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Multirak Detetion in Two-Dimensional Strutures bymeans of GA-based Strategies
M. Benedetti, M. Donelli, and A. Massa

AbstratThis paper proposes a methodologial approah for the detetion of multiple defetsinside dieletri or ondutive media. Two innovative algorithms are developed start-ing from the inverse sattering equations solved by means of di�erent optimizationstrategies. In the �rst implementation, a hierarhial strategy based on parallel-subproesses is onsidered, whereas the seond algorithm employs a single-proessarhiteture. Whatever the implementation, the arising ost funtion is minimizedthrough a suitable hybrid-oded geneti algorithm, whose individuals enode theproblem unknowns. In order to ahieve a omputational saving, the formulationbased on the inhomogeneous Green's funtion is adopted and eah rak-region isparametrized by means of a seleted set of desriptive parameters. The approah aswell as its di�erent implementations are assessed through a seleted set of numer-ial experiments and in omparison with previously developed single-rak inversesattering methods.
Key-words: Non-destrutive Testing and Evaluation, Mirowave Imaging, MultirakDetetion 2



1 IntrodutionNondestrutive Evaluation and Testing (NDE/NDT) is an interdisiplinary researh areadevoted to the development of advaned sensors, measurement tehnologies, and imag-ing tehniques for the haraterization of materials and strutures in a non-destrutivefashion. Non-destrutive evaluation (NDE) and testing (NDT) are mandatory in manyindustrial proesses that require an aurate analysis of dieletri or ondutive strutures(e.g., industrial produts and artefats).As far as the state-of-the-art is onerned, ultrasonis [1℄, χ and γ-rays [2℄[3℄, infrared[4℄ and eddy urrents [5℄, are the methodologies mainly used in dealing with NDE/NDTproblems. Reently, some �emerging� tehnologies suh as mirowaves are appearing in�Subsurfae Sensing� methods for the nondestrutive evaluation (see [6℄[7℄[8℄[9℄[10℄ andthe referenes therein for a general overview) and now, in some appliations, the employ-ment of interrogating mirowaves is reognized as a suitable diagnosti tool [11℄-[13℄. Themain reasons of the growing interest and rapid development of mirowave-based method-ologies an be summarized by the following key-points: (a) eletromagneti �elds in themirowaves range penetrate all materials (unless ideal ondutors) and the sattered �eldsare representative of the overall volume of the objet under test and not only of its surfae;(b) mirowave imaging modalities are very sensitive to the water ontent of the speimen;() mirowave sensors an be used without mehanial ontats with the speimen, aswell. Moreover, mirowave tehnologies an be onsidered omplementary approahes toonventional inspetion tehniques guaranteeing non-invasive measurements and avoidingollateral e�ets on the speimen under test (being safe non-ionizing radiations).In the framework of mirowave methodologies, a further advane is represented by imagingtehniques based on inverse sattering approahes [14℄-[18℄, where a omplete image ofthe struture under test is looked for. Unfortunately, these tehniques are haraterizedby several drawbaks suh as ill-position and non-linearity as well as the presene ofloal minima that partially prevent their use in industrial appliations (unlike �passive�tehniques) [11℄. Therefore, in order to allow an e�etive tehnologial transfer in theframework of industrial proesses, other developments are mandatory. Let us onsider thearea of post-proessing tehniques for the diagnosis of the speimen under test starting3



from the analysis of sensed data. Currently, the real-time monitoring is strongly limitedby the low-speed of the reonstrution methods. Moreover, the wavelength of the probingeletromagneti soure strongly limits the ahievable spatial resolution or it requires highomputational osts for obtaining a detailed reonstrution.However, in the framework of inverse sattering tehniques, dealing with the detetionof defets (also indiated as �raks� in the following) in known host strutures seemsto be loser to a realisti appliation beause of the large amount of available a-prioriinformation on the problem in hand. Suh a topi has been e�etively addressed in[19℄, [20℄, and [21℄. However, the proposed approahes demonstrated their feasibilityand e�etiveness in simpli�ed geometri on�gurations haraterized by the presene of asingle defet.In order to onsider more omplex and realisti senarios (e.g., multiple defets, irregularshapes of the defets, et...), this work presents two innovative NDE/NDT strategiesaimed at deteting the presene of more than one defetive region inside a dieletrior ondutive host-medium. Sine there is the a-priori knowledge of the unperturbedgeometry, the raks are de�ned as inlusions in a known struture and approximatedwith a limited set of essential parameters. Suh a parameterization and the use of asuitable Green's funtion allow a redution of the number of unknowns and onsequentlya non-negligible omputational saving during the reonstrution proess arried out interms of the optimization of a suitable ost funtion.As far as the proposed implementations are onerned, the main di�erene lies in thearhiteture of the solution proedure and, onsequently, in ustomized and innovativeoptimizations based on a Geneti Algorithm (GA). The former strategy is based on ahierarhial implementation, whih onsiders a set of parallel sub-proesses, eah oneinspeting on a solution with a di�erent �xed number of raks. The latter deals with asingle optimization proess aimed at looking for the best reonstrution among di�erentrak-length solutions.The paper is strutured as follows. Setion 2 provides the mathematial formulationfor the inverse sattering approah to the reonstrution of multiple-defets in a two-dimensional senario. In Setion 3, the two implementations of the method are presented4



fousing on the optimization proesses. The apabilities and urrent limitations of thetwo strategies in dealing with NDE/NDT problems are analyzed in Setion 4. Finally, inSetion 5, a disussion follows and possible future developments are skethed.2 Mathematial FormulationLet us onsider a ylindri geometry where an area under test H is oupied by a knownhost medium haraterized by an objet funtion τH (x, y) = εH−1−j σH

2πfε0
, εH and σH be-ing its dieletri permittivity and ondutivity, respetively (f is the working frequeny).As shown in Fig. 1, suh a region lies in a homogeneous bakground whose eletromag-neti properties, without loss of generality, are that of the vauum (ε0, σ0). A set of Cdefets Di, i = 1, ..., C, belongs to H . The geometri and eletromagneti harateristisof the regions Di are unknown as well as their number. The two-dimensional senariois probed by V eletromagneti TM plane waves with eletri inident �elds linearly-polarized along the axis of symmetry of the struture under test, Ev

inc (r) = Ev
inc (x, y) ẑ,

v = 1, ..., V . Aording to the inverse sattering equations [22℄, the eletri �eld induedin the �investigation domain� H is equivalent to that radiated in the free-spae by anequivalent urrent density Jv(x, y)

Ev
tot (x, y) = Ev

inc (x, y) +

∫ ∫

H

Jv(x′, y′)G0 (x, y/x′, y′) dx′dy′ (1)where G0 is the free-spae Green's funtion [19℄ and Jv(x, y) = τ (x, y)Ev
tot (x, y) being

τ (x, y) = ε (x, y) − 1 − j σ(x,y)
2πfε0

. Equation (1) an be reformulated in terms of a di�er-ential equivalent urrent density Jv
Di

(x, y) de�ned in Di, i = 1, ..., C and radiating in aninhomogeneous medium [23℄. Aordingly, the eletri �eld an be expressed as
Ev

tot (x, y) = Ev
inc (x, y) +

∫ ∫
H

τH (x′, y′) Ev
tot (cf) (x′, y′) G0 (x, y/x′, y′) dx′dy′+

+
∑C

i=1

∫ ∫
Di

τDi
(x′, y′)Ev

tot (c),i (x
′, y′)G1 (x, y/x′, y′) dx′dy′

(2)where the seond term on the right side of (2) is the eletri �eld sattered from the hostmedium without the defet, Ev
tot (cf) (x, y) being the eletri �eld indued in the unper-5



turbed domain H . The last term of (2) is onerned with the �eld distribution radiatedby Jv
Di

(x, y) = τDi
(x, y)Ev

tot (c),i (x, y) where τDi
(x, y) = τ (x, y) − τH (x, y), (x, y) ∈ Di,

i = 1, ..., C [20℄ are the di�erential objet funtions, G1 being the inhomogeneous Green'sfuntion. By assuming the knowledge of the host medium (generally available), it is usefulto rewrite (2) as follows:
Ev

tot (x, y) = Ev
inc (cf) (x, y)+

C∑

i=1

∫ ∫

Di

τDi
(x′, y′) Ev

tot (c),i (x
′, y′) G1 (x, y/x′, y′) dx′dy′ (3)where Ev

inc (cf) (x, y) is the eletri �eld in the senario under test without the defet, whihan be omputed o�-line one.In order to numerially deal with the sattering equations, let us disretize H in N squaresub-domains [24℄. Therefore, Di turns out to be �lled by Pi square pixels aording tothe rak size and the disretized operator G1 an be easily omputed [20℄ and stored ina N × N matrix, [G1]. Thus, (3) beomes
[Ev

tot] =
[
Ev

inc (cf)

]
+

C∑

i=1

[G1,i] [τDi
]
[
Ev

tot,i

] (4)where:
• [Ev

tot] is a N × 1 array whose n-th element is Ev
tot(xn, yn), (xn, yn) ∈ H ;

•
[
Ev

inc (cf)

]
, [Ev

inc]+ [Go] [τH ]
[
Ev

tot (cf)

] is a N ×1 array whose n-th entry is the ele-tri �eld without the defet at the n-th subdomain of H given by Ev
inc (cf) (xn, yn) =

Ev
inc (xn, yn) +

∫ ∫
H

τH (x′, y′) Ev
tot (cf) (x′, y′) G0 (xn, yn/x

′, y′) dx′dy′;
•

[
Ev

tot,i

] is a Pi × 1 vetor whose pi-th entry identi�es the value of the eletri �eldin the pi-th pixel of Di, i = 1, ..., C;
• [τDi

] is a Pi × Pi diagonal matrix, whose non-null elements are the values of objetfuntion τDi
in the Pi pixels of Di;

• [G1,i] is the i-th inhomogeneous spae Green's matrix of N × Pi elements derivedfrom [G1] by seleting the rows related to the positions pi (pi = 1, ..., Pi) of thepixels of Di in H . 6



Sine the inhomogeneous operator [G1,i] determines the e�ets of the i -th di�erentialequivalent urrent density loated in the unknown region Di, the sattering problem anbe reformulated as the reonstrution of the di�erential objet funtion τDi
in the setof pixels pi = 1, ..., Pi of H where the defet is loated. Moreover, in order to furtherderease the number of unknowns by adding some a-priori assumptions, eah region

Di is approximated by a retangular homogeneous domain properly parametrized. Inpartiular, let us desribe the i-th defet with the oordinates of the enter of Di,(xi, yi),the length Li, its side Wi, and the orientation θi. Then, the Pi diagonal entries of [τDi
]turn out to be

τDi
⌋n,n =






τ(xn, yn) − τH(xn, yn) if ξ ∈
[
−Li

2
, Li

2

] and ζ ∈
[
−Wi

2
, Wi

2

]

0 otherwise (5)where ξ = (xn − xi) osθi + (yn − yi) sinθi, ζ = (xn − xi) sinθi + (yn − yi) osθi, and n =

1, . . . , Pi.Moreover, sine the eletri �eld indued in Di is unknown as well, the set of parametersto be retrieved during the reonstrution is
χ =

{
C; Υi, i = 1, ..., C;

[
Ev

tot,i

]
, i = 1, ..., C

} (6)where Υi = [(xi, yi) ; Li; Wi; θi] and [
Ev

tot,i

]
= {Ev

tot (xpi
, ypi

) , pi = 1, . . . , Pi}, i = 1, . . . , C.In order to determine the optimal solution χopt of the reonstrution problem from theknowledge of the �eld measured in an external observation domain O [i.e., Ev
tot(xm, ym),

m = 1, ..., M , (xm, ym) ∈ O /∈ H ℄, of the �eld at the same loations but without the defet,
Ev

tot (cf)(xm, ym), and of the �eld without the defet in the investigation domain H [i.e.,
Ev

inc(xn, yn), n = 1, ..., N , (xn, yn) ∈ H ℄, the problem in hand is reast as an optimizationone through the de�nition of a suitable ost funtion
Ω(χ) = α

{
‖[Ev

tot]−[Ev
tot (cf)]−

PC
i=1[G1,i][τDi ][E

v
tot,i]‖2

O

‖[Ev
tot]−[Ev

inc]‖2

O

}

+β

{
‖[Ev

tot (cf)]+[Ev
tot]−

PC
i=1[G1,i][τDi ][E

v
tot,i]‖2

H

‖[Ev
inc]‖2

H

} (7)where α and β are two positive regularization parameters, whih allow one to weight more7



the �inident� (β) or the �sattered� (α) data depending on the unertainties or the noiselevel assoiated with both of them. Moreover, equation (7) is the sum of two normalizedleast-square terms quantifying the errors when mathing the sattering data.In order to look for χopt [orresponding to the global minimum of the nonlinear ostfuntion (7)℄, a suitable global minimization strategy has to be used. Towards this end,two di�erent GA-based approahes have been developed and they will be desribed in thefollowing sub-setions.2.1 Hierarhial Strategy (HS)Let us assume that the number of defets lying in H is lower than a �xed integer Cmax(Cmax ≥ C). Under suh a hypothesis, the hierarhial approah onsiders Cmax parallelreonstrution sub-proesses eah one aimed at investigating the presene and the har-ateristis of a di�erent number of defets from 1 up to Cmax. As far as the j-th proessis onerned (j = 1, . . . , Cmax), a population of Qj trial solutions oding a �xed numberof raks, j, is onsidered
χ

j
= {χj,q; q = 1, . . . , Qj} =

{(
j; Υi, i = 1, ..., j;

[
Ev

tot,i

]
, i = 1, ..., j

)
q
; q = 1, . . . , Qj

}
.(8)Starting from a set of randomly generated solutions χ0

j
, the j-th population iterativelyevolves (χkj

j =⇒ χ
kj+1
j , kj being the iteration index of the j-th proess) until a stopping ri-terion [kj = Kmax or Ω {χj,opt} ≤ Ωth, χj,min = arg{minq=1,..,Qj

[minkj=1,...,Kmax

(
Ω

{
χ

kj

j,q

})]}℄is reahed. At the kj-th step the (kj + 1)-th population is generated by means of a set ofsuitable geneti operators denoted by ℑ{·} (χkj+1
j = ℑ

{
χ

kj

j

}) and the best trial solutionde�ned so far is stored in the array χj,min. When all the Cmax proesses are terminated,the onvergene solution is determined as the minimum among the set of solutions χj,min,
j = 1, . . . , C. The whole minimization proedure an be resumed by the following pseudo-ode: for j = 1, ..., Cmax do

kj = 0 8



χ0
j

= ℜ
{
χ

j

}

χj,min = arg{minq=1,..,Qj

[
Ω

{
χ0

j,q

}]}while [
(kj < Kmax) and (

Ω
{
χ

kj

j,min

}
> Ωth

)] do
kj = kj + 1

χ
kj

j = ℑ
{
χ

kj−1
j

}

χ
kj

j,min = arg{minq=1,..,Qj

[
Ω

{
χ

kj

j,q

}]}if [
Ω

{
χ

kj

j,min

}
> Ω

{
χ

kj−1
j,min

}] then
χj,min = χ

kj−1
j,minelse

χj,min = χ
kj

j,minendifenddo
χopt = arg {minj=1,..,Cmax

[Ω {χj,min}]}enddowhere ℜ is the random funtion. As far as the implementation of the geneti operatorsis onerned, the hierarhial approah makes use of a multirak variable-length hybridoding (Figure 2). Eah parameter of the rak in (6) is binary enoded by onsidering
xi, yi, Li, Wi, and θi as disrete variables: xi = l∆B , l = 1, . . . , B; yi = l∆B, l = 1, . . . , B;
Li = l∆D, l = 1, . . . , D; Wi = l∆D, l = 1, . . . , D, and θi = l∆Θ, l = 1, . . . , Θ. Moreover,a real representation is used for oding the �eld unknowns, Ev

tot (xpi
, ypi

), pi = 1, . . . , Pi,
i = 1, . . . , j.Aording to this representation, suitable stohasti operators (denoted by ℑ{·}) areneeded. The o�spring are generated from their parents by means of a ustomized multi-rak rossover , whereas standard elitism, seletion and mutation are adopted [19℄.Beause of the hybrid oding, a single-point rossover (binary rossover) Φb is performedwith probability πb between the binary sequenes of two parents, namely χ

kj
qa and χ

kj
qb .By imposing that the ross-position �cp� falls only on a boundary between two adjaentgenes [Figure 3(a)℄, the binary rossover returns the following hildren

9



χ
kj+1
qa = {j; (Υ1)

kj

qa
,
[
(xi, yi)

kj

qa
; (Li)

kj

qa
;
∣∣∣
cp

(Wi)
kj

qb
; (θi)

kj

qb

]
, . . . , (Υj)

kj

qb
;
[
Ev

tot,1

]kj

qa
,
[
Ev

tot,i

]kj+1

qa

, . . . ,
[
Ev

tot,j

]kj

qb

}

χ
kj+1
qb

= {j; (Υ1)
kj

qb
,
[
(xi, yi)

kj

qb
; (Li)

kj

qa
;
∣∣∣
cp

(Wi)
kj

qa
; (θi)

kj

qa

]
, . . . , (Υj)

kj

qa
;
[
Ev

tot,1

]kj

qb
,
[
Ev

tot,i

]kj+1

qb

, . . . ,
[
Ev

tot,j

]kj

qa

}(9)where [
Ev

tot,i

]kj+1

qa
and [

Ev
tot,i

]kj+1

qb
are omputed extending to the multi-rak ase therelationship reported in [20℄ [Eq. (11)℄ and pitorially desribed in Fig. 3(a) (r being arandom number uniformly distributed in [0; 1]).If the binary rossover Φb has not been applied, the double-point rossover is performedwith probability πd on that part of the hromosomes onerned with the �eld unknownsand aording to Eq. (13) of [20℄.2.2 Integrated Strategy (IS)Unlike the hierarhial approah, the integrated strategy onsiders a single optimizationproess. Towards this purpose, the population of Q trial solutions is omposed by �het-erogeneous� hromosomes eah of them oding a di�erent number of raks

χ = {χq; q = 1, . . . , Q} =
{
Cq; Υi, i = 1, ..., Cq;

[
Ev

tot,i

]
, i = 1, ..., Cq; q = 1, . . . , Q

}(10)
Cq being an integer value randomly hosen in the range between 1 and Cmax. Moreover,starting from a randomly generated set of solutions χ0, the iterative (k being the iterationindex) optimization proess evolves for ahieving the �onvergene� ondition (k = Kmaxor Ω

{
χk

opt

}
≤ Ωth) aording to the following instrutionswhile [

(k < Kmax) and (
Ω

{
χk

opt

}
> Ωth

)] do
k = k + 1

χk

b
= Φb

[
ℵ

{
χk−1

opt

}]

χk

o
= ℘

{
χk−1

opt

}

χk

p
=

{
χk

b
, χk

o
, χk−1

}

χk = ℑ
{
χk

p

}

χk
opt = arg{minq=1,..,Q

[
Ω

{
χk

q

}]}10



enddowhere χk

o
and χk

b
are two populations of Q

2
trial solutions generated from the optimaltrial solution reahed at the (k − 1)-th step, χk−1

opt , by means of the operators ℘ {·} and
Φb [ℵ {·}], respetively.More in detail, χk

b
is a population whose individuals ode solutions with the same numberof raks as χk−1

opt and it is generated by randomly modifying through the operator ℜ (·)all genes of χk−1
opt exept that oding Ck−1

opt

χk−1
b,q = ℵ

{
χk−1

opt

}
,

{
Ck−1

opt ; ℜ
(
Υk−1

opt,i

)
, i = 1, ..., Ck−1

opt ;ℜ
([

Ev
tot,i

]k−1

opt

)
, i = 1, ..., Ck−1

opt

}

q = 1, ..., Q

2

.(11)and suessively, applying the binary rossover χk
b,q = Φb

{
χk−1

b,q

}.As far as the sub-population χk

o
is onerned, it onsists of (Cmax − 1) equally parti-tioned sub-sets, eah of them with individuals having the same number of raks Cl,

l = 1, ..., (Cmax − 1), and di�erent from Ck−1
opt . These trial solutions are generated aord-ing to the following rules:

• If an individual belongs to the l-th subset haraterized by Cl < Ck−1
opt , then

χk
o,q =

{
Cl; Υk

i = Υk−1
opt,r, i = 1, ..., Cl;

[
Ev

tot,i

]k
=

[
Ev

tot,s

]k−1

opt
, i = 1, ..., Cl

} (12)
r and s being integer random numbers between 1 and Ck−1

opt [Fig. 3(b)℄;
• Otherwise (i.e., Cl > Ck−1

opt ), the trial solution is obtained by adding suitable genesto the hromosome oding χk−1
opt [Fig. 3()℄. Randomly in that part onerned withthe rak parameters and from the �eld distribution of the unperturbed senario inthe remaining part:

χk
o,q =





Cl;

Υk
i = Υk−1

opt,i, i = 1, ..., Ck−1
opt

Υk
i = ℜ, i = Ck−1

opt + 1, ..., Cl

;

[
Ev

tot,i

]k
=

[
Ev

tot,i

]k−1

opt
, i = 1, ..., Ck−1

opt

[
Ev

tot,i

]k
=

[
Ev

tot (cf),i

]k−1

opt
, i = Ck−1

opt + 1, ..., Cl




(13)
11



Finally, eah iterative loop is terminated by proessing the heterogeneous population χk

pthrough standard seletion, elitism, and mutation (no rossover operations are performed)as desribed in [19℄[20℄ (χk

p
= ℑ

{
χk−1

p

}).3 Numerial ValidationAs far as the validation of the proposed strategies is onerned, a numerial assessmenthas been arried out by onsidering di�erent on�gurations of the defets and variousharateristis of the host medium in order to verify the possibility and feasibility ofdealing with more general (and probably more realisti) multiple-defets senarios. Onthe other hand, the robustness against blurred sattering data has been evaluated byadding a random Gaussian noise with a �xed signal-to-noise ratio (SNR) to the measured�eld samples [20℄.For quantifying the performane of the proposed implementations and beause of themultiple-rak geometries, suitable error indexes have been de�ned extending those re-ported in [19℄:
• Multi-rak Loalization Error , δ:

δ =

∑C

c=1

C






√
(x̂c − xc)

2 + (ŷc − yc)
2

dmax

× 100




 (14)
dmax being the maximum linear dimension of H and (x̂c, ŷc) the estimated enter of
c-th rak;

• Multi-rak Area Error , ∆:
∆ =

∑C
c=1

C






∣∣∣Âc − Ac

∣∣∣
Ac

× 100




 (15)
Moreover, the Preision-Reall Index , R, has been evaluated for estimating the auray

12



of eah strategy in deteting multiple defets and their number
R =

Ψopt

Ψ
× 100 (16)

Ψopt and Ψ being the number of suessful detetions and the total number of repeatedsimulations with the same geometry and onditions, respetively.For the numerial validation, if it is not spei�ed, the following referene senario hasbeen onsidered. A square homogeneous host medium of side LH = 0.8λ (dmax =
√

2LH)haraterized by a dieletri permittivity equal to εH = 2.4 and homogeneous defets(εDi
= 1.0 and σDi

= 0.0, i = 1, ..., C). Suh a senario has been illuminated by V = 4diretions with soures radiating eletri inident �elds Ev
inc (x, y) = e−jk0(xosγv+ysinγv),

γv = (v − 1)2π
V
, v = 1, ..., V , k0 being the free-spae wavenumber. Furthermore, thesamples of the sattered eletri �eld have been olleted at M = 50 equally-spaedpositions loated on a irle ρ = 0.64λ in radius.Aording to the guidelines suggested in [25℄-[28℄, the following parameters for the GA-based multi-rak optimization has been assumed: Q = 80, πb = πd = 0.7, πm = 0.4(mutation probability), Kmax = 600, and Ωth = 10−5.3.1 Test Case #1 - Reonstrution of a Single-Crak Con�gura-tionAs a �rst test ase, let us onsider a omparative study on the e�etiveness of the multi-rak strategies versus ustomized single-rak tehniques previously developed and are-fully assessed (i.e., the FGA [19℄ and the IGA [20℄ approahes). Towards this purpose, anunknown defet (C = 1) of area Ac

λ2

⌋
c=1

= 2.25 × 10−2 has been loated at xc

λ

⌋
c=1

= 0.22and xc

λ

⌋
c=1

= 0.15 in a lossy (σH = 0.1 [S/m]) host medium. Moreover, the satteringdata have been blurred with an inreasing level of additive noise (from SNR = 30 dBup to SNR = 5 dB). Conerning multi-rak implementations, Cmax has been �xed to
Cmax = 3, thus the number of raks lying in the investigation domain H is an unknown,as well.Figure 4 shows the obtained results in terms of reonstrution errors: δ [Fig. 4(a)℄ and ∆13



[Fig. 4(b)℄. Due to the intrinsi nature both of the GA-based strategies and of the noise,these results are average values of the exeution of eah algorithm for ten independentrealizations of the random proess blurring the sattering data.As expeted and already demonstrated in [20℄, IGA-based approahes (i.e., the single-rak IGA and the multi-rak strategies) allow a non-negligible improvement in theloalization auray. As a matter of fat, the average value of the loalization error 〈δ〉FGAturns out to be greater than 25 %, whereas IGA-based algorithms provide a loalizationauray with an error index lower than 20 % whatever the noise level. Moreover, thee�etiveness of IGA-based tehniques improves (δ ≈ 5 %) for an inreasing of the signal-to-noise-ratio (SNR > 15 dB). Furthermore, multirak implementations prove a betterrobustness against higher noisy ondition (δIGA > δIGA−HS ≥ δIGA−IS when SNR ≤

12 dB) despite the enlargement of the unknowns spae (sine Cmax 6= 1) with respet tothe IGA single-rak strategy.As far as the estimation of the dimension of the defet is onerned, Fig. 4(b) shows thatthe behaviors of the error �gures of the single-rak IGA approah and of the integratedstrategy (IG) are quite similar in the range of noise variations, whereas the hierarhialapproah (HS) generally does not reah the auray of single-rak algorithms.3.2 Test Case #2 - Dependene of the Reonstrution Aurayon the Number of Defets CThe seond test ase is aimed at evaluating the feasibility of the proposed approah in deal-ing with multiple-defet on�gurations by omparing the hierarhial and the integratedimplementations. Under the assumption that Cmax = 3, three geometries haraterizedby the presene of a number of raks from C = 1 up to C = 3 (Fig. 5) have beenonsidered. The position and size of eah defet Di, i = 1, . . . , C, are summarized in Tab.I.In order to assess the e�etiveness in deteting the number of defets, the preision-reallindex R has been evaluated for eah experiment (C = 1, 2, 3) and in orrespondene withdi�erent signal-to-noise ratios (SNR = 10, 20, 30 dB). The results of suh an analysisare reported in Fig. 6. As far as the HS is onerned [Fig. 6(a)℄, R⌋HS ≤ 40 %14



when SNR ≤ 10 dB whatever the number of raks. Otherwise (SNR ≥ 20 dB), thee�ay of the algorithm improves espeially for a smaller value of C. Unlike the HS,the integrated implementation generally provides better performanes very lose to theoptimal value (R = 100 %) exept for �worst� on�gurations haraterized by a highernoise (SNR < 10 dB) and smaller defets.The dependene of the reonstrution auray on the number of defets and the level ofnoise an be estimated from the plots shown in Fig. 7. The results are presented in termsof δ - left olumn [Figs. 7(a), 7(), and 7(e)℄ - and of ∆ - right olumn [Figs. 7(b), 7(d),and 7(f )℄ for C = 1 - �rst row [Figs. 7(a) and 7(b)℄, C = 2 - seond row [Figs. 7() and7(d)℄, and C = Cmax = 3 - third row [Figs. 7(e) and 7(f )℄. Both implementations providea satisfatory loalization (δ⌋IS < 18 % and δ⌋HS < 29 %) and the enters of the raksare aurately retrieved when SNR > 15.0 dB (δ < 7 %).On the other hand, the dimensioning of the defets turns out to be more di�ult and theperformanes of the multi-rak strategies get worse. However, for omparison purposes,it should be notied that the IS onsiderably overomes the HS and the arising error
∆⌋IS is always lower than 60 %. In partiular, ∆⌋IS < 20 % when SNR > 15.0 dB.From a omputational point of view, one again, the IS turns out to be more e�etivethan the HS both in terms of onvergene rate and time per iteration. As one example,Figure 8 shows the plot of the required CPU-time for eah iteration of a representativesimulation (C = 3 and SNR = 5.0 dB).3.3 Test Case #3 - Dependene of the Reonstrution Aurayon the Host Medium Properties (σ)The test ase #3 is devoted at evaluating the multi-rak strategies for di�erent on�g-urations of the host medium. Towards this end, the eletri ondutivity σH has beenvaried from 0.1 [S/m] up to 1.0 [S/m] and the arrangement of the raks was the same asshown in �gure 5 (Tab. I).The olor-level representations of the reonstrution errors δ and ∆ are reported in Figure9. As expeted, sine the multi-rak strategies are based on the omputation of theinhomogeneous Green's funtion as well as the single-rak IGA, both the IS and the15



HS give aurate loalizations of the defets, whih result in low average values of theorresponding indexes: 〈δ〉HS = 9.49 % and 〈δ〉IS = 8.15 %. Conerning the dependeneon the ondutivity of the host medium and on the SNR, the quality of the estimationof the defets oordinates (xi, yi), i = 1, .., C, C = 3, enhanes as SNR inreases and
σ dereases. A similar behavior holds true also for the raks dimensioning as shown inFigs. 9()-9(d), but the errors signi�antly grow also on average (〈∆〉IS = 52.19 % vs.
〈∆〉HS = 74.73 %).3.4 Test Case #4 - Dependene of the Reonstrution Aurayon the Defets Con�gurationThe last test ase is aimed at testing the resolution apabilities of the proposed approahes.As a matter of fat, a reliable reonstrution proess should be able to distinguish adjaentdefets avoiding the inorret detetion of a single rak instead of a multiple geometry.In order to verify suh a feature, the same senario as for test ase #2 (C = 3) has beenonsidered, but the defets have been plaed loser the ones to the others as indiated inTab. II and shown in Fig. 10.As expeted, the obtained results worsen with respet to those of Set. 3.2. Figure11(a) gives the values of the preision-reall index for di�erent signal-to-noise ratios.The integrated approah turns out to be more e�ient than the hierarhial strategy. Itahieves a value of R = 90 % in orrespondene with the highest SNR value and R > 70 %whatever the noise level.In order to point out the reliability of the IS versus the HS, it is interesting to betterdetail the ahieved results for a �xed SNR. Let us onsider the ase of SNR = 10 %. Insuh a ase, the integrated approah always detets a multiple-defet on�guration andthe fault perentage [i.e., F ⌋(C=2)

IS = 30 %℄ is related to a geometry with two raks. Onthe ontrary, the probability of estimating one or two raks is equal for the hierarhialstrategy to F ⌋(C=1)
HS = 13.7 % and F ⌋(C=2)

HS = 46.3 % [1 − R =
∑Cmax

C=1 F (C)℄, respetively.Conerning the reonstrution errors, by omparing the results shown in Figs. 11(b) and11() to those in Figs. 7(e) and 7(f ), it is evident the worsening in the loalization andin the estimation of the raks dimensions. Moreover, the apabilities in loalizing and16



dimensioning the defets of the IS are almost independent from the noise level.4 ConlusionsIn this work, the problem of deteting and reonstruting multiple defets in a knownhost medium has been analyzed. Starting from the inverse sattering equations and byonsidering an e�etive integral formulation based on the de�nition of the inhomogeneousGreen's funtion, the problem in hand has been addressed with a GA-based tehniqueimplemented through two innovative strategies.The main features of the proposed approah are the following:
• apability to detet multiple as well as single defets;
• apability to reonstrut multiple defets di�erent in shape as well as in dimensions;
• exploitation of the a-priori information and omputational saving;
• apability to operate in the presene of dieletri as well as ondutive host media;
• robustness to blurred data.Conerning the methodologial novelties of this work, some key-issues should be pointedout:
• spei� formulation of the multi-rak reonstrution problem within the frameworkof inverse sattering tehniques;
• original implementations of the data proessing through innovative arhiteturesbased on GAs;
• de�nition of ustomized GA-operators for dealing with heterogeneous and variable-length hromosomes.From the numerial experiments arried out on di�erent on�gurations and senarios, thefollowing onlusions an be drawn:

17



• the proposed multi-rak approah proved e�etive providing, in its integrated im-plementation, both high detetion auray, good reonstrutions, and a satisfatoryrobustness;
• the HS showed good results, but in general, they were on average inferior to thoseobtained with the integrated algorithm (IS). Suh a behavior, although the IS hro-mosomes ould be onsidered as a subset of the whole set of trial solutions odedby the HS, seems to be related to a more e�etive sampling of the solution spae inthe limited amount of iterations;
• the IS revealed very good in terms of omputational osts o�ering an aeptabletrade-o� between auray and onvergene rate of the optimization proess;
• the multi-rak strategies exhibited good auraies in dealing with single-defetgeometries and their performanes turned out omparable with those of ustomizedsingle-defet tehniques;However, although the proposed multi-rak detetion tehnique seems to be a verypromising tool for unsupervised and automati appliations, several improvements forits industrial implementation are mandatory.Towards this end, future developments of this work will be oriented in the followingdiretions:
• developing a proedure that parameterizes the rak by means of more general andomplex desriptors;
• extending the proedure to a three-dimensional senario;
• desribing in an aurate and detailed fashion the overall measurement setup in orderto take into aount other soures of noise and inauraies in the data olletion.
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FIGURE CAPTIONS
• Figure 1. Multi-rak problem geometry (C = 2).
• Figure 2. Example of a multirak hybrid oded variable-length hromosome.
• Figure 3. Example of (a) the binary rossover. Generation of trial solutions of thesub-population χk

o
when (b) Cl < Ck−1

opt and when () Cl > Ck−1
opt .

• Figure 4. Test Case #1. Behavior of (a) δ and (b) ∆ versus SNR when C = 1and for FGA, IGA, HS, and IS.
• Figure 5. Test Case #2. Referene geometry.
• Figure 6. Test Case #2. Behavior of the preision-reall index R: (a) HierarhialStrategy and (b) and Integrated Strategy.
• Figure 7. Test Case #2. Behavior of reonstrution errors versus SNR for di�erentnumber of defets. C = 1: (a) δ and (b) ∆; C = 2: () δ and (d) ∆; C = 3: (e) δand (f ) ∆.
• Figure 8. CPU times. Comparison among the IS and the HS when C = 3 and

SNR = 5 dB.
• Figure 9. Test Case #3. Behavior of the reonstrution errors versus SNR andthe ondutivity of the host medium, σH . Hierarhial Strategy : (a) loalizationerror δ and (b) area error ∆. Integrated Strategy : () loalization error δ and (d)area error ∆.
• Figure 10. Test Case #4. Referene geometry.
• Figure 11. Test Case #4. Behavior of the error indexes versus SNR for the HSand the IS: (a) preision-reall index R , (b) loalization error δ, and () area error

∆.
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TABLE CAPTIONS
• Table I. Test Cases #1 and #2 - Positions and sizes of the defets.
• Table II. Test Case #3 - Positions and sizes of the defets.
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xc
λ

yc
λ

Ac
λ2

c = 1 0.22 0.15 0.0225

c = 2 0.0 −0.15 0.01

c = 3 −0.26 0.15 0.04
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xc
λ

yc
λ

Ac
λ2

c = 1 0.102 0.102 0.04

c = 2 0.046 −0.102 0.01

c = 3 −0.102 0.046 0.0225
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