaptation set.

“soft” adaptation refers to DNN adaptation based on Equation 4.5, since

the coefficients vary sentence by sentence, whereas “hard” adaptation refers

to the method based on Equation 4.3, since the coefficients are fixed.

4.3.2 QE-informed data selection

The second usage of ASR QE is to select the adaptation data. This is

mainly applicable to the unsupervised condition, when the manual refer-

ence of the adaptation data is not available. One example is to adapt the

acoustic model to the test data, after the first decoding step. This is a

common try to push the acoustic model towards the test domain. For this

purpose, the test data is first recognized by the baseline acoustic model,

then the QE procedure selects the hypotheses with high qualities (lower

predicted WER) and finally the acoustic model is adapted to the selected

data.

We use a similar method to the one described in §3.4 based on XRT

regression models to predict the WER of the hypotheses after the first de-

coding step. Note that in this task, the acoustic models are known, so that
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the glass-box features are available to train the QE models. Therefore, we

use a combination of textual (black-box) and ASR decoder (glass-box) fea-

tures to predict the sentence-level WER values. The black-box features are

mainly the ones in Table 3.1. The glass-box features are mostly extracted

from the confusion networks that are in turn obtained from the word lat-

tices. Table 4.1 shows all the features that are used in the experiments.

ASR (9) From each CN bin: the log of the first word posterior (1), the log of the first

word posterior from the previous/next bin (2), the mean/std/min/max of the

log posteriors in the bin (4), if the first word of the previous/next bin is silence

(2)

Sentence

level (10)

From each transcribed sentence: number of words (1), LM log probability (1),

LM log probability of part of speech (POS) (1), log perplexity (1), LM log

perplexity of POS (1), percentage (%) of numbers (1), % of tokens which do

not contain only “[a-z]” (1), % of content words (1), % of nouns (1), % of

verbs (1).

Word

level (22)

From each transcribed word: Part-of-speech tag/score of the previ-

ous/current/next words (6), RNNLM probabilities given by models trained

on in-domain/out-of-domain data (2), in-domain/out-of-domain 4-gram LM

probability (2), number of phoneme classes including fricatives, liquids, nasals,

stops and vowels (5), number of homophones (1), number of lexical neighbors

(heteronyms) (1) binary features answering the three questions: “is the cur-

rent word a stop word?”/“is the current word before/after repetition?”/“is

the current word before/after silence?” (5).

Table 4.1: 41 features used for sentence-level WER prediction.
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4.4 Experiments

4.4.1 Speech corpora

The speech data used in these experiments are collected for the 3rd CHiME

challenge and it is publicly available.1 For this dataset, six different mi-

crophones are placed on a tablet PC to record sentences of the Wall Street

Journal (WSJ) corpus, uttered by noisy speakers in four different environ-

ments: bus, cafe, pedestrian area and street junction. We adopt three data

from CHiME-3:

• tr05 real and tr05 simu used to train the baseline acoustic model;

• dt05 real used to train the QE model and

• et05 real used to test and compare the WER results.

tr05 real consists of 1,600 sentences uttered by 4 speakers in ”real“

noisy environment and tr05 simu consists of 7,138 sentence uttered by 83

speakers corrupted by ”simulated“ noise. dt05 real (DT05) contains 1,640

sentences uttered by four different speakers. et05 real (ET05) contains

1,320 sentences uttered by four other speakers. It is worth mentioning

that, there is no speaker overlap between training, development and test

sets. The number of utterances in the evaluation corpora is equally dis-

tributed among speakers and types of noise, that is, every speaker uttered

the same number of sentences in each of the four noisy environments. In

both training and evaluation data sets, utterance segmentation is done

manually and the corresponding speaker identity is annotated. Therefore,

no automatic speaker diarization module is employed in the experiments.

Table 4.2 shows the statistics of these data2.
1http://spandh.dcs.shef.ac.uk/chime_challenge/download.html.
2In addition, two parallel sets of “simulated” noisy utterances (namely dt05 simu and et05 simu) were

generated as previously described. Though, we use only the real noisy data.
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tr05 simu tr05 real dt05 real et05 real

duration 15h9m 2h54m 2h16m 1h50m

# sentences 7,138 1,600 1,640 1,320

# words 136.5k 28.3k 27.1k 21.4k

dict. size 8.9k 5.6k 1.6k 1.3k

# speakers 83 4 4 4

# noises 4 4 4 4

Table 4.2: Statistics of CHiME-3 training, development and test audio data.

4.4.2 ASR system

The architecture of the ASR systems are depicted in Figures 4.1 and 4.2.

The former uses filter-bank features, while the latter uses fMLLR nor-

malized features. The systems are mainly based on KALDI CHiME-3 v2

package, described in (Hori et al., 2015), with the addition of a second

decoding pass that performs unsupervised DNN adaptation as described

in §4.3.

TRAIN

5k

WSJ0

+ SELECTION

ASR−QE

AM LM

unsupervised transcription

GMM + DNN DNN
DNN

fbank
BEAMFORMIT

CH5

CH6

CH4

CH3

CH1

ADAPTATION

2−PASS1−PASS

Figure 4.1: ASR architecture based on the KALDI CHiME-3 package with standard

filter-bank features, plus QE hypotheses sorting and DNN adaptation.

A simple delay-and-sum (DS) beamforming consisting in uniform weight-

ing of the rephased signals of the 5 frontal microphones is performed to

enhance the quality of the signals. For this purpose the well known Beam-
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TRAIN

5k

WSJ0

+ SELECTION

ASR−QE

AM LM

DNN
DNN

mfcc
BEAMFORMIT

CH5

CH6

CH4

CH3

CH1

ADAPTATION

2−PASS1−PASS

GMM FMLLR

unsupervised transcription

DNN

Figure 4.2: ASR architecture based on the KALDI CHiME-3 v2 package with fMLLR

feature plus ASR QE hypotheses selection and DNN adaptation.

formIt toolkit (Anguera et al., 2007) is exploited. After beamforming,

both filter-bank and fMLLR features are computed and processed by a

corresponding hybrid DNN-HMM system that produces the supervision

for adapting the DNN in the final decoding pass.

Filter-bank features

The employed filter-bank consists of 40 log Mel scaled filters. Feature

vectors are computed every 10ms by using a Hamming window of 25ms

length and they are mean/variance normalized on a speaker-by-speaker

basis. The baseline DNN-HMM is trained using the Karel’s setup (Vesely

et al., 2011) in KALDI. To this aim the 8,738 training utterances are

aligned to their transcriptions by means of the baseline GMM-HMM mod-

els.3 An 11-frame context window (5 frames on each side) is used as input

to form a 440 dimensional feature vector. The DNN has 7 hidden layers,

each with 2,048 neurons. The DNN is trained in several stages including

restricted Boltzmann machines (RBM) pre-training, mini-batch stochas-

tic gradient descent training, and sequence-discriminative training using

3The initial GMM system makes use of the KALDI recipe associated to the earlier CHiME challenges

(Barker et al., 2013; Vincent et al., 2013).
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state-level Minimum Bayes Risk (sMBR). Initially, the learning rate is set

to 0.008 and it is halved every time the relative difference in frame accuracy

between two epochs on a cross-validation set falls below 0.5%. A frame ac-

curacy improvement on the cross-validation set lower than 0.1% stops the

optimization. All experiments involving adaptation of the baseline DNN,

aiming at minimizing the objective function defined in Equation 4.2, are

performed according to the above recipe.

fMLLR features

For this system, 13 mel-frequency cepstral coefficients (MFCCs) are com-

puted every 10ms by using a Hamming window of 25ms length. These fea-

tures are mean/variance normalized on a speaker-by-speaker basis, spliced

by +/- 3 frames next to the central frame and projected down to 40 dimen-

sions using linear discriminant analysis (LDA). Then, maximum likelihood

linear transformation (MLLT) is applied and a single speaker-dependent

fMLLR transform is estimated and applied to train speaker-adaptively

trained (SAT) triphone HMMs.

During the first decoding pass, according to the given KALDI recipe,

the computation of fMLLR features is done in two steps. First, a word

graph is produced for each input utterance by using the baseline speaker-

independent GMM-HMM. Then, a single fMLLR transform for each speaker

is estimated from sufficient statistics collected from word graph with re-

spect to SAT triphone HMMs. These transforms are used with SAT tri-

phone HMMs to produce new word lattices. A second set of fMLLR trans-

forms is estimated from new word lattices and combined with the first set

of transforms. Finally, the resulting transforms are used to normalize the

features processed by the hybrid system in the first decoding pass of Fig-

ure 4.2. The training of the corresponding baseline DNN, as well as DNN

adaptation by KLD regularization, use the recipe adopted for filter-bank
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features.

Language models

A 3-gram language model with Kneser-Ney smoothing method for estimat-

ing back-off probabilities is used for decoding. This model is trained with

≈37M words provided by the CHiME-3 organizers. After pruning low fre-

quency words, the vocabulary size is ≈5K words. The perplexity value is

119.2, that is measured over DT05 reference transcriptions.

Although not depicted in the figure, the n-best lists generated in the

second decoding pass are rescored with a 5-gram LM and an RNNLM

included in the CHiME-3 v2 package. Both models are again trained on

≈37M words provided by the CHiME-3 organizers.

4.4.3 Experimental setup

The soft adaptation approach described in §4.3 is applied in both “ora-

cle” and “predicted” conditions. Oracle WER scores (oWER henceforth)

are computed from reference transcriptions, while predicted WER scores

(pWER) are estimated by the ASR QE system described in §4.3.2. Both

values are used as WER estimates in Equation 4.5 to compute the tar-

get probability distribution. The performance achieved by oracle sentence

WER represents the upper bound of the soft adaptation approach.

The regression models are trained on DT05 and they are tuned with

8-fold cross validation, to minimize the MAE (Equation. 3.6) between the

predicted and true WERs. 8-fold partitioning is done intentionally to avoid

speaker and sentence overlaps between training and test folds.

Table 4.3 gives the list of DNN adaptation experiments. Each experi-

ment is identified by: i) a combination of adaptation/evaluation sets; ii)

the supervision used (manual or automatic); and iii) the features employed
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(filter-bank or fMLLR normalized). For instance, the experiment named

DT05+man+fMLLR+ET05 in the first row indicates that the baseline

DNN is adapted using DT05 as adaptation set with the manual supervi-

sion and fMLLR features and it is evaluated on ET05.

type of adaptation type of features evaluation

experiment set supervision type set

DT05+man+fMLLR+ET05 DT05 manual fMLLR ET05

DT05+man+fbank+ET05 DT05 manual filter-bank ET05

DT05+auto+fMLLR+DT05 DT05 automatic fMLLR DT05

DT05+auto+fbank+DT05 DT05 automatic filter-bank DT05

ET05+auto+fMLLR+ET05 ET05 automatic fMLLR ET05

ET05+auto+fbank+ET05 ET05 automatic filter-bank ET05

Table 4.3: List of DNN adaptation experiments.

Note that DNN adaptation with manual supervision (the first two rows

of Table 4.3) is only meaningful in cross conditions, i.e. if adaptation and

evaluation sets are distinct. The automatic supervisions of the adaptation

sets (i.e DT05 or ET05, depending on the experiment type) are produced

by the first decoding pass as depicted in Figures 4.2 and 4.1. KLD regu-

larization with manual supervision is applied according to Equation 4.3.

4.5 Results

The first set of results are achieved in cross conditions, meaning that the

adaptation set is distinct from the evaluation set. The second set are ob-

tained in homogeneous conditions, i.e. when the adaptation set coincides

with the evaluation set. Finally, a discussion on data selection for estimat-

ing fMLLR transformations will conclude the section.
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4.5.1 DNN adaptation in cross conditions

In this condition, we first use all the sentences in DT05 for adapting the

DNN. Then, we use a subset of the sentences in DT05 which has been

selected automatically with regard to the lowest predicted WER scores.

Using all the adaptation utterances

Figure 4.3a shows the WER results on ET05 by varying the regularization

coefficient α in Equation 4.3, when the filter-bank features are used. The

Figure shows the results using both manual and automatic supervision.

The horizontal line in the Figure corresponds to the baseline performance.

In a similar way, the performance achieved with fMLLR features is shown

in Figure 4.3b.

As it can be seen, the use of manual supervision, or equivalently the su-

pervised adaptation, improves the performance in comparison to the base-

line, with both types of features. In both cases, there is an intermediate

optimal value of α in the interval [0, 1], indicating that we should not to-

tally trust neither the original model nor the adaptation data.4 With the

best value, we gain about 1% WER reduction, indicating the efficacy of

the interpolation procedure expressed by Equation 4.3.

The substantial increase of WER value in Figure 4.3a at α = 0 (both

for supervised and unsupervised adaptation) indicates that data overfit-

ting has probably occurred. The same behavior is not observed with

supervised adaption using fMLLR features (see Figure 4.3b, where at

α = 0 no significant performance degradation is observed). This result

can be explained by considering that fMLLR transformations allow re-

4As explained in Section 4.3, a value of α = 0 corresponds to completely ignoring the contribution of

the original DNN output distribution in the construction of the cross-entropy function (i.e. completely

trusting the adaptation data), while a value α = 1 forces the DNN parameters to follow those of the

original distribution (i.e. we completely trust the original model).
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ducing the acoustic mismatch between adaptation (DT05) and evaluation

(ET05) sets. Figure 4.3b confirms this observation, where the curve la-

belled DT05+man+fbank+ET05 is shifted towards the right part of the

graph more than the corresponding curve DT05+man+fMLLR+ET05.

This means that the adaptation procedure trusts the fMLLR normalized

features more than the filter-bank ones.

Referring to Figure 4.3b, data overfitting (at α = 0) instead occurs with

unsupervised adaptation, as if the errors in the supervision acted similarly

to an acoustic mismatch between adaptation and evaluation sets. These

outcomes motivate deeper investigation on the impact of reducing the num-

ber of erroneous automatic transcriptions on the adaptation process.

Selecting adaptation utterances

The idea is to remove the utterances whose WER is lower than 10% (the

gray line, DT05 + auto+ ∗+ ET05(oWER ≤ 10%)) from the adaptation

set (i.e. DT05 in cross condition). Then, The baseline DNN is adapted

with both hard and soft approaches (respectively Equation 4.3 and Equa-

tion 4.5). The results are shown in Figures 4.3. As it can be seen, the

selection of adaptation utterances with WER< 10% produces curves that

approach those obtained using manual supervision, showing the benefits of

reducing the transcription errors in the adaptation data.

In conclusion, DNN adaptation in cross condition can be performed

“offline” on a development corpus (DT05 in our case) and, hence, the

resulting adapted DNN can be “immediately” used in an ASR system that

employs only one pass of decoding.

4.5.2 DNN adaptation in homogeneous conditions

In this condition, the test set instances are used as the adaptation set

for the second decoding pass. For this purpose, we conduct two decoding
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Figure 4.3: WER results achieved on evaluation set ET05 as a function of the regulariza-

tion coefficient α, using as adaptation set: the whole DT05 (red and blue lines) and the

subset of DT05 with oWER ≤10% (the gray line). The green lines indicates the baseline

WER before adaptation.

passes,5 as explained in §4.4.2. The output from the first decoding pass

with the baseline DNN-HMMs provides the adaptation data for the suc-

cessive adaptation steps. Then, the adapted DNN-HMMs are exploited in

the second decoding pass to produce the final transcriptions.

Similar to the cross condition experiments, we first use all the sentences

in ET05 for adapting the DNN and then we use a subset of the sentences,

selected automatically with regard to the predicted WER scores.

Using all the adaptation utterances

The results on both development and evaluation sets, with hard and soft

adaptation strategies, are reported in Table 4.4. The numbers in parenthe-

ses show the absolute WER reduction with respect to baseline performance.

In the case of soft adaptation, we test both oracle and automatically-

predicted WERs. Similar to the results in Figure 4.3b, the performance

5These experiments were motivated by the significant performance improvement obtained in (Jalalvand

et al., 2015a) using “full” retraining of DNN in a two-pass ASR architecture.
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experiment code
Baseline

HARD ada
SOFT ada SOFT ada

(no ada) (oWER) (pWER)

DT05+auto+fMLLR+DT05 8.2 8.0 (0.2) 7.9 (0.3) 8.0 (0.2)

DT05+auto+fbank+DT05 11.1 9.5 (1.6) 9.2 (1.9) 9.3 (1.8)

ET05+auto+fMLLR+ET05 15.4 14.5 (0.9) 14.3 (1.1) 14.4 (1.0)

ET05+auto+fbank+ET05 20.9 17.7 (3.2) 17.1 (3.8) 17.6 (3.3)

Table 4.4: WER results achieved by unsupervised DNN adaptation in homogeneous con-

ditions. ada: α does not change; QE-ada (oWER): α changes from one sentence to the

other using the true WER values; QE-ada (pWER): α changes using the predicted WERs

is measured as a function of the coefficients α and β. However, for clarity

reasons, the whole set of results are not provided in Table 4.4. It mainly

contains the top WER values achieved.

Unlike the results in Figures 4.3b, experiments in homogeneous con-

ditions do not exhibit clear minimum values of the corresponding WER.

Basically, no significant WER variations are observed for both α and β

coefficients ranging in the interval [0.0 − 0.7]. The best performance is

achieved for α = β = 0.7, while for (α, β) > 0.7 the WER increases.6

In Table 4.4, it is worth noting the significant WER reductions, com-

pared to baseline, yielded by filter-bank features on both DT05 and ET05.

Although similar gains are not observed with fMLLR features, especially on

DT05 (as just pointed out above, probably due to their capability of reduc-

ing the acoustic mismatch between training and testing conditions), these

results confirm the effectiveness of the two-pass decoding method. On the

other hand, no substantial advantages are brought by the soft adaptation

approach compared to the hard one. Despite this fact, it is worth observing

6To see examples of this trend of performance the reader can refer to the Figures 4.4 and 4.5

which report the WER scores achieved with hard adaptation and fMLLR features in homogeneous

conditions (specifically, refer to the curves obtained without automatic sentence selection, respectively

DT05+auto+fMLLR+DT05 and ET05+auto+fMLLR+ET05).
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the very close performance between oracle and predicted WER estimates,

which demonstrates the efficacy of the proposed ASR QE approach.

In summary, one can learn from these experiments that:

1. DNN adaptation in homogeneous conditions with two passes of decod-

ing, using the whole set of adaptation utterances, yields performance

improvements;

2. the selection of adaptation data based on oracle WER values is effec-

tive in cross condition and

3. no significant performance gain can be achieved with the soft adapta-

tion method based on Equation 4.5.

The above observations, motivate further investigation aimed to find a

criterion to automatically select the adaptation utterances in homogeneous

conditions. A wise solution to choose such criterion is through ASR QE.

 6

 6.5

 7

 7.5

 8

 8.5

0 0.1 0.3 0.5 0.7 0.9 1

W
E

R
 (

%
)

α

DT05+auto+fMLLR+DT05

DT05+auto+fMLLR+DT05 oWER(300)

DT05+auto+fMLLR+DT05 oWER(600)

DT05+auto+fMLLR+DT05 oWER(900)

DT05+auto+fMLLR+DT05 oWER(1200)

(a)

 6

 6.5

 7

 7.5

 8

 8.5

0 0.1 0.3 0.5 0.7 0.9 1

α

DT05+auto+fMLLR+DT05

DT05+auto+fMLLR+DT05 pWER(300)

DT05+auto+fMLLR+DT05 pWER(600)

DT05+auto+fMLLR+DT05 pWER(900)

DT05+auto+fMLLR+DT05 pWER(1200)

(b)

Figure 4.4: WER results, achieved with oracle (oWER) and ASR QE (pWER) selection of

adaptation utterances, on the development set DT05, as a function of the regularization

coefficient α.
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Using automatically-selected adaptation utterances

For the sake of clarity, the next set of experiments reports only the results

obtained by fMLLR normalized features, since their WER is consistently

lower than filter-bank features. However, the same and even more evident

trends, were also observed using filter-bank features. Figure 4.4 reports

the performance achieved on DT05 using subsets of DT05 with different

sizes as adaptation data. The utterances of DT05 are sorted according

to the WER results from the first decoding pass. For sorting, we used

both oracle WER values and the predicted ones obtained with the ASR

QE (§4.3.2). From DT05, we extract four adaptation sets, respectively

containing the “best” 300, 600, 900 and 1, 200 utterances. The various

subsets, together with their automatic transcriptions, are used to adapt the

baseline DNN by means of the hard adaptation approach. The reason for

putting thresholds to the size of the adaptation set to compute the results

lays in the fact that we want to make a fair comparison between the two

selection methods (i.e by means of oWER and pWER). In fact, sentence

selection according to a preassigned WER threshold produces unbalanced

adaptation sets of different sizes in correspondence to the application of

each of the two methods.

From Figure 4.5, it is evident the efficacy of using only subsets of mid-

high quality transcriptions for adapting the DNNs employed in the second

decoding pass. Indeed, in each figure the minimum WER is reached with

a couple of optimal values of the pair, (α,K), where K is the size of the

adaptation set. This value is 900 for DT05 (see Figure 4.4) and 600 for

ET05 (see Figure 4.5). The total improvement with respect to both the

baseline performance and to the performance achieved using the whole set

of adaptation utterances is remarkable. The difference in the optimal values

of K for DT05 and ET05 is probably due to the different size of the two
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Figure 4.5: WER results, achieved with oracle (oWER) and ASR QE (pWER) selection

of adaptation utterances, on the evaluation set ET05, as a function of the regularization

coefficient α.

corpora (DT05 contains 1,640 utterances, ET05 contains 1,320 utterances).

Unsurprisingly, the performance achieved with the ASR QE approach is

lower than the upper-bound results obtained with oracle WER estimates.

However, especially on the evaluation corpus ET05, the improvements over

baseline performance are considerable.

In all figures, the optimal values for α are quite small, ranging in the

interval [0.1 − 0.3]. This means that the adaptation method trusts more

on adaptation set that now includes only “good” sentences.

Although for comparison purposes the analysis is focused on the size

of the adaptation set to perform sentence selection, in real applications it

is more feasible to select sentences on the basis of their predicted WER.

Therefore, the next set of experiments was carried out by putting selection

thresholds on WER predictions.

Figure 4.6a shows the performance achieved on DT05 with hard DNN
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Figure 4.6: WER results, achieved with oracle (oWER) and ASR QE (pWER) selection

of adaptation utterances, on the development set DT05, varying the WER thresholds.

adaptation as a function of α, varying the thresholds applied to oWER

values to select the adaptation utterances. Figure 4.6b, instead, shows the

performance when the pWER estimates are employed. Also in this case, the

performance improvements with respect to the baseline, with both oWER

and pWER are evident. The optimal values resulted to be oWERthr = 10%,

α = 0.1, where oWERthr indicates the selection threshold. Similarly, using

pWER estimates the corresponding optimal values are pWERthr = 10%,

α = 0.3. With pWER, the higher value for α compared to the value

resulting from the use of the oWER (α = 0.1) approach is probably due to

errors in the automatic WER predictions that have to be compensated.

Table 4.5 reports the final performance achieved on both DT05 and

ET05 using the two-pass decoding approach and the automatic selection

of adaptation utterances by means of automatically predicted WERs. For

both sets, the optimal values of parameters α and pWERthr are those

estimated on the DT05 development corpus (i.e. α = 0.3, pWERthr =
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10%).

DT05 ET05

fMLLR fbank fMLLR fbank

baseline 8.2 11.1 15.4 20.9

oWER 7.1 7.7 12.4 14.2

pWER 7.5 8.3 13.6 15.0

Table 4.5: WER results achieved using the optimal parameters (α and pWERthr) esti-

mated on DT05.

The results achieved by filter-bank features confirm the effectiveness of

the proposed two-pass adaptation approach. Although filter-bank exhibits

higher WER than the fMLLR baseline, after unsupervised adaptation the

performance gap is significantly reduced (less than 2% absolute WER on

ET05). In all cases, the small differences between the performance yielded

by the use of oracle and the corresponding predicted WERs is remarkable.

The results in Table 4.5 are noticeable, considering that they outper-

form those given by a strong ASR baseline, implemented with state-of-the-

art ASR technologies, i.e.: BeamformIt for speech enhancement, hybrid

DNN-HMMs for acoustic modeling and speaker-dependent fMLLR trans-

formations for acoustic model adaptation.

LM rescoring

Table 4.6 shows the results on ET05 after LM rescoring procedure released

in the updated CHiME-3 recipe. This procedure rescores the final word

graphs produced in the second decoding pass by two consecutive steps:

first by using a 5-grams LM, then by means of a linear combination of a

5-grams LM and a RNNLM.

The significant performance gains demonstrate the additive effect of LM

rescoring over DNN adaptation and it allows us to reach a significant WER
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3-gram 5-gram RNNLM

oWER 12.4 10.8 9.9

pWER 13.6 11.9 10.9

Table 4.6: WER results, achieved in homogeneous conditions on ET05, with automatic

data selection and using the baseline LM rescoring passes (see Hori et al. (2015)).

of 10.9% on ET05.7

4.6 Discussion

The results in this chapter demonstrate that regardless of the type of acous-

tic features employed in the experiments (filter-bank or fMLLR normal-

ized):

a) The benefits of KLD-based regularization are limited compared with

DNN retraining without any regularization. This is probably due to

the fact that the size of the adaptation sets considered in our exper-

iments is large enough to prevent data overfitting (actually, previous

research on KLD regularization Yu et al. (2013) demonstrates its ef-

fectiveness using only few minutes of adaptation data);

b) The presence of errors in the automatic transcription of the adaptation

data is detrimental, especially when DNN adaptation is carried out

in homogeneous conditions. In fact, comparing the results in the last

two rows of Table 4.4 (achieved by using the whole ET05 corpus as

adaptation set) with those in Table 4.5 (obtained by using a subset

of adaptation utterances with “few” transcription errors) we notice,

in oracle conditions, absolute WER reductions of around 2% with

7See http://spandh.dcs.shef.ac.uk/chime_challenge/results.html for the official results of the

challenge.

67

http://spandh.dcs.shef.ac.uk/chime_challenge/results.html


4.6. DISCUSSION

fMLLR and 4% with filter-bank features. Coherent WER reductions

of around 1% and 3% are also achieved when applying QE-informed

data selection. This demonstrates the effectiveness of the proposed

QE-informed approach for DNN adaptation.

Till now, we have only considered KLD regularization for implementing

DNN adaptation. However, as mentioned in Section 5.2, several previous

works proposed alternative approaches based on the use of a single linear

transformation, which can be applied either to the input or the output

layer of the network. Therefore, in order to assess the effectiveness and the

general applicability of the proposed QE-based approach, we also exper-

imented with the output-feature discriminative linear regression (oDLR)

transformation, in a way similar to that described in Yao et al. (2012).

The results obtained in homogeneous conditions, both with and without

ASR QE, are given in Table 4.7 (for comparison purposes, the baseline

performance is also reported in the table). Similarly to results shown in

Table 4.5, the optimal thresholds for both oracle and predicted sentence

WER values are empirically estimated on DT05. The resulting values for

oWERthr and pWERthr are respectively 10% and 20%.

DT05 ET05

fMLLR fbank fMLLR fbank

baseline 8.2 11.1 15.4 20.9

oDLR 7.9 9.6 13.8 17.5

oDLR+oWER 7.4 9.2 13.0 16.8

oDLR+pWER 7.7 9.5 13.6 17.2

Table 4.7: WER results, achieved in homogeneous conditions with oDLR-based adapta-

tion, without using ASR QE (oDLR), using utterance selection based on oracle WERs

(oDLR+oWER) and on predicted WERs (oDLR+pWER).

As shown in the table, the use of oDLR alone (even without ASR QE)

always results in noticeable improvements over the baseline. The con-
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siderable WER reductions measured in oracle conditions (oDLR+oWER),

however, indicate the high potential of a QE-driven selection of the adapta-

tion utterances also with this simple DNN adaptation method. In general,

the performance improvements are smaller than the corresponding results

for KLD regularization reported in Table 4.5. Such lower results can be ex-

plained by the findings reported in (Gollan and Bacchiani, 2008), in which

the authors compared approaches based on MLLR and maximum a pos-

terior probability (MAP) for GMM-HMMs adaptation. In this case, the

impact of errors in the supervision is directly proportional to the number of

transformation parameters to estimate. Indeed, while in the experiments

reported in Section 4.5 all the parameters of the original DNN are adapted,

with oDLR only a small fraction of them (around 13%) is updated. The re-

duced sensitivity to errors in the supervision is also reflected by the higher

value of the threshold used to select the adaptation data (20% for oDLR

vs 10% for KLD).

The results measured in oracle conditions suggest a higher potential for

the application of QE to KLD-based regularization rather than to oDLR.

This intuition, however, is partially contradicted by the last row of Ta-

ble 4.7 (oDLR+pWER). With predicted WER scores, indeed, the values

achieved with fMLLR are only slightly worse or identical to those in Ta-

ble 4.5. To put into perspective this unexpected “exception” in the re-

sults, it’s worth remarking that the impact of QE in DNN adaptation is

proportional to the acoustic mismatch between training and test data. As

observed in Sections 4.5.1 and 4.5.2, fMLLR features have the capability

to reduce such mismatch, making the gains brought by QE-based adap-

tation less evident than those achieved with filter-bank. In light of this,

although on ET05 and with fMLLR features oDLR is competitive with

the more complex KLD-based regularization proposed in this chapter, we

believe that more challenging data (featuring a higher mismatch between
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training and test) would increase the distance between the two approaches

and reward our method.

4.7 Conclusions

This Chapter proposed to exploit single hypothesis ASR QE to perform

unsupervised adaptation for deep neural network acoustic models (DNN-

HMM). The main idea was motivated by the two following hypotheses:

1. The adaptation process does not necessarily require the supervision of

a manually-transcribed development set. Manual supervision can be

replaced by a two-pass decoding procedure, in which the evaluation

data are automatically transcribed and used to inform the adaptation

process;

2. The whole process can benefit from methods that take into account the

quality of the supervision. In particular, automatic quality predictions

can be used either to weigh the adaptation instances or to discard the

less reliable ones.

To implement this approach, we retrained a (baseline) DNN by mini-

mizing an objective function defined by a linear combination of the usual

cross-entropy measure (evaluated on a given adaptation set) and a regular-

ization term. This is the Kullback-Leibler divergence between the output

distribution of the original DNN and the actual output distribution.

First, we experimented in “cross conditions”, by adapting on the real

development set of the CHiME-3 challenge and testing on the correspond-

ing real evaluation set. In this scenario, we found that, when using all

the manually-transcribed adaptation data, the KLD-based approach is ef-

fective. Then, moving to the automatically-generated supervision of the

adaptation data, we discovered a correlation between performance results
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and the quality of the adaptation data. In particular, in “oracle” condi-

tions (i.e. with true WER scores), DNN adaptation benefits from removing

utterances with a WER score above a given threshold.

Building on this result, we focused on “self” DNN adaptation in “ho-

mogeneous conditions”, in which the baseline DNN is adapted on the same

evaluation set (ET05) by exploiting the automatic supervision derived from

a first ASR decoding pass. Similarly to the cross-condition scenario, this

approach allowed us to significantly improve the performance when “low

quality” sentences (i.e. sentences that exhibit oracle WERs higher than

an optimal threshold) are removed from the adaptation set. Improvements

were measured not only in “oracle” conditions (i.e. with true WER scores),

but also in realistic conditions in which manual references are not available

and the only viable solution is to rely upon predicted WERs. To this aim,

we used automatic WER prediction as a criterion to isolate subsets of the

adaptation data featuring variable quality. The results of an extensive set

of experiments showed that:

• Exploiting ASR QE for DNN adaptation in a two-pass decoding archi-

tecture yields significant performance improvements over the strong,

most recent CHiME-3 baseline;

• Self DNN adaptation is more effective with filter-bank acoustic fea-

tures than with fMLLR normalized features. This behavior is proba-

bly due to the smaller mismatch between training and test data caused

by the use of fMLLR transformations, indicating a higher potential

of the QE-driven approach in a scenario characterized by weakness of

fMLLR in reducing such mismatch (e.g. with small adaptation sets);

• ASR QE is less effective with output discriminative linear regression

(oDLR) transformation for DNN adaptation, due to the lower num-

ber of parameters to adapt compared to KLD regularization. This

71



4.7. CONCLUSIONS

demonstrates the portability of our method, but a higher effectiveness

with large DNNs.

Finally, we applied LM rescoring procedure to the word lattices pro-

duced after DNN-adapted decoding pass. The resulting WER reductions

demonstrate the independent effects of LM rescoring and the proposed

DNN adaptation approach. The last results showed that the proposed

full-fledged system for DNN adaptation, integrating KLD and ASR QE

for data selection, outperforms the strong CHiME-3 baseline with a 1.7%

WER reduction (from 12.6% to 10.9%).
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Chapter 5

Multiple Hypotheses ASR QE for

System Combination

Chapter 3 introduced ASR QE in two scenarios based on the number

of transcription channels: single hypothesis and multiple hypotheses. In

Chapter 4, single hypothesis ASR QE was used to perform unsupervised

DNN-HMM adaptation. This Chapter focuses on the application of mul-

tiple hypotheses ASR QE to improve the ASR output. The proposal of

this chapter makes a significant contribution to ROVER, the most popular

ASR system combination method, by using ASR QE for ordering the input

components. The proposed method, named segment-level QE-informed

ROVER yields salient WER reduction in two different tasks: combination

of multiple ASR systems (IWSLT) and combination of multiple distant

microphones (CHiME-3).

5.1 Introduction

In order to obtain more accurate transcriptions, ASR systems with suffi-

cient diversity and complementarity are combined in different ways (Au-

dhkhasi et al., 2014). The combination of multiple hypotheses coming from

independent sources usually leads to significant improvement compared to
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each individual system. ROVER (Recognizer Output Voting Error Reduc-

tion), a popular ASR system combination approach, performs hypotheses

fusion by first building a word confusion network (CN) from the 1 -best

hypotheses and then selecting the best word in each CN bin via majority

voting (Fiscus, 1997). When available, word confidence scores are also used

for weighted majority voting. This general strategy has been improved in

several ways, but, despite their proven effectiveness, ROVER and its vari-

ants still have some potential drawbacks.

The first drawback of ROVER is intrinsic to its implementation. The

fusion process starts from the first input hypothesis, which is used as a

“skeleton” for the greedy alignment of the others. The order in which the

hypotheses are used to feed the process can hence determine significant

variations in the quality of the resulting combination. This calls for

automatic methods for ranking the hypotheses to initialise the

fusion process.

The second drawback is inherent to the way ROVER is normally run.

The fusion process is typically fed with transcriptions of entire audio record-

ings (lasting up to several hours). With this level of granularity, the skele-

ton used as basis for the alignment may consist of long transcriptions whose

quality can considerably vary at local level. For instance, the worst tran-

scription of an entire audio recording (globally) could be the best one

for some passages (locally). This calls for solutions capable to op-

erate at higher granularity levels (e.g. segments, lasting up to

few seconds) to better exploit the local diversity of the input

hypotheses.

The third drawback relates to the applicability of ROVER-like fusion

methods, because their common trait is the reliance on information about

the inner workings of the combined systems. Indeed, the standard voting

scheme weighted with confidence scores is usually much more reliable than
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the simple frequency-based voting. The access to confidence scores,

however, is a too rigid constraint in application scenarios where

the hypotheses to be combined come from unknown “black-box”

systems.

Finally, it is worth noting that confidence scores proposed by previous

ASR literature (Evermann and Woodland, 2000; Wessel et al., 2001), even

if applicable, only indicate how confident the system is about its own out-

put (§2.5.2). This can be a biased perspective (influenced by individual

decoder features), producing scores that are not comparable across different

systems. External and system-independent measures of goodness

would represent a more reliable alternative when comparable and

objective ASR quality judgements are required.

To cope with these issues, in this chapter, we present QE-informed

ROVER (segment-level quality estimation informed ROVER). In this ap-

proach, before starting the fusion process by ROVER, we rank the input

hypotheses at segment-level (addressing the first and second issues) using

ASR QE approaches described in §3.2 (addressing the third issue).

The performance of QE-informed ROVER is assessed on two distinct

scenarios, confirming the generality of the proposed method. In the first

scenario, we apply QE-informed ROVER to combine the automatic tran-

scriptions of English TED talks generated by eight ASR systems in the

IWSLT2013 evaluation campaign.1 The proposed solution outperforms

standard ROVER and it significantly approaches oracle upper-bounds.

The second scenario involves multiple distant microphone (MDM) speech

recognition in noisy environments. The experiments are carried out with

the data delivered for the 3rd CHiME challenge,2 also described in §4.4.1.

1The International Workshop on Spoken Language Translation (IWSLT – http://workshop2013.

iwslt.org/) is a yearly workshop associated with an open evaluation campaign on spoken language

translation.
2The CHiME Speech Separation and Recognition Challenges are international initiatives proposed in
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Although MDM hypothesis combination can be considered as an alterna-

tive to the signal enhancement techniques (Wölfel and McDonough, 2009;

Kumatani et al., 2011; Mestre and Lagunas, 2003), in this work we show

that QE-informed ROVER yields further improvements even after includ-

ing the enhanced channels in the combination.

To provide the QE results for ROVER, two strategies are utilized:

1. ranking by regression (§3.5.1). To predict the quality of each individ-

ual transcription channel and then rank them in order to be combined

with ROVER.

2. machine-learned ranking (§3.5.2). To directly predict the ranks through

pairwise comparison.

This is the first time that ASR QE is applied to rank MDM hypotheses.

Deeper analyses address the problem of tied ranks. This happens when

there are several hypotheses with identical WER scores for a speech seg-

ment and consequently they obtain the same ranks, in spite of their dif-

ferent quality (McSherry and Najork, 2008). The existence of tied ranks

in the training data can considerably degrade the performance of ranking

machines. We show that breaking the ties according to the overall perfor-

mance of each individual component (predicted by ASR QE), improves the

ranking process.

The last experiments address the problem of finding the optimum level

of combination. The optimum level of combination can be obtained by

using simple classifiers trained on the features representing the diversity of

the components.

The contributions of this chapter can be summarized as follows:

• test the impact of ROVER at higher granularity level (e.x. segments

lasting up to a few seconds);

2011, 2013 and 2015 – http://spandh.dcs.shef.ac.uk/chime_challenge/.
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• inform ROVER of the hypotheses order according to their predicted

quality;

• tackle the problem of tied ranks in multiple hypotheses ASR QE;

• tackle the problem of finding the optimum level of combination.

5.2 Related work

The most relevant research strands to this work are ASR system combina-

tion and multiple distant microphone speech recognition.

System combination. Many approaches proposed in the past for combining

multiple ASR outputs make use of word graphs (Li et al., 2002; Bougares

et al., 2013). The underlying idea is to merge the word graphs generated

by different ASR systems into a single one, which is then traversed to

search for the best path. As an alternative, frame-based system combina-

tion (Hoffmeister et al., 2006) tries to minimize a cost function called “time

frame word error” (fWER) over a set of word graphs produced by different

ASR systems. The method makes it possible to estimate the path exhibit-

ing the minimum Bayes risk, without the necessity of merging edges of

single word graphs. Confusion network combination (CNC) (Mangu et al.,

2000; Hoffmeister et al., 2006; Evermann and Woodland, 2000) is another

widely investigated approach, in which confusion networks built from the

individual lattices are aligned instead of single best outputs. Hoffmeister

et al. (2007) makes a comparison between graph-based and 1-best com-

bination approaches and they conclude that, for pairwise combinations,

the graph-based approaches can outperform 1-best ROVER, but 1-best

ROVER results are equal (or even better) when combining three or four

systems.
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Another system combination method is joint decoding that indeed com-

bines the acoustic models. The acoustic models can be different in terms

of training features, learning criteria and like on, but they share the same

HMM topology. This method treats the acoustic models as separate streams

and it makes a linear combination between the log-likelihoods computed by

each model (Yang et al., 2016). Since this approach requires to know the

inner information of the acoustic models, it does not fit to our condition

in which the ASR systems are not known.

Note that all combination methods based on the use of word graphs, as

well as some extensions of ROVER (Schwenk and Gauvain, 2000; Zhang

and Rudnicky, 2006; Hillard et al., 2007; Abida et al., 2011), require to

know and have access to the inner structure of ASR decoder. Whereas,

usually ASR systems, especially those embedded in commercial applica-

tions, do not provide this information. Instead, standard ROVER and

QE-informed ROVER do not necessarily need to know the ASR system

characteristics.

Another limitation of previous ROVER-based methods is that, assuming

a fixed order in the quality of ASR systems, they do not apply any segment-

level ranking. This leads to disregard the possible advantages of operating

at a higher granularity level. Instead, in QE-informed ROVER, we increase

the level of granularity to the length of the segments that are usually

defined automatically according to some criteria such as pauses, speaker

switches and like on.

Multiple Distant Microphone (MDM) speech recognition. Using multiple

microphones for recording the speech signal from different angles, helps in

tackling the fundamental problems such as noise, echo and reverbration.

The MDM task usually involves several modules such as noise cancellation

(Benesty et al., 2009), channel selection (Kumatani et al., 2011; Wölfel and
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McDonough, 2009), signal-level combination (Mestre and Lagunas, 2003)

and hypothesis-level combination (Barker et al., 2015; Guerrero and Omol-

ogo, 2014). Noise and echo cancellation, as well as channel selection, have

been widely studied in signal processing literature. Concerning channel

selection, one of the simplest approaches is to compute the signal-to-noise

ratio (SNR). The channel with the highest SNR would be easier to tran-

scribe (Wölfel and McDonough, 2009). Another solution is to consider

the confidence measure (§2.5.2) provided by the ASR decoder (Jalalvand

et al., 2015a). Signal-level combination, or beamforming, refers to a set

of methods to generate an enhanced signal from multiple recordings. To

this aim, minimum variance distortionless response (MVDR) and delay-

and-sum (DS) are well known algorithms (Wölfel and McDonough, 2009;

Barker et al., 2015; Kumatani et al., 2012) to enhance the signals.

For the hypothesis-level combination in MDM task, Wölfel and Mc-

Donough (2005) propose the use of CNC and Stolcke (2011) extends it

with a hybrid approach that leverages beamforming and signal-level di-

versity. Guerrero and Omologo (2014) use inter-microphone agreement to

build a confusion network from multiple word graphs to improve ASR in a

domotic application.

This Chapter applies ASR QE and machine-learned ranking in the

MDM scenario to perform microphone combination at hypothesis level.

The results of the experiments confirm that hypothesis-level combination

yields further WER reduction on top of signal-level combination, thanks

to the proposed QE-informed ROVER.

5.3 ROVER

Figure 5.1 shows the architecture of ROVER with two main modules: align-

ment and voting. The alignment module combines the 1-best hypotheses
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Sys1

Sys2

SysN

Alignment 
Module

Voting 
Module

Best Scoring 
Transcript...

Figure 5.1: ROVER system architecture

from two or more ASR systems into a word transition network. The net-

work is created using iterative dynamic programming alignment. This

network can be shown as a confusion network consisting of a series of slots.

Each slot is consisting of several arcs. Each arc corresponds to a word (and

a confidence score, if available) recognized by one of the ASR systems. Vot-

ing module evaluates the individual slots using a voting scheme. This mod-

ule selects the best word according to a posterior score that is computed

by weighted interpolation between vote numbers and confidences:

score(w, i) =
L∑
l=1

λl[α.δ(w,w
i
l) + (1− α).confl(w, i)]

score(w, i) is the score of the word w at the i-th slot of the network; δ is

the Kronecker-δ; L is the number of systems; wi
l is the word suggested by

l-th system at slot i and confl indicates the confidence score of the l-th

system. System votes and confidence scores are smoothly interpolated via

α. The importance of the systems can be weighted by λ. However, in basic

ROVER λ1 = ... = λL = 1/L (Hoffmeister et al., 2007). Note that in this

chapter, the ASR decoders’ information including confidence scores are not

known. Therefore in the above formula, we always consider α = 1.

Figure 5.2 shows an example of basic ROVER when there are three
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Figure 5.2: ROVER procedure. Sys2 has recognized better than Sys1 though it is in

the second order. This mistake in the input arrangement, leads to an error in the final

hypothesis, while it could be recovered with correct arrangement.
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hypotheses to be combined. As it can be seen, ROVER starts by creating

a WTN on the first entering hypothesis (WTN1) as the skeleton of the

combination. The second and third solutions are aligned via a Levenshtein

alignment with the time overlap between the words as a local cost. The

final WTN can be shown as a confusion network (CN) (Mangu et al.,

2000) with a sequence of slots. For each slot the best word is selected via

majority voting, yielding the final hypothesis.

In case different words receive the same vote (as the red slot in Figure

5.2), ROVER gives priority to the word suggested by the first entering

input. This is exactly where ASR QE can play an important role by

ordering the inputs, descending the quality.

5.4 QE-informed ROVER

Traditionally, ROVER is applied using several random orders or blind fixed

orders at system-level (Cettolo et al., 2013). By system-level ranking, we

refer to an ordering that is assigned to component systems. This ranking

is the same for all the segments in the dataset. Instead, segment-level

ranking dynamically varies from one segment to another, aiming to take

advantage from the fact that different ASR systems (or microphones in

MDM scenario) show different accuracy for each segment.

QE-informed ROVER, differently from the traditional ROVER and its

extensions like iROVER (Hillard et al., 2007) and cROVER (Abida et al.,

2011), combines the hypotheses at segment-level and it precisely orders the

inputs before performing alignment. This is done by exploiting multiple

hypotheses ASR QE approaches (§3.5).

To investigate the effectiveness of segment-based ROVER, we run some

pilot experiments on two distinct datasets, namely: IWSLT, consisting of

English TED talks transcriptions (collected with a close talk microphone)
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and CHiME3, previously described in §4.4.1. In the first case, we use the

submissions to the IWSLT2013 ASR evaluation campaign (Cettolo et al.,

2013), in which 8 teams submitted their ASR results. In the second case,

we use the data provided for the 3rd CHiME challenge (Barker et al., 2015),

where each utterance is recorded by five microphones embedded on a tablet

PC. CHiME-3 recordings are transcribed using two baseline ASR systems

provided by the organizers: one employing Gaussian mixtures for com-

puting acoustic probabilities, and the other using deep neural networks.

Therefore, in the first task (IWSLT), we combine up to 8 different hypothe-

ses, while in the second task (CHiME-3), we combine up to 10 different

hypotheses.

With the following analysis, the first goal is to check if, and to what ex-

tent, an oracle ranking at system-/segment-level can positively contribute

to ROVER results. The results are achieved by running the basic ROVER

with different input orders.

Ranking
IWSLT (best WER=13.5%) CHiME-3 (best WER=32.6%)

L1 L3 L5 L8 L1 L3 L5 L10

SysO 13.5 12.2 11.8 12.1 32.6 30.7 27.9 29.4

SegO 8.9 10.5 11.4 11.7 19.5 21.4 22.4 28.4

InSysO 27.2 19.8 15.1 13.3 40.5 37.5 34.0 29.7

InSegO 33.8 22.9 17.4 13.0 56.3 51.0 42.6 30.9

Table 5.1: WER results of ranking methods on IWSLT and CHiME-3 test data. In

IWSLT, the best individual system results in 13.5% WER. In CHiME3, the best system

(5th microphone transcribed by DNN model) results in 32.6% WER.

In Table 5.1, SysO and SegO represent the WER scores achievable re-

spectively at system- and segment-level, thanks to ideal oracle ranking (de-

rived from the exact WER of each ASR hypothesis with respect to manual

references). The WER values are shown at different levels of combination

in columns: L1 means that there is only one system (no combination); L3
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means that there are three systems combined together and so on. At both

granularity levels, oracle rankings are derived from the true WER scores of

the candidate transcriptions. As it can be seen from the table, oracle-based

hypotheses combination allows for considerable WER reductions compared

to the best individual system, at system- and segment-level. In particu-

lar, on IWSLT, system-level combination results in a WER reduction from

13.5% (best individual system) to 11.8% when combining the best 5 sys-

tems. Similarly, on CHiME-3, WER decreases from 32.6% (best individual

channel3) to 27.9% when the best 5 hypotheses are taken. Note that, in

both tasks, system-level combination achieves the best results with only 5

different hypotheses, which is less than all the available ones.4 This can

be explained by observing that all systems/channels contribute to the final

voting with the same weight. Therefore, the insertion of the worst hy-

potheses in the ranked list contributes to worsen rather than to improve

the global performance.

Segment-level combination gives significantly better results than system-

level combination in both tasks. In SegO, the WER increases by augment-

ing the number of hypotheses, because of entering erroneous hypotheses in

the combination. Actually, being able to correctly select the best hypoth-

esis for each segment (SegO - L1 ) forms the highest performance on both

tasks, respectively 8.9% on IWSLT and 19.5% on CHiME-3.

The last two rows of Table 5.1 show the performance of ROVER when

the transcriptions are combined in inverse oracle order, from the worst to

the best one, at both system- (InSysO) and segment-level (InSegO). The

poor results achieved, especially at lower combination levels, demonstrate

that the rank of the input hypotheses is critical in ROVER combination

3Henceforth, for CHiME-3 data, the terms “channel” and “microphone” will be interchangeably used.
4The fact that on both datasets the best level of combination is the same is purely incidental. As we

will see in §5.6.2, the definition of the optimum level of combination for a given dataset is an interesting

research direction, which is partially explored also in this work.
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results.

By this analysis, the impact of QE-informed segment-level ROVER is

visible. Now it is interesting to investigate how much and to what extent

multiple hypotheses ASR QE (§3.5) can approximate the oracle rankings.

5.5 Experiments

In the experiments, we use both strategies:

• ranking by regression (RR) §3.5.1. This strategy adopts single hypoth-

esis ASR QE for multiple hypotheses purpose. That is, the WER of

all the hypotheses are predicted individually and then they are ranked

according to the predicted values. Afterwards, ROVER combines the

hypotheses.

• machine-learned ranking (MLR) §3.5.2. This strategy adopts rank-

ing algorithms (Cao et al., 2007) to directly predict the ranks using

pairwise comparison.

It’s important to remark that the results reported in this work are not

comparable with the official submissions to IWSLT and CHiME-3 chal-

lenges (Barker et al., 2015; Jalalvand et al., 2015a), since here we assume

that neither the ASR systems nor their confidence scores are accessible,

whereas the official submissions take advantage of a range of techniques

such as acoustic model adaptation, confidence-based data selection and

multi-pass recognition as well as language model rescoring. In the following

experiments, we do not consider these techniques and the QE approaches

are applied to the first pass decoding output of the baseline systems (Barker

et al., 2015). This is to confirm that the proposed method is general enough

to be applied in a variety of black-box conditions.
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5.5.1 Features

All the features described in Table 3.1 are used for this task. These features

are grouped into three sets:

• Basic (B): the combination of Signal, Textual and Hybrid features

from Table 3.1.

• Word-based (W): word-level features described in Table 3.1.

• Basic+Word (BW): the combination of all features.

The reason for this grouping is to compare the baseline features previ-

ously introduce in Negri et al. (2014) with the newly proposed word-based

features that are inspired by the works related to word error detection

(Goldwater et al., 2010; Tam et al., 2014; Jalalvand and Falavigna, 2015).

5.5.2 Terms of comparison

The results are compared with the standard random ROVER and the two

oracle systems described in §5.4.

• Random ROVER. The entire transcription candidates obtained

from different systems/channels are taken in random order.

• System-level oracle (SysO). The true overall rank for each ASR

system (or microphone) is known and this rank is kept unchanged for

all the segments.

• Segment-level oracle (SegO). The exact rank of the ASR hypothe-

ses at segment-level is known and ROVER is applied segment by seg-

ment using the true ranks. The result obtained in this way is the

strongest term of comparison.
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The last two terms are considered as “oracles” because they rely on ex-

ternal information about the true WERs, which is not accessible in real-life

applications. The first goal is to significantly outperform random ROVER,

however reducing the performance gap with respect to the two oracles

would represent an even more convincing measure of success.

5.5.3 IWSLT task

Data. For this task, we use the submissions to IWSLT2012 and IWSLT2013

ASR evaluation campaigns respectively as training and test sets. Both sets

are collected from English TED talks dealing with different topics. Six

groups participated in IWSLT2012, in which the best performance (12.4%

WER) was obtained by NICT group5. In IWSLT2013 two other groups

participated. Also in that year, NICT won the challenge by 13.5% WER.

Tables 5.2 and 5.3 provide some basic statistics about this dataset and the

individual WER results. Complete details about each ASR system can be

found in (Federico et al., 2012) for 2012 and (Cettolo et al., 2013) for 2013.

By selecting the data from two different years, we guarantee that there

is no speaker nor topic overlap between training and test sets. Although

most of the submissions of 2013 come from the same laboratories of 2012

(except for the two teams that did not participate in 2012), the ASR sys-

tems are quite different due to the changes and the improvements made

by participants during the course of one year of research. Finally, in this

audio dataset, since the recordings are carried out by head-mounted mi-

crophones, there is not any reverberation or background noise apart from

the applause breaks, especially in the final part of the talks. However, it

happens frequently that the speakers, sometimes non-native ones, make

spontaneous speech phenomena such as hesitations, repetitions and false

starts during their talks.

5https://www.nict.go.jp/en/
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Attributes
IWSLT2012 IWSLT2013

(training) (test)

duration (hr) 1h45m 4h50m

# sent 1,124 2,246

# token 19.2k 41.6k

dict. size 2.8k 5.6k

# speakers 11 28

Table 5.2: Statistics of IWSLT task

System IWSLT2012 IWSLT2013

FBK 16.8 23.2

KIT 12.7 14.4

MITLL 13.3 15.9

NAIST – 16.2

NICT 12.4 13.5

PRKE – 27.2

RWTH 13.6 16.0

UEDIN 14.4 22.1

Avg. 13.86 18.56

Table 5.3: WER results of individual

ASR systems in IWSLT task

In short, the experiments on this task are conducted as follows:

1. Utterance segmentation of IWSLT2012 (training) and IWSLT2013

(test) data;

2. Feature extraction from the (signal, transcription) training pairs;

3. Training of the QE models (regressors and ranking machines);

4. Feature extraction from the (signal, transcription) test pairs;

5. Estimating the WERs/ranks of the test hypotheses; and concatena-

tion of the resulting outputs;

6. Computation of the WER scores.

While for IWSLT2012, manual utterance segmentation is provided and

shared among the participants, for IWSLT2013, the segmentation had to

be carried out automatically by each individual ASR system before de-

coding the audio tracks. Since each system produces a different number

of segments, it becomes necessary to align each automatic segmentation

with a reference one in order to share the same utterance time boundaries
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Ranking L3 L4 L5 L6 Avg. Impr.

Random 13.4 11.8 12.3 11.8 0.0

SysO 11.4 9.3 9.6 9.5 -2.4

SegO 8.0 7.9 8.2 9.1 -4.0

RR1+B 11.5 10.2 9.9 9.8 -2.0

RR1+W 13.2 10.6 10.1 9.8 -1.4

RR1+BW 12.1 10.3 10.0 9.8 -1.8

RR2+B 11.3 10.3 9.9 9.8 -2.0

RR2+W 12.1 10.3 10.0 9.8 -1.8

RR2+BW 11.2 9.9 9.8 9.6 -2.2

MLR+B 10.7 9.8 9.7 9.6 -2.4

MLR+W 10.7 9.7 9.7 9.6 -2.4

MLR+BW 10.6 9.8 9.6 9.6 -2.4

Table 5.4: WER results of different ranking methods on IWSLT2012 using 4-fold CV. L6

indicates that the output of all the 6 systems participated in IWSLT2012 are combined

among the different hypotheses. In principle the segmentation given by

one randomly chosen ASR system is taken as reference.

Preliminary analysis. To test the performance of our method in a con-

trolled setting, we first run QE-informed ROVER on the training set

(IWSLT2012) using 4-fold cross validation. Data partitioning is done con-

sidering the speakers in order to guarantee that there is no speaker overlap

between training and test folds. Moreover, the partitioning is done in such

a way that each instance occurs only once in each test fold. Thus, by col-

lecting the results from all folds, we obtain the performance on the whole

training data. Therefore, the numbers reported in Table 5.4 refer to the

WER of the whole IWSLT2012.

The first three rows of the table show the results of ROVER when the

input hypotheses are randomly ordered at system level and those achieved

by the two oracles (SysO and SegO). Even if Random ROVER achieves
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better results than the individual IWSLT2012 participants (see Table 5.3),

it is quite far from the oracles. SysO is significantly better, with an average

WER reduction of 2.4% over Random ROVER. As expected, the best

performance is achieved by SegO with an average WER reduction of 4.0%.

These differences confirm that running ROVER without an optimal order

of the hypotheses may limit the gain achievable by system combination.

Apart from that, both oracles reach the lowest WER score at combination

level L4. This indicates that the majority of the aligned words in the

confusion sets of the word network built by ROVER falls in the top four

hypotheses. Inserting more alternative words from less accurate hypotheses

at L5 and L6 has a negative impact on majority voting.

Ranking by regression, using all the training transcriptions and the basic

features (RR1+B) already outperforms Random ROVER but remains far

from the oracles. Slightly worse performance is obtained when using the

word-based features (RR1+W) and the union of the features (RR1+BW),

suggesting that the word features are not particularly useful in this setting.

Although the various ASR systems provide different hypotheses for each

decoded segment, the corresponding signal feature vectors are the same

and, therefore, the trained regressor could be misled by the co-occurrence

of similar feature values with different training labels. To overcome this

problem, we trained regression models by using only one random tran-

scription for each segment (RR2). This approach, using both basic and

word-based features (RR2+BW), yields the best performance among the

RR methods (on average, the WER is reduced by 2.2%). Interestingly,

both RR1 and RR2 reach the best performance at combination level L6.

This behavior, differently from the oracle conditions, indicates that the

majority of the words in each confusion set of the ROVER word network is

not concentrated on the top “automatically” ranked positions but is more

uniformly distributed over all combination levels.
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Machine-learned ranking with the basic features (MLR+B), word-based

features (MLR+W) and their combination (MLR+BW) always exhibits

the largest WER reductions over random ROVER (-2.4% on average). Its

results are not only consistently better than RR, but also close to system-

level oracle (SysO).

In summary, this preliminary analysis suggests that:

• regardless of the QE method and the features used, QE-informed

ROVER outperforms random ROVER with a large margin;

• among all the QE strategies, MLR+BW shows the best performance

at most of the levels, and

• though still far from the strongest term of comparison (SegO), its

results are competitive with those of the system-level oracle.

As shown in the last column of Table 5.4, the average improvement of the

two methods are almost the same (-1.3% vs. -1.1%).

Test. Using the QE models trained on IWSLT2012, we carry out the same

set of experiments on the test data. The corresponding results are reported

in Table 5.5. Since in IWSLT2013 there are 8 teams who submitted their

transcriptions, in this case the combination level varies in the [L3, L8]

interval.

Although the overall trend is similar to the one observed on the training

data, the improvement margins are smaller. The reason for this difference

is the mismatch between training and test data. In our preliminary exper-

iments, the same set of ASR systems (6 systems) was used both in training

and test. Here, instead, the ASR systems are different in number and na-

ture (6 systems from IWSLT2012 for training, 8 systems from IWSLT2013

for test). Nevertheless, in many columns of Table 5.5 the WER reduction
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Ranking L3 L4 L5 L6 L7 L8 Avg. Impr

Random 14.6 13.7 13.2 12.8 12.7 12.4 0.0

SysO 12.2 11.7 11.8 11.9 12.1 12.1 -1.3

SegO 10.5 11.0 11.4 11.6 11.7 11.7 -1.9

RR1+B 13.9 13.1 12.6 12.4 12.4 12.3 † • -0.4

RR1+W 14.0 13.0 12.5 12.2 12.3 • 12.3 † • -0.5

RR1+BW 14.0 13.0 12.5 12.2 12.3 • 12.3 † • -0.5

RR2+B 13.8 13.0 12.6 12.4 12.3 • 12.3 † • -0.5

RR2+W 14.2 13.1 12.7 12.4 12.5 † 12.4 † • -0.3

RR2+BW 13.7 12.8 12.4 12.2 12.2 • 12.2 † • -0.6

MLR+B 12.9 12.4 12.3 12.1 • 12.3 12.2 † • -0.9

MLR+W 12.4 • 12.1 12.0 12.0 • 12.2 • 12.2 † • -1.1

MLR+BW 12.4 • 12.1 12.0 • 11.9 • ? 12.2 • 12.2 † • -1.1

Table 5.5: WER results of different ranking methods on IWSLT2013. L8 indicates that

all the 8 systems participated in IWSLT2013 are combined. The symbols indicate the

statistical significance at the level of 95%. “†”: the result is not statistically different

from random ROVER; “•”: the result is not significantly different from SysO; “?”: the

result is not statistically different from SegO.

is large and significant6. The best result (MLR+BW at L6), in particular,

is not only better than Random ROVER, but also not statistically differ-

ent from the strongest oracle (SegO). Also on the test set, MLR seems to

work better than RR in ranking the input hypotheses. One possible reason

is the higher reliability of pairwise comparisons compared to considering

numeric scores that reflect independent quality predictions.

Further analysis. So far, we showed that: i) we can improve random

ROVER using ASR QE for ranking the inputs, and ii) with an appropriate

QE approach and an efficient set of features, we can approach the strong

system-level and segment-level oracles. The scores reported in Table 5.5,

6To perform significance test, we exploit the matched-pairs test Gillick and Cox (1989) at a significance

level of 95% (i.e. p = 0.05).
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however, only provide a global picture that might hide interesting details

such as larger gains in specific conditions that are particularly favorable

for QE-based ranking.

Figure 5.3: WER results achieved on the evaluation set IWSLT2013 as a function of

hypothesis diversity (div = MAXWER[%]−MINWER[%])

To better investigate this aspect, in Figure 5.3, we analyse the perfor-

mance on different groups of segments characterized by different levels of

diversity. By diversity, we refer to the level of disagreement between ASR

systems. Among the many possible methods to compute diversity mea-

sures, here it is computed as the difference between the maximum and

minimum WERs among the transcriptions of a given segment. With this

definition, we divide the segments into 10 groups (X-axis in Figure 5.3).

The first group consists of the segments whose transcriptions diversity

is lower than 10% (i.e. the WER difference between the best and the

worst transcription is less than 10%). In the second group, the diversity

is between [10%,20%] and so on. The figure reports the performance of

QE-informed ROVER using SegO, SysO and MLR+BW over each diver-
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sity group, as well as the proportion of segments belonging to each group

(black-dotted line). As it can be seen, most of the segments have low

diversity (less than 20%), meaning that the ASR systems return similar

transcriptions for them.

It is interesting to note how the relative differences between the three

systems are affected by hypothesis diversity. For low values, in which rank-

ing is intuitively more difficult and less accurate, MLR+BW’s performance

is less reliable and close to SysO. For high values, in which the ranker is

able to order the components more precisely, MLR+BW outperforms SysO

halving the gap that separates it from SegO. This interesting trend is hid-

den by the fact that the IWSLT data are characterized by low diversity in

the transcriptions (highly-diverse hypotheses can be found for less than 7%

of the segments). This, in turn, results in global WER scores where large

gains on few segments are smoothed by small gains on many segments.

Though suitable to evaluate our approach, the IWSLT scenario is not the

ideal one to fully appreciate its potential. In the next set of experiments we

apply QE-informed ROVER to the CHiME-3 data, in which the diversity

among the microphone channels is higher.

5.5.4 CHiME-3 task

Data. For the multiple microphones task, we use CHiME-3 data described

in §4.4.1. The organizers of the challenge provided two baseline ASR sys-

tems employing the Kaldi toolkit (Barker et al., 2015). Both are based on

hidden Markov models: one uses the Gaussian mixture model (∗ − gmm)

and the other uses deep neural network (∗ − dnn). The former is trained

with the Kaldi recipe prepared for the previous CHiME challenges (Barker

et al., 2013; Vincent et al., 2013) and the latter is trained with Karel’s

setup (Vesely et al., 2011) included in the Kaldi toolkit.

In the experiments, we use the real noisy subsets. For training the
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QE models, dt05 real (DT05 henceforth) consisting of 1,640 sentences ut-

tered by four different speakers is utilized. As test data, et05 real (ET05

henceforth) consisting of 1,320 sentences uttered by four other speakers is

used. In contrast to IWSLT, here no automatic segmentation is needed,

since each utterance recording shares the same time segmentation across

all microphones.

Tables 5.6 and 5.7 respectively show some statistics about the CHiME-3

data and the WER obtained by the baseline ASR systems over each of the

five different channels (microphones). As mentioned also in §5.4, the sixth

microphone is not used in the evaluation, as it is located on the back of

tablet PC, mainly to capture the background noise.

In distant speech recognition, it is common to combine the signals

recorded by a microphone array in order to enhance the signal. As men-

tioned in §5.2, MVDR and DS are two popular enhancement approaches.

We apply both methods to combine the signals from the five microphones

and then we transcribe the resulting signals by using the two aforemen-

tioned baseline ASR systems. This produces four additional channels

whose WERs are reported in Table 5.7. As it can be seen, DS process-

ing significantly outperforms MVDR on both training and test sets. Nev-

ertheless, we keep also the MVDR hypotheses for combination, because

they provide complementary solutions whose diversity might improve final

results.

Experiments are conducted similarly to the IWSLT task §5.5.3, with the

difference that in this case each hypothesis is generated by the two baseline

systems (gmm and dnn) processing each individual microphone audio track

(01, 02, 03, 04, 05,mvdr and ds).

Comparing the WER scores reported in Tables 5.3 and 5.7, it is worth

noting that the quality of the CHiME-3 transcriptions is globally lower,

and on average, training and test data are more distant. As we will discuss
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Attributes
DT05 ET05

(training) (test)

duration (hr) 2h74m 2h33m

# sentences 1,640 1,320

# words 27.1k 21.4k

dict. size 1.6k 1.3k

# speakers 4 4

Table 5.6: Statistics of CHiME-3 task

Channels DT05 ET05

01-dnn 20.5 32.9

01-gmm 23.4 37.3

02-dnn 20.0 38.8

02-gmm 24.2 40.5

03-dnn 18.8 38.0

03-gmm 21.5 36.5

04-dnn 16.7 32.6

04-gmm 18.7 33.2

05-dnn 16.5 34.4

05-gmm 19.2 34.8

mvdr-gmm 20.3 37.1

mvdr-dnn 17.6 33.1

ds-gmm 12.2 23.1

ds-dnn 10.4 20.5

Avg. 18.6 33.9

Table 5.7: WER results of different

recognition channels in CHiME-3 task.

in §5.5, this can explain why: i) the performance achieved by standard

random ROVER is lower on CHiME-3 data than on IWSLT, ii) adding

high quality transcriptions to the combination (e.g. those obtained from

signal enhancement) results in much larger WER reductions on CHiME-

3, and iii) ranking methods seem to suffer from the presence of a large

number of transcriptions with very similar WER scores.

Preliminary analysis. Differently from the IWSLT task, where the tran-

scriptions come from multiple ASR systems, in CHiME-3 the transcrip-

tions come from multiple channels and two ASR systems. Also in this

task we first train the QE models on the training set (DT05) using 8-fold

cross validation. This partitioning with 8 folds is done intentionally due

to avoid speaker and sentence overlaps between training and test folds. As

mentioned before, for each utterance there are five signals recorded by the
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microphones, plus two enhanced signals. Each signal is transcribed using

both GMM and DNN acoustic models. Hence, 14 hypotheses are gener-

ated for each segment, and consequently, the combination levels range in

the interval [L3,L14 ].

Ranking L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 L13 L14
Avg.

Impr.

Random 14.3 13.4 12.7 12.4 12.1 11.9 11.9 11.8 11.8 11.8 11.8 12.2 0.0

SysO 11.0 10.9 10.3 10.4 10.6 10.6 10.9 10.7 10.9 10.9 11.2 11.5 -1.5

SegO 6.8 7.1 7.5 7.8 8.3 8.6 9.2 9.4 10.0 10.4 10.9 11.2 -3.4

RR1+B 10.6 10.3 10.0 9.9 10.0 10.1 10.3 10.4 10.8 11.0 12.0 12.0 -1.7

RR1+W 12.3 11.4 10.9 10.7 10.7 10.7 10.8 11.1 11.3 11.7 12.0 12.1 -1.0

RR1+BW 10.3 10.0 9.7 9.7 9.9 9.9 10.2 10.4 10.7 10.0 11.7 11.9 -2.0

MLR+B 10.0 9.7 9.6 9.6 9.8 10.0 10.2 10.4 10.5 10.7 11.3 11.9 -2.0

MLR+W 10.7 10.5 10.3 10.3 10.3 10.5 10.7 11.0 11.3 11.5 11.6 12.0 -1.4

MLR+BW 9.8 9.5 9.5 9.5 9.7 9.9 10.2 10.3 10.5 10.8 11.5 11.9 -2.1

Table 5.8: WER results of different ranking methods on the CHiME-3 training set (DT05)

using 8-fold CV. L14 indicates that all the 14 systems, i.e. 7 signals (5 from microphones

+ 2 enhanced), each transcribed by 2 ASR systems (GMM and DNN) are participated in

the combination.

Differently from IWSLT, in this task we do not take into account the

RR2 approach, which uses only one of the hypotheses (among all available

transcription channels) to train the regression models. Because in this

task, the microphones are positioned in different places around the tablet

PC and each of them captures the signal from a different angel. This makes

the signal-based features different from one hypothesis to the other.

The results reported in Table 5.8 show that, similar to the IWSLT task,

the best performance is achieved in most of the cases by MLR+BW (with

an average WER reduction of 2.1% over random ROVER). Unlike IWSLT,

most of our results outperform the SysO oracle, which always uses the en-

hanced channels as the first input. The best WERs are usually obtained
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at the lower levels (i.e. 9.5% at L4, L5 and L6). One explanation can be

the large gap between the best channels (ds− gmm and ds− dnn, respec-

tively obtaining 12.2% and 10.4% WER) and the other channels (obtaining

from 16.5% to 24.2% WER). By adding more hypotheses, worse transcrip-

tions are considered in the combination and, consequently, majority voting

makes more mistakes. At L13 and L14, indeed, our results remain slightly

worse than SysO.

An interesting achievement with this approach is the significant im-

provement of hypothesis-level combination with respect to the signal-level

combination. The top result obtained by MLR+BW (9.5%) is indeed bet-

ter than the best one reported in Table 5.7 for signal-level combination

(10.4% with ds − dnn). In contrast with previous works suggesting that

hypothesis-level combination does not yield any significant improvement

on top of signal-level combination (Stolcke, 2011), our results show that

better final results can be obtained if the input components are ordered

accurately.

Test. Table 5.9 includes the results achieved by QE models trained on

DT05 data and then used to predict the quality of the ET05 transcrip-

tions. The observations of our preliminary analysis seem to be confirmed.

Although trained and tested on different data, QE-informed ROVER con-

sistently outperforms random ROVER and the SysO oracle at all levels

except for L14, where the WER achieved by our best system is not sta-

tistically significant. This supports our hypothesis that, if the diversity

among the components is high enough, then the proposed segment-level

QE-informed ROVER can lead to better results than the system-level or-

acle. SegO performance is still significantly better at all levels, especially

the lower ones where the transcriptions obtained from the best enhanced

channels are hard to be improved with hypotheses coming from the other
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Ranking L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 L13 L14
Avg.

Impr.

Random 28.7 27.4 27.2 26.8 26.5 26.4 26.2 26.2 26.1 26.1 26.2 26.3 0.0

SysO 22.7 22.0 21.6 21.1 21.9 22.0 24.0 24.1 24.4 24.9 25.5 25.8 -3.3

SegO 14.8 15.4 16.2 17.0 18.1 18.7 19.7 20.3 21.1 21.9 22.8 23.6 -7.4

RR1+B 20.4 19.5 19.5 20.1 20.2 20.6 21.1 21.7 22.2 22.9 24.2 25.8†• -5.1

RR1+W 22.2• 21.1 20.3 20.3 20.5 21.0 21.3 22.0 22.9 24.0 24.9 26.0†• -4.5

RR1+BW 20.0 19.5 19.1 19.5 19.7 20.3 20.7 21.4 22.1 22.9 23.9 25.8†• -5.4

MLR+B 20.4 19.9 19.6 20.0 20.3 20.6 21.2 21.5 22.5 23.3 24.9 25.8†• -5.0

MLR+W 22.4• 21.4 20.8 20.7 21.1 21.5 22.0 22.6 23.2 24.0 25.2 25.9†• -4.1

MLR+BW 19.8 19.5 19.5 19.7 20.2 20.4 20.9 21.5 22.2 23.4 24.9 25.7• -5.2

Table 5.9: WER results of different ranking methods on the CHiME-3 test set ET05. The

symbols indicate the statistical significance test at the level of 95%. “†”: the result is not

significantly different from random ROVER; “•”: the result is not significantly different

from SysO; “?”: the result is not significantly different from SegO.

channels.

It is important to remark that QE-informed ROVER also significantly

improves the performance of the enhanced channels when combining less

than eight transcriptions. In fact, as shown in Table 5.7, the enhanced

ds− dnn channel achieves 20.5% WER on ET05, while RR1+BW reduces

the error down to 19.1% at L5. As mentioned before, probably due to the

high performance difference between the enhanced and raw channels, we

do not observe the same gain at higher levels.

Differently from IWSLT, where there is an increment of 2% WER when

moving from the preliminary analysis to the test results, in CHiME-3 we

observe a larger degradation (10% WER on average). This is not surprising

by looking at the differences in WER between training and test data in

the two tasks (Tables 5.3 and 5.7), which indicate that CHiME-3 data is

more heterogeneous. However, though working in a more complex scenario,

QE-informed ROVER still achieves competitive results.
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About learning algorithms, in most of the cases the best performance

on CHiME-3 is obtained by RR1. This is in contrast with the IWSLT

results, where MLR always performed better than RR. The main reason

for this is related to the fact that in CHiME-3, apart from the enhanced

channels, the other channels are quite similar in performance and, overall,

they generate transcriptions of low quality with similar or equal WERs (see

Table 5.7). For MLR, this results in a large number of ties when computing

the pairwise comparisons. The impact of ties on MLR performance is

addressed in §5.6.1.

Figure 5.4: CHiME-3

Figure 5.5: WER results achieved on the evaluation set ET05 as a function of hypothesis

diversity (div = MAXWER[%]−MINWER[%])

Further analysis. Figure 5.5 shows the performance analysis with regard to

the diversity groups in the CHiME-3 task. Comparing the curves in Figures

5.3 and 5.5, we observe that the distribution of the CHiME-3 transcriptions

with respect to the different levels of diversity (black-dotted lines) is more
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uniform than in IWSLT. This is mostly due to the presence of the enhanced

channels that perform significantly better than the raw ones, hence they

enlarge the gap between the best and the worst transcriptions. In terms

of performance, this uniform distribution allows QE-informed ROVER to

outperform SysO also for small values of diversity (30% ) in CHiME-3.

Increasing the level of diversity, our method significantly gains over SysO

and also approaches SegO at the diversity value of 90%.

5.6 Discussion

We have shown that:

• QE-informed ROVER is able to achieve better performance than stan-

dard ROVER on two very different datasets;

• our approach also outperforms the system-level oracle in the CHiME-3

task, and it obtains competitive results with the enhanced channels;

• the extent of our gains depends on the level of diversity and accuracy

of the transcriptions, and

• the lowest WER scores are obtained combining a limited number of

transcriptions.

Despite these positive results, our analysis still leaves two important

questions open:

1. Why machine-learned ranking (MLR+BW) shows better performance

on IWSLT, whereas in CHiME-3 ranking by regression (RR1+BW)

generally works better?

2. Considering that the best performance is always obtained at a task-

specific level of combination, how can we predict this level?
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In this section we address these two practical issues, respectively by:

1. analyzing the impact of tied ranks (transcriptions with identical WERs)

in the CHiME-3 training data and

2. exploring a classification method to identify the optimum combination

level.

5.6.1 Tied ranks

In the previous section we observed that the highest results on IWSLT and

CHiME-3 data are respectively obtained by MLR and RR. This raises the

following practical issue: how to find a unique, best performing strategy,

suitable for the general case?

One reason for the observed difference can be found in the way the QE

models are trained. In RR they are trained to separately predict the WER

of each transcription, while in MLR they are trained to predict relative

ranks through pairwise comparisons. Training sets characterized by a large

number of ties (transcriptions of the same segment with identical WERs

but different quality) may influence the performance of MLR more than

RR.7

Table 5.10 reports the average percentage of ties (similar or identical hy-

potheses) for each dataset, showing that IWSLT has less ties than CHiME-3

both in the training and test sets. This seems to contradict the plots of

Figure 5.5, which indicate a higher diversity in the CHiME-3 data (com-

pared to IWSLT, instances are more evenly distributed across all diversity

levels). Such diversity, however, is only due to the presence of the enhanced

channels that are far better than the raw ones. Indeed, in CHiME-3 we

observe a lot of ties among the raw channels (i.e. the transcriptions gen-

7This problem is widely explored in the information retrieval field, where ties are either arbitrarily

broken (Fürnkranz and Hüllermeier, 2003) or managed with ad-hoc strategies (Zhou et al., 2008).
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erated by the non-enhanced signals). Moreover, in CHiME-3, the training

set includes 8% more ties than the test set. This suggests that the presence

of a large number of ties in the training set of CHiME-3 can be critical and,

in turn, it can determine the lower results achieved by MLR.

IWSLT CHiME-3

Train 38.4% 58.9%

Test 40.5% 50.6%

Table 5.10: Percentage of ties (similar or identical hypotheses) in each dataset.

To validate this hypothesis, in the following experiments we break the

ties in the training set by looking at the global performance of each sys-

tem/channel on the same data.8 In particular, if two systems, A and B,

achieve the same WER on a given training segment, and system A has

shown to perform better than system B on the whole training set, then

the hypothesis suggested by A will be prioritized when breaking the ties.

IWSLT L3 L4 L5 L6 L7 L8 - - - - -
Avg.

Impr.

RR2+BW 13.7 12.8 12.4 12.2 12.2• 12.2†•- - - - - - -0.6

MLR+BW 12.4• 12.1 12.0• 11.9•?12.2• 12.2†•- - - - - - -1.1

MLR+BW
12.3 11.9• 12.0• 11.9•?12.1•12.2†•- - - - - - -1.2

+Untied

CHiME-3 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 L13 L14
Avg.

Impr.

RR1+BW 20.0 19.5 19.1 19.5 19.7 20.3 20.7 21.4 22.1 22.9 23.9 25.8†• -5.4

MLR+BW 19.8 19.5 19.5 19.7 20.2 20.4 20.9 21.5 22.2 23.4 24.9 25.7• -5.2

MLR+BW
19.3 18.6 19.2 19.5 20.0 20.3 20.8 21.2 21.8 22.5 23.2 24.0? -5.8

+Untied

Table 5.11: WER results when the ties are broken using prior knowledge.

8This information is similar to the prior knowledge that the SysO oracle acquires on the training data

and exploits to rank the test hypotheses. Here, however, we fairly operate only on the training set.
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Table 5.11 shows how performance varies if the ties in the training

data are broken using such prior knowledge. In IWSLT, the MLR ap-

proach trained on untied ranks (MLR+BW+Untied) achieves minor im-

provements. This is due to the fact that: i) the number of ties is not so

high to represent a critical issue, as we saw in Table 5.10, and ii) the WER

difference between the different systems and levels are such minimal that re-

duces the room for improvement. In CHiME-3, instead, the model learned

from the untied training set (MLR+BW+Untied) significantly outperforms

MLR+BW at all levels of combination and also outperforms RR1+BW at

most of the levels. The considerable WER result of 18.6% obtained by this

method at L4, which also corresponds to a relative improvement of 9.6%

over the best enhanced channel, represents our best result on CHiME-3.

This confirms the validity of our intuition about the negative impact of tied

ranks on MLR performance. The largest improvement is obtained when

combining all the transcriptions (L14). This is not surprising because this

is the condition where more ties occur. Interestingly, at this level, the

results of QE-informed ROVER improve up to the point that they are

no longer statistically different from the strong segment level oracle (see

Table 5.9).

Similarly to what we observed in the previous experiments, the best

results are obtained at low levels of combination. This calls for solutions

to automatically find (or at least approximate) the optimum level, which

is the problem investigated in the next section.

5.6.2 Optimum level of combination

Table 5.11 shows that, after breaking the ties, the optimum level of com-

bination in IWSLT (8 components) is either L4 or L6, while in CHiME-3

(14 components) it is L4. A post-hoc comparison of the results achieved by

each level on the test set, however, is only made possible by the availability
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of references to compute final WER scores. This observation raises a new

practical issue: how can we predict the optimum level of combination in a

real condition in which we have no access to the reference transcripts? The

problem of finding a dataset-specific stopping criterion, as an alternative

to the simple and risky “take-all” strategy, is well motivated. Although it

seems less important for IWSLT, where final WER scores are quite simi-

lar for all the levels, a method to avoid entering harmful inputs into the

ROVER combination can significantly change the results in CHiME-3.

Several sub-optimal solutions can be applied to address this problem.

The simplest one is the random choice, which is acceptable in situations

where hypothesis quality is homogeneous (IWSLT) but, as we will show

below, it can be inadequate when the variability is higher (CHiME-3).

Another option is to determine the optimal level in the training set and

apply it to the test data. This, however, would not be possible when the

number of components varies between training and test, as in the case of

the IWSLT task.

A better solution is suggested by the findings in (Audhkhasi et al., 2014)

that demonstrates the strong dependency between the performance of ASR

system combination methods and the diversity and quality of the compo-

nents. Following this intuition, we explore a classification-based approach,

in which a binary classifier is trained to learn wether a combination level is

appropriate (labeled as 1 ) or not (labeled as 0 ). Based on the predictions

of the classifier, for each given segment we select the appropriate level. In

case of finding multiple optimum levels, we rely on the confidence score of

the classifier.

To prepare the training data, for each segment we first run QE-informed

ROVER at all the levels. Then, label 1 is assigned to the level(s) with the

lowest WER. It is probable that for some segments, different combination

levels may result in the same lowest WER score. When this happens, multi-
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ple levels are labeled as 1, thus resulting in skewed label distributions. This

is the case of IWSLT data, especially the test set, in which more levels have

identical scores compared to CHiME-3 (the percentage of positive examples

in the two test sets is respectively 77.0 and 57.3). Looking at the results in

Table 5.11 this is not surprising, since the WER difference between the best

and the worst levels is minimal (0.4% for MLR+BW+Untied) compared to

CHiME-3 (5.4%). Moreover, looking at the distributions in Figures 5.3 and

5.5, we notice that the majority of the IWSLT segments have transcriptions

with small diversity. These considerations indicate a higher probability to

find transcriptions of similar quality in the IWSLT data and, in turn, a

more skewed label distribution when training our classifier.

Features

The features for this classification task are extracted by using the confusion

networks generated by ROVER at each combination level. In particular,

we compute:

1. Overall diversity of the level, computed using the theorem in (Au-

dhkhasi et al., 2014);

2. levenshtein distance between the first and the last hypotheses;

3. avg. Levenshtein distance between the first hypothesis and the others;

4. avg. Levenshtein distance between each hypothesis and the next one;

5. avg. Levenshtein distance between each hypothesis and the final com-

bination;

6. mean predicted WER obtained by RR methods among the hypotheses.

7. minimum predicted WER obtained by RR methods among the hy-

potheses.
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8. maximum predicted WER obtained by RR methods among the hy-

potheses.

Except for the first feature, the others are quite simple to compute.

The theorem of Audhkhasi et al. (2014) defines diversity as the average

of the approximate WERs of the individual systems from the ROVERs

prediction. Based on this definition, the diversity of a confusion network

generated by ROVER is computed by:

Diversity =
1

I ×M

I∑
i=1

M∑
m=1

1

2
‖havgi − h

∗
i‖

2
2

where, havgi =
1

M

M∑
m=1

hmi

where, hmi = αwm
i + (1− α)smi

In this equation, I is the total number of bins (slots) in the confusion

network and M is the number of hypotheses to be combined. havgi is the

average of hmi vectors in i-th bin and h∗i represents the ROVER’s output

and it is obtained by setting the maximum element of havgi as 1 and the rest

0. hmi is a counter-vector for the word wm
i appeared in the m-th hypothesis.

wm
i is indeed a one-hot vector with the same dimension as the vocabulary

size and smi represents the confidence score of this word. α is a coefficient

that has to be tuned. Since in our task, the confidence scores are not

available, we set α = 1.

Classifiers

As classification algorithms, we experimented with support vector ma-

chine (SVM) (Mammone et al., 2009), random forest (Breiman, 2001) and

BayesNet (Friedman et al., 1997). Balanced accuracy, which is particularly
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appropriate in case of skewed distributions, is used as evaluation metric

to optimize hyper-parameters and select the best classification algorithm.

The results reported in Table 5.12 are computed in 5-fold cross validation

on the training set and they show that BayesNet outperforms the other

classifiers and, by a large margin, also the 50.0% balanced accuracy reach-

able with a baseline majority voting classifier. One possible explanation

for the success of BayesNet could be in its higher capability to work with

a limited number of features (i.e. 8 features in these experiments) and a

large number of instances (44969 for IWSLT and 1968010 for CHiME-3).

Comparing the performance obtained on the two datasets, the fact that

CHiME-3 results are better than the IWSLT ones suggests that the more

skewed distribution of the IWSLT labels penalizes the classifier.

Task IWSLT CHiME-3

Classifier Balanced Acc. IWSLT2012 Balanced Acc. DT05

SVM 52.8 66.1

Random Forest 58.7 71.5

BayesNet 65.5 72.0

Table 5.12: Performance of different binary classifiers used to find the optimum level of

combination.

In light of its higher balanced accuracy, the BayesNet classifier has been

selected to predict the best level of combination for each segment in the

test data. On both tasks the results outperform those of the sub-optimal

strategy based on random selection of the best combination level. While on

IWSLT the WER reduction is unsurprisingly minimal (from 12.1% using

random selection to 12.0% using BayesNet), on CHiME-3 the gain is much

91, 124 × 4 = 4496, as there are 1,124 utterances in IWSLT2012 that can be combined in 4 levels

[L3, L4, L5, L6].
101, 640 × 12 = 19, 680, as there are 1,640 utterances in DT05 that can be combined in 12 levels

[L3, .., L14].
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larger (from 20.9% using random selection to 18.8% using BayesNet).11

More interestingly, besides outperforming random selection, our classifier

provides predictions that closely approximate the performance of the best

levels shown in Table 5.11 (11.9% for IWSLT and 18.6% for CHiME-3).

Overall, these results indicate that:

• The optimal combination does not only depend on the quality of the

hypotheses and the reliability of their ranking but also on their diver-

sity (this is in line with the discussion in Section §5.5.4 and with the

results reported in (Audhkhasi et al., 2014));

• The relative importance and contribution of these aspects can be

learned from data;

• The resulting models can effectively support our QE-informed ROVER

approach in real operating conditions where reference transcripts are

not available.

5.7 Summary

QE-informed ROVER, as an approach to perform ROVER system combi-

nation on the 1-best hypotheses coming from multiple transcription chan-

nels was presented in this Chapter. We used ASR QE to address three

issues about the classic ROVER, including i) the order of the entering hy-

potheses; ii) low granularity level and iii) dependency on confidence score

and ASR decoder features. To this aim, we applied ASR QE to automat-

ically rank the inputs at segment-level (the first and second limitations).

Moreover, we used only the black-box features that do not need the ASR

decoder information (the third issue). By exploiting QE-informed ROVER,

11The baseline sub-optimal scores are obtained by averaging the results obtained from five iterations

of the random selection process.
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we observed consistent, positive improvements in two very different combi-

nation scenarios. The first scenario, IWSLT involves multiple ASR systems

and close-talk English TED talks that are transcribed by 8 unknown ASR

engines. The second scenario involves noisy signals recorded by multiple

microphones to be combined. On both experiments, QE-informed ROVER

outperformed the classic ROVER significantly and it closely approached

the oracle results.
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Chapter 6

Conclusion

This PhD explored automatic quality estimation for the ASR outputs. The

study was first motivated by the fact the actual

• ASR evaluation is quite expensive in terms of human effort;

• manual reference is not always available and

• the ASR decoder information is not always accessible.

We described the principles of ASR QE in Chapter 3. We defined ASR

QE as an automatic quality evaluation system which differs from confidence

measuring and confidence estimation studied during the last decades. The

main difference between confidence estimation and quality estimation is

indeed the lack of ASR decoder information when we talk about ASR

QE. A wide range of sentence-level and word-level features were presented

in Chapter 3. We categorized all these features into four groups: signal,

textual, hybrid and word-level features. The efficacy and complementarity

of these features were confirmed in several experiments.

Then we introduced different learning mechanisms for two distinct sce-

narios. The first scenario, single hypothesis, involves only one transcription

hypothesis per utterance. This scenario was explored as word error rate

(WER) prediction task. We showed that extremely randomized tree (XRT)
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fits very well as a regression model for WER prediction. The second sce-

nario, multiple hypotheses, involves several transcription hypotheses per

utterance. In this scenario the goal is to rank the hypotheses according to

their quality. For this scenario, we showed that machine-learned ranking

(MLR) approache outperform the regression-based one. The advantage

of MLR is its ability to perform pairwise comparison between several hy-

potheses. Among all possible MLR models, we found that random forest

(RF) presented the most reliable rankings.

Moving from theory to practice, in the subsequent chapters 4 and 5, we

encountered different applications of ASR QE yielding significant WER

reduction in the final output.

In the first application, in Chapter 4, we made use of single hypothesis

ASR QE to perform deep neural network (DNN) acoustic model adapta-

tion. DNN acoustic models, because of their huge number of parameters

cannot be easily adapted with the common adaptation approaches such as

MAP and MLLR. To this aim, we use a method based on Kullback-Leiber

divergence regularization. In this method, the quality of the adaptation

data and also the weight which is given to each adaptation utterance plays a

critical role. We proposed to exploit single hypothesis ASR QE approaches

to predict the quality of each hypothesis and remove the bad ones from the

adaptation data. Moreover, we observed that the predicted values provide

a reliable weight to each utterance for performing soft adaptation. In soft

adaptation the weight of each adaptation data varies from one instance to

the other. Our results showed over 1.8% WER reduction with regard to

the strong baseline provided in CHiME-3 challenge.

The second application, in Chapter 5, exploits multiple hypotheses ASR

QE for improving system combination. ROVER (random output voting

error rate), as one of the most popular ASR hypotheses combiners, is very

sensitive to the order of the entering hypotheses. Based on this observa-
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CHAPTER 6. CONCLUSION

tion, we proposed to apply ASR QE to order the hypotheses before running

ROVER. On two distinct dataset with two different speech recognition cir-

cumstances: one with single closed talk microphone transcribed by multiple

ASR systems and the other with multiple distant microphones transcribed

by two ASR systems, we showed significant WER reduction achieved by

QE-informed ROVER. In the former, we achieved 1.6% absolute WER re-

duction wrt to the best individual channel and 0.5% absolute reduction wrt

to the state-of-the-art combination. In the latter, we showed 14.0% abso-

lute WER reduction wrt to the best individual channel and 1.9% absolute

WER reduction wrt to the state-of-the-art combination. In both scenarios,

the diversity and complementarity of the hypotheses components played a

critical role in the performance of ASR QE and also in the result of the

combination procedure.

Moreover, the problem of the tied ranks was addressed in these studies.

We showed that breaking the ties based on the overall performance of

the transcription channels can be a simple though effective solution. We

also investigated the problem of finding the optimum level of combination.

The solution was to simply use a binary classifier showing if a combination

level is appropriate or not. The empirical results showed that for this

classification task BayesNet worked very well. The main features were

based on the diversity among the hypotheses in a level. Features such

as the mean and standard deviation of the predicted WER values; the

difference between the first component with the last one and like on.

6.1 Future work

This PhD research has opened a wide range of possibilities for improv-

ing the real-world ASR applications using automatic quality estimation

systems.
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6.1. FUTURE WORK

First of all, the ASR QE by itself has a large space to be improved from

different perspectives. In this PhD, we focused mainly on the sentence-level

QE. Whereas, working on the phone-level, word-level or even document-

level can be done in future. Moreover, extending the features to signal

processing-oriented technologies, linguistics information and like on, is an-

other trend that we will follow in future.

ASR QE may lead to incremental learning of the acoustic models. One of

the future works, that is indeed in progress, is to use ASR QE for selecting

the more suitable training data. In ideal case, an ASR system can be

retrained on a portion of the automatically transcribed data that shows

higher quality. From this perspective, the ASR system can transcribe the

new unseen data, select the high quality portion and retrain itself on that

portion.

114



Bibliography

Kacem Abida, Fakhri Karray, and Wafa Abida. cROVER: Improving

ROVER using Automatic Error Detection. In Proc. of the IEEE Interna-

tional Conference on Acoustics, Speech, and Signal Processing (ICASSP),

pages 1753–1756, Prague, Czech Republic, 2011.

Victor Abrash, Sankar Ananth Franco, Horacio, and Michael Cohen. Con-

nectionist Speaker Normalization and Adaptation. In Proc. of he Inter-

national Speech Communication Association (Interspeech), pages 2183–

2186, Madrid, Spain, 1995.

Xavier Anguera, Chuck Wooters, and Javier Hernando. Acoustic Beam-

forming for Speaker Diarization of Meetings. IEEE Transactions on

Audio, Speech, and Language Processing, 15(7):2011–2022, 2007. ISSN

1558-7916.

X. Aubert, C. Dugast, H. Ney, and V. Steinbiss. Large vocabulary con-

tinuous speech recognition of wall street journal data. In Proc. of

IEEE International Conference on Acoustics, Speech, and Signal Pro-

cessing, (ICASSP), volume ii, pages II/129–II/132 vol.2, 1994. doi:

10.1109/ICASSP.1994.389702.

Kartik Audhkhasi, Andreas M Zavou, Panayiotis G Georgiou, and

Shrikanth S Narayanan. Theoretical Analysis of Diversity in an Ensemble

of Automatic Speech Recognition Systems. IEEE/ACM Transactions on

Audio, Speech & Language Processing, 22(3):711–726, 2014.

115



BIBLIOGRAPHY

Nguyen Bach, Fei Huang, and Yaser Al-Onaizan. Goodness: a Method for

Measuring Machine Translation Confidence. In Proc. of the 49th Annual

Meeting of the Association for Computational Linguistics: Human Lan-

guage Technologies (ACL-HLT), pages 211–219, Portland, Oregon, USA,

2011.

Jon Barker, Emmanuel Vincent, Ning Ma, Heidi Christensen, and Phil

Green. The PASCAL CHiME Speech Separation and Recognition Chal-

lenge. Computer Speech & Language, 27(3):621–633, 2013.

Jon Barker, Ricard Marxer, Emmanuel Vincent, and Shinji Watanabe. The

third ’CHiME’ Speech Separation and Recognition Challenge: Dataset,

Task and Baselines. In Proc. of the 15th IEEE Automatic Speech Recog-

nition and Understanding Workshop (ASRU), pages 1–9, Scottsdale, Ari-

zona, USA, 2015.

Sara Basson, Dimitri Kanevsky, and Emmanuel Yashchin. Collaboration

of multiple automatic speech recognition (asr) systems, 2003. US Patent

App. 10/058,143.

Jacob Benesty, Jingdong Chen, Yiteng Huang, and Israel Cohen. Noise

Reduction in Speech Processing, volume 2. Springer Science & Business

Media, 2009. ISBN 978-3-642-00295-3.
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