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Abstract

Functional alignment between subjects is an important assumption of functional

magnetic resonance imaging (fMRI) group-level analysis. However, it is often violated

in practice, even after alignment to a standard anatomical template. Hyperalignment,

based on sequential Procrustes orthogonal transformations, has been proposed as a

method of aligning shared functional information into a common high-dimensional

space and thereby improving inter-subject analysis. Though successful, current

hyperalignment algorithms have a number of shortcomings, including difficulties

interpreting the transformations, a lack of uniqueness of the procedure, and difficul-

ties performing whole-brain analysis. To resolve these issues, we propose the ProM-

ises (Procrustes von Mises–Fisher) model. We reformulate functional alignment as a

statistical model and impose a prior distribution on the orthogonal parameters (the

von Mises–Fisher distribution). This allows for the embedding of anatomical informa-

tion into the estimation procedure by penalizing the contribution of spatially distant

voxels when creating the shared functional high-dimensional space. Importantly, the

transformations, aligned images, and related results are all unique. In addition, the

proposed method allows for efficient whole-brain functional alignment. In simula-

tions and application to data from four fMRI studies we find that ProMises improves

inter-subject classification in terms of between-subject accuracy and interpretability

compared to standard hyperalignment algorithms.
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1 | INTRODUCTION

Multi-subject functional magnetic resonance imaging (fMRI) data anal-

ysis is important as it allows for the identification of shared cognitive

characteristics across subjects. However, to be successful these analy-

sis must properly account for individual brain differences. Indeed, it

has been shown that the brains' anatomical and functional structures

show great variability across subjects, even in response to identical

sensory input (Hasson et al., 2004; Tootell et al., 1995; Watson

et al., 1993). Various approaches have been proposed to deal with

anatomical misalignment; these approaches align the images with a

standard anatomical template (Fischl et al., 1999; Jenkinson

et al., 2002; Talairach & Tournoux, 1988). However, these methods

do not take into consideration the functional characteristics of the

data; they fail to capture the shared functional response across sub-

jects, ignoring the between-subject variability in the anatomical posi-

tions of functional loci.

The problem of functional variability between subjects has long

been known to neuroscientists (Hasson et al., 2004; Tootell

et al., 1995; Watson et al., 1993). Indeed, this variation remains even
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after initial spatial normalization has been performed as a data prepro-

cessing step. This can have serious consequences on group-level fMRI

analysis where it is generally assumed that voxel locations are consis-

tent across subjects after anatomical alignment (Lindquist, 2008). A

lack of functional alignment can lead to erroneous statistical infer-

ence, resulting in both power-loss and reduced predictive accuracy

(Wang et al., 2021). To address this issue, Haxby et al. (2011) pro-

posed a functional alignment technique called hyperalignment, which

uses orthogonal linear transformations to map brain images into a

common abstract high-dimensional space that represents a linear

combination of each subjects' voxel activation profile. In practice,

hyperalignment is a sequential application of the Procrustes transfor-

mation (Schonemmann & Carroll, 1970), which consists of finding the

optimal rotation/reflection that minimizes the distance between sub-

jects' activation profiles. The abstract high-dimensional space created

using hyperalignment represents the common information space

across individuals as a mixture of overlapping, individual-specific topo-

graphic basis functions (Haxby et al., 2020). Individual-specific and

shared functional information is modeled via high-dimensional trans-

formations rather than transformations that rely on three-dimensional

(3D) anatomical space. This innovative method of addressing the vari-

ability in the spatial location of functional loci across subjects has led

to promising new research aimed at fostering an understanding of

individual and shared cortical functional architectures (Conroy

et al., 2009; Haxby et al., 2020).

Nevertheless, the approach has some shortcomings that remain

to be addressed. First, hyperalignment remixes data across spatial loci

(Haxby et al., 2011). Therefore, its use in aligning data from the entire

cortex may be questionable because it combines information from dis-

tant voxels to create the common abstract high-dimensional space

(Haxby et al., 2020). This potentially undermines the ability to prop-

erly interpret the results. The method is powerful for classification;

however, aligned images do not have a clear topographical interpreta-

tion. For this reason, hyperalignment is applied more appropriately to

a region of interest (ROI). An alternative is searchlight hyperalignment

(Guntupalli et al., 2016). Here overlapping transformations are calcu-

lated for overlapping searchlights in each subject and then aggregated

into a single whole-cortex transformation. This ensures that the vox-

els of the aligned images are generated from a circumscribed ROI, and

thus allows for a topographical interpretation of the final map. How-

ever, this final transformation is no longer an orthogonal matrix, and

therefore does not preserve the content of the original data, namely

the similarity/dissimilarity in the response between pairs of voxels. In

addition, the searchlights are imposed a priori and do not allow voxels

outside of the predefined search radius to influence the estimation

process. Second, as we show later in this work, the solutions calcu-

lated using hyperalignment are not unique in the sense that they

depend directly on the order in which individuals are entered into the

algorithm, as it is a sequential version of generalized Procrustes analy-

sis (GPA) (Gower, 1975). Note that even the original GPA does not

provide a unique solution. Third, while the idea of applying functional

alignment to fMRI data is important, its application to whole-brain

analysis is problematic. In fact, most Procrustes-based methods are

based on singular value decomposition of square matrices whose

dimensions equal the number of voxels. Therefore, it is infeasible to

compute when working with the dimensions commonly used in

whole-brain fMRI studies.

This article proposes an approach that uses hyperalignment as a

foundational principle, but at the same time resolves the aforemen-

tioned outstanding issues. The proposed method allows a researcher

to decide how to combine individual responses to construct the com-

mon abstract high-dimensional space where the shared functional

information is represented. This is possible because the objective

function of the Procrustes problem can be considered as a least-

squares problem. We reformulate it as a statistical model, which we

denote the ProMises (Procrustes von Mises–Fisher) model. We

assume a probability distribution for the error terms as well as a prior

distribution for the orthogonal matrix parameter to restrict the range

of possible transformations used to map the neural response into the

common abstract high-dimensional space. The constraint is based on

specifics that the researcher has defined inside the hyperparameter of

the prior distribution. We explain how to define this hyperparameter

in an appropriate manner. Through a simple formulation, we show

how the proposed model allows topographical information to be

inserted into the estimation process and simultaneously computes

unique solutions. Using the proposed model, researchers can move

away from a black-box approach, and instead better understand how

functional alignment works by providing a neurophysiological inter-

pretation of the aligned images as well as related results. In this way,

the local radial constraints used in searchlight hyperalignment are sur-

passed. The model can incorporate them directly into the Procrustes

estimation process, thus retaining all of hyperalignment's intrinsic

properties, such as preserving the vector geometry.

The solution provides a unique representation of the aligned

images and the related transformations (e.g., classifier coefficients,

statistical tests, and correlations) in standardized anatomical brain

space. In addition, the idiosyncratic topographies encoded inside the

orthogonal transformation and the shared functional information do

not depend on the specific reference matrix used by the algorithm.

On the contrary, given that hyperalignment is a sequential approach

of the Procrustes problem, the reference is not clear; it depends on

the order of the subjects and the algorithm's successive steps. In our

model, the coefficients forming the basis function of the common

abstract high-dimensional space are unique and reflect the orienta-

tion's prior information. Finally, to allow for whole-brain analysis, we

propose a computationally efficient version of the ProMises model,

where proper semi-orthogonal transformations project these square

matrices into a lower-dimensional space without loss of information.

The article is organized as follows. Subsection 2.1 outlines func-

tional alignment via Procrustes-based methods, while Subsection 2.2

describes some methods in the literature related to them, emphasizing

their weaknesses. Thereafter, we offer a solution to these problems in

Subsection 2.3, introducing the ProMises model as well as an efficient

version of the model for whole-brain analysis. Subsection 2.4

describes the four data sets explored. Finally, Section 3 illustrates the

performance of the proposed alignment method within a multisubject
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classification framework. We compare the results with those obtained

using no functional alignment (i.e., anatomical alignment only;

Jenkinson et al., 2002) and functional alignment (after anatomical

alignment) using GPA (Gower, 1975) and hyperalignment (Haxby

et al., 2011).

2 | METHODS

2.1 | Functional alignment by Procrustes-based
method

The group neural activation can be described by a set of matrices,

Xi �ℝt�v
� �

i¼1,…,m, one for each subject i. Here the t rows represent

the response activation of v voxels at each time point, and the v col-

umns represent the time series of activation for each voxel. The rows

are ordered consistently across all subjects because the stimuli are

time-synchronized; however, the columns are not assumed to corre-

spond across subjects (Hasson et al., 2004; Tootell et al., 1995;

Watson et al., 1993). The functional alignment step is thus crucial for

consistently comparing activation in a certain voxel between subjects

(Haxby et al., 2020).

The most famous method for assessing the distance between

matrices is the Procrustes transformation (Gower &

Dijksterhuis, 2004). In simple terms, it uses similarity transformations

(i.e., rotation and reflection) to match matrice(s) onto a target matrix

as close as possible according to the Frobenius distance, using least-

squares techniques.

When one matrix, Xi , is transformed into the space of another Xj

via orthogonal transformation R�O vð Þ, where O vð Þ defines the set of

orthogonal matrices in ℝv�v , the Procrustes problem is called the

orthogonal Procrustes problem (OPP):

min
R � O vð Þ

XiR�Xj

�� ��2
F , ð1Þ

where �k kF denotes the Frobenius norm. The minimum is given by

R¼UV > , where U and V come from the singular value decomposi-

tion (SVD) of X >
i Xj ¼UΣV > (Schonemann, 1966).

Generally, fMRI group-level analysis deal with m≥2 subjects. In

this case, the functional alignment can be based on the GPA

(Gower, 1975):

min
Ri � O vð Þ

Xm
i¼1

XiRi�Mk k2F , ð2Þ

where M is the element-wise arithmetic mean of transformed matri-

ces XiRi, also called the reference matrix. Equation 2 does not have a

closed form solution, and is solved using an iterative procedure pro-

posed by (Gower & Dijksterhuis, 2004). Alternatively, hyperalignment

(Haxby et al., 2011) can be used, which is based on the sequential use

of the OPP defined in Equation 1.

Importantly, both GPA and hyperalignment appear to have some

shortcomings to resolve in order to yield unique, reproducible, and

interpretable results. First, the orthogonal transformation Ri, com-

puted via these methods, can combine information from every voxel

inside of the cortical field or ROI. Anatomical structure is ignored,

implicitly assuming that functional areas can incorporate neural activa-

tion of voxels from any part of the cortical area. A solution commonly

used in the field is the searchlight approach proposed by (Guntupalli

et al., 2016). However, this method assumes an optimal searchlight

size, which must be defined by the researcher, thus introducing some

degree of arbitrariness. Another approach which is more efficient than

searchlight hyperalignment is to cluster voxels into sets of subregions

across the whole brain as discussed by (Bazeille et al., 2021). In this

way, the nonorthogonality problem of the searchlight hyperalignment

approach is surpassed, but the set of subregions must again be

defined a priori. In addition, in the parcel boundaries the optimality of

this approach is not assured. Second, both methods return more than

one solution (i.e., GPA has an infinite set of solutions, while hypera-

lignment has m! solutions, where m is the number of subjects). The Ri

computed via GPA are unique up to rotations. Instead, the Ri calcu-

lated via hyperalignment strictly depends on the order of the subjects

entering the algorithm. Being a sequential approach of the OPP, the

choice of reference matrix is not clear, and every matrix used as a

starting matrix leads to different common high-dimensional spaces.

2.2 | Hyperalignment-related methods

After (Haxby et al., 2011), various modifications of hyperalignment

have appeared in the literature. We do not list all the possible modifi-

cations here, and for a complete review please see (Bazeille

et al., 2021; Cai et al., 2020). One of the most successful methods in

the literature is the shared response model (SRM) proposed by Chen

et al. (2015), which is a probabilistic model that computes a reduced

dimension shared feature space. The method was also reformulated in

matrix format by Shvartsman et al. (2018) and later analyzed by Cai

et al. (2020) and Bazeille et al. (2021). In short, SRM estimates a semi-

orthogonal matrix with dimensions v�k, where k is a tunable hyper-

parameter representing the number of shared features. Therefore, as

discussed by the authors, SRM returns a nonunique set of semi-

orthogonal transformations that leads to the loss of: (1) the original

spatial characteristics; and (2) the topographical interpretation of the

final aligned data. Similar to hyperalignment and GPA, SRM does not

allow for the incorporation of spatial anatomical information into the

estimation process, unlike the proposed ProMises model. Chen et al.

(2015)'s method improves upon hyperalignment in terms of classifica-

tion accuracy and scalability, but it analyzes the first k dimensions

(i.e., latent variables), while hyperalignment is not constructed to be a

dimensionality reduction technique. The scalability in Chen et al.

(2015)'s method is improved as it requires the computation of singular

values decompositions of matrices with smaller dimensions than those

required by hyperalignment.
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There are several promising functional alignment approaches in

the literature that are not based on Procrustes theory, such as the

optimal transport approach proposed by Bazeille et al. (2019). Com-

parisons with these methods would be interesting, but in this article

we limit ourselves to analyzing Procrustes-based approaches such as

GPA and hyperalignment.

2.3 | ProMises model

The focus of this article is to resolve the nonuniqueness and mixing

problem of the transformations computed via GPA and hyperalign-

ment. Indeed, solving these issues allows for the exploration of the

structural neuroanatomy of functionally aligned matrices and their

related transformations. The ProMises model resolves both points in

an elegant and simple way, defining a hyper parameter for tuning the

locality constraint. We stress here that it computes a unique solution

that preserves the fine-scale structure and allows for penalization of

spatially distant voxels in the construction of the shared high-

dimensional space, assuming that the anatomical alignment is not too

far from the central tendency.

To achieve these goals, we seek to insert prior information about

the structure of Ri into Equations 1–2, which converts the set of pos-

sible orthogonal transformation solutions to a unique solution reflect-

ing the prior information embedded. This is possible if we analyze the

Procrustes problem from a statistical perspective. In short, the least

squares problem formulate in Equations 1–2 are reformulated as a

statistical model, which allows for the definition of a prior distribution

on Ri. To be precise, the difference between XiRi and M described in

Equation 2 can be viewed as an error term that is assumed to be nor-

mally distributed in our statistical model defined in the following

subsection.

2.3.1 | Model

The minimization problem defined in Equation 2 can be reformulated

as follows:

Xi ¼MR >
i þEi subject toRi �O vð Þ, ð3Þ

where Ei �ℝt�v is the error matrix to minimize and M�ℝt�v is the ref-

erence matrix.

We assume a multivariate normal matrix distribution (Gupta &

Nagar, 2018) for the error terms Ei. Each row of Ei is distributed as a

multivariate normal distribution with mean 0 and covariance Σv . The

observed data matrix Xi is then described as a random Gaussian per-

turbation of M. The rotation matrix parameter Ri allows for the repre-

sentation of each data matrix Xi in the shared functional space. In

other words, the model simply reflects the assumption underlining

hyperalignment, namely that neural activity in different brains are

noisy rotations of a common space (Haxby et al., 2011). In this article,

we assume Σv ¼ Iv , where Iv is the identity matrix of size v. The

extension to an arbitrary type of variance matrix Σv and incorporation

of its estimation into the ProMises model is discussed in Andreella

and Finos (2022).

2.3.2 | Prior information

Rephrasing the Procrustes problem as a statistical model allows us to

impose a prior distribution on the orthogonal parameter Ri. With the

constraint Ri �O vð Þ in equation 3, the probability distribution for Ri

must take values in the Stiefel manifold Vv ℝvð Þ (i.e., the set of all

v-dimensional orthogonal bases in ℝv ). An attractive distribution on

Vv ℝvð Þ is the matrix von Mises–Fisher distribution, introduced by

Downs (1972) and further investigated by many others

(Chikuse, 2003a, 2003b; Khatri & Mardia, 1977; Mardia et al., 2013;

Prentice, 1986). It is defined as follows:

f Rið Þ¼C F, kð Þexp Tr kFTRi

� �n o
,

where Tr �ð Þ defines the trace of a square matrix (i.e., the sum of ele-

ments on the main diagonal), C F, kð Þ is a normalizing constant, k�ℝ≥0

is the concentration parameter, and F�ℝv�v is the location matrix

parameter.

The parameter k balances the amount of concentration of the dis-

tribution around F. As k!0, the prior distribution approaches a uni-

form distribution, representing the unconstrained case. In contrast, as

k!þ∞, the prior tends toward a distribution concentrated at a single

point, representing the maximum constraint.

The polar part of F represents the mode of the distribution, and is

unique if and only if F has full rank (Jupp & Mardia, 1976). In addition,

the matrix von Mises–Fisher distribution is a conjugate prior (i.e., the

posterior distribution has closed-form expression in the same family

of distributions as the prior) for the matrix normal distribution with

posterior parameter equal to X >
i MþkF. The solution for Ri is unique

if and only if X >
i MþkF has a full rank. Therefore, in the following, we

define F such that it is of full rank and incorporates valuable informa-

tion about the final high-density common space.

The elements of the final high-dimensional common space are

composed of linear combinations of voxels (Haxby et al., 2020). Thus,

F can be properly defined such that these combinations emphasize

nearby voxels and penalize distant voxels. In this way, the anatomical

structure of the cortex is used as prior information in the estimation

of Ri. The idea is that nearby voxels should have similar rotation load-

ings, whereas voxels that are far apart should have less similar load-

ings. The hyperparameter F is defined as a Euclidean similarity matrix

using the 3D anatomical coordinates of x, y, and z of each voxel:

F¼ exp �dij
� �� �¼ exp �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi�xj

 �2þ yi�yj


 �2þ zi� zj

 �2q� 
� �

, ð4Þ

where i,j¼1,…v. In this way, F is a symmetric matrix with ones in the

diagonal, which means that voxels with the same spatial location are
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combined with weights equal to 1, and the weights decrease as the

voxels to be combined become more spatially distant.

F can also be specified via geodesic distances to exploit the intrin-

sic brain curve structure, or via the Dijkstra distance (Dijkstra, 1959) if

surface-based data are analyzed. In addition, another type of Min-

kowski measure (Upton & Cook, 2014) may be used; however, it is

important to carefully consider the type of spatial information avail-

able, that is, the distance used must be reasonable in the context of

the data. In this case, the Euclidean similarity matrix is an attractive

measure for detecting how close the voxels overlap. In addition, F

defined as in Equation 4, has full rank, which is a necessary condition

for having a unique solution for Ri. The graphical representations of

the Euclidean distance matrix using the 3D anatomical coordinates of

voxels (or vertices of a surface grid) are proposed in the next

section analyzing two types of data sets (face and object recognition

and movie watching).

In summary, the ProMises model returns a solution that is a slight

modification of the OPP solution that (Schonemann, 1966) developed

for the case of two subjects, as well as a slight modification of the

GPA solution that (Gower, 1975) proposed for the case of multiple

subjects. The modification is based on applying the SVD to X >
i MþkF

instead of X >
i M. Thus, prior information about Ri enters the SVD step

through the specification of F, with the term k balancing the relative

contribution of X >
i M and F. Thanks to this regularization, the ProM-

ises model returns a set of unique transformations that correspond to

the anatomical brain structure, exploiting the spatial location of voxels

in the brain, or ROI. Hence, the ability to define the parameter F guar-

antees a topographical interpretation of the results, as we will see in

the next section.

2.3.3 | Efficient ProMises model

The ProMises model returns a unique orthogonal transformation for

each subject; however, it cannot be applied to the entire brain due to

the extensive computational burden. This is due to the fact that at

each step we must compute m singular value decompositions of v�v

matrices leading to polynomial time complexity.

To allow for whole-brain analysis, we propose the Efficient ProM-

ises model, which allows for a faster functional alignment without loss

of information. In practice, the Efficient ProMises model projects

matrices Xi into a t lower-dimensional space via specific semi-

orthogonal transformations Qi �ℝv�t (Abadir & Magnus, 2005; Groß

et al., 1999) which preserve all of the information in the data. It aligns

the reduced t� t matrices XiQi �ℝt�t
� �

i¼1,…,m, and back-projects the

aligned matrices to the original t�v-size matrices Xi �ℝt�v
� �

i¼1,…,m

using the transpose of these semi-orthogonal transforma-

tions (Q >
i �ℝt�v ).

No loss of information occurs because the minimum of Equation 2

using XiQi �ℝt�t
� �

i¼1,…,m is equivalent to the one obtained using the

original data. This is due to the fact that the Procrustes problem

analyzes the first t� t dimensions of Ri. Hence, the minimum remains

the same if we use as our semi-orthogonal matrices Qif gi¼1,…,m the

ones obtained from the thin singular value decomposition

of Xi �ℝt�v
� �

i¼1,…,m.

The algorithms describing the ProMises model estimation process

and its Efficient version are reported in Appendix 1. For further details

and proofs about the ProMises model and its efficient version, please

see Andreella and Finos (2022).

2.4 | fMRI data sets

The performance of the proposed method is assessed using two fMRI

data sets from Haxby et al. (2011) and one from Haxby et al. (2001)

summarized in Table 1. We analyzed an additional data set collected

by (Duncan et al., 2009). The data sets differ in several key character-

istics, including number of subjects, whether data is extracted from an

ROI or the whole-brain, and the number of time points, voxels and

stimuli. In addition, they differ depending on whether the data is in

volumetric space or on a surface. These differences will allow us to

evaluate the performance of the proposed model in a number of dif-

ferent circumstances.

The first data set, referred to as faces and objects, is a block-

design fMRI study aimed at analyzing face and object representations

in the human ventral temporal (VT) cortex. It is composed of fMRI

images of 10 subjects with eight runs per subject. In each run, subjects

look at static, gray-scale images of faces and objects (i.e., human

females, human males, monkeys, dogs, houses, chairs, and shoes). The

subject views these images for 500ms with 1500ms inter-stimulus

intervals. Each block consists of viewing 16 images from one category,

corresponding to a one-back repetition detection task for each

TABLE 1 Description of the data sets
used in our analysis.

Dataset Subjects ROI Length Voxels Stimuli

Faces and objects 10 Ventral temporal cortex 56 3509 8

Visual object recognition 6 Whole brain 121 39,912 8

Raiders 31 Ventral temporal cortex 2662 883 400

Raiders 31 Occipital lobe 2662 653 400

Raiders 31 Early visual cortex 2662 484 400

Words and objects 12 Whole brain 164 73,574 5

Note: They differ in factors such as number of subjects, the region of interest, as well as the number of

time points, voxels, and stimuli.
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subject. Blank intervals of 12 divide the blocks. Each run contains

one block of each stimulus category. Brain images were acquired

using a 3T Siemens Allegra scanner with a standard bird-cage

head coil. Whole brain volumes of 32 3-mm thick axial slices

(TR = 2 s, TE = 30ms, flip angle = 90�, 64�64 matrix,

FOV = 192mm�192mm) were obtained that included all of the

occipital and temporal lobes and all but the most dorsal parts of the

frontal and parietal lobes. High resolution T1-weighted images of the

entire brain were obtained in each imaging session (MPRAGE,

TR = 2.5 s, TE = 4.3ms, flip angle = 8�, 256�256 matrix,

FOV = 256mm�256mm, 172 1-mm thick sagittal images). For fur-

ther details about the experimental design and data acquisition, please

see Haxby et al. (2011). Here, the analysis is focused on the 3509 vox-

els within the VT cortex. Figure 1 shows the Euclidean distance matrix

used to calculate the location matrix parameter F of the von Mises–

Fisher distribution for this data set. In this analysis, we define F as a

Euclidean similarity matrix; see Equation 4. The two visible blocks rep-

resent the left and right VT cortex. A jump of four units (i.e., voxel

index ijk units) in the ith dimension exists between voxel 1782 and

voxel 1783, corresponding to the corpus callosum.

The second data set, referred to as visual object recognition has a

similar structure as the faces and objects data set, where six subjects

are viewing images of faces, cats, five categories of man-made

objects, and nonsense pictures for 500 ms with an inter-stimulus

interval of 1500 ms. Brain images were acquired on a GE 3T scanner

(General Electric, Milwaukee, WI). Whole brain volumes of 40 3.5-mm

thick sagittal images (TR = 2500 ms, TE = 30 ms, flip angle = 90�,

FOV = 24 cm) were obtained. High-resolution T1-weighted spoiled

gradient recall (SPGR) images were obtained for each subject to pro-

vide detailed anatomy (124 1.2-mm thick sagittal images,

FOV = 24 cm). For further details, see Haxby et al. (2001). Here the

analysis is focused on the use of whole-brain data consisting of

39,912 voxels. Having a large number of voxels, we here use the

Efficient ProMises model to align the brain images. In this case, the

location matrix parameter is a lower-dimensional version of F�ℝv�v ,

that is, the similarity Euclidean matrix defined in Equation 4. This new

location matrix parameter must take values in ℝt�t. It is expressed as

Q>
i FQM, where Qi is the semi-orthogonal matrix coming from the

thin singular value decomposition of Xi , and QM is the semi-

orthogonal matrix coming from the thin singular value decomposition

of M.

The third data set, referred to as raiders, consists of 31 subjects

watching the movie “Raiders of the Lost Ark” (1981). The movie ses-

sion was split into eight parts of approximately 14 min. Brain images

were acquired using a 3T Philips Intera Achieva scanner with an

eight-channel head coil. Brain volumes were obtained consisting of

41 3-mm thick sagittal images (R = 2.5 s, TE = 35ms, flip angle = 90�,

80�80 matrix, FOV = 240mm�240mm). High resolution

T1-weighted images of the entire brain were obtained in each imaging

session (MPRAGE, TR = 9.85 s, TE = 4.53ms, flip angle = 8�,

256�256 matrix, FOV = 240mm�240mm, 160 1-mm thick sagittal

images). For more details about subjects, MRI scanning parameters,

data preprocessing, and ROI definition, see Haxby et al. (2011). Here

the analysis is focused on ROIs in the VT cortex (883 voxels), occipital

lobe (LO; 653 voxels), and early visual (EV; 484 voxels) cortex.

Figure 2 shows the Euclidean distance matrix using the 3D coordi-

nates from the ROIS defined over the VT cortex, LO, and EV cortex.

The two blocks represent the left and right parts of the ROIs. In this

case, the 3D coordinates describe the vertices of a surface grid based

on the cortex envelope. The mapping from the volume to the surface

was computed using the FreeSurfer software (Fischl et al., 1999). As

in the first analysis (i.e., faces and objects), we defined the location

matrix as a Euclidean similarity matrix as seen in Equation 4. However,

in this case, the 3D coordinates refer to the vertices of the surface

grid, as mentioned before. Thus, we could have defined F using geo-

desic distances. However, we found no substantial improvement in

the results. Therefore, we prefer to use Euclidean distance since it

provides a full-rank matrix (i.e., a necessary property to achieve the

uniqueness of the solution).

The fourth data set, referred to as words and objects, is a block-

design fMRI study to analyze brain regions, such as occipital temporal

cortex, associated with functional word and object processing. In this

study, 49 subjects view images of written words, objects, scrambled

objects, and consonant letter strings for 350 ms with a 650 ms fixa-

tion cross at the beginning of each trial. The functional data were

acquired with a gradient-echo EPI sequence (TR = 3000 ms;

TE = 50 ms; FOV = 192 � 192; matrix = 64 � 64) giving a resolution

of 3�3�3 mm. A high-resolution anatomical scan was acquired

(T1-weighted FLASH, TR = 12ms; TE = 5.6ms; 1 mm3 resolution) for

each subject. For further details, see Duncan et al. (2009). As in the

visual object recognition data analysis, we apply the Efficient ProMises

model to align the whole brain image composed of 73,574 voxels.

For all analyses, we consider the set K¼ 1, 2, …, 100f g as a col-

lection of possible values for the concentration parameter k. The opti-

mal value is estimated by cross-validation as explained in the next

section.

F IGURE 1 Representation of the Euclidean distance matrix to
compute location parameter F of the von Mises–Fisher distribution
using the 3D coordinates of the voxels from the faces and objects
data set.
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The aim is to classify stimulus-driven response patterns in a left-

out subject based on response patterns in other subjects. These pat-

terns are described via a sequence of voxels that might express an

activation at a specific time point. It is a vector in a high-dimensional

space, where each dimension represents a local feature (i.e., a voxel).

Using multivariate pattern classification (MVPC) (Haxby, 2012), the

patterns of neural activities are then classified by analyzing their vari-

ability during different stimuli (Kriegeskorte et al., 2008; O'Toole

et al., 2007). We clarify here that the registration to standard MNI

space is part of the preprocessing step. So, all functional alignment

approaches are applied after spatial alignment to MNI space. We then

evaluate the ProMises model in terms of across-subject decoding

accuracy (Bazeille et al., 2021) and interpretation of the final aligned

images. We stress here that (Bazeille et al., 2021) found that SRM

(Chen et al., 2015) and optimal transport (Bazeille et al., 2019) outper-

formed hyperalignment and searchlight hyperalignment (Guntupalli

et al., 2016) at the ROI level. However, our aim is to provide a clear

statistical model for functional alignment that permits one to incorpo-

rate spatial anatomical information into the estimation process,

thereby leading to an optimal unique orthogonal transformation rather

than focus on improving the classification predictive accuracy. The

ProMises model proposed is compared in terms of between-subjects

predictive accuracy with GPA, and hyperalignment methods as well as

anatomical alignment. We did not consider other related approaches

(e.g., SRM, Chen et al., 2015; optimal transport, Bazeille et al., 2019)

since we decided to focus on Procrustes-based approaches (i.e., those

that minimize an objective function with an orthogonality constraint)

and to show the related variability of these approaches. For a com-

plete review of functional alignment methods, please refer to Bazeille

et al. (2021) and Cai et al. (2020).

We have developed a Python (Van Rossum & Drake Jr, 1995)

module—ProMisesModel—available at https://github.com/angeella/

ProMisesModel in line with the Python PyMVPA (Hanke et al., 2009)

package. We also have created the alignProMises R (R Core

Team, 2018) package available at https://github.com/angeella/

alignProMises based on the C++ language.

3 | RESULTS

3.1 | Faces and objects

The protocol for evaluating the performance of the ProMises model

directly follows the one used in (Haxby et al., 2011). We classify the

patterns of neural activation using a support vector machine (SVM)

(Vapnik, 1999). The between-subject classification is computed using

leave-one-out subject cross-validation. To avoid the circularity prob-

lem (Kriegeskorte et al., 2009), the alignment parameters and the

F IGURE 2 Representation of the Euclidean distance matrix used to compute the location parameter F of the von Mises–Fisher distribution
using the 3D coordinates of the voxels from the raiders data set (Top: EV, bottom left: VT, bottom right: LO).
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regularization parameter k (i.e., the concentration parameter) are fitted

in the leave-one-out run using a nested cross-validation approach.

The performance metric used is the mean accuracy over leave-one-

out subjects and leave-one-out runs. Note for each of the methods

compared the input data is spatially normalized to MNI space

(Jenkinson et al., 2002).

We perform classification using the full set of voxels (3509), and

plot the classifier coefficients in the brain space. With seven class cat-

egories and a one-versus-one strategy (Lorena et al., 2008), 21 binary

classifiers were fit. Figure 3 represents the coefficients of the monkey

face versus the male face classifier. The plots representing the coeffi-

cients of the classification of fine-grained distinctions in the object

category and the coarse-grained distinctions between categories are

shown in Appendix 2. In Figure 3, we see that the coefficients of the

classifier fit using anatomical alignment only is more diffuse than the

equivalent values obtained using the ProMises model which appears

to better capture the VT cortex's spatial anatomical geometry, as well

as improve the ability to distinguish between categories. The

between-subjects accuracy equals 0.5 using no functional alignment,

while it equals 0.7 using the ProMises model.

The computation time equals 57.109 s if no functional alignment

is applied to the data, while it equals 1619.835 when using the ProM-

ises model.

3.2 | Visual object recognition

For this data set the entire brain is functionally aligned using the Effi-

cient ProMises model and classified via the SVM using the same pro-

cess described for the faces and objects data set. Figure 4 represents

the coefficients of the houses versus faces classifier using

anatomically aligned only (Jenkinson et al., 2002) (top figure) and

anatomically + functionally aligned (bottom figure) data. The Efficient

ProMises model allows for the application of the classification to data

from the entire brain, returning a between-subject accuracy equal to

0.6, as well as a clear and interpretable brain map. In contrast, the ana-

tomical alignment returns a more diffuse image with a between-

subject accuracy equal to 0.4.

One might think that whole-brain functional alignment is not

recommended because idiosyncratic functional-anatomical correspon-

dence generally occurs locally. The alignment must also avoid aligning

different functional regions, such as the ventral temporal cortex of

one subject with the prefrontal cortex in another subject. However,

the Efficient ProMises model returns rotation coefficients that take

into account the spatial brain information thanks to the specification

of the prior distribution for the orthogonal parameters. These coeffi-

cients have high values for neighboring voxels and low values for dis-

tant voxels. For the visual object recognition data set, this result is

shown in Figure 5 where the distribution of the loadings

(i.e., contribution of the given voxel in the construction of the new,

aligned, voxel) is shown as a function of the Euclidean distance

(3D voxel indices ijk) of the original voxels to the new voxel. For

visualization purposes, the boxplots are grouped by the discretized

value of the Euclidean distances. To clarify, let us consider

as an example the first element x11i of the (nonaligned) matrix Xi,

and the first element x̂11i of the aligned matrix X̂i , where

x̂11i ¼ x11ir11iþx12ir21iþ…þx1mirm1i and rkji �QiR̂iQ
>
i . In Figure 5, the

voxel x11i will have a distance equal to 0 (in the abscissa), while the

ordinate will be given by the value of the loading r11i; other voxels

x12i,…,x1mi will have larger distances. Figure 5 shows that ProMises

penalizes the combination of spatially distant voxels (i.e., loadings with

small values) and prioritizes the combination of neighboring voxels

F IGURE 3 Coefficients of the multi-
class linear SVM considering the monkey
face versus the male face classifier (where
hot colors correspond to predicting male
face) analyzing data aligned and not
aligned via the ProMises model.
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(i.e., loadings with high values) in creating the new common abstract

high-dimensional space. To further support this claim we report that

the median cumulative proportion of squared loadings is 50% at a dis-

tance of 19 voxels and is 90% at a distance of 37. Note that, indeed, a

distance of 19 voxels is considerable. However, it is still clear that the

ProMises model takes into account the spatial anatomical information

of the voxels, although not stringently. If one wanted more spatial

constriction, one could use a different location matrix (e.g., the iden-

tity matrix which gives weights to the voxel sharing the same coordi-

nates) or the concentration parameter k. Thus, we claim that the

efficient ProMises model returns linear transformations for the whole

brain that also act locally. The computation time equals 3554.375

seconds if the ProMises model is used, while it equals

650.568 seconds if no functional alignment is applied to the data.

3.3 | Raiders

The voxel responses are from the VT, LO, and EV ROIs, which are

essential brain regions for analyzing the subject's reaction to visual

stimuli, such as watching a movie. The alignment and regularization

parameter k are computed using half of the movie and nested cross-

validation, and the between-subject classification is performed on the

remaining half to avoid circularity problems. The one nearest neigh-

bors algorithm is used to classify the correlation vector composed of

six time points (18-s segment of the movie). The classification is cor-

rect when the correlation of the subject response vector with the

group mean response vector (computed in the remaining subjects) is

greater than the correlation between that vector response and the

average response is to all other time segments. The classification is

repeated for all one hold-out subjects, and the average accuracy is

computed as a performance metric.

The performance of the classification is tested using that was

been anatomically aligned only, and data that is also functionally

aligned using hyperalignment, GPA, and the ProMises model. As we

can see in Table 2, the ProMises model returns a higher mean accu-

racy than when only using anatomical alignment. The improvement in

between-subjects accuracy using the proposed method is consistent

across different ROIs. In addition, the between-subjects accuracy is

roughly twice as high as that obtained when not using any functional

alignment.

It is important to note that various authors have already demon-

strated this improvement in terms of classification accuracy using

F IGURE 4 Coefficients of the multi-
class linear SVM considering the house
versus face classifier (where hot colors
correspond to predicting human face)
analyzing data aligned and not aligned via
the ProMises model.

F IGURE 5 Boxplots of rotation loadings for each discretized
value of the Euclidean distance between 50 voxels (randomly
sampled) computed considering the 3D voxel indices ijk of the voxels.
See the text for a detailed description of this figure.
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functional alignment as opposed to anatomical alignment (Haxby

et al., 2011). However, here, we want to represent the variability of

the between-subject accuracy if hyperalignment or GPA are used

instead of the ProMises model for functional alignment. In Figure 6,

the gray boxplots represent the mean accuracy using hyperalignment,

having permuted the order of the subjects in the data set 100 times.

In contrast, the blue boxplots show the mean accuracy of GPA using

100 random rotations of the reference matrix M. Clearly, neither of

the two methods return a unique solution of Ri, resulting in variability

in the final classification results and complicating their interpretation.

In contrast, the ProMises model provides a unique solution across all

permutations, depicted as a red line in the figure.

Analyzing the hyperalignment results, the SD of the between-

subjects accuracy equals 0.01 for the VT analysis, 0.0141 for the LO

analysis, and 0:0081 for the EV analysis. In contrast, using GPA the

SD equals 0.014 for VT, 0.01 for LO, and 0.0078 for EV. For all three

ROIs, the accuracy obtained using the ProMises model is generally

higher than the maximum values obtained using GPA. For hyperalign-

ment, the maximum value is higher than the results obtained using

ProMises in EV and LO. We also applied the regularized hyperalign-

ment approach proposed by Xu et al. (2012); however, we found that

the performance results are optimal with a regularized parameter

equal to 1 in all three frameworks (i.e., the Xu et al. (2012)'s method

collapses to the standard hyperalignment case).

In the previous example, we empirically proved the nonunique-

ness of hyperalignment and GPA. For a formal proof, see Andreella &

Finos (2022). This result means that we have a different representa-

tion of the aligned images and related results in the brain space for

each set of transformations. However, using the ProMises model, this

can be avoided.

Computation times are reported in Table 3 for each analysis.

3.4 | Words and objects

In this analysis, the entire brain is functionally aligned using the Effi-

cient ProMises model in the same manner as described in the visual

objects recognition data analysis. The brain images are then classified

via SVM following the same procedure used for the faces and objects

and visual objects recognition data sets. Figure 7 shows the coeffi-

cients of the consonant string versus scrambled objects classifier con-

sidering functionally aligned (bottom figure) and not functionally

aligned (top figure) data. The between-subject accuracy equals 0.2 if

the data is not functionally aligned, while it is 0.33 if the data is func-

tionally aligned. It is interesting to note the two yellow blobs which

correspond to Brodmann area 19, which is known to be a visual pro-

cessing area (Duncan et al., 2009; Wright et al., 2008), where height-

ened activation corresponds to predicting the consonant string. The

analysis takes 6557.867 seconds if the Efficient ProMises model is

used, in comparison it takes 1204.945 seconds if it is not used.

4 | DISCUSSION

Functional alignment is a preprocessing step that improves the func-

tional coherence of fMRI data, hence improving the accuracy of

F IGURE 6 Boxplots representing the mean classification accuracy for the raiders data aligned using GPA and hyperalignment for three
different ROIs (VT, EV, and LO). The results obtained using the ProMises model are shown as a red line.

TABLE 2 Classification accuracy for the raiders data set using the
anatomical alignment, as well as ProMises alignment for three
different ROIs (VT, EV, and LO).

ROIs

VT EV LO

No functional alignment 0:289 0:534 0:238

ProMises model 0:472 0:709 0:568

TABLE 3 Computation time (in seconds) for each analysis
performed on the raiders data set, using a 3000+ core Linux cluster
with 20 GB of random-access memory

VT EV LO

No functional alignment 234:32 204:798 188:003

ProMises model 7581:615 7003:431 7423:76

Hyperalignment 2728:47 2102:53 2481:74

GPA 48847:36 41748:33 47890:32
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subsequent analysis (Guntupalli et al., 2016; Haxby et al., 2011; Haxby

et al., 2020). This article presents a functional alignment method that

solves most of the shortcomings present in previously used methods,

particularly GPA (Gower, 1975) and hyperalignment (Haxby

et al., 2011). The ProMises model returns aligned images that are

interpretable, fully reproducible, and provide enhanced detection

power. Below we summarize several of the key findings of this article.

4.1 | Enhanced detection power

We applied the proposed method to four different data sets, allowing

us to evaluate its performance under a number of different settings.

This included differences in sample size, length of time series, whether

data was extracted from an ROI or the whole-brain, and whether the

data resides in volumetric space or on the surface.

We further contrasted the approach with three other approaches.

The first was simply performing no functional alignment

(i.e., anatomical alignment only). The second, was the standard hyper-

alignment approach. The third, was the classic GPA approach. For the

two latter approaches and ProMises anatomical alignment was per-

formed prior to functional alignment.

For all four data sets the ProMises model greatly outperformed

using no functional alignment, for example, see Table 2. Consistently

for all settings the classification accuracy was roughly doubled when

using the ProMises model in addition to standard anatomical align-

ment. Further, as can be seen in Figure 6, in most cases, the ProMises

model outperformed the other functional alignment techniques in all

permutations of these approaches. On occasion certain permutations

outperformed ProMises, though this was rare.

A potential limitation of the study is that the performance of the

anatomical-only alignment is likely partially due to the spatial

normalization procedure used. In this work, we applied AFNI's default

approach, and it is possible that another approach would have given

slightly different results. However, we do not anticipate this would

have changed our conclusions.

4.2 | Reproducibility and interpretability of the
results

The solution (i.e., the final image) produced by GPA is not unique, as it

depends on the starting point of the iterative algorithm. A similar issue

arises for the hyperalignment method where the solution depends on

the order in which subjects are entered into the algorithm. As a conse-

quence, results may vary widely depending on arbitrary choices made

by the experimenter (or the software used). The severity of this prob-

lem is visible in all analyses performed in this article. As an example,

see Figure 6, where the accuracy is not given by a single value, but

rather represented using a box-and-whisker plot. To the best of our

knowledge, the ProMises model is the only Procrustes-based func-

tional alignment technique that resolves the problem of nonunique-

ness of the solutions, thereby enhancing the reproducibility of the

results.

The nonuniqueness of the solution further leads to difficulties

with interpretability, since equivalent solutions in mathematical terms

(i.e., where the same maximum is obtained) may provide different—

sometime very different—final images. This reduces the previous

alignment methods to black box solutions that do not directly improve

our understanding of the underlying cognitive activities.

The ProMises model offers a way to address these two issues

thanks to the inclusion of prior (and anatomical) information into the

analysis. This makes the solution unique (i.e., reproducible), and the

resulting images interpretable. The proposed solution borrows

F IGURE 7 Coefficients of the multi-
class linear SVM considering the
consonant string versus scrambled objects
classifier (where hot colors correspond to
predicting consonant string) analyzing
data aligned via anatomical alignment and
the ProMises model.
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information from the whole brain, but is driven to act locally, there-

fore making the results anatomically meaningful. This can clearly be

seen in Figure 5, which reports the contribution of a given voxel in

the construction of the new, aligned, voxel as a function of the Euclid-

ean distance. It is evident that the highest contribution comes from

the voxels that are closest in proximity.

As confirmation of the interpretative quality of the method, we

can study the map of classifier coefficients presented in Figure 4. The

image is clear and interpretable if the functionally aligned fMRI data

are used. For example, we can see a yellow blob of activation in

Figure 4 in the functionally aligned data. The blob corresponds to the

superior temporal gyrus, a region known to be involved in the percep-

tion of emotions in reaction to facial stimuli (Haxby et al., 2001; Ishai

et al., 2000; Ishai et al., 1999). While, we can comfortably interpret

these maps when using the ProMises model, it is more ambiguous for

other methods. In fact, the other methods do not return a single

aligned image; the representation of the results on the anatomical

template is possible but without guarantee of validity from a mathe-

matical point of view. We stress here that the classifier weight coeffi-

cients must be transformed to proper activation patterns (Haufe

et al., 2014) if inferential conclusions are desired.

4.3 | Computationally efficiency

While the proposed method is iterative, it is usually less computation-

ally intensive than GPA (i.e., the nonregularized counterpart). The rea-

son is that it typically reaches the convergence criteria (i.e., the

Frobenius distance between the references matrices of two consecu-

tive iterations is minimal [i.e., less than 0.001]) in only a few iterations

thanks to the regularization term defined by the prior parameters

(i.e., k and F). As an example, consider the first analysis in Subsec-

tion 3.3 (i.e., using the VT mask from the raiders data set). Here, the

ProMises model takes 7581.615 s to perform the analysis, whereas

GPA takes 48847.36 seconds using a 3000þ core Linux cluster with

20 GB of random-access memory and parallel computation for the

subjects (i.e., the analysis are parallelized across a number of cores

equal to the number of subjects included in each analysis). hyperalign-

ment only takes 2728.47 s, but it is does not reach any optimality cri-

terion, as seen in Section 2.1. Finally, the computation time could be

improved by using different approaches than cross-validation

(e.g., generalized cross validation; Golub & Von Matt, 1997 or band-

width selection techniques; Heidenreich et al., 2013).

4.4 | Whole brain applicability

More relevantly, the efficient extension of the ProMises model over-

comes computational difficulties related to performing whole-brain

analysis that plague both hyperalignment and GPA. This extension of

the model works on a reduced space of the data, thereby gaining in

efficiency. In practice, the dimensions are reduced from the number

of voxels to the number of scans, which for typical fMRI data implies

a significant dimension reduction. A competing model in this context

is searchlight hyperalignment (Guntupalli et al., 2016), where overlap-

ping transformations are calculated for overlapping searchlights in

each subject and then aggregated into a single whole-brain transfor-

mation. While this allows for an anatomical interpretation of the final

map, the final transformation is not an orthogonal matrix, and there-

fore will not preserve the content of the original data. While search-

light hyperalignment uses local radial constraints, the ProMises model

incorporates them directly into the Procrustes estimation process

through the prior, thus providing increased flexibility. Another

approach is piecewise functional alignment (Bazeille et al., 2021),

where nonoverlapping regions (coming from a priori functional atlas

or parcellation methods) are aligned and then aggregated. Bazeille

et al. (2021) found substantial improvement compared to using

searchlight approaches in whole brain analysis. However, it suffers

from possible staircase effects along the boundaries of the nonover-

lapping regions.

4.5 | Extensions

Because the proposed approach is a statistical model, various exten-

sions can be considered to include more flexibility (e.g., examining

subpopulations using different reference or location matrices). The

specification of location matrix F as a similarity matrix also permits

exploring various types of distances (e.g., considering the gyrus

instead of the voxels as units). To conclude, the definition of F opens

up a universe of different possibilities to express anatomical and func-

tional constraints existing between voxels/regions in the brain. It is

plausible that other functional alignment methods proposed in the lit-

erature (e.g., SRM proposed by Chen et al. (2015)) can be incorpo-

rated into the ProMises model, which can be explored in future work.

5 | CONCLUSION

Together, these findings lead us to believe that the ProMises algo-

rithm provides a promising approach toward performing functional

alignment on fMRI data that improves classification accuracy across a

number of different settings. We therefore believe it is an attractive

option for performing functional alignment on the fMRI data prior to

fitting predictive models.
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APPENDIX 1

A | ALGORITHMS

Algorithm A provides the pseudocode for the estimation process of

the ProMises model, while Algorithm A shows the adaptation to per-

form its efficient version

APPENDIX 2

B | FACES AND OBJECTS RESULTS

Figure B.1 represents the coefficients considering a classification of

fine-grained distinction among object categories (i.e., shoes versus a

chair). In the same way, Figure B.2 represents the case of coarse-

grained distinctions (i.e., dog face versus shoe). Thanks to the model

formulation of the proposed method, the coefficients of the classifiers

can be represented in brain space, returning maps with spatial bound-

aries between different categories of stimuli.

F IGURE B1 Coefficients of the
multi-class linear SVM considering the
chair versus shoe classifier (where hot
colors correspond to predicting chair)
analyzing data aligned via anatomical
alignment and the ProMises model.
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F IGURE B2 Coefficients of the
multi-class linear SVM considering the
dog face versus shoe classifier (where hot
colors correspond to predicting dog face)
analyzing data aligned via anatomical
alignment and the ProMises model.
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