ON CERTAIN CONDITIONALLY CONVERGENT SERIES

LUCA GOLDONI

Abstract

In this paper we investigate the problem of the convergence of a very special kind of non absolutely convergent series which can not be solved by means of traditional tests as Dirichlet test.

1. Introduction

We investigate the behavior of the series

$$
\sum_{n=0}^{+\infty}(-1)^{n(\bmod p)} a_{n}
$$

where p is an odd prime number and a_{n} is not negative for each n. We could call 'almost alternating series' because the sequence of the signs is of the kind

We observe that the Dirichlet's test is not applicable even in the case of further assumptions on a_{n} because the partial sums of the sequence $b_{n}=(-1)^{n(\bmod p)}$ are not bounded. Indeed, if we indicate with σ_{n} the sequence of this partial sums we have that $\sigma_{p k}=k+1$.

2. The theorem

Lemma 1. Let be

$$
\sum_{n=0}^{+\infty}(-1)^{n(\bmod p)} a_{n}
$$

where
(a): $a_{n} \geq 0$ for each $n \in \mathbb{N}$.
(b): $\sum_{n=0}^{+\infty} a_{n}=+\infty$.

[^0](c): $\lim _{n \rightarrow+\infty} a_{n}=0$.
and let be $\left(s_{n}\right)_{n}$ the sequence of the partial sums. If there exists the
\[

$$
\begin{equation*}
\lim _{k \rightarrow+\infty} s_{p k}=s \in \mathbb{R} \tag{1}
\end{equation*}
$$

\]

then

$$
\lim _{k \rightarrow+\infty} s_{p k+1}=\lim _{k \rightarrow+\infty} s_{p k+2} \cdots \lim _{k \rightarrow+\infty} s_{p(k+1)-1}=s
$$

so that the given series converges.
Proof. Since (1) holds, it follows that

$$
\forall \varepsilon>0 \exists \overline{k_{1}}(\varepsilon): \forall k>\overline{k_{1}}(\varepsilon) \Rightarrow s-\frac{\varepsilon}{2}<s_{p k}<s+\frac{\varepsilon}{2} .
$$

Let be $1 \leq h \leq p-1$ then

$$
\left|s_{p k+h}-s_{p k}\right|=\left|a_{p k+1}+\cdots a_{p k+h}\right| \leqslant\left|a_{p k+1}\right|+\cdots\left|a_{p k+h}\right| .
$$

Since hypothesis (c) holds, it follows that

$$
\forall \varepsilon>0 \exists \bar{n}(\varepsilon): \forall n>\bar{n}(\varepsilon) \Rightarrow\left|a_{n}\right| \leqslant \frac{\varepsilon}{2 h}
$$

Let be k such that $p k+1>\bar{n}(\varepsilon)$ i.e.

$$
k>\frac{\bar{n}(\varepsilon)-1}{p}=\overline{k_{2}}(\varepsilon) .
$$

then

$$
\left|a_{p k+1}\right|+\cdots\left|a_{p k+h}\right| \leqslant \frac{\varepsilon(h-1)}{2 h}<\frac{\varepsilon}{2} .
$$

thus

$$
\left|s_{p k+h}-s_{p k}\right|<\frac{\varepsilon}{2}
$$

If $k>\max \left\{\overline{k_{1}}(\varepsilon), \overline{k_{2}}(\varepsilon)\right\}$ then

$$
\left\{\begin{array}{l}
s-\frac{\varepsilon}{2}<s_{p k}<s+\frac{\varepsilon}{2} \\
s_{p k}-\frac{\varepsilon}{2}<s_{p k+h}<s_{p k}+\frac{\varepsilon}{2}
\end{array}\right.
$$

so that $s-\varepsilon<s_{p k+h}<s+\varepsilon$. Hence

$$
\lim _{k \rightarrow \infty} s_{p k+h}=s
$$

Since it holds for each $1 \leq h \leq p$ the thesis follows.
Lemma 2. If

$$
\sum_{n=0}^{+\infty}(-1)^{n(\bmod p)} a_{n}
$$

satisfies the hypothesis of Lemma 1 and if
(d): $d_{k}=a_{p k+p}+\sum_{h=1}^{p-1}(-1)^{h} a_{p k+h} \geqslant 0$ for each $k \in \mathbb{N}$.
(e): $\sum_{k=0}^{+\infty} d_{k}<+\infty$.
then

$$
\exists \lim _{k \rightarrow \infty} s_{p k}=s<+\infty
$$

Proof. Since
$s_{p k+p}=s_{p k}+\left(-a_{p k+1}+a_{p k+2}-a_{p k+3}+\cdots-a_{p k+p-2}+a_{p k+p-1}+a_{p k+p}\right)$
we have that

$$
s_{p k}=s_{0}+\sum_{j=0}^{k-1} d_{j} .
$$

from hypothesis (d) it follows that the sequence $s_{p k}$ in not decreasing so it has limit. Moreover, since

$$
\sum_{h=0}^{k-1} d_{h} \leqslant \sum_{h=0}^{+\infty} d_{h}<+\infty
$$

the limit belongs to \mathbb{R}.
So we have that
Theorem 1. If

$$
\sum_{n=0}^{+\infty}(-1)^{n(\bmod p)} a_{n}
$$

where
(a): $a_{n} \geq 0$ for each $n \in \mathbb{N}$.
(b): $\sum_{n=0}^{+\infty} a_{n}=+\infty$.
(c): $\lim _{n \rightarrow+\infty} a_{n}=0$.
(d): $d_{k}=a_{p k+p}+\sum_{h=1}^{p-1}(-1)^{h} a_{p k+h} \geqslant 0$ for each $k \in \mathbb{N}$.
(e): $\sum_{k=0}^{+\infty} d_{k}<+\infty$.
(f): p is an odd prime number.
then the given series is simply convergent.
In particular we have the following
Corollary 1. If there exist $A>0$ and $\delta>0$ so that

$$
0 \leqslant d_{k} \leqslant \frac{A}{k^{\delta}}
$$

then the given series converges.

References

[1] T.J. Bromwich "An introduction to the theory of infinite series" Macmillan; 2d ed. rev. 1947.
[2] G.H. Hardy "A course in Pure Mathematics" Cambridge University Press, 2004.
[3] K. Knopp "Theory and Application of Infinite Series" Dover 1990.
[4] C.J. Tranter "Techniques of Mathematical analysis" Hodder and Stoughton, 1976.

Università di Trento, Dipartimento di Matematica, v. Sommarive 14, 56100 Trento, Italy

E-mail address: goldoni@science.unitn.it

[^0]: Date: April 7, 2013.
 2000 Mathematics Subject Classification. 40A05, 30B50.
 Key words and phrases. Infinite series, Conditionally convergence tests, Elementary proof.

 Dipartimento di Matematica. Università di Trento.

