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Chapter 1

Introduction

It is well-known that a liquid is almost incompressible but it cannot support any shear
stress: we can fill with it a vessel of whatever shape. Differently a solid is something with
a finite shear modulus. That is, dependig on our effort, it resists any attempt to change
its shape, until it eventually breaks up.
For any given material, the melting point, for fixed pressure and volume, is placed at a
well-defined critical temperature Tm: when the system is cooled below this temperature,
molecules or atoms organize themselves on a regular lattice. The phase transition from
liquid to solid state is characterized by the onset of crystalline order.
For a wide variety of liquids it is possible —for instance quenching fast enough below the
melting point— to reach solid-like behaviour continuously, i.e., without the onset of any
kind of crystalline order or discontinuity in volume or energy. The system ends up in a
mechanically stable but disordered state of matter: glass. It is customary to mean, by the
term laboratory glass transition, not a thermodynamic transition, but rather temperature
Tg, where the viscosity of a liquid reaches the conventional value of 1013 poise and the
system behaves for all practical purposes like a solid. As mentioned in a review on the
phenomenology of glass-forming liquids [1], empting a cup filled with a liquid just above
its glass transition, i.e., with a viscosity of 1012 poise, would take nearly 30 years! The
specific heat of a glass is similar to that of the crystal, and the only relevant degrees of
freedom, much like what happens in the crystal, are the vibrations of particles around
their (disordered) equilibrium positions. Nevertheless, within the glass phase two-times
correlation functions are found to violate time translational invariance, which is the char-
acteristic feature of a true thermodynamic equilibrium phase. Although glass seems to
be at equilbrium, it is not.

Without going into greater depth in the study of the glass phase and its properties,
let us focus on the supercooled liquid phase —an equilibrium phase— which can be found
between melting point Tm and the glass transition Tg. Within the supercooled liquid
phase, the relaxation time of the system grows by 12-14 decades under a temperature
change of factor 3. The efforts of theories competing in describing the glass transition are
actually devoted to deriving this huge increase of relaxation time from first principles and
link it to a growing length-scale of the system.
Since Goldstein [2], the low-temperature critical slowing down of glass-forming liquids is
believed to be due to the onset of a very frustrated energy landscape, characterized by an
exponential number of local minima. But, is the energy landscape not always the same
at all temperatures? Of course it is, but different regions of it are typically sampled by
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the system at various temperatures. At low temperature, the system spends a long time
near the bottom of valleys in the energy landscape, until eventually, due to thermal fluc-
tuations, it hops to another valley. This is how the whole phase space is explored in the
supercooled liquid regime. The lower the temperature, the higher the barriers between
neighbouring valleys and the less the thermal drive: relaxation time in fact increases. The
following questions have challenged physicists for decades:
1) Is there any real thermodynamic transition behind the laboratory glass transition?
2) Is there any growing length-scale in the system that can reasonably explain the increase
in relaxation time?
3) How can the rather ideal picture of hopping between energy minima be translated in
real space?
A belief that dates back to Goldstein is that the transition from one minimum to another
is in some sense ”local”, i.e, in the rearrangement process leading from one minimum to a
”nearby” one, most atomic coordinates change very little, and only those in a small region
of the substance change by an appreciable amount. [2]. This seminal idea has been fully
developed by the Random First-Order Theory (RFOT) of glass transition [3, 4].

While the relaxation time of a supercooled liquid increases by orders of magnitude,
no relevant changes are found in the Van-Hove pair correlation function, which measures
the correlation between density fluctuations at different positions.
The definition of a static non-trivial length-scale in supercooled liquids had its main
source of inspiration precisely in the landscape scenario first depicted by Goldstein. All
the configurations belonging to the same basin of potential energy, i.e., mapped into the
same minimum by following the steepest descent path, can be regarded as realizations
of the same amorphous state [5]. We can then ask whether the whole system is stable
in a single amorphous state. According to the Random First-Order Theory (RFOT) of
glass transition, the characteristic length-scale ξRFOT of a supercooled liquid is exactly
the maximum length-scale up to which a single amorphous state is stable [4]. A minimum
of the potential energy is a function of the coordinates of all particles: it is therefore
puzzling, having isolated a bunch of neighbouring particles in the liquid, to state wheater
their positions are typical of one minimum or another. Let us for a moment define the
order parameter of an amorphous system as a function which takes different values in
the different minima of free-energy. This is true, for example, in a magnetic system: the
two minima of the free energy at low temperature are characterized either by positive or
negative magnetization. A measure of magnetization always tell us the amount of the
two phases present in each portion of the system. Let us label each minima of the energy
landscape of a liquid with a different colour. Then, let us imagine that each bunch of
particles of the supercooled liquid can be coloured according to the minima from which
they come, assuming that this could be recognized in some way. If such an ideal opera-
tion could be done, according to RFOT, the supercooled liquid would appear as a mosaic,
with many tesserae of different colors. They would also be of different sizes, but one size
would dominate, the characteristic length-scale ξRFOT of the liquid. This is the meaning
of regarding ξRFOT as the maximum length-scale up to which a single amorphous state is
stable.
Unfortunately, an order parameter that allows us to distinguish the amorphous config-
urations visited by the supercooled liquid —the colour of mosaic tesserae in the former
example— is not available. The severe limitation of working with amorphous systems
is that we cannot label different phases; we can only say, comparing two pieces of the
system, whether they belong to the same phase or not. From this point of view, it would
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be hopeless to check whether a supercooled liquid is a mosaic of amorphous phases or not.
Nevertheless, there is also good news from RFOT. According to this theory, the interfaces
between different phases —boundaries between mosaic tesserae— have a well-defined sur-
face tension: the higher the surface tension, the higher the difference between the amor-
phous phases. That is, in the mosaic picture, the higher the colour contrast between
neighbouring tesserae, the higher the surface tension. Moreover, according to RFOT, this
mosaic is not static: new tesserae appear continuously, replacing those already existing,
i.e., new droplets of amorphous phases are continuosly forming and relaxing: this is how
the whole phase space is explored. The characteristic time τ of the system is that needed
by a new tessera to appear within the mosaic: clearly, τ depends on size ξRFOT . A less
pictorial and more rigorous definition of RFOT will be given in sec. 2.4.1.
With this picture in mind, the aim of the work presented in this thesis is to elaborate
a numerical method to measure the surface tension between the amorphous phases of a
supercooled liquid, in order to test the mosaic scenario. RFOT theory provides exact
predictions on the relation between length-scale ξRFOT and surface tension [4, 6], which
can be tested with a direct measure of the latter. Moreover, in the absence of colours in
the mosaic, i.e., lacking an order parameter suitable for recognizing the various phases, a
positive measure of surface tension can be regarded as the landmark that distinct amor-
phous phases truly coexist in the supercooled liquid.
Also, assuming surface tension as the order parameter signalling the co-existence of phases,
it is possible to study the relaxation of amorphous droplets —the time needed by one
tessera of mosaic to be replaced by a new one— and thus to check the relation between
relaxation time τ and characteristic length ξRFOT provided by RFOT.

The static length-scale ξRFOT is the only one defined in the deeply supercooled regime,
where the slow dynamics is ascribed to the frustrated energy landscape. At higher tem-
peratures, the amorphous states merge into each other —the contrast between mosaic
tesserae becomes more and more damped, until no border can be recognized any longer
and the whole system has merged into a single state: ξRFOT , should it still exist, would
be irrelevant. At these higher temperatures another length-scale appears, ξDYN , which in
principle has nothing to do with the ”many states” mosaic picture: it is the characteristic
size of dynamically cooperative regions. That is, due to the close packing of particles
in the supercooled regime, the motion of one particle over a distance comparable to its
diameter should require many of its neighbours to move in concert, in order to create a
space large enough for the particle to move into. It is customary to speak about this clus-
tering of particles, into regions more or less dynamically active, using the term dynamical
heterogeneities. The behaviour of the dynamic length-scale ξDYN is well described, e.g.,
by the theory of critical dynamics [7] in kinetically constrained models (CKM) [8] and also
by the Inhomogeneous Mode Coupling Theory [9, 10]. These theories compete with or are
at least complementary to RFOT. According to RFOT, the sluggish dynamics of super-
cooled liquids is the manifestation of a thermodynamic singular point below Tg, whereas,
according to the dynamical theories mentioned above, the slowing down of glass-forming
liquids is due to a critical point in the dynamics. Dynamic ξDYN and static length-scale
ξRFOT are in principle well-defined at different temperature intervals, the lowest being
that of ξRFOT . Nevertheless, there is also evidence of a small interval of temperatures,
centered around the mode coupling temperature, where the two length-scales compete
[11, 12].
This thesis also presents a new numerical procedure aimed at finding a common origin
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for these two completely different defined lenght-scales, i.e., fixed overlap dynamics. It
aims at exploiting the possibility that the dynamical length-scale behaves differently if
interfaces with well-defined surface tension are present or not between dynamically coop-
erative regions.
On one hand, the finding of a shared similarity between static and dynamic excitations,
i.e. surface tension, would be a step forward in understanding the physics of glass-forming
liquids; on the other hand, a measure carried out with a different protocol, would be a
different check on the existence of a finite surface tension in supercooled liquids.

All the original work on surface tension between RFOT excitations presented in this
thesis is based on ideas of A. Cavagna, T. S. Grigera and P. Verrocchio. The study of
surface tension by means of fixed overlap dynamics is based on an idea of G. Parisi. I owe
a lot to all of them and I am happy to thank them. In particular I would like to thank
C. Cammarota, with whom I collaborated to obtain here presented results.

Grateful thanks for discussion and comments to G. Biroli, E. Ferrero, I. Giardina, M.
Montagna, A.C. Ribeiro-Teixeira, F. Simini, P. Sollich and G. Viliani.
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Chapter 2

Glass transition in supercooled

liquids

According to Random First-Order Theory (RFOT) of glass transition, the increasing
time-scale observed in supercooled liquids at low temperatures is linked to the increasing
length-scale of the cooperative rearrangements needed to relax the system, as noted for
the first time in the Adam-Gibbs theory [13].
These rearrangements of particles are regarded as amorphous excitations separated by
interfaces with a well-defined surface tension. This surface tension has never been di-
rectly observed, although it plays a crucial role in determining the typical size and time
over which amorphous excitations form and relax. The work of this thesis focuses on the
surface tension between the amorphous excitations of RFOT.

2.1 Glass transition

To introduce the problem of glass transition in supercooled liquids, let us first consider
the data in fig.2.1: here, the low-temperature behaviour of viscosity is plotted for various
glass-forming liquids. According to a phenomenological definition, glass transition takes
place at temperature Tg, where the viscosity of a supercooled liquid reaches 1013 poise. In
this regime, for all practical purposes viscous liquids behave like solids, even though they
do not display any crystalline order. The increase in viscosity in these systems is directly
proportional to the increase in relaxational time τ . For some glass-forming liquids (strong
liquids), τ grows at low temperatures following the Ahrrenius law:

τ = τ0 exp(A/T ), (2.1)

where A is a factor weakly dependent on temperature (straigth lines in fig.2.1). For the
majority of glass-forming liquids, the increase in τ is well fitted by a super-Arrhenius law:

τ = τ0 exp(A/(T − TV F )), (2.2)

called the Vogel-Fulcher-Tamman law: these are fragile liquids. The viscosity of fragile
liquids is shown in fig.2.1 by the curves which display a crossover in their slope just above
Tg. The VFT law states the divergence of τ at finite temperature TV F , the Vogel-Fulcher
temperature, which can be obtained from data extrapolation and is always below Tg. One
of the main problems in the physics of glass-forming liquids is wheather the divergenge
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of τ at a finite temperature predicted by the VFT law is the signature of an underlying
thermodynamic singularity. Leaving for a subsequent discussion the nature of the possible
thermodynamic singularity at TV F , let us concentrate here on the abrupt increase in
relaxation time observed in fragile glass-formers above Tg. Is there any theoretical scenario
which can capture this peculiar behaviour ?

Figure 2.1: Log of viscosity (y-axis) vs. T/Tg (x-axis) for different glass-forming liquids.
Strong liquids, η ∼ exp(A/T ), straigth lines. Viscosity has a steeper increase near Tg for
fragile liquids, η ∼ exp(A/(T − TV F )).

2.2 Mode coupling theory and p-spin

Mode coupling theory The Mode Coupling Theory (MCT) [14] is the best established
theory describing the dynamical crossover observed in fragile systems. Fig.2.1 does show
that, at a certain temperature, the viscosity curve bends (the same is true for relaxation
time τ), marking a crossover from a slow to a much steeper increse in viscosity (relaxation
time).
The signature of a qualitative change in the relaxational dynamics of the system ap-
proaching Tg comes from study of dynamical correlation function C(t). This is generally
defined in a liquid system as:

C(t1, t2) =
1

N

N
∑

k=1

〈ϕk(t1)ϕk(t2)〉, (2.3)
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where ϕk(t) is a generic quantity relative to particle k, observed at time t. Due to time
translational invariance, the system is at equilibrium, this correlation function depends
only on the difference of times, t = t2 − t1, and can be rewritten as:

C(t) =
1

N

N
∑

k=1

〈ϕk(t)ϕk(0)〉, (2.4)

In liquids, a typical choice for ϕk(t) is the Fourier transform of the density fluctuations
of a tagged particle k, δρk(q, t) = exp[−iq · rk(t)], at fixed momentum q. In this case,
dynamic correlation function C(t) coincides with incoherent intermediate scattering func-
tion Fs(q, t) [15], which is normally measured in experiments. In systems other than
liquids, ϕk(t) may be any meaningful observable carrying a real space label (particle or
spin). Correlation function C(t) measures how quickly correlations within the system
decay in time. In the high-temperature phase of a liquid, i.e. T >> Tg, C(t) displays
standard exponential decay:

C(t) = C0 exp(−t/τ) . (2.5)

In this regime only one time scale, τ , is present in the system. If the temperature of the
liquid is lowered to Tg, correlation function C(t) develops a plateau (see fig.2.2), and two
time scales can be identified. Roughly speaking, we can say that there is a fast process

Figure 2.2: Two steps relaxation The dynamic correlation function C(t) in a Lennard-
Jones system. In this case C(t) is the incoherent intermediate scattering function Fs(q, t),
evaluated at the value of q where the static structure factor has the main peak. At high
temperatures the decay is exponential, but when the temperature get close to Tg a plateau
is formed and relaxation proceeds in two steps. Figure from [16].

describing the relaxation of C(t) to the plateau, and a slow process due to the decay of
C(t) from the plateau. Conventionally, these two processes are respectively called β (fast)
and α (slow) relaxation.
The structure of C(t) clearly indicates that there is a separation of time-scales: the lower
the temperature the sharper the separation, and this is the qualitative landmark of glassi-
ness.
The two-step relaxation of C(t) described above can been obtained from MCT equations.
These are equations for the time correlation of density fluctuation in a liquid derived by
means of the Zwanzig-Mori projection formalism [17, 18]. The latter is a theoretical
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scheme used to perform coarse graining of fast degrees of freedom in the dynamical equa-
tion describing a liquid system. This method allows us to write a set of self-consistent
equations for C(t), which, under some approximations [19], may be closed to the single
equation:

∂2
τC(t) + Ω2C(t) + ν∂τC(t) + Ω2

∫ τ

0

duF [C(τ − u)] ∂τC(t) = 0, C(0) = 1 (2.6)

where Ω is a model-dependent frequency, and the precise form of kernel F [C(τ − u)],
which is a function of C(t), depends on the approximations used to close the set of MCT
equations. The solution of eq.(2.6) depends on temperature. Accordingly there is a
critical temperature, Tc > Tg, where the ergodicity is dynamically broken, i.e. the time
correlation function does not decay to zero at infinite time C(t = ∞) 6= 0. Approaching
Tc from above, C(t) develops a plateau and two time-scales can be resolved, just as in
real liquids. The height of the plateau is associated to non-ergodicity parameter f , and
the regimes where C(t) relaxes to the plateau and decay from it are well described by the
following formulas:

C(t) = f +

(

t

τβ

)a

(2.7)

C(t) = f −
(

t

τα

)b

(2.8)

where τβ and τα are the two time-scales over which C(t) respectively relax to the plateau
and decays from it. These time-scales actually correspond to β, fast, and α slow, as men-
tioned above. Although eq.(2.6) predicts the two-step relaxation observed in supercooled
liquids, it cannot describe the supercooled liquid regime at all temperatures. According
to MCT the length of the plateau at Tc becomes infinite, that is it diverges with a power
law:

τR ∼ τα ∼ 1

(T − Tc)γ
(2.9)

This is a spurious dynamic singularity, beacause glass-forming liquids are still able to relax
within observation times at Tc, Tc being above Tg. Thus, the whole range of temperatures
Tg ≤ T ≤ Tc is not covered by mode coupling predictions.

An indication of what is happening in this temperature regime comes from the analogy
between mode coupling theory and the dynamics of a particular class of spin glass models,
p-spin models. A definition of the correlation function similar to that of eq.(2.4) can also
be given for a spin system:

C(t0, t0 + t) =
1

N

N
∑

k=1

〈σk(t0)σk(t0 + t)〉. (2.10)

The dynamical equation for C(t), calculated analitically within p-spin , is formally
identical to that obtained within MCT [20, 21], i.e. eq. (2.6). It also provides the same
predictions for C(t), i.e. the existence of two-step relaxation and critical temperature Tc,
at which the length of the plateau diverges, C(t = ∞) 6= 0. The common opinion is that,
below Tc, the relaxation of the liquid goes through activated processes , which are not
captured by the dynamical equation of MCT.
As these activated processes are the cornerstone of Random First Order theory, it is
worthwile depicting a clearer scenario for the crossover at Tc. This can be done by
studying what happens at Tc in p-spin models.
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Topological crossover in p-spin . In p-spin models, the ergodicity breaking at Tc is
related to a topological crossover in the energy landscape. The energy landscape of a
system is of course always the same and does not depend on temperature. Nevertheless,
depending on temperature, the system explores different regions of that landscape. For
p-spin [22, 23] it has been shown that, approaching Tc, dynamical arrest occours beacause
the system is trapped in local minima of the energy. p-spin is a model in which interactions
have infinite range, the barriers between minima are also infinite, so that, as soon as the
minima start to dominate the energy landscape, they can trap the system for an infinite
time. Moreover, according to [22, 23], the dynamics above Tc is ruled by saddle points.
Actually, at temperatures T ≥ Tc, the system relaxes rolling down unstable directions
of the stationary points of energy. It is the rarefaction of these unstable directions on
approaching Tc which produces two-step relaxation and divergence of the plateau [22, 23].
Let us imagine a stationary point with only a few unstable directions, i.e., those typically
visited by the system at temperatures slightly above Tc. The relaxation of C(t) to the
plateau (β relaxation) corresponds to the relaxation within the attraction basin of the
stationary point, which has positive curvature along most directions. This process is
fast. More time is needed by the system to find its way through one of the rare unstable
directions, this is the time when C(t) decays from the plateau (α relaxation). An ample
description of this scenario is found in [24], together with many references on topological
crossover in p-spin .

The crossover from a saddle-dominated to a minima-dominated energy landscape at
Tc clarifies the role of activated events below Tc: in principle, they should be responsible
for hopping between minima. In p-spin , this hopping is clearly impossible, due to the
infinite barriers between minima: a dynamic singularity is found at Tc, just as mode cou-
pling equations indicate.
Nevertheless, it is now clearer which feature of glass-forming liquids, which always have
finite range interactions, can give insight on low-temperature dynamics. This feature is
the structure of the potential energy landscape (PEL).

2.3 Topological crossover in supercooled liquids

Dynamical crossover and PEL. In this thesis, I present results on measuring the
surface tension between the local amorphous excitations that arise within RFOT theory.
My aim is to highlight some evidence that this surface tension is operatively well defined
only when the potential energy landscape (PEL) of the system is dominated by minima.
Hence, a brief overview of some previous results concerning the relationship between the
slowing down of dynamics and the properties of PEL [2, 25, 26, 27, 28] must be made.
The idea of a link between the slowing down of dynamics and a topological crossover
in the energy landscape dates back to Goldstein [2], according to whom, at sufficiently
low temperatures, the PEL develops a huge number of local minima in which the system
can easily be trapped for a long time. When the system enters this regime, a dramatic
increase in relaxation time is observed.
At variance with p-spin models, mentioned above, the barriers between minima are always
finite and the relaxation time, albeit long, is finite. The properties of the system at a given
temperature are dictated by the basins sampled and their mutual accessibility [25], i.e.,
the height of the barriers separating the minima. Numerical evidence of the connection
between the slowing down of dynamics in a glass-forming liquid and a crossover in the
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energy landscape was noted for the first time by Sastry et al. [25]. They showed that
the depth of PEL minima reached by quenching thermal configurations, i.e., following the
steep descent path along the PEL surface, strongly depends on temperature T when T
is below a certain threshold, T ≤ T̂ . The above authors also found that the increase in
relaxation time, measured in the same system, becomes faster than the simple Ahrrenius-
like behaviour τ ∼ exp (A/T ) precisely when T falls below threshold T̂ . From this, the
authors concluded that the dynamical crossover is a signature of the underlying topological
crossover in PEL.

Saddle-minima crossover The crossover to the low-temperature regime where dy-
namics is dominated by PEL minima is identified when two clearly separated time-scales
can be resolved in the system [2, 26]: time scale τintra of intra-basin relaxation, which is
the shorter and concerns vibrations around a minimum; and inter-basin relaxation time
τinter, which is the time-scale of hopping between different basins.
We can state that τintra corresponds to time-scale τβ of β relaxation, because both iden-
tify the time-scale of vibrations within a minimum. The same correspondence cannot be
drawn between τinter and τα, as the former is defined as the time needed to jump a barrier,
and the latter as the time needed to find an unstable direction.
Nevertheless, it is useful to think of critical temperature Tc, introduced when mentioning
mode coupling and p-spin , as the temperature when the longest time-scale of the system
passes from being τinter, defined below Tc, to being τα, defined above Tc. Above Tc, the
longest time-scale is the time needed to find an unstable direction of a stationary point of
PEL; below Tc, it is the time needed to hop from one minimum to another. The dynamics
of the system can really be understood [26, 27] from the topology of the stationary points
of PEL typically visited at a certain temperature.
Unfortunately, finding the saddle-minima crossover as a function of temperature is not as
straighforward as we would like. The problem is that the mapping between equilibrium
configurations and saddle points is not well defined [28]. The saddle-minima transition
can only be defined properly as a function of the energy of stationary points of PEL.
Let us define K(e) as the number of unstable directions of a stationary point with energy
e. In order to find where the saddle-minima crossover is, we must consider the behaviour
of the instability index:

〈K(e)/N〉 = 〈k(e)〉, (2.11)

where the brackets 〈〉 indicate the average over a population of stationary points at the
same energy, and N is the number of degrees of freedom of the system. Threshold energy
eth is defined as the energy where the instability index vanishes:

< k(eth) >= 0. (2.12)

As explained in [28], the vanishing of the instability index does not imply that unstable
stationary points cannot be found below the threshold. It only means that, below eth,
saddles are subdominant with respect to minima: Nsaddles/Nminima → 0 in the thermody-
namic limit. From the thermodynamic point of view, this means that, although unstable
directions are present at energies below eth, the system has an overwhelming probability
of relaxing by hopping a barrier.

If we define the crossover as a function of temperature, then we must consider the
energy of Inherent Structures instead of that of saddle points. We are forced to do this,
because there is a well-defined map between equilibrium configurations and IS, whereas
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this correspondence is lacking between equilibrium configurations and saddles. Given a
configuration equilibrated at T , its energy is linked to that of the underlying Inherent
Structure, i.e., minimum, by the relation:

eTH = eIS +
3

2
kBT, (2.13)

where eTH is the energy of the equilibrium configuration and eIS that of the inherent
structure.

Thus, if we know the temperature, we also know the energy of the underlying minima.
The threshold temperature can therefore be defined as that where the energy of the
underlying minima is eth. In [27], threshold temperature Tth was computed in this way,
and was found to be equal to MCT temperature Tc computed for the same system.
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Figure 2.3: Top: Average instability index density k vs. potential energy density u of the
stationary points. Bottom: Temperature vs. equilibrium bare potential energy density,
ub = ueq − 3/2 kBT . Figure is from [27].

The subtlety in the identification of threshold temperature Tth is that, on one hand, we
define eth from the instability index of saddles; on the other, we rely on the correspondence
between equilibrium configurations and minima to find Tth from our knowledge of eth. The
estimate of Tth must be always regarded with some circumspection. Thus, even if the MCT
temperature is certainly closely related to the topological crossover, in our opinion it is
safer to regard this crossover mainly as a function of the energy of stationary points.
I mention that the most recent paper on this subject [28] gave an updated value of eth
slightly larger than that obtained in [27].
Is it therefore possible that threshold temperature Tth, wherever we want to define it, may
lie above the mode coupling one Tc ?
I will come back to this point when presenting numerical results on surface tension in the
last chapter.

There is another piece of information contained in [27] which is of particular interest
for the results I will discuss in this thesis. It is the direct measure of how barriers
between IS increase as the energy of IS falls (see fig.2.4). These barriers are actually
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Figure 2.4: Average potential energy barriers as a function of the potential energy density
of the adjacent minimum. Figure is taken from [27].

negligible compared with the sum of the thermal energy of all the particles within the
system (fig.2.4). Nevertheless, as first pointed out by Goldstein [2], the rearrangement
that allows the system to overcome a barrier concerns a finite amount of particles, so we
may think that these barriers are still important. Leaving the landscape scenario with the
feeling that local rearrangements of particles are required to overcome the barriers between
minima seems to me the best way of introducing the Random First-Order Theory.
Indeed, as soon as we start to speak about local rearrangements , two compelling questions
arise:
1) What is the typical length-scale of these rearrangements?
2) How does this length depend on temperature ?

2.4 Thermodynamic glass transition

Kauzmann entropy crisis. If we aim to cast the slowing down of supercooled liquids
in a scenario with a thermodynamic singularity, the first step is to relate Vogel-Fulcher
temperature TV F , introduced in eq.(2.2), with Kauzmann temperature TK . Kauzmann
was the first to note [29] that a supercooled liquid has always a heat capacity, Cp, larger
than that of the corresponding equilibrium crystalline phase. According to the formula

∆S(T ) =

∫ T

0

dT∆Cp(T )/T, (2.14)

where ∆S and ∆Cp are, respectively, the excess of entropy and heat capacity of the liquid
phase with respect to the crystalline phase, the entropy of the supercooled liquid decreases
faster than that of the crystal. This implies the existence of a temperature, called the
Kauzmann temperature, where:

∆S(TK) = 0. (2.15)

The consequence is that, for T < TK , the entropy of the supercooled liquid phase is less
than the crystalline one. Because the entropy of the crystal vanishes linearly with tem-
perature, the supercooled liquid then has negative entropy at zero T . This is in plain
contradiction with the definition of entropy as the log of the number of available configu-
rations, and does represent the well-known Kauzamann paradox. To solve this problem,
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Kauzmann assumed that, for temperatures T ≤ TK (see fig.2.5), the entropy of the su-
percooled liquid becomes equal to that of the crystal. It was the thermodynamic theory
of Gibbs and Di Marzio [30] which first exploited the possibility of a second-order phase
transition at TK .
This thermodynamic transition cannot be observed experimentally because the extrapo-
lated Kauzmann temperature is always below Tg. Nevertheless, we can deduce how the
difference Sc = Sliq − Ssolid between the extrapolated entropy of supercooled liquid Sliq
and the entropy of the crystal Ssolid vanishes at TK . From the definitions of heat capacity,
dS/dT = Cp, and of the entropy difference Sc, we can write:

Sc(T ) − Sc(TK) =

∫ T

TK

dT
∆Cp
T

, (2.16)

where ∆Cp is the difference between the specific heats of the liquid and of the crystal.
Assuming that ∆Cp is weakly dependent on temperature [13] and recalling that Sc(TK) =
0, we can write:

Sc(T ) = ∆Cp log

(

T

TK

)

, (2.17)

which, in turn, expanding the logarithm for T ∼ TK , yields:

Sc = Sliq − Ssolid ∼ ∆Cp
T − TK
TK

(2.18)

Hence, as first approximation, the entropy difference Sc vanishes linearly at Kauzmann
temperature TK . The low-temperature dynamics of a supercooled liquid, as already men-
tioned, is characterized by two clearly separated time-scales: that of hopping between
minima of potential energy, τinter, and that of vibrations within a single minimum, τintra.
Similarly, the entropy of the supercooled liquid may be approximately written as the sum
of two contributions, one vibrational, due to vibrations within a single minimum of PEL,
and one configurational, due to the huge number of different minima which the system
can visit: Sliq = Sconf +Svibr. Because vibrational entropy is roughly equal to the entropy
of the crystal, Svibr ∼ Ssolid, it turns out that Sc = Sliq − Ssolid is configurational entropy.
A plain definition of Sc, and more precisely of its intensive value Σ,

Sc(T ) = NΣ(T ), (2.19)

can be given studying p-spin models.

Thermodynamics of p-spin . I have already mentioned how, for temperatures T ≤ Tc,
a p-spin model is dynamically trapped in an energy minimum. Nevertheless, this minimum
has a negligible thermodynamic weight, and the thermodynamic properties of the system
are not sensitive to the dynamical transition.
In turn, the existence of well-defined metastable states allows us to write the partition
function of the system as the sum of many independent terms:

Z =
∑

α

Zα =
∑

α

e−Nβfα (2.20)

where sum index α labels the different basins that can be sampled by the system at
temperature T . The number of these basins is exponential with the size of the system, so
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Figure 2.5: Entropy of the supercooled liquid and of the crystal. The supercooled liquid
freezes into an amorphous state (glass) at a temperature which depends on the cooling
rate, but always lies above TK. The glass has an entropy larger than the crystal, this
excess entropy being the configurational entropy Sc = Sliq − Ssolid.

that the density of states eNΣ(f) =
∑

α δ(f − fα) can be introduced in eq.(2.20):

Z =
∑

α

e−Nβfα =

∫

dfeNΣ(f)−Nβf . (2.21)

The last integral in eq.(2.21) can be evaluated in the thermodynamic limit by the saddle
point approximation. We can then write the Helmholtz free energy of the system as:

Φ = − 1

Nβ
log (Z) = f ∗ − TΣ(f ∗), (2.22)

where f ∗ is the value of f which minimizes βf − Σ(f). f ∗ is the free energy due to
vibrations within a single basin, and TΣ(f ∗) is the entropic contribution that counts
the number of basins. In p-spin , there is a certain temperature T0 below the dynamic
transition, T0 < Tc, where configurational entropy vanishes. At this temperature, there is
a thermodynamic transition, where ergodicity is broken even at the thermodynamic level.

Once again p-spin represents the paradgmatic model for what happens in supercooled
liquids. The thermodynamic transition placed at T0 clarifies the meaning of the Kauzmann
transition at TK . At the transition temperature, T0 in p-spin and TK in supercooled
liquids respectively, configurational entropy Σ vanishes. Moreover, in p-spin , we can
exactly define Σ as the number of ”amorphous states” sampled by the system when it is
in the ergodic phase, which corresponds to the supercooled liquid phase.

2.4.1 Random First-Order Theory

The nucleation paradigm.

Compelling evidence that a thermodynamic phase transition exists in supercooled liquids
at TK is still lacking. Nevertheless, a theory that relates growing time-scales to growing
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length-scales is needed.

The Random First-Order Transition theory (RFOT) was directly inspired by the phe-
nomenology of p-spin models. This analogy was exploited in a series of papers of the
1980s by Kirkpatrick, Wolynes et al. [3, 31]. They elaborated a theory, RFOT, in which
the increase of a characteristic lenght-scale ξRFOT in the supercooled liquid is due to a
decrease of configurational entropy Σ. To understand the low-temperature dynamics of
a supercooled liquid, we need a mechanism able to describe hopping between potential
energy minima. According to RFOT, this mechanism is given by the same kind of local
cooperative rearrangements described by Goldstein in 1969 and by the Adam-Gibbs theory
[13]. What is new in the RFOT theory of [3] is the nature of the entropic force which
drives these cooperative rearrangements and the existence of surface tension between dif-
ferent cooperative regions.
The main assumption of RFOT is that, at low temperature, not only does the system
as a whole have an exponential number of states available, N ∼ exp(NΣ), but also each
finite portion of linear size R has N (R) = exp(ΣRd) target states available. Each rear-
rangement of a size R region amounts to the entropic gain ΣRd. But what is the typical
length-scale of rearrangements at a given temperature?
At each temperature, the typical length-scale ξRFOT is given by the balance between free
energy gain TΣRd and surface cost ΥRθ. Because the cooperative rearrangement happens
independently of the position of other particles in the surroundings, there is generally an
energy cost to be payed, due to the mismatch with boundaries: ΥRθ . That is, a region
of linear size R, in order to be rearranged, must overcome the free energy barrier:

∆F = ΥRθ − TΣRd. (2.23)

From this assumpion, directly inspired by the nucleation mechanism in first-order phase
transition, the critical length-scale of the system follows from balancing of entropic gain
TΣRd and surface cost ΥRθ:

ξRFOT =

(

Υ

TΣ

)
1

d−θ

. (2.24)

This is the first time that surface tension is introduced in the context of supercooled
liquids, and it also plays the very important role of determining the critical size of co-
operative rearrangements. According to RFOT, the system is fragmented into a large
number of regions of linear size ξRFOT . This is the origin of the name mosaic, which is
commonly used to refer to RFOT theory. Each patch of the mosaic visits the phase space
independently of all the others. Thus, according to RFOT, the mechanism employed by
a supercooled liquid to visit the different minima of the energy landscape is to split in
many finite portions, each of which independently visits a different minimum. It is then
assumed that the leading time-scale in the system is the characteristic time of cooperative
rearrangements over lenght-scale ξRFOT , which are activated events:

τ = τ0 exp(∆F (ξRFOT )/T ). (2.25)

Hence, the growth of free energy barrier ∆F (ξRFOT ) causes the increase in relaxation
time. In turn, free energy barrier ∆F (ξRFOT ) grows with increasing ξRFOT : this is the
basic mechanism which links time—and length—scales in a supercooled liquid.
Near TK , configurational entropy vanishes linearly, Σ ∼ T − TK . Moreover, according
to [3], a renormalization group argument yields the surface tension exponent, θ = d/2.
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Inserting these two ingredients into eq.(2.24) scaling of ξRFOT near the Kauzmann tem-
perature is obtained:

ξRFOT ∼
(

1

T − TK

)
2

d

. (2.26)

In turn, scaling of free energy barrier ∆F follows:

∆F ∼ T Σ ξdRFOT ∼ (T − TK)−1, (2.27)

By inserting this result into eq.(2.25) we have:

τ ∼ exp

(

∆F

T

)

∼
(

A

T − TK

)

, (2.28)

which is the Voghel-Fulcher-Tamman law for relaxation time. This [3] was the first at-
tempt after the Adam-Gibbs theory [13] to establish a quantitative link between the
increases of lenght and time-scales in supercooled liquids.

2.4.2 Beyond the nucleation paradigm

The main point that is unclear about the nucleation paradigm introduced by Wolynes is
the precise meaning of entropic driving force.
Why should the system increase its entropy by splitting into many regions which are
arranged in some kind of amorphous order, independently from each other?
If the entropic gain for each region is ΣξdRFOT and the number of regions is V/ξdRFOT ,
then the total configurational entropy of the system, Sc, is independent of the number of
regions:

Sc =
V

ξdRFOT
Σ ξdRFOT = V Σ. (2.29)

The role of configurational entropy in producing a finite correlation length thus turns out
to be still obscure. This point is clarified in the work of Biroli and Bouchaud [4], in which
a theoretical framework is set up to characterize the length-scale of mosaic patches ξRFOT
as the maximum length upon which a single metastable state is stable.
To explain how this happens a gedanken experiment is proposed in [4]. The whole system
is immagined as frozen in a single amorphous state α. This is an equilibrium configuration
at the working temperature, which can roughly be identified as a minimum of free energy.
Then it is required to equilibrate all the particles in a cavity of linear size R, while all the
others are frozen in their positions and act at the boundaries of the cavity as a pinning
field. Lastly, what is the probability that particles inside the cavity remain in the same
state α or are rearranged to a new state β ?
This construction can be formalized by writing the partition function of a constrained
sphere of radius R, where the constraint is given by particles frozen in state α outside the
cavity:

Zα(R) =
∑

β 6=α

e−βfβR
d−βΥRθ + e−βfαR

d

, (2.30)

where β labels states different from α. For these states the additional free-energy cost
ΥRθ has been considered, which accounts for the mismatch at boundaries with state α.
The availability of an exponential number of target states β allows us to introduce a
density of states as in eq.(2.21),

Zα(R) =

∫ ∞

0

dfe(Σ−βf)Rd−βΥRθ + e−βfαR
d

. (2.31)
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The aim is to describe the system at temperatures close to the Kauzmann temperature,
at which the size of the region which cooperatively rearranges is supposed to be large.
This motivates the use of the saddle point approximation in evaluating the integral in the
second term in eq.(2.31). With this approximation the partition function can be rewritten
as:

Zα(R) = eR
dΣ−βf∗Rd−βΥRθ + e−βf

∗Rd , (2.32)

where fα has been replaced by f ∗, the equilibrium free energy at the working tempera-
ture. This can be done because, at a given temperature, all the metastable states have
approximatively the same free energy.
The probabilities that particles stay, pin(R), or leave, pout(R), the state that matches
boundary conditions are respectively:

pαα(R) = pin(R) =
e−βf

∗Rd

Zα(R)
=

1

1 + eRdΣ−βΥRθ
,

pαβ(R) = pout(R) =
eR

dΣ−βf∗Rd−βΥRθ

Zα(R)
=

1

1 + e−(RdΣ−βΥRθ)
= 1 − pin(R), (2.33)

which are, in turn, well approximated by step functions:

pin(R) =
1

1 + eRdΣ−βΥRθ
∼ Θ(RdΣ − βΥRθ),

pout(R) =
1

1 + e−(RdΣ−βΥRθ)
∼ 1 − Θ(RdΣ − βΥRθ). (2.34)

Therefore a critical length, R = ξRFOT , naturally arises, connected to the balancing of
entropy gain RdΣ and surface cost βΥRθ, at which the probability pαα(R) to stay in the
same state drops from 1 to 0, vice-versa is true for the probability to change state pαβ(R).
The length-scale ξRFOT so defined is the maximal length up to which a single amorphous
state α is stable.
Instead of referring to an ”entropic driving force”, we may simply state that the system
changes state thanks to spontaneous thermal fluctuations. When R < ξRFOT , due to
surface tension, it always ends up by visiting the same state (pαα(R) ∼ 1), the one which
better matches the boundaries. For R > ξRFOT the exponential number of target states
is large enough for the equilibrated droplet to be found in most cases in a new state
(pαα(R) ∼ 0), despite surface tension.
Size R of the rearranging region plays the same role of temperature in random-energy
model (REM) [32], a paradigmatic model for disordered systems: R (like T in REM)
is the parameter which tunes a discontinuous transition from ergodic (large R) to non-
ergodic (small R) behaviour.
Within this scenario, the link between increasing length-scale ξRFOT and relaxation time
τ of the system is an open issue. The free energy barrier to cooperative rearrangements is
supposed to grow, because of the growing length-scale ξRFOT , by means of a simple power
law scaling:

∆F ∼ ξψRFOT . (2.35)

Nevertheless, no hypothesis is made on exponent ψ, which is in turn the key ingredient
describing the increase in relaxation time:

τ ∼ exp

(

ξψRFOT
T

)

. (2.36)
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θ ψ
RFOT + nucleation d/2 d/2

RFOT alone ? ?

Table 2.1: Predictions for exponents θ and ψ, either assuming or not the nucleation
paradigm within RFOT.

The absence of a precise assumption on the value of ψ is a remarkable difference with
Wolynes scenario, in which the nucleation paradigm is assumed, and the exponent ψ
is fixed by dimensional analysis of the free energy barrier. That is, assuming ∆F =
ΥRθ − TΣRd, we have:

∆F ∼ ξψRFOT
∆F ∼ ξθRFOT

=⇒ ψ = θ

Exponents which control relaxation between length and time. The following
is a summary of the different predictions given within RFOT theory for free energy and
surface tension exponents, respectively ψ and θ. We compare the point of view in which
the nucleation paradigm is assumed and the more general theory of Biroli-Bouchaud [4].
According to both points of view, the following relations are true:

∆F ∼ ξψRFOT

ξRFOT ∼
(

1
T−TK

)
1

d−θ

τ ∼ exp
(

∆F
T

)

=⇒ τ ∼ exp

[

(

A

T − TK

)
ψ

d−θ

]

(2.37)

Wolynes proposes a renormalized exponent for the interface cost [3], θ∗ = d/2, so
that, if ψ = θ∗, the VFT law is recovered. Biroli and Bouchaud claim that θ and ψ must
be estimated independently, and only the inequality θ < ψ < d − 1 must be obeyed,
according to [33]. The predictions for free energy barrier and surface tension exponents
are summarized in Tab.(2.1). In this thesis, I present the numerical method used to give
an estimate of both these exponents in a fragile liquid model.

2.4.3 Finite size effects: fluctuating surface tension

The gedanken experiment depicted above [4] is suitable to reproduce as a numerical exper-
iment. The idea of measuring the probability that a droplet pinned by a frozen boundary
stays/leaves the initial state after equilibration has been translated [6, 34] into the opera-
tive definition of a new kind of correlation function: the point to set correlation function.
This is actually the overlap, qc(R), between the initial configuration of the liquid inside
the pinned sphere and the one found after equilibration with frozen boundaries. Let us
represent α as the amorphous state of the initial configuration. The liquid inside the
droplet can either stay in the same state, with overlap qαα ∼ 1 between final and initial
configurations inside that droplet, or change state, with a low overlap qαβ ∼ 0. The
average value of the overlap measured in the innermost part of the sphere is (see [34] for
problems arising in measuring the overlap over the whole sphere):

qc(R) = pαα(R)qαα + pαβ(R)qαβ. (2.38)
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From eq.(2.32) one expects that the probability of staying in the same state pαα falls
to zero roughly at the same R where the probability of changing state pαβ jumps to 1.
Accordingly, qc(R) is expected to fall suddenly from 1 to 0 at a critical radius R = ξRFOT ,
that is when entropic gain compensates surface cost:

ΥξθRFOT = TΣξdRFOT (2.39)

This is how the simplest version of RFOT predicts a sharp crossover of qc(R) at R = ξRFOT
[4]. The numerical results of [6] show that this is not in fact what happens: the crossover

Figure 2.6: Overlap at the centre of the mobile cavity qc(R) vs radius R of the cavity,
for temperatures T = 2.13Tc (diamonds), T = 1.55Tc (triangles), T = 1.09Tc(squares),
T = 0.89Tc (circles), with Tc the mode coupling temperature. Lines are fits to eq. (2.45).

is much smoother than expected. qc(R) does capture the existence of an increasing length-
scale: fig.2.6 shows how the decay of qc(R) as a function of the size of the sphere becomes
slower for decreasing temperatures. The decay of qc(R) defines a length-scale ξRFOT ,
which does increase at low temperatures [6]. Nevertheless, this decay is not as sharp
as expected from the original theory (cfr. eqs. (2.34) and (2.38) ). To account for their
numerical results, the authors proposed a generalization of RFOT, based on the idea that
effective interface tension, Υ, is in fact state-dependent [6]. Repeating the argument of
[4] with this extra assumption, the probability that the liquid inside the cavity is found
in a state different from the outside pinning (frozen) state is:

pin(R) =

∫

dΥP (Υ)
1

1 + eRdΣ−βΥRθ
, (2.40)

where the possibility that Υ may depend on the states matching at the boundaries of the
cavity is accounted by the distribution P (Υ), over which pin(R) must be averaged. The
simple mosaic result of [4] is recovered by setting P (Υ) = δ(Υ − Υ0). Eq. (2.40) can be
simplified further by noting that the approximation

(1 + eR
dΣ−βΥRθ)−1 ≈ Θ(Υ − TΣRd−θ), (2.41)
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holds even for quite small values of R (Θ is the step function). Hence:

pin(R) =

∫ ∞

TΣRd−θ
P (Υ) dΥ. (2.42)

Assuming that in eq.(2.38) is qαα ∼ 0 and qαβ ∼ 1, it follows that the point-to-set
correlation function qc(R) of the sphere has the same dependence on R as probability
pin(R), thus:

qc(R) ∼
∫ ∞

TΣRd−θ
P (Υ) dΥ. (2.43)

A probability distribution of surface tension with a finite width can explain the smooth
decay of the overlap qc(R) with increasing R. In particular, assuming the following ν-
parameter dependent distribution for Υ:

P (Υ) =
ν

Υc

(

Υ

Υc

)ν−1

exp [−(Υ/Υc)
ν ] = − d

dΥ
exp [−(Υ/Υc)

ν ] , (2.44)

the integral of eq.(2.43) yields:

qc(R) ∼ exp
[

−(R/ξRFOT )ν(d−θ)
]

∼ exp
[

−(R/ξRFOT )ζ
]

, (2.45)

where the usual RFOT relation ξ = (Υ/TΣ)1/(d−θ) is assumed to eliminate Υc in favour
of ξRFOT .
Within RFOT framework, the thermodynamic anomaly ζ = ν(d−θ) is directly related to
the exponent ν describing the surface tension distribution. The narrower the surface ten-
sion distribution, the sharper the decrease of the point-to-set correlation function around
ξRFOT . The data on the decay of qc(R) for increasing R found in [6] are well fitted by the
compressed exponential of eq.(2.45), with ζ and ξRFOT as fit parameters: values of these
exponents found by the authors are listed in tab.(2.2).
The increase of ξRFOT is remarkable, but maybe more remarkable is that of the exponent
ζ: this is the landmark of the supercooled liquid phase. qc(R) measures how deeply inside
the sphere penetrates the influence of frozen boundary conditions: its decay with R must
be exponential in the liquid phase. A decay of qc(R) different from a simple exponential
requires new theory. Whatever theory is welcome: nevertheless, authors of [6] showed that
RFOT, with the extra assumption of a fluctuating surface tension, does work. Within
RFOT the nonexpontiality of qc(R) depends directly on:
1) The existence of a surface tension between different metastable states,
2) The shape of the surface tension distribution.
Therefore at this step a further test of RFOT theory cries for a direct measure of surface
tension. Last but not least, a positive measure of surface tension in the supercooled liquid
phase is probably the most direct evidence that ”many states” do exist.

2.5 Dynamic glass transition

2.5.1 Dynamical heterogeneities

RFOT is a thermodynamic theory in that it derives the typical length-scale ξRFOT of the
system only from quantities which do not depend on time, i.e., configurational entropy
and surface tension. Unfortunately, it is hard to detect a growing static length-scale
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T/Tc ζ ξRFOT
2.13 1∗ 0.617(40)
1.55 1∗ 0.845(28)
1.09 2.79(52) 3.04(24)
0.89 4.00(60) 3.82(12)

Table 2.2: Non-exponentiality degree ζ of the point-to-set correlation function qc(R) and
correlation length ξRFOT , as obtained from data in [6].

when dealing with supercooled liquids: it was accomplished for the first time only very
recently [6]. Not only ξRFOT is difficult to measure, but even the idea of amorphous order,
connected to the length-scale ξRFOT , is a challenging oxymoron.
The aim of this section is at introducing another kind of correlation length, whose phys-
ical meaning is perhaps more intuitive. This is the dynamic length-scale ξDYN : the
characteristic size of dynamic cooperative effects. Let us leave apart, for the moment,
everything about energy landscape, topological crossover, and activated processes: in this
new framework dynamics becomes slower at lower temperatures only beacause larger and
larger regions have to move simultaneously to allow for susbstantial motion of individual
particles [7, 35, 36, 37, 38, 39, 40, 41, 42]. The characteristic size of these regions is de-
fined as being ξDYN . This length is connected to the concept of dynamical heterogeneities.

A supercooled liquid is ergodic: provided that a large enough time is waited, all phase
space is visited. The meaning of heterogeneous dynamics is that the tendency to decorre-
late in time is inhomogeneusly displaced within the system. Particles with a higher degree
of mobility tend to cluster, the same being true for immobile particles: that is, a particle
cannot significatively decorrelate in time if the same does not happen for the sourrounding
ones. This idea has been fully exploited by theories [7] developed to describe a particular
class of theoretical models, i.e., kinetically constrained models (CKM)[8]. These models,
particularly suited for numerical simulations, are aimed at reproducing the physics of su-
percooled liquids. In the contex of CKM the dynamics becomes correlated over increasing
length-scales due to local constraints [8]. These constraints exploits the idea of dynamical
facilitation, that is: a different degree of mobility is attached to particles within the sys-
tem, only a fraction of them, which is conserved along the dynamics, has a good mobility.
The rearrangement of all the other particles must be triggered by these mobile defects.
A significative rearrangement can only take place when there is a percolation of mobility
defects [7]. The lower is the number of defects the higher the time required for a rear-
rangement. The temperature of the system is tuned by changing the number of mobile
defects. It comes out that the system is completely frozen only at T = 0, i.e. when the
number of defects is zero. This is a rough description of how the dynamics of a supercooled
liquid may be controlled by a zero temperature dynamical critical point [7]: no need of
thermodynamic sigularities at finite temperature. Exactly because they place the singular
point of dynamics at T = 0, these theories are suited to describe the behaviour of strong
glass-forming liquids, which do not displays dynamical crossovers at finite temperature.
That is why, later on, will be introduced another theory which describes the increase of
dynamic cooperativity, i.e., the inhomogeneus mode-coupling theory (IMCT,[9, 43]). This
theory, which places the singular point of dynamics at the mode coupling temperature
Tc, is more suited to be compared with RFOT theory and with the behaviour of fragile
glass-formers.
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The length-scale ξDYN of cooperative rearrangements is more at hand with respect
to ξRFOT : it can be measured by means of the four-point correlation function g4(r, t),
introduced for the first time in the context of mean-field p-spin glasses [37, 44]:

g4(r, t) = 〈ρ(r, t)ρ(r, 0)ρ(0, t)ρ(0, 0)〉 − 〈ρ(r, t)ρ(r, 0)〉〈ρ(0, t)ρ(0, 0)〉, (2.46)

where ρ(r, t) represents density fluctuations at position r and time t. It is customary to

Figure 2.7: Behaviour of the dynamical susceptivity χ4(t) in a glass-forming liquid model
(lower panel), and a p-spin model (upper panel). The peak of χ4(t) increases, and shifts
to larger times, as temperature T is lowered. Whereas in the glass-forming liquid model
—ergodic— χ4(t) vanishes at large times, in the p-spin , below Tc —non-ergodic phase,
it decays to a finite value.

introduce the overlap field q(r, t), which is a function of ρ(r, t) defined as:

q(r, t) = ρ(r, t)ρ(r, 0). (2.47)

This field measures at position r the propensity of the system to decorrelate over time t.
The four point correlation function, in term of the overlap field, reads as:

g4(r, t) = 〈q(r, t)q(0, t)〉 − 〈q(r, t)〉〈q(0, t)〉. (2.48)

The isotropic form g4(r, t) actually measures to what extent, on average, the displacement
of a particle, over a time t, is correlated to the displacement of another particle placed at
a distance r. This is clearly a measure of the average size of cooperative rearrangements.
To explain why the attention was focused on the correlation function g4(r, t), let us recall
the predictions of MCT theory, suitable to describe the physics of supercooled liquids at
temperatures above Tc. This theory states that the dynamical correlation C(t), at the

26



mode coupling temperature Tc, saturates at a finite value for infinite times (cfr. sec. 2.2).
Therefore C(t) can be regarded as the order parameter of the dynamic glass transition:
it decays to zero in the ergodic phase and to a constant value in the non-ergodic phase,
cfr. sec.(2.2). Clearly within this contex we are neglecting, for the moment, the activated
processes intervening below Tc, which restore the ergodicy of the system. According to
the definition of C(t) given in sec. 2.2, we can write it also as:

C(t) =
1

V

∫

V

dr〈ρ(r, t)ρ(r, 0)〉, (2.49)

which, assuming translational invariance, is equivalent to:

C(t) = 〈ρ(0, t)ρ(0, 0)〉. (2.50)

By comparing eq.(2.50) and eq.(2.47) it is clear that C(t) and 〈q(0, t)〉 are the same
object. In sec 2.2 it was described the analogy between MCT and p-spin spin-glass model,
which is a mean-field model, i.e., it does not have any length-scale. The same is true for
MCT, which describes the arrest of the dynamic as happening homogeneusly in the whole
system. The first step in generalizing MCT, in order to introduce the characteristic length-
scale ξDYN of cooperative dynamics, is take into account space fluctuations of the field
q(r, t). The function measuring the extent over which q(r, t) fluctuations are correlated
is precisely g4(r, t). Indeed, as the order parameter of the dynamic glass transition, i.e.,
C(t) = 〈ρ(0, t)ρ(0, 0)〉, is already a two body object, g4(r, t) plays the same role as a
standard two point correlation function: approaching the critical point, which is Tc in
this contex, it describes the increasing extent of correlations. This is why researchers
started to investigate the behaviour of g4(r, t).
Calculations within the scheme of MCT equations, but where also space fluctuations of
the field q(r, t) were taken into account, appeared in the literature with the name of
Inhomogeneus Mode Coupling Theory (IMCT) [9, 43]. The goal of the Inhomogeneus
Mode Couplig Theory (IMCT) has been to introduce within the framework of MCT
equations the spatial length-scale ξDYN , i.e. the characteristic length-scale of q(r, t) field
fluctuations [9, 43]. At the temperature Tc where MCT predicts the ergodicity breaking,
IMCT finds that the length-scale of q(r, t) fluctuations —ξDYN— diverges. Both the
predictions of MCT and IMCT are mean-field in nature, i.e., divergences of ξDYN and τ
at Tc are an exact result only in d > dc = 6 dimension: in real systems nonperturbative
effects, i.e., activated processes, erease the singularity at Tc. Leaving apart the singular
nature of IMCT at Tc, let us focus our attention on the behaviour at higher temperatures,
at which the theory is still a good approximation. In this regime the liquid is ergodic: this
means that at any finite distance r the correlation g4(r, t) decays to zero for sufficiently
large times. This happens because, in defining g4(r, t), a reference configuration of the
system was fixed. As long as the system is ergodic, the memory of any fixed intial
condition is lost. The correlation g4(r, t) attains its maximum value at r = ξDYN and
t = τ . Within the IMCT theory, the power law divergence of relaxation time at Tc
(cfr eq.(2.9)) is connected to the increase of correlation length ξDYN by the dynamical
exponent z:

ξDYN ∼ τ 1/z. (2.51)

Not only cooperative rearrangements has a characteristic lengh-scale, ξDYN , but also
a charachteristic time-scale, τ , the relaxation time of the system. In the vicinity of the
critical point at Tc, albeit not divergent, ξDYN is expected to significatively increase even in
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realistic glass-forming liquid models. Usually, when a certain observable has fluctuations
correlated over increasing length-scales, there is susceptibility which is also increasing.
Also, a susceptibility is often an observable more at hand compared with a correlation
function. That is why the extent of dynamically correlations is often study by means of
the dynamical susceptibility χ4(r, t) [35, 36, 37, 38, 39, 40, 41, 42]:

χ4(t) = β

∫

drg4(r, t). (2.52)

Susceptibility χ4(t) presents a typical non-monotonic time dependence with a peak cen-
tered at the liquid’s relaxation time [7, 35, 36, 42]. At the maximum of χ4(t) dynamically
correlated regions (DCR) attains their maximum volume. As long as the dynamic be-
comes sluggish and correlated over an increasing lenght-scale the peak of χ4(t) increase in
size and shifts to larger times, see fig.2.7. As mentioned above, being mean-field in nature,
the IMCT theory is approximated when applied to supercooled liquids. More precisely,
when we extract ξDYN as the length-scale of the corralation function g4(r, t) measured in
the system, it is found finite even at Tc, the same happening for the relaxation times τ .

From recent works [6, 11, 12, 45] we know that the mode coupling temperature Tc can-
not be regarded strictly as an upper bound for the activated mechanisms of RFOT. There
should be a range of temperatures, probabily narrow, around Tc where both amorphous
static excitations, whose linear size is ξRFOT , and cooperative rearrangements extending
on length-scale ξDYN are playing a role.

In the present work is proposed a method to measure if surface tension is present
even between DCR. A positive result would say that an ingredient introduced within a
thermodynamic theory of the glass transition (RFOT), i.e. surface tension, is common to
both static and dynamic excitations.
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Chapter 3

Interfaces in supercooled liquids:

direct inspection

In this section is described the method we used to simulate the amorphous excitations
of RFOT theory and study their energy cost. Within the multistate mosaic scenario,
each state is equally amorphous. That is why, rather than attempting to detected the
position of interfaces in equilibrium configurations, we propose a method to induce these
interfaces in a well known and fixed position. The most important assumption made here
is that the amorphous phases of a supercooled liquid, of which the mosaic patches are
local realizations, can be well approximated by inherent structures, i.e., the minima of
potential energy. The position of the interface induced between a pair of inherent struc-
tures is completely under control and allows us a detailed study of its energy cost. Some
interesting results of this study will be also discussed.
The behaviour of surface tension between equilibrium configurations will be also studied.
The interface between equilibrium configurations is induced with the same method em-
ployed for inherent structures, whereas, in this case, its relaxation under the effect of a
finite temperature is studied.
Let us start, in what follows, from the description of the method used to induce an
interface between a pair of inherent structures.

3.1 Surface tension beteween ordered phases

This section describes how surface tension can be measured at the interface between
two equilibrium phases by defining a Gibbs dividing surface (GDS). Localization of the
GDS is straightforward in systems in which the two phases are clearly distinguished by
a different value of a macroscopic order parameter: for instance, the gas-liquid interface.
I explain how this method is applied to define an interface between amorphous phases
in a glass-forming liquid model. In this case, the different phases, being amorphous,
lack a macroscopic order parameter allowing us to distinguish them. This is why, in a
supercooled liquid, still being unable to distinguish each single phase, we can only ask if
two portions of the system are in the same phase or not.

Gibbs dividing surface. In order to calculate the surface tension between metastable
amorphus states, let us recall the definition of surface tension given by Tolman in [46]. This
definition was applied to standard phase coexistence in ordered systems. Nevertheless, it
turned out to be the best operative dealing with interfaces between amorphous phases. Let
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us consider the equilibrium condition for a system composed of two fluid phases, α and β,
which meet at a surface of discontinuity. The system, according to equilibrium conditions
when interactions have a short range, is homogeneus in the interior of the two phases,
while inhomogeneity occours in the region of finite thickness, where the transition from one
phase to another takes place. This finite layer is called the surface of tension . To quantify
the energy stored in the surface of tension, let us imagine the two phases divided by a
geometric surface, the GDS, perfectly homogeneous precisely to this imaginary surface.
Clearly, it must be placed within the inhomogeneus transition layer. According to this
construction, the total energy of the system may be written as

E = Es + Eα + Eβ, (3.1)

where Eα and Eβ are the energies of the two phases, calculated as if they were perfectly
homogeneous right to the geometric surface of separation. Es is the additional term which
gives the necessary correction, arising from the finite thickness of the inhomogeneous
transition layer. The same kind of equation may be written for all extensive quantities
characterizing the system, like entropy:

S = Ss + Sα + Sβ, (3.2)

and the masses of the two species:

m1 = ms
1 +mα

1 +mβ
1 , (3.3)

m2 = ms
2 +mα

2 +mβ
2 . (3.4)

Tolman’s result, which is of central importance for us, is the following: the work needed
to increase the area of the surface of tension, without changing either volumes vα and vβ

occupied by the two species or the mass of each one, can be written as:

dW = dEs = TdSs + σds, (3.5)

where s is the area of the GDS. The integration of eq.(3.5) from s = 0 to finite value s
yields:

Es = TSs + σs, (3.6)

If we neglect the entropic term, then surface tension, i.e., the energy per unit area stored
in the inhomogeneus layer between the two phases, is:

Es

s
=
E − Eα − Eβ

s
= σ. (3.7)

This equation is suitable as the operative definition of the surface tension we wish to
measure. If we know the total energy of the system, E, then we have only to choose the
exact position of the GDS and calculate Eα and Eβ consistently. Indeed, there are many
choices for geometric GDSs embedded in the inhomogeneous layer. In principle, they can
lead to different results for Es. Nevertheless, different choices of the GDS, at least for the
numerical study presented here, give only second order corrections to Es which can be
neglected.
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3.2 Surface tension between inherent structures

Determination of the surface free energy between the amorphous excitations of a super-
cooled liquid is very challenging. This is, first, because the interfaces are hard to detect,
and second, because their lifetime is necessarily finite. A supercooled liquid, according to
RFOT theory, is fragmentated in many amorphous domains. No simple order parameter
is available to distinguish such domains, nor the interface between them.
The strategy applied to overcome this problem is the following:

• Identify a pair of different homogeneus amorphous phases, let use retain the labels
α and β. This can be done in a supercooled liquid: they are two uncorrelated
equilibrium configurations or, equivalently the Inherent Structures onto which the
equilibrium configurations can be mapped [2, 47]. We will see how, in the latter
case, the definition of surface tension, although approximated, is less problematic.

• Build the GDS between α and β.

• Let the system carry out some rearrangements, in order to reach the optimal shape
of the interface between α and β. Check that even after rearrangements, the initial
position of the GDS is unchanged. This check is done by means of a suitable order
parameter, e.g. the local overlap q(x), introduced at this point.

• Calculate Es according to eq.(3.7).

Before developing the above further let us address the three following points:
1) Describe the glass-forming liquid model studied;
2) Define the ensembles of inherent structures regarded as the different phases of the
supercooled liquid;
3) Define how local overlap q(x) is calculated in the liquid model.

3.2.1 Numerical set-up

Model. The system studied is a binary mixture of soft particles which is a fragile glass-
former [48, 49, 50]. In this numerical system, the particles are of unit mass and belong to
one of the two species γ = 1, 2, present in equal amounts and interacting via the potential:

V =
N
∑

i<j

Vij(|ri − rj|) =
N
∑

i<j

[

σγ(i) + σγ(j)
|ri − rj|

]12

. (3.8)

Radii σγ are fixed by the conditions σ2/σ1 = 1.2, (2σ1)
3 +2(σ1 +σ2)

3 +(2σ2)
3 = 4l30 , and

l0 is the unit of length. The density is ρ = N/V = l−3
0 , and the Boltzmann’s constant is

set to kB = 1. A smooth long-range cut-off is imposed setting vij(r) = Bij(a− r)3 + Cij
for r > rc =

√
3 and vij(r) = Cij for r > a, where a, Bij, and Cij are fixed by requiring

continuity up to the second derivative of vij(r). The thermodynamic quantities of this
system depend only on Γ = ρ/T 1/4, T being the temperature of the system. Density is set
to ρ = l−3

0 = 1, so that the thermodynamic parameter Γ is Γ = 1/T 1/4. The presence of
two kinds of particles in the system strongly inhibits crystallization and allows the deeply
supercooled phase to be observed. An efficient MC algorithm [51] was used to thermalize
configurations even below the mode coupling temperature Tc (Γc = 1.45) [50].
In this work we considered the thermalized configurations of a system with N = 16384
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particles confined in a periodic box, of side L = 25.4 in our unit of length. The tem-
peratures studied, corresponding to Γ = 1.49, 1.47, 1.44, 1.42 and 1.35, are two below,
T = 0.89Tc and 0.95Tc, and three above, 1.03Tc, 1.09Tc and 1.33Tc, the mode coupling
temperature.
Inherent Structures were obtained by minimizing the equilibrium configurations with an
LBFGS algorithm [52], a geometrical optimized algorithm. In some special cases, to
be discussed later on, minimization of configurations had to be menaged with particles
placed at arbitrary small distances (see sec.3.2.3). The geometric LBFGS algorithm up-
dates particle positions in order to minimize the potential energy V of the system. When
V ∼ 1012, the algorithm crashes or starts a sort of fuzzy dynamic, but does not converge.
To manage these highly stressed configurations a standard Monte Carlo with temperature
set to zero was used as a minimizer. It is not very efficient, but it does propose particle
displacements of fixed maximum amplitude: thus it can handle configurations in which
particles are arbitrarily near and subject to arbitrarily large forces.

IS ensembles. According to the partionioning of phase-space introduced by Stillinger
and Weber [5], two configurations of the liquid are regarded as different states when they
belong to different basins of the potential energy landscape (PES). At the bottom of each
basin lies an Inherent Structure (IS). Thus, the use of IS to represent the different states
of the liquid appeared as a doable approximation, clearly, the lower the temperature
the better the approximation. As quoted in [25], quenches at varying temperatures lead
to IS with different average energy. The lower the temperature, the lower the energy
of the minima sampled, and thus the lower the energy obtained quenching equilibrium
configurations to IS.
As will be shown, the use of IS allows us to sharply define interfaces in the supercooled
liquid: the goal is that the position and energy cost of interfaces do not depend on
time. This approximation, i.e. the use of IS, is of great help and allows detailed study
of the interfaces. When considering equilibrium configurations at finite temperature,
where excitations and thus interfaces are constantly forming and relaxing, it is much
more difficult to study the properties of interfaces.
IS can be partitioned in ensembles according to temperature T of parent equilibrium
configurations. Throughout these analyses, I often mention observables averaged over a
set of IS and how these observables depend on temperature. This temperature is the one
where the set of IS used to average was sampled. For instance, the energy cost 〈∆E(T )〉
indicates the average cost of an interface between IS sampled at T .

Overlap. The correct order parameter that measures how much the local amorphous
order has changed from one configuration to another is local overlap q(x). A suitable
definition of this overlap, for the off-lattice system considered, is given according to a
method similar to that used in [34]. First, the system is divided in cubic cells of side
l = 0.4, small enough to have negligible probability of finding two particles within the
same cell. Then, having two configurations σ and τ , we calculate the quantity

qστ (x, y, z) = nσ(x, y, z)nτ (x, y, z) , (3.9)

where nσ(x, y, z) = 1 when the cell centred at x, y, z contains at least one particle, and
nσ(x, y, z) = 0 when the same cell is empty. To each cell we assign the weight:

wστ (x, y, z) =
nσ(x, y, z) + nτ (x, y, z)

2
. (3.10)
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Global overlap qστ between the two configurations σ and τ is given by

qστ =

∑

i qστ (xi, yi, zi)wστ (xi, yi, zi)
∑

iwστ (xi, yi, zi)
. (3.11)

where index i runs over all cells in the system.

3.2.2 Shape of interfaces

As mentioned, a suitable solution estimating the contact cost of two amorphous phases
is to construct the interface between those phases. As a first step, in this study we
approximate the amorphous phases of the supercooled liquid with Inherent Structures.
Let us show how it is possible to build an interface between ISs.

Artificial droplets. I consider pairs of Inherent Structures, Cα and Cβ, from indepen-
dently thermalized configurations, i.e. Inherent Structures belonging to different basins
of attraction, and create a mixed configuration from them: all particles within a sphere of
radius R of Cα are moved to a spherical cavity of the same shape and size in configuration
Cβ; conversely, particles in the sphere of Cβ are moved to the spherical cavity of Cα, as
shown in fig. 3.1. In this way, two new configurations arise, Cα+β and Cβ+α.

Cα+β Cβ+α

Cα Cβ

Figure 3.1: Construction of the mixed configuration Cα+β and Cβ+α using configurations
Cα and Cβ.

Mass and species conservation The smooth geometric surface that bounds the cavity
is regarded as the Gibbs dividing surface introduced in sec 3.1. Therefore, the spherical
cavity in each pair of IS Cα Cβ must be choosen in order to conserve the total mass of
each of the two species of particles in Cα+β, Cβ+α. That is, the various steps are:
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• Choose the radius of spherical cavity R. As density is ρ = 1, from R the number of
particles Ns inside the cavity is known. Then choose the concentration of the two
species inside the sphere, i.e. the numbers NA and NB, in order to have NA+NB =
Ns (NA = NB when N even, NA = NB + 1 when N odd).

• Start a random walk of the centre of the spherical surface inside the simulation box.

• Stop when Ns particles with NA and NB of each type are found inside the surface
and record the coordinate of the centre of sphere (xsph, ysph, zsph).

• If (xbox, ybox, zbox) are the coordinates of the centre of the simulation box, shift the
coordinates of all the particles by (xsph − xbox, ysph − ybox, zsph − zbox), in order to
have the spherical cavity centered in the simulation box.

• Relabel particles within the cavity of Cα as particles belonging to Cβ and vice versa,
i.e. exchange particles between the spherical cavity of the two configurations.

The hybrid minimum. In Cα+β and Cβ+α, unphysical stress is present at the bound-
ary between the two phases. During the exchange process, near the boundary, particles
within the cavity fall arbitrarily close to outsider particles. In order to relax the unphys-
ical stress due to particles falling arbitrarily close, the mixed configurations Cα+β, Cβ+α

are quenched to new hybrid minima Cαβ, Cβα. For each mixed configuration Cα+β, due to
the unphysical stress mentioned, the first part of the minimization is done with an MC
algorithm with temperature set to zero, which acts as a minimizer. After 100 MC steps,
when that stress is relaxed, the more efficient LBFGS geometric algorithm [52] completes
the minimization. Within the hybrid minima Cαβ and Cβα particles positions are close to
those in parent minima α and β, far from the GDS, whereas close to it are different.
As it was not realistic to expect spontaneous excitations to be enclosed by an exactly
spherical interface, the system had to be given a chance to optimize the shape of that
interface.
The region where major displacements of particles took place in rearranging from Cα+β,
Cβ+α to Cαβ, Cβα plays the role of the layer between different phases. Here, particle posi-
tions gradually switch from being typical of IS α to being typical of IS β.
A measure of the local overlap between mixed configuration Cα+β and hybrid minimum
Cαβ is of great help (fig.3.2). The spherical surface that exactly divides α from β in Cα+β

may be regarded as a good candidate for being the GDS in Cαβ. Weather the choosen
GDS is really placed within the layer between α and β in hybrid minimum Cαβ must be
checked. Looking at the radial overlap profile of fig.3.2, we can say that this requirement
is satisfied. The region where particles are more rearranged, with low overlap, encloses
the position of the GDS.

Standard methods used to measure interface costs. The method employed to
create a spherical excitation, in order to measure its energetic cost, may appear rather
artificial. Nevertheless, to my knowledge, this is the first attempt to measure the cost
of an interfaces within a supercooled liquid. There are indeed standard methods used
to measure the cost of an interface, e.g. of linear size L, but they are suitable for the
low-temperature non-ergodic phase, where the system is sensitive to boundary conditions.
Let us consider a ferromagnetic system in a cubic periodic box of side L. Two ensembles
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of configurations can be equilibrated, one with periodic and the other with antiperiodic
boundary conditions along a given axis. The difference between the average energy mea-
sured in the two ensembles 〈∆E(L)〉 = 〈Eantiper(L)〉 − 〈Eper(L)〉 yields the cost of a flat
interface of linear size L. A finite-size scaling (FSS) study of 〈∆E(L)〉 is the standard way
of calculating exponent θ, which rules the scaling of the interface cost, 〈∆E(L)〉 ∼ Lθ.
FSS is indeed the most common way of calculating the stifness exponent in spin-glasses
(see [53] and references therein). In [54, 55] the interface is induced in a spin-glass model
by a method which is easily generalizable to off-lattice systems, for instance, liquids. Un-
fortunately, all these methods are only suitable for the non-ergodic phase. A supercooled
liquid is in the ergodic phase and has no long-range order. In particular, according to
RFOT theory, amorphous order has the typical finite length-scale ξRFOT (T ). A method
similar to that of imposing periodic and antiperiodic boundary conditions [54], in our
liquid model would lead to a null interface cost when L > ξRFOT . Therefore in this case
the FFS study would fail.
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Figure 3.2: Radial overlap 〈q(r)〉 averaged over the ensemble of hybrid minima enclosing a
droplet of radius R = 8 . Blue circles, IS sampled at T = 0.89Tc; red squares, IS sampled
at T = 1.33Tc.

Gibbs Dividing Surface. It is assumed here that the position of the interface in Cα+β is
regarded as that of the GDS. This assuption was checked by controlling that the position
of the interface in Cα+β is where major rearrangements of particles took place passing
from Cα+β to Cαβ. This can be seen from the radial overlap profile of fig.3.2. Here the
local overlap q(x, y, z) between each pair of Cα+β and Cαβ was averaged over spherical
shells concentrical with the spherical cavity. The lower the overlap value, the larger the
displacement of particles in rearranging from Cα+β to Cαβ.

Far from the GDS, a high overlap value signals that particle positions closely resemble
those of the original phases α and β. Far from the interface, the overlap is not 1. I quote
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the scenario depicted by Goldstein [2] to show why the overlap is different from 1 far
from the interface. According to Goldstein, small displacements of particles far from the
interface can be ascribed to vibrations predictible within the theory of elasticity: ”The
changes in atomic positions in the local region do not even approximately resemble dis-
placements we might calculate from phenomenological elasticity, but at longer distances
the atomic displacements, while of course not being identical with the macroscopical dis-
placement vector, bear the same relation to it as they would if the displacement field were
produced by a pure deformation of the body”. The important point is that small displace-
ments far from the interface are not related to optimization of the interface shape. This
shape is clear in fig. 3.3, which represents particles rearrangements within a single hybrid
minimum: the situation is clearly fuzzier than in the average behaviour to the average
behaviour shown in fig. 3.2. In fig. 3.2 and even more clearly in fig. 3.3, the IS sampled at
higher T appears as softer: it is easier to rearrange particle positions in order to optimize
the shape of an interface. I show that this facilitation in rearranging particles at high T
is directly related to the lower cost of the interface.

3.2.3 Energy cost of interfaces

Hybrid minimum Cαβ built in the previous section is closely related to what Goldstein
[2] calls a transition state. The latter is intended as a configuration of the system which
is near a minimum, but where a local rearrangement of particles has just taken place.
This means that if a quench of this configuration is performed, most of the coordinates
will have relatively small displacements. Thus, the transition state really differs from a
minimum only around the local area where the cooperative rearrangement took place. It
really looks like the definition of our hybrid minimum, Cαβ, which differs from the parent
inherent structures Cα and Cβ only in the neighbourhood of the interface.
Exact knowledge of parent configurations Cα and Cβ allows direct computation of energy
cost of the interface. The potential energy of hybrid minimum Cαβ called here Eαβ, is the
total energy of a system where coexistence of amorphous phases α and β takes place. At
this stage, we can literelly follow Tolman’s prescription [46]. The energy Eout

β of particles
which are placed outside the GDS in Cβ, and the energy Ein

α of particles which are enclosed
by the surface in Cα, are subtracted from Eαβ. Then, as the mass of the two species of
particles is conserved inside/outside the spherical cavity, we can write:

Es = ∆E(R) = Eαβ − Ein
α − Eout

β (3.12)

From now on, ∆E(R) will indicate the cost of a spherical interface of radius R. By
construction, the number of particles of the two species is conserved on the two sides of
the interface in Cα+β. Unlike within the rearrangements which take place passing from
Cα+β to Cαβ, a few particles migrate through the GDS. Thus, in Cα+β, the density of the
two kinds of particles of our binary mixture is not exactly conserved on the two sides of
the GDS. Let us show that this change of density of the two phases separated by the GDS
amounts to a correction of order 1/N , N being the total number of particles, to ∆E(R).

Eq.(3.12) can be written as:

∆E(R) = Nǫαβ −mǫα − (N −m)ǫβ, (3.13)

where m is the number of particles located within the spherical cavity in Cα+β. We can
write the first-order correction to the energy of particles within the sphere due to a small
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Figure 3.3: Overlap, i.e. similarity, between the configuration right after the exchange
of the spheres and the hybrid inherent structure after minimization. Only a thin slice
located at half height of the 3-d system is shown. Colors code for the displacement of
the particle after the artificial excitation was created (dark blue: small displacement, high
overlap; light blue: large displacement, small overlap). Upper panel: two configurations
at high temperature T = 1.33Tc. Lower panel: two configurations at low temperature
T = 0.89Tc. The hybrid minimum clearly bears memory (high overlap, dark blue) of the
parent IS far from the boundary of the sphere (white circle). On the other hand, particles
move along the interface (low overlap, light blue).

change in density inside/outside the cavity passing from Cα+β to Cαβ as

ǫ′α = ǫα + ǫα
∆̺α

̺α
, (3.14)

where ̺α is the density of particles of phase α within the GDS in Cα+β and ∆̺α is the
error made in assuming that the same density is present in Cαβ. If m′ is the number of
particles really enclosed by the GDS in Cαβ, then the correct surface cost may be written
as

∆E(R)′ = N

(

ǫαβ −
m

N
ǫα −

N −m

N
ǫβ +

m′ −m

N
(ǫβ − ǫα)

)

, (3.15)

= ∆E(R) + (m′ −m)(ǫβ − ǫα) (3.16)

Generally (m′ − m), which is the number of the particles migrating across the surface,
was checked to be at least one order of magnitude smaller than m. Hence, prefactor
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(m′ − m)/N of last term on the right in eq.(3.16) is at least one order of magnitude
smaller than the prefactor of the other terms. Moreover, as it is always true that ǫα >>
(ǫβ − ǫα) and ǫβ >> (ǫβ − ǫα), having Cα and Cβ approximatively the same energy, and
also ǫαβ >> (ǫβ − ǫα) we have:

ǫαβ >>
m′ −m

N
(ǫβ − ǫα)

m

N
ǫα >>

m′ −m

N
(ǫβ − ǫα)

N −m

N
ǫβ >>

m′ −m

N
(ǫβ − ǫα). (3.17)

Therefore the last term in brackets in eq.(3.15) can be dropped and we can retain
∆E(R)′ ∼ ∆E(R) with good approximation.
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Figure 3.4: Distributions of energies Eα+β(R), measured immediately after the exchange
between different IS of the particles located within a spherical cavity. IS come from the
ensemble at T = 0.89Tc. Distribution of Eα+β(R) are plotted for R = 3, 5, 10. Large E
tails are compared with E−15/12 to show that distributions are not normalizable. E−15/12

is motivated in the text.

Energy distribution controlled by random events. Configuration Cα+β immedi-
ately after the switch is highly stressed, and is thus assumed to be uninteresting physically.
Nevertheless, to check wheather pieces of information were being lost, the energy cost:

∆Eα+β(R) = Eα+β − Ein
α − Eout

β (3.18)

of the interface embedded in Cα+β, was measured immediately after the switch of particles
in the spherical cavity. From a set of 25 IS sampled at T = 0.89Tc an ensemble of 650
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mixed configurations Cα+β was build for each R, for some values of R. The scaling of
〈∆E(R)〉 with R was studied. The naive expectation was to find 〈∆E(R)〉 ∼ R2. Instead
〈∆E(R)〉 was found not even to increase monotonically with R.
The origin of this unexpected result lies in the distribution of the total energy Eα+β(R) of
the system immediately after the switch. Fig. 3.4 shows the histograms of the distribution
of Eα+β(R) for three different values of R. These distributions have long tails, compatible
with power law E−15/12, so they are not even normalizable. This is why average values
〈∆E(R)〉 do not behave physically. From the data, Ein

α and Eout
β in eq.(3.18) are known

to be on average one order of magnitude below the smallest value found for Eα+β, that is,
Ein
α , E

out
β ∼ 103 ÷ 104, whereas ∆Eα+β(R) ≥ 105 in our energy unit. So the distributions

of Eα+β(R) and ∆Eα+β(R) are almost identical. The distribution of Eα+β(R) is non-
physical, for the purpose of measuring a surface tension, because it is dominated by the
random events of a pairs of particles falling arbitrarily near. The latter is truly an artifact
of our procedure to create the interface. Power law E−15/12 mentioned above comes from
the following integral:

P (E) =

∫

∂R

dxdyδ(u(x − y) − E) ∼ R2E−15/12, (3.19)

where ∂R is the domain of integration of variables x,y, i.e. a skin round the spherical
surface of radius R, and u(x−y) is the interaction potential of our system (u(r) ∼ r−12).
It was assumed that the total energy of the system is dominated by the single event of
two particles falling at an arbitrary distance. By construction, the pair of particles that
produce the energy spike must be found in the neighbourhood of the interface. This makes
P (E) proportional to R2. Nevertheless, the large E tail makes P (E) non-normalizable,
which actually means that 〈E〉 depends on the number of configurations used to average.

Periodic boundary conditions. It can be seen that particle rearrangements to op-
timize the shape of a spherical interface are clearly asymmetric inside and outside the
droplet (see figs. 3.2 and 3.3). Particle displacements are always larger inside the sphere.
Inside the droplet, interference occours between the influence of the interfaces. This is
not a problem when the interference is inside the droplet, as this effect may be expected
as a matter of course even in spontaneous excitations.
Instead we must avoid different points on the spherical interface influencing each other
across the periodic boundary conditions imposed on the simulation box.
To calculate the maximum size allowed for a spherical droplet inside a periodic box, in
order to avoid any kind of ”self-interaction”, the cost of interfaces was studied by means
of a different geometry.

Parisi-Kob geometry. Of course, in studying the cost of an interface, one can choose
any kind of geometry. In the present work, spherical geometry was preferred, in order to
have results comparable with [6], in which the same kind of geometry was studied. In
this section, the cost of flat interfaces between inherent structures sampled at T = 0.89Tc
is also studied. The purpose is to find the minimum distance allowed between a pair of
interfaces in order to avoid interference. Ensembles of hybrid minima enclosing a pair of
flat interfaces of size L2 are studied by varying distance d between the interfaces. The
interfaces were created exchanging all the particles which had a coordinate, for instance
z, within a given interval [zmin, zmax], between a couple of inherent structures Cα,Cβ. The
distance between the two α/β interfaces is d = zmax − zmin. The average surface cost
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Figure 3.5: Average surface cost 〈∆E(d)〉/L2 of a flat interface between Inherent Struc-
tures as function of the distance d from another interface. Error bars are smaller than
points. Inherent Structures are sampled at T = 0.89Tc.

∆E was measured according to eq.(3.12), the only difference being in the definition of
Ein
α ,Eout

β .
In this context, Ein

α is the energy of particles in Cα with z within [zmin, zmax], and Eout
β

is the energy of particles in Cβ with z outside the interval [zmin, zmax]. Distances ranging
from d = 1 to d = 12.7, i.e. the maximum distance allowed by the periodic boundary
conditions (box side is L = 25.4), were studied. It turns out that, for d ≤ 8, particle
rearrangements in the proximity of the two interfaces are strongly correlated. Fig. 3.5
shows surface cost 〈∆E(d)〉 as a function of distance d between the interfaces. As the size
of the interfaces is constant for all d, variations in 〈∆E(d)〉 can only be due to a different
mutual influence between the interfaces. Because 〈∆E(d)〉 saturates roughly at d = 8,
this value is regarded as the smallest distance allowed to avoid unwanted interference
effects between different interfaces. This result is useful for knowing the maximum size
allowed for a droplet inside a periodic box. That is, the radius of the droplet cannot be
larger than R = 8.5, otherwise its energy cost would suffer spurious effects from boundary
conditions.

3.3 Study of surface tension

Υ as order parameter for metastable states. This section describes how the surface
tension Υ between amorphous states of the supercooled liquid has been calculated. In
order to obtain it the scaling with R of 〈∆E(R)〉, the energy cost of spherical interfaces,
is studied in detail. Presenting results in the last chapter it will be shown that Υ displays
an interesting dependence on temperature, Υ = Υ(T ), and is a good order parameter to
characterize the regime where RFOT excitations are well defined.
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3.3.1 Scaling with size

A first glance at amorphous surface tension. The average energy cost 〈∆E(R)〉
was calculate, according to the method introduced in section 3.2, for spherical droplets
with radius ranging from R = 1.5, i.e., enclosing 14 particles, and 8.5, i.e., enclosing 2572
particles. The brackes 〈〉 indicate the average performed over ensembles of 150 hybrid min-
ima (HM), each ensemble at a different temperature. Therefore the energy cost 〈∆E(R)〉
depends directly on droplet size and indirectly on temperature. The energy cost of differ-
ently sized droplets has been studied at temperatures T = 0.89Tc, 0.95Tc, 1.03Tc, 1.09Tc
and 1.33Tc. The scaling of 〈∆E(R)〉 with R is reported for different temperatures in
log-log scale in fig.3.6 and in linear scale in fig.3.7. The first remark is that this contact
cost has a well-defined increase with growing radius R of the sphere (figs .3.7 and 3.6).
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Figure 3.6: ∆E vs. excitation radius R at various temperatures. Full lines: fits according
to eq. 3.20, with θ = 2 and ω = 1.2. Dotted lines: power laws with exponents 2 and 3/2
for reference. Error bars are smaller than symbol size.

Moreover, as is clear expecially from fig. 3.7, the higher the temperature, the slower the
increase of energy cost of a droplet with size. The set of data at the highest temperature,
T = 1.33Tc, is nearly flat (fig.3.7). Let us note that, at this temperature, the cost of an
interface does not only appear independent of its linear size R, but is also negative. This
does not make sense, if these data are to be explained by a single power law ΥRθ. A cor-
rection of negative sign to leading behaviour ΥRθ of surface tension must be considered,
formally accounting for negative values of 〈∆E(R)〉. This point will be clarified later on.
The temperature at which IS are sampled plays a very important role: if we fix size R of a
droplet, its cost definitely increases as the temperature falls. The low-temperature order-
ing of the amorphous configurations implies higher cost of the contact between differently

41



 0

 50

 100

 150

 200

 1  2  3  4  5  6  7  8  9

∆E
(R

)

R

T = 0.89 Tc
T = 0.95 Tc
T = 1.02 Tc
T = 1.09 Tc
T = 1.33 Tc

Figure 3.7: ∆E vs. excitation radius R at various temperatures in linear scale. Full lines:
fits according to eq. 3.20, with θ = 2 and ω = 1.2. Error bars are smaller than symbol
size.

ordered configurations.

Why a subleading correction term to ΥRθ ? A simple power law ΥRθ, expected
for a surface energy cost, is enough to fit low-temperature data. This is not the case for
higher temperatures, where a correction is needed to have a good description of the data,
expecially for small droplets (in particular at T = 1.33Tc for all sizes).
What happens if we choose the easiest way to avoid the problem —that is, forgetting about
data at higher temperature, i.e., T > Tc ? After all, the RFOT scenario is presumed to
describe the relaxation of a supercooled liquid below Tc. There are two good reasons for
rejecting this choice and introducing a correction to leading order term ΥRθ of surface
cost:

1. The best fit of the data with a single power ΥRθ, even at the lowest temperature,
gives a value for θ greater than d − 1. Let us recall that the minimization leading
from Cα+β —smooth interface— to Cαβ —optimized interface— is composed by 100
MC steps and the subsequent use of the LBFGS algorithm. With the standard
method already outlined, the cost of the interface whitin configuration half-way
through minimization, was measured immediately after the 100 MC steps at zero
temperature. At this stage of minimization, it was found that the cost of the surface
was simply proportional to the square of R. It does not make sense, for the following
minimization, to lead to a steeper increase in contact energy.

2. A correction to the leading behaviour of the surface cost may simply be due to
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curvature [56], and at the same time it is quite common for interfaces in disordered
systems [57, 58, 59]. Therefore it is not something strange that we must avoid.

For these reasons, is proposed, at each temperature, a description of the data with a
leading term and a correction:

∆E(R) = ΥRθ − δRω, (3.20)

The points that will be addressed in the following are, in order:

• The estimate of exponent θ from data;

• General features of interfaces in disordered media;

• Considerations on the self-averaging nature of ΥRθ;

• How to fix the exponent of the subleading correction δRω;

• Roughening interpretation of the correction δRω;

Estimate of the exponent θ. As already pointed out, a single power is not enough
to explain the scaling of the energety cost with droplet size. Nevertheless, the curves of
fig. 3.6 exhibit a common trend for large values of R. It is from this ”asymptotic” trend
that the value of the leading term of surface tension exponent θ = 2 can be fixed. A
wetting argument by Wolynes [60, 61] suggests the value θ = 3/2 for the exponent of
power law ΥRθ, whereas a spin model theory with finite range interaction of Franz [62]
indicates a competing θ = 2. Although a slower trend may emerge for larger R values, it
is always hard to fix an exponent over only one decade, and the more conservative choice,
θ = 2, is compatible with our data. Now that θ is fixed, we need to find Υ , δ and ω.
A simple fit of the numerical mean energy cost with three free parameters is marginal:
very different values of Υ are in good agreement with the data, provided that suitable
variations are made to δ and ω. A physical interpretation of correction term δRω is needed
to fix exponent ω.

3.3.2 Effects of disorder

Examples of interfaces in disordered media. Looking at data 〈∆E(R)〉 vs. R in
fig. 3.6, we can say, first of all, that the sign of the δRω correction must be negative. To
go any further, we need some interpretative scheme for analysis of δRω.
A power law δRω correction to the pure quadratic surface cost is quite common in disor-
dered systems. It appears, for example, in the Random Field Ising Model (RFIM) [57].
In homogeneous spin-up phase, the surface cost to nucleate a domain of down-spins can
eventually be balanced by the energy gain due the coupling of spins with the random
external field. This mechanism breaks the long-range order for d < 2 in RFIM [57]. Be-
cause the sum of N ∼ Rd external field values fluctuates, according to the Central Limit
Theorem (CLT), as N1/2 ∼ Rd/2, the whole mean energy variation 〈∆E〉 to nucleate a
droplet is [57]:

〈∆E〉 = σRd−1 − hRd/2. (3.21)

We may say that the fluctuation term plays the role of a correction to the surface cost.
If the correction in eq.(3.20) was due to an analogous effect, in d = 3, exponent ω would
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be ω = 3/2.
A very different mechanism [58], defined in a wide class of systems, is the roughening
mechanism. Ground state energy E of an elastic surface embedded in a random potential
has the following scaling:

〈E〉 ∼ ALd−1 −BLχ (3.22)

where L is the linear size of the surface. Again, ground state energy has a finite size
correction, although in this case the exponent is model-dependent.
Also in the Directed Polymer (DP) problem [59], ground state energy has a coorection to
leading order:

E ∼ e0L+ e1L
θDP , (3.23)

where d is assumed d = 1.
A very important feature, common to all these examples, is the behaviour of energy
fluctuations when the size of the interface is increased. In the RFIM case, according
to CLT, the fluctuation of the surface term, σRd−1, coming from an extensive sum of
independent variables, is expected to grow like the surface itself. Thus, surface term
σRd−1 is self-averaging. It is not the same for the correction term, since the variance of
local external field h does not depend on R. Indeed, at large R, only the fluctuations of
the correction term are left:

(∆E − 〈∆E〉)RMS ∼ Rd/2 (3.24)

where (. . . )RMS =
√

〈(. . . )2〉.
The ground state energy of a rough surface and of a directed polymer also has fluctuations
around its mean value, depending only on the correction exponent, χ or θDP , respectively:

(E − 〈E〉)RMS ∼ Lχ (3.25)

and:
(E − 〈E〉)RMS ∼ LθDP . (3.26)

Again, the fluctuation of the prefactor of the correction term in eqs. (3.25) and (3.26)
must not depend on L.
Although a priori the physical origin of term δRω in our system, eq.(3.20), is still not
clear, it is possible that, as in the previous examples, the fluctuations of its prefactor
δ dominate over the fluctuations of surface energy density Υ. Surface energy Υ should
be self-averaging, whereas prefactor δ may have fluctuations independent of R. Let us
exploit this possibility.

Considerations on the self-averaging nature of ΥRθ If the measured energy cost
of spherical interfaces 〈∆E(R)〉 is a self-averaging quantity, according to Central Limit
Theorem we should find:

〈∆E(R)αβ〉 =
R2

∑

i

〈εi〉 ⇒ Var[∆Eαβ(R)] = Var[ε]R2

⇒ Var[
∆Eαβ
R2

] =
Var[ε]

R2
, (3.27)

where sum index i runs over unitary element of area, whose energy cost is εi, and Var(x) =

〈x2〉 − 〈x〉2. Fig.3.8 shows that Var[
∆Eαβ
R2 ] for large values of R violates the predictions of

the CLT. For each sample, the interface cost may be written as:

∆Eαβ = ΥαβR
2 − δαβR

ω. (3.28)
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Let us now assume that fluctuations of Υαβ are ruled by the CLT:

Var[
∆Eαβ
R2

] = Var[Υαβ] +
Var[δαβ]

R4−2ω

=
1

R2
+

Var[δαβ]

R4−2ω
(3.29)

The decrease in Var[
∆Eαβ
R2 ], from data in fig. 3.8, is compatible with scaling R−2 for small R

values. Differently, it deviates from this behaviour at larger radii, where it is compatible
with 1/R. Assuming now that Var[δαβ] does not increase with R, from eq.(3.29) and
observation of data we have a lower bound on ω, i.e.:

4 − 2ω < 2 ⇒ ω > 1. (3.30)

This observation, also considering that the quadradic term must dominate over δRω at
large R, yields the inequalities:

1 < ω < 2, (3.31)

which fix an upper and a lower bound for ω values compatibles both with our data and
with the hypothesis of a self-averaging surface term ΥRθ.

How to fix the exponent of the subleading correction δRω. Under the previous
assumptions, at large R, the deviation of ∆Eαβ from its mean value is entirely due to the
fluctuation of prefactor δαβ of the correction term. Let us make explicit that at large R,
∆Eαβ fluctuations are dominated by δαβ fluctuations. We do this by replacing Υαβ with
its average value 〈Υαβ〉 = Υ in eq.(3.28):

∆Eαβ = ΥR2 − δαβR
ω. (3.32)

As in the RFIM, in the roughening case and in the DP, here too we assume, as a working
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Figure 3.8: Scaling of Var[∆Eαβ/R
2] with R at T = 0.89Tc. Data are compatible with a

scaling R−2 at small R and R2ω−4 at large R, according to formula eq.3.29. The exponent ω
at T = 0.89Tc is 3/2. Indeed the scaling of data at large R is compatible with R2ω−4 = R−1

hypothesis, that the probability distribution of δαβ must not change with the droplet size.
Indeed, if, from eq.(3.32), we have:

δαβ =
ΥR2 − ∆Eαβ

Rω
, (3.33)
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then we need to find a value of ω for which Var[δαβ] does not change with R.
Let us consider a running value of ω. For each ω, it is possible to fit 〈∆Eαβ(R)〉 via
eq.(3.20) and extract the resulting value, Υ, which in turn depends on the running value
of ω: Υ = Υ(ω). At large R, because of the validity of eq.(3.32), we expect that all
fluctuations are given by the correction term:

Var(∆Eαβ(R)) = Var(δαβ(ω))R2ω. (3.34)

This is true for each value of unknown exponent ω. At the same time, for an arbitrary
value of ω, the fluctuations of δαβ(ω) will generally depend on R. Only for one value, the
one which we are looking for and which we call ω∗, we have:

Var(∆Eαβ(R)) = Var(δαβ(ω
∗))R2ω∗

(3.35)

with Var(δαβ(ω
∗)) not dependent on R. Because Var(∆Eαβ(R)) is exactly the same

quantity in eqs,(3.34) and (3.35), we can then write:

Var(δαβ(ω)) = Var(δαβ(ω
∗))R2(ω∗−ω) (3.36)

which, taking the logarithm, becomes:

log(Var(δαβ(ω))) = log(Var(δαβ(ω
∗))) + 2(ω∗ − ω) log(R)

= log(Var(δαβ(ω
∗))) + a(ω) log(R). (3.37)

A linear fit of log(Var(δαβ(ω))) vs log(R) gives an angular coefficient a(ω) = 2(ω∗ − ω)
for each ω. Lastly, value ω∗ is simply the ω which satisfies a(ω∗) = 0.
Summarizing, a value of exponent ω was calculated for each ensemble of hybrid minima
Cαβ at a given T , according to the following recipe:

1. Choose a value of ω and fit ∆Eαβ(R) vs R according to this value. Retain the fit
parameter Υ(ω).

2. Calculate for each value of R the distribution of δ(ω,R)αβ via eq.(3.33) using Υ(ω).
Calculate Var[δ(ω,R)αβ] as a function of R.

3. Repeat points 2) and 3) until a set of ω is sampled.

4. For each value of ω, fit Var[δ(ω,R)αβ] vs R, according to eq.(3.37), which yields
coefficient a(ω).

5. From the linear fit of a(ω) = 2(ω∗ − ω) find out value ω∗ which makes fluctuation
of δαβ independent of R.

Let us note that the validity of equations from eq.(3.32) to (3.37) relies upon two working
hypotheses:

• Var[Υαβ] << Var[δαβ];

• A value of ω exist, so that Var[δαβ] does not depend on R.
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T ω
0.89 Tc 1.50(19)
0.95 Tc 1.60(18)
1.03 Tc 0.84(16)
1.09 Tc 1.36(28)
1.33 Tc 0.94(25)

Table 3.1: Values of ω as function of temperature.

If only one of these two hypotheses is wrong, eq.(3.37) also is wrong. In particular, if we
try to compute a(ω) fitting data with eq.(3.37), there would be no reason to expect a(ω)
to be a linear function of ω, let alone a linear function with coefficient −2 (cfr. eq.3.37).
Indeed, the most striking evidence that the two former hypotheses are correct is the linear
behaviour with coefficient −2 that we find for a(ω), shown in fig.(3.9) (T = 0.89Tc). The
values of ω∗ found at the various temperatures are listed in tab.3.1, in which values of
ω∗ are compatible within errors with the boundary 1 < ω < 2. Because ω∗(T ) displays
no definite trend with temperature, the average between varying temperatures may be
viewed as the real value of ω in our model, that is:

ω = 1.2 ± 0.2. (3.38)

The following section proposes a physical interpretation of correction term δRω, i.e. rough-
ening of the interface.
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Figure 3.9: Behaviour of a(ω) vs ω with a(ω) calculated fitting data on δαβ(ω,R) via
eq.3.37 (T = 0.89Tc). A linear fit of a(ω) vs ω has coefficient b = −2. This is in perfect
agreement with the expectation a(ω) = 2(ω∗ − ω) (see eq.3.37).

Roughening interpretation of correction δRω. In disordered systems interfaces are
typically rough. This phenomenon has been investigated in depth since studies on the
directed polymer (DP) problem [63] and the Random Field or Random Bond Ising Model
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(RBIM) [58, 64]. The roughening signature is the fact that the interface thickness w
grows with linear size R of the interface itself:

w ∼ Rγ, (3.39)

where γ is the so-called roughening exponent. In the context of elastic manifolds in
random media [65, 66], a precise relation exists between the energy cost of a rough interface
and roughening exponent γ. The energy gained by roughening appears as a negative
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Figure 3.10: Radial local overlap of a sphere of radius R=8. For the estimate of w we
look only at the outer part of the interface. This side is not affected by finite size effects
in small spheres.

correction to the ground state energy of the manifold:

∆E = ΥRd−1 −BRω. (3.40)

In this context, the exponent ω is model-dependent but, according to [65, 66], is linked
to the roughening exponent γ by the following identity:

ω = 2γ + d− 3 d = 3 =⇒ ω = 2γ. (3.41)

Interface roughening seems to be an appealing interpretation of correction term δRω

which emerges from our data. Exponent ω of our system was already calculated (see
previous section). Now, in order to estimate γ, we must find how the thickness of our
interface scales with its size (eq.(3.39)). To define thickness w of the interface, we consider
the overlap between mixed configuration Cα+β immediately after the switch and hybrid
minimum Cαβ . The overlap is small close to the interface, where particles have moved
most, whereas it approaches one away from it. Hence, w is defined as the thickness of
the region for which the local radial overlap of the excitation is smaller than an arbitrary
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Figure 3.11: Scaling of interface thickness w with size R of sphere. Data refer to
interfaces between IS sampled at T = 0.89Tc.

T γ
0.89 Tc 0.62(01)
0.95 Tc 0.70(04)
1.03 Tc 0.71(03)
1.09 Tc 0.71(03)
1.33 Tc 0.90(04)

Table 3.2: Values of roughening exponent γ at various temperatures.

threshold value, qth
1.

In fig. 3.10, the local overlap is plotted as a function of distance r from the centre of the
sphere for a droplet of radius R = 8 at T = 0.89Tc. Inside the sphere the increase in the
overlap away from the interface is clearly influenced by interference effects (see also sec.
3.2.2). It is thus convenient to define w from the behaviour of q(r) outside the sphere
(figure 3.10). Fig. 3.11 shows the scaling of interface thickness w with R for excitations
at T = 0.89Tc. The roughening exponents found at different temperatures measuring the
interface thickness with the method outlined above are listed in Tab. 3.2.

Comparing the set of γ values of Tab. 3.2 with exponent ω = 1.2 ± 0.2 of our model,
we find that, for almost all temperatures (except T = 1.33Tc), equation ω = 2γ is fulfilled.
Therefore, summarizing, we can state that the appearence of a correction to the leading
behaviour ΥRθ of the interface cost is probably due to roughening of the interface for the
two following reasons:

1We must consider the possibility the measure of exponent γ may depend on the threshold qth. At
temperature T = 0.89Tc, qth has been variated between 0.75 and 0.9, finding values of γ in the interval
[0.59, 0.63]. Because with qth = 0.85 it is measured γ = 0.63 ± 0.01, the error amounts to 2% of γ value,
whereas the variation of the exponent due to changing qth amounts to 7% of γ value, hence it is larger.
Nevertheless, provided that there is no trend in the variation of γ with qth, we retain that the error on
γ is understimated and are confident of the fact that γ does not depend on qth.
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• The correction term δRω behaves as is typical for corrections to the energy cost of
interfaces in disordered media, i.e., it has fluctuations that violates the CLT (cfr.
previous paragraph).

• The exponent ω fulfills the relation ω = 2γ, with γ the roughening exponents.

A roughening exponent smaller than 1 implies that the ratio w/R between the width w
and the linear size R of the surface decreases for larger spheres. Thus large excitations
have relatively thin interfaces. This is clearly shown in figure 3.12, where two excitations
with different radius (R = 4 vs. R = 8) are compared in a coordinate system where
all lengths are rescaled by R, so that both rescaled spheres have virtual radius unity.
The rescaling emphasizes the thick interface of the smaller excitation compared to the
narrower interface of the larger excitation.

RBIM and Inherent Structures To understand why roughening occurs let us ex-
amine the Random Bond Ising Model (RBIM). This is an Ising spin model in which the
nearest-neighbour bonds are random, albeit typically positive. In such a system, the po-
sition of a domain wall strongly depends on disorder, since weak bonds are more likely to
be broken. On one hand, a smooth domain wall is preferable, as it would break the small-
est number of bonds. On the other hand, some suitable deviation from smoothness may
induce the breaking of weaker bonds and hence a lower energy cost. So a rough interface
is the result of a complicated optimization problem: the cost of a large number of broken
bonds is balanced by the gain due to the presence of very weak bonds among them. As a
result, in a disordered system from the point of view of energy a rough interface may be
favoured with respect to a smooth one.

What about Inherent Structures? When we create an excitation, a smooth interface
between two different IS is placed in the system. All particles, except those close to the
interface, are in equilibrium positions, as the IS are minima of potential energy. We can
imagine that each interaction between a pair of particles plays the role of a bond. In
regions where IS are more mechanically stable, bonds between particles are stronger, and
vice versa. Around the spherical excitations that are created there will be regions which
are more or less mechanically stable, i.e. their particles are linked by weaker or stronger
bonds: hence, the analogy with the RBIM and probably the reason for rough interfaces
between IS. This picture of IS assumes some heterogeneous mechanical stability closely
resembling the inhomogeneous elastic response displayed by other glassy systems [67, 68].

3.3.3 Fluctuations

The energy cost of a surface between two IS is physically interesting, not only for its
mean value but also for its distribution. The simplest version of RFOT theory [4] con-
nects droplet formation with the competition between a volume term, proportional to
complexity, and ”surface” cost ΥRθ, with a single value for surface tension parameter Υ.
However it is resonable that the self-induced disorder in particle positions and presence
of a large number of low temperature states may lead to different values of their contact
cost. For these reasons in [6] a distribution for contact energy was introduced, to explain
the smooth decay of the point-to-set correlation function qc(R) (cfr. sec.2.4.3), neither
compatible with a simple one state scenario [34] nor with a sharp version of the RFOT
theory with only one value of the surface tension [6]. It has already been pointed out that
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Figure 3.12: Local overlap qαβ(x, y) between CISαβ and Cα+β for configurations with interface
placed at R = 8 (top) and R = 4 (bottom); only a thin slice at half height of the system is
shown. Plots are rescaled so that both spheres appear to be of the same size. Low overlap
(dark grey) at interfaces indicates major rearrangements of particles; far from interfaces
overlap with initial configurations is high (light grey). Clearly, larger sphere (top) has a
relatively thinner, or smoother, interface.

the dependence of contact costs between Inherent Structures is not a simple power law.
Nevertheless, to be as consistent as possible with the description of [6], we may write:

〈∆Eαβ(R)〉 = ΥR2 − δRω (3.42)

as
〈∆Eαβ(R)〉 = y(R)R2 (3.43)
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with
y(R) = Υ − δ/R2−ω. (3.44)

The y(R) thus defined is a soft surface tension, the mean value and distribution of which
strongly depend on R. This is evident expecially at small R, where the contribution of
the correction term to y(R) is still important. From our numerical data, it is possible to
obtain the above defined soft surface tension for each pair of IS:

yαβ(R) = ∆Eαβ(R)/R2 (3.45)

yαβ(R) = Υαβ − δαβ/R
2−ω. (3.46)

We already know from subsection 3.3.2 that the variance of yαβ(R) values is ever-decreasing.
At small R, because of the self-averageness of Υαβ in eq.(3.46). At large R, the fluctu-
ations of yαβ(R) are dominated by the still large fluctuations of term δαβ. Nevertheless,
fluctuations of ∆Eαβ(R)/R2 = yαβ(R) at large R scale like R2ω−4 (see eq.(3.29)) with
ω < 2, are thus ever-decresing. Some of the distributions of the soft surface tension are
shown in fig 3.13, for fixed temperature and increasing R, and in fig 3.14, for fixed R
and different temperatures. Two main effects may be observed in the distribution of soft
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Figure 3.13: ”Soft” surface tension, yαβ(R) = ∆Eαβ/R
2 , distributions of spherical

interfaces between inherent structures: temperature is fixed, T = 0.89Tc, and various size
of droplets are considered, R = 3, 4.5, 8.5. Distributions narrow with increasing R. Full
lines: fits according to, Ω yν−1 exp [−(y/yc)

ν ]: Ω, yc, ν are fit parameters. ν increases
with increasing R.

surface tensions yαβ(R):

• At a fixed temperature, the distribution of surface tension P [yαβ(R)] narrows with
increasing size R of the excitation. This observation, which has its quantitative
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Figure 3.14: ”Soft” surface tension, yαβ(R) = ∆Eαβ(R)/R2 , distributions for spherical
interfaces between inherent structures. Size R = 4.5 of droplets is fixed and two different
temperatures are considered: one below, T = 0.89Tc, and one above, T = 1.09Tc, the mode
coupling temperature.

conterpart in the results on Var[yαβ(R)], supports the hypothesis that fluctuating
surface tension is a finite-size effect [6].

• At fixed size and increasing temperature, the distribution P [yαβ(R)] broadens and
clusters around zero. The different states of the supercooled liquids, approximated in
this study with inherent structures, slowly merge into each other, when temperature
at which IS are sampled is raised above the mode coupling one, Tc, due to the
vanishing of contact energy.

Numerical distributions P [yαβ(R)] measured at T = 0.89Tc, shown in fig.3.13, are well
fitted with the functional form:

Ω yν−1 exp [−(y/yc)
ν ] , (3.47)

proposed in [6], where Ω, yc and ν are fit parameters. Let us note that the exponent
ν, obtained fitting P [yαβ(R)] with eq.(3.47), increases with increasing R. Recall that,
according to RFOT, by lowering the temperature ξRFOT increases. Although here T is
fixed, we are studying the energy cost of increasing size excitations. To some extent it
is like studying the behaviour of P [yαβ(ξRFOT )] for increasing ξRFOT , hence for decreas-
ing temperatures. The information we get from the increase of ν with increasing R is
therefore that at lower temperatures the surface tension distribution of RFOT excitations
narrows. Extrapolating, we may state that, according to our data, P (y) → δ(y − yc)
when temperature is decreased. Recall how the behaviour of the point-to-set correlation
function is related to P (y), that is:

qc(R) ∼
∫ ∞

TΣRd−θ
dyP (y)(1 + eR

dΣ−βyRθ)−1. (3.48)
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When P (y) → δ(y − yc) the above formula is well approximated by:

qc(R) ∼ Θ(yc − TΣRd−θ), (3.49)

that is, a sharp transition from non-ergodic to ergodic behaviour takes place at R =
(yc/TΣ)d−θ. We can conclude that the study of surface tension fluctuations may give
indications that, at temperatures well below Tc, the sharp version of RFOT [4] can be
recovered.

3.4 Surface tension between equilibrium configura-

tions

In order to legitimate the Inherent Structures results, this section deals with how amor-
phous excitations relax at equilibrium. The main goal of approximating metastable states
with IS has been the possibility to study time-independent observables. Nevertheless, it
was also a limitation. Within the RFOT scenario, it is the free energy cost of an amor-
phous droplets which scales like:

ΥRθ. (3.50)

In the landscape-dominated regime, i.e., when equilibrium configurations are tipically
found in the proximity of an energy minimum, it is assumed that free energy is well
approximated by energy, hence the approximation of using IS. Using this approximation
it was found that the surface cost of an excitation scaled like ΥR2 (plus a correction).
The first aim of this section is to put this result on a firmer basis. It is explained how
the scaling ΥR2 is not spoiled by a few steps of equilibrium dynamic. Moreover it is
shown that the hybrid minima enclosing the interface between IS which were of central
importance in the previous analysis, are closely related to amorphous excitation at finite
temperature.

3.4.1 Time-dependent surface tension.

In this section the method used to build an interface between Inherent Structures is
applied to equilibrium configurations. That is, pairs of configurations equilibrated at the
same temperature Cthα , Cthβ are considered and particles located within a spherical cavity
of the same size are exchanged between them. At this stage, the procedure used to build
the amorphous excitation is identical to that one described in sec. 3.2.2 for IS. The energy
of the interface enclosed in Cthα+β, Cthβ+α is hereafter studied as a function of time. More
precisely the configurations are relaxed by means of a standard Montecarlo algorithm. It
should be stressed that the algorithm used at this stage is different from the one used
to equilibrate configurations Cthα , Cthβ . This algorithm implements non-local moves [51] to
achieve a fast equilibration, whereas the MC algorithm used in this section does not, in
order to mimic the dynamics of the system. The smooth surface between α and β in Cthβ+α

is regarded as the GDS also in this context. Thus, the cost of the interface, which is now
a time-dependent quantity, is calculated as:

∆Eαβ(R, t) = Eαβ(t) − Eth,in
α − Eth,out

β (3.51)

Here, the definition of Eth,in
α , Eth,out

β is identical to that given in sec. 3.2.3, with IS replaced

by equilibrium configurations, and Eαβ(t) is the energy of configuration Cthα+β after t, where
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Figure 3.15: Main: (〈ǫαβ(t)〉−〈ǫ〉) vs t; 〈ǫαβ(t)〉 is the average energy per particle along the
relaxation of a spherical interface while 〈ǫ〉 is the average energy per particle at equilibrium.
〈ǫαβ(t)〉 is studied for spherical interfaces of radius R = 2.5, 5, 10. Inset: surface tension
〈∆Eαβ(t)〉/4πR2 vs t for R = 5 compared to the thermal energy per particle. Data come
from relaxational dynamics at T = 0.89Tc

time t is measured in MC steps.
This time-dependent surface tension is expected to disappear completely at large times,
because the system at the temperatures in question is deeply supercooled but still ergodic.
The amorphous excitation of RFOT theory continue to form and relax, so that it is
reasonable to expect that an interface placed in a precise position will be erased by these
rearrangements.

Unphysical stress relaxation. As the case of Inherent Structures, the construction of
a surface between two configurations leads to very high energy terms, due to accidental
pairs of particles falling arbitrarily close (see sec. 3.2.3). However, only ∼ 10 Montecarlo
steps at the same temperature at which the initial configurations were equilibrated are
enough to relax these unphysical energy contributions. The two stages in the relaxation
of Eαβ(t) are represented in fig. 3.15 for three different droplet size. After the initial
transient, the excess energy per particle concentrated on the interface is of the order of
thermal energy 3/2T , as shown in the inset of fig. 3.15.

The relaxational dynamics of the interfaces has been studied at the temperatures
T = 0.89Tg, 1.02Tg, 1.09Tg, 1.33Tg, with spherical interfaces of radius ranging from R = 3
to R = 8. The number of the initial equilibrium configurations Cthα is 9 for T = 0.89Tg,
1.02Tg and 12 for T = 1.09Tg, T = 1.33Tg. Thus ensembles of respectively 72 and 132
mixed configurations Cthα+β have been studied.
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Figure 3.16: Excess energy 〈∆E(R, t)〉 vs R measured at different times (differ-
ent symbols) and different temperatures (different panels). Temperatures are T =
0.89Tg, 1.03Tg, 1.09Tg, 1.33Tg. Time t is measured in Monte Carlo steps.

3.4.2 Quadratic scaling of interface energy

After the transient regime, in which the unphysical stress is relaxed, the trend appears
of the average interface cost 〈∆E(R, t)〉 versus the size of spheres R, shown in fig. 3.16.
The scaling of 〈∆E(R, t)〉 with R is shown for the various temperatures (different panels)
at increasing times (different symbols). The log-log scale emphasizes that a simple power
law with exponent 2 describes the growth of excess energy with droplet size. This clearly
appears at times t ≤ 1000, whereas at longer times, t > 1000, a small size correction
appears. At large R values the quadratic scaling of 〈∆E(R, t)〉 with R is conserved for all
times. This observation is the basis for the analysis carried out with Inherent Structures:
even at finite temperature, at sufficiently large sizes, the power law ΥR2 is found.

What about roughening ? At large times, scaling of the energy cost of interfaces
exibits, at small sizes, a deviation from leading quadratic behaviour. Along the lines of sec.
3.3.1, we assume here a power law correction δRω to the leading quadratic cost. Exponent
ω was fixed in order to make the variance of δαβ independent of R for large R values (see
sec. 3.3.2). This study was carried out for the lowest temperature, T = 0.89Tc, after
t = 4096 MC steps of relaxation of the interface. At this time a deviation from leading
quadratic scaling is evident for small values of R. At t = 4096, roughening exponent γ
was also calculated with the same method used in sec. 3.3.2. Exponents ω (much smaller
than in the case of IS) and γ were compared, but their values did not fit the relation
ω = 2γ, which is fulfilled when roughening occurs.

We think that the analogy between the Random Bond Ising Models and IS described
in sec. 3.3.2 fails when studying relaxation of interfaces at finite temperature. The anal-
ogy was based on the evidence that, in IS, almost all the particles are frozed in their
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Figure 3.17: Relaxation of a droplet at finite temperature T = 0.89Tc. Radial overlap
〈q(r)〉 averaged over 72 configurations at different times, t = 24, 26, 28, 210, 212MCsteps.

equilibrium positions, even when some of them have to change their positions in order
to optimize the shape of an interface. In such a situation, it was reasonable to speak
of an inhomogeneous displacement of mechanical stability around the interface. This in-
homogeneity is responsible for roughening. The evidence that particles sufficiently far
from the interface were —almost— frozen in their equilibrium position came from data
on the local overlap, close to 1 far from the interface. Conversely along the relaxation of
interfaces at finite temperatures even the overlap of regions far from interfaces decreases
significantly, as can be seen in fig. 3.17. It no longer makes sense to speak of more or
less mechanically stable regions enclosing the excitation. We are no longer dealing with
minima of potential energy. Thus, the main mechanism responsible for roughening within
IS seems to disappear. The most we can say, accepting that roughening plays a role even
at finite temperatures, is that it appears to be neglibile or, perhaps, that we are unable
to disentangle it from the effect of temperature.

Slowing down of Υ(t) For most of the time, the scaling of 〈DE(R, t)〉 with R is well
fitted with a quadratic power. Thus, we calculated the time-dependet surface tension
Υ(t) as a fit parameter from:

〈DE(R, t)〉 = Υ(t)R2. (3.52)

Fig. 3.18 shows the behaviour of Υ(t) for T = 0.89Tc, 1.02Tc, 1.09Tc and 1.33Tc. Let us
note that, the lower the temperature the more slowly surface tension relaxes. Υ(t) is an
observable which keeps track of the slowing down of relaxation time of our glass-former.
Nevertheless, scaling of Υ(t) does not show any qualitative change as temperature falls
from above to below mode coupling temperature Tc.
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3.4.3 Hybrid minima and thermal droplets

We claim that the existence of surface tension on finite time-scales is not trivial. It signals
that some metastable states with stressed regions can survive on such time-scales. They
may be the instantons mentioned several times in the literature [3, 62, 61]. In this view,
it would be interesting to find some evidence that hybrid minima are also related to the
excitations at finite temperatures. In order to do this, we need a method to compare the
surface tension measured between IS and the time-dependent tension measured at finite
temperature. The problem is that, working with IS, we were measuring an interface cost
∆E independent of time. Now we must deal with a time dependent ∆E(t).
At what time should we compare ∆E(t) and ∆E of IS ? To tackle this problem, let us
make use of the well-defined map between thermal configurations and Inherent Structures.
Given the trajectory of a thermal droplet, i.e. the set of configurations:

Cαβ(t1), . . . , Cαβ(tmax) (3.53)

saved along the relaxation of the interface, a trajectory of Inherent Structures

CISαβ(t1), . . . , CISαβ(tmax) (3.54)

is obtained by quenching configurations Cαβ(ti). Each quench is achieved with the geo-
metric LBFGS algorithm [52]. The following energy cost has been calculated from the set
of CISαβ(ti) inherent structures:

∆EIS
αβ(R, t) = EIS

αβ(t) − Ein,IS
α − Eout,IS

β , (3.55)
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where EIS
αβ(t) is the total energy of CISαβ(t) and E

in/out,IS
α/β are the energies of the IS obtained

quenching the initial equilibrium configurations Cthα and Cthβ . The labels in/out still signify
particles inside/outside the spherical cavity.

Fig. 3.19 compares the behaviour of 〈∆EIS(R, t)〉 and 〈∆E(R, t)〉 for linear sizes of
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Figure 3.19: 〈∆EIS(R, t)〉 vs t (squares) plotted against 〈∆Eth(R, t)〉 vs t (circles): they
are compared to 〈∆EIS(R)〉 (straight line); R = 6 and T = 0.89Tc. 〈∆Eth(R, t)〉 is the
energy cost of an interface between equilibrium configurations after n = t MC steps of
relaxation; 〈∆EIS(R, t)〉 is the energy cost of the interface enclosed in the IS obtained
by quenching the above mentioned configurations; 〈∆EIS(R)〉 is the energy cost of an
interface between inherent structures, as measured in sec.3.2.

droplets R = 6, 8. Up to a time t∗ ∼ 104 MC steps, a plateau is present in 〈∆EIS(R, t)〉
whereas 〈∆E(R, t)〉 is ever-decreasing. When t > t∗ the two observables overlap.
Considering these data, we can try to answer the following question: are the hybrid
minima —which enclose an interface between IS— somehow related to the excitations at
finite temperature ?
The answer is yes: for a time interval t∗ (length of the 〈∆EIS(R, t)〉 plateau), the hybrid
minima are the inherent structures onto which an equilibrium configuration enclosing an
amorphous excitation can be mapped.
It should be noted that the time-independent energy cost 〈∆EIS(R)〉, the one measured
from IS in sec. 3.2, and the time-dependent 〈∆EIS(R, t)〉, obtained along the relaxation
of interfaces, are equal up to times t ≤ t∗: this for a given radius (e.g. R = 6, 8) and a
given temperature (T = 0.89Tc). This is stressed in fig. 3.19, where 〈∆EIS(R, t)〉 vs t is
plotted for R = 6. All along the plateau 〈∆EIS(R, t)〉 is equal to 〈∆EIS(R)〉. This means
that 〈∆EIS(R, t)〉 not only is constant, but even comparable with the cost of interfaces
obtained within the T = 0 analysis of IS. The situation is summarized in the following
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flow-chart, which is true for times t ≤ t∗:

Equilibrium
configurations

(B1)

��

(A1)
// Inherent

Structures

(A2)

��

Thermal
droplets

(B2)
// Hybrid

Minima

Actually, up to time t∗, we can reach hybrid minima enclosing an interface of the same
cost following both paths in the flow-chart above, i.e. paths A and B summarized below:

A Consider a set of equilibrium configurations at T .
(A1) Obtain the corresponding IS with a quench.
(A2) Build hybrid minima from IS according to method in sec. 3.2.2, and measure
average energy cost of enclosed interface.

B Consider a set of equilibrium configurations at T .
(B1) Build some amorphous excitations and let them relax at finite temperature.
(B2) Along relaxation, quench at various times, and measure energy cost of interface
enclosed in IS obtained from these quenches.

We can conclude that, at least at our lowest working temperature, T = 0.89Tc, the
hybrid minima enclosing an interface, studied in sec. 3.2, are the structures which underlie
finite-temperature excitations, and not merely an artifact of the IS approximations.
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Chapter 4

Interfaces in supercooled liquids:

fixed overlap simulations

Motivations. This section introduces a method developed to face from another point
of view the problem of measuring the surface tension in a supercooled liquid. When
producing amorphous excitations, hopefully similar to that predicted by RFOT, by using
either IS or thermal configurations, the basic strategy has been:

1. Identify which are the amorphous phases.

2. Build the interface between them and study it.

Clearly, the operative definition of amorphous phases was not arbitrary but, as far as
possible, in agreement with a reliable definition of ”phases” within a supercooled liquid
[2, 5, 69], e.g. minima of the potential energy (or equilibrum configurations near minima).
Once these phases were identified, the aim of the work presented in previous chapters was
to reproduce static excitations, as close as possible to the kind described by random first-
order theory [3, 4].
RFOT provides a neat relation between surface tension and correlation length. In the
simplest case (θ = 2), it is:

ξRFOT (T ) =
Υ(T )

TΣ(T )
. (4.1)

This is perhaps the simplest relation imaginable between surface tension and correla-
tion length. In the regime where Σ(T ) loosely depends on temperature, i.e., Σ(T ) ∼ Σ,
ξRFOT (T ) is simply a linear function of Υ(T ). In turn local excitations —the local real-
ization of mean-field states— are well-defined, i.e., ξRFOT 6= 0, only when surface tension
is different from zero. So far, so good.
Similarly, we could say that surface tension is present only when local excitations exist.
Inverting the standard protocol, we could first identify the regime where amorphous ex-
citations are present, and then look for surface tension in that regime. Following this
strategy is not recommended, as a measure of ξRFOT is not very simple, as demonstrated
in [34, 6].
Nevertheless, it is possible to retain, and perhaps also generalize, the main physical con-
tent of eq.(4.1):

• If there is any interesting correlation length in a supercooled liquid, then it should
be related to the energy cost of the interfaces dislocated within the system.
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Only recently numerical evidence has been shown indicating that the length-scale ξRFOT
of RFOT amorphous excitations grows at low temperature [6] (cfr. sec. 2.4.3): much
more effort has been devoted during the last decade to study of dynamical correlation
length ξDYN [7, 35, 36, 37, 38, 39, 40, 41, 42], which measures the correlation between
mobility of particles. It is still not clear which is the relation between ξDYN and ξRFOT ,
between dynamic and static cooperative regions. The purpose of the analysis introduced
here is to find some evidence that surface tension, a key ingredient of RFOT, is present
even between dynamically cooperative regions (DCR), in order to better understand the
interplay between the two different correlation lengths.
As a first step in this direction, dynamical heterogeneities are studied here in a peculiar
framework (fixed overlap), where they are presumed to behave differently according to
weather the DCR are or are not separated by well-defined interfaces with surface tension.

From the first introductory chapter, we know that the mode coupling temperature Tc
marks the border between activated dynamics —T ≤ Tc and leading length-scale ξRFOT—
and non-activated dynamics —T ≥ Tc and leading length-scale ξDYN .

Inhomogeneous Mode Coupling Theory (IMCT) [9, 10] places the divergence of ξDYN
at Tc, whereas according to RFOT ξRFOT is different from zero only below Tc. The
temperature regimes dominated by the two length-scales are specular with respect to Tc.
Nevertheless, on one hand, IMCT calculations are mean-field, i.e. the closer to Tc, the
more approximated they are; on the other hand, there are both numerical and theoretical
indications that ξRFOT may be finite even above Tc [6, 11, 12, 45]. It is therefore reasonable
to expect that, at temperatures around Tc, both correlation lengths ξRFOT and ξDYN play
a role. This is why we choose to investigate the surface tension between dynamically
correlated regions (DCR), whose extent is measure by ξDYN , precisely at Tc.

The existence of interfaces between DCR is investigated in this section by means of
a dynamical constraint on the overlap of a glass-forming liquid. We know from eq.(4.1)
that ξRFOT ∼ Υ, so let us assume here that also:

ξDYN = g(Υ), (4.2)

where g is an unknown function which links dynamical correlation length ξDYN and surface
tension Υ. We are therefore assuming that the existence of dynamically cooperative
regions is connected to the existence of interfaces with a well defined surface tension. The
correlation length ξDYN measures the extent of dynamical correlation at the relaxation
time, ξDYN = ξ(τ), whereas the extent of the same correlations at infinite time vanishes,
ξ(t→ ∞) = 0. We exploited the possibility that, if interfaces with a finite cost are present
between DCR, ξ(t) may display a different asymptotic behavior.

4.1 Constrained overlap

4.1.1 Definition of overlap

The model studied in this section is exactly the same glass-forming liquid model intro-
duced in sec. 3.2.1, i.e. a binary mixture of soft-spheres, present in equal amount in the
system. The only difference with the parameters introduced in sec. 3.2.1 is the size of
the system, here composed by N = 4096 particles, with a simulation box side L = 16. A
smaller system allowed to save computatational time in order to perform long dynamical
runs. All dynamical observables discussed this section are averaged over an ensemble of
20 configurations, equilibrated independently at the mode coupling temperature, T = Tc
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(Γ = 1.45). Dynamical runs are performed by means of a Montecarlo algorithm with tem-
perature fixed to T = Tc. Simulation at temperatures different from T = Tc are discussed
only in sec. 4.3.4.

Let us introduce a definition of the overlap between two configurations of a liquid
slightly different from those of sec.3.2.1. As in sec.3.2.1, we define a scale l for spatial
coarse-graining such that, partitioning the simulation box in cubic cells of side l, there is
a negligible probability of finding more than one particle in each cell. Actually, the side
of the cell is fixed to l = 0.4 (cfr. sec.3.2.1). Differently from sec.3.2.1, the definition
of overlap given here neglects the possibility of double occupation of a single cell, but
keeps track of the type of particles (we are working with a binary mixture). Let us call
the reference configuration α and β any other configuration of the liquid that we want
to compare with α. A value of overlap field qαβ(xi) is attached to each cell, xi being the
centre of the i-th cell, so that:

qαβ(xi) = nα(xi)nβ(xi)δab, (4.3)

where nα(xi), nβ(xi) are either 0 or 1, as the cell is empty or filled with at least one
particle. The two indices a and b are either 1 or −1, depending on which type of particle
is found in the cell, respectively in configurations α and β. Therefore, due to the kronecker
delta δab, local overlap qαβ(xi) is different from zero only when the cell is occupied by the
same kind of particle in both α and β. The global overlap between configurations α and
β is calculated as:

Qαβ =
1

V

∑

i∈V

nα(xi)nβ(xi)δaibi =
1

V

∑

i∈V

qαβ(xi) (4.4)

where sum index i runs over all the cells and V is the volume of the simulation box.
When the density of particles is set at ρ = 1, the definition of the overlap in eq.(4.4) fixes
the self-overlap at on, Qαα = 1. The overlap of system at time t along a dynamic run is
usually measured with the intial configuration:

Q(t) =
1

V

∑

i∈V

n(xi, t)n(xi, 0)δai(t)ai(0) =
1

V

∑

i∈V

q(xi, t). (4.5)

This sets the initial condition to Q(0) = 1.

4.1.2 Definition of constraint

In order to run a dynamic where the overlap with the initial configuration is fixed, we mod-
ified the acceptance ratio of a standard Monte Carlo algorithm. The standard Metropolis
criterion was been modified in order to reject, with probability 1, all displacements that
bring overlap Q(t) below a certain threshold value Q̂, which is an input parameter of the
simulation:

paccept = min{1, exp−∆E/T} Q(t) > Q̂

= 0 Q(t) ≤ Q̂ (4.6)

A non-local efficient algorithm [51] has been modified in the same manner. This algo-
rithm proposes the standard shift of particles but also a different kind of non-local move,
summarized as follows:
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1. A pair of particles is randomly choosen in the system.

2. Particle positions are exchanged.

3. Both particles are shifted after the exchange.

4. The whole move is accepted or rejected, according to the Metropolis criterion.

Within the above list of operations, Q(t) is evaluated at step 4), and, in turn, the whole
move is accepted or rejected in order to to have Q(t) ≥ Q̂. Clearly, the non-local algo-
rithm is not used to simulate the dynamics, but rather to check the asymptotic behavior
of time-dependent quantities, i.e. ξ(t).

4.1.3 Effect of constraint

Fixing a lower threshold Q̂ apparently lets the system explore the whole phase space with
Q(t) ≥ Q̂. Nevertheless, since in the unconstrained system Q(t) may only decrease with
time, at times greater than t∗ — this is the first time that Q(t∗) ∼ Q̂ — the system
ends by getting stuck on the hypersurface defined by Q(t) = Q̂. Fig.(4.1) shows the
behavior of the total overlap, averaged over 20 initial conditions at T = Tc, both with
free dynamics (black squares) and with constraint Q̂ = 0.25 (red circles). Along the
constrained dynamics, the systems evolves freely until Q(t) ∼ Q̂. At times t ≥ t∗, only
small fluctuations of Q(t) above the threshold take place, as can be seen from the inset
of fig.4.1.
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Figure 4.1: 〈Q(t)〉 vs t, with free (red circles) and constrained, Q̂ = 0.25, (black squares)
dynamics. Average is over 20 samples at T = Tc. Inset Q(t) − Q̂, data from a single
sample.
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4.2 Study of non-linear susceptibility χ4(t)

Non-linear susceptibility χ4(t) is the observable most often considered in order to study
dynamical heterogeneities in supercooled liquids [35, 36, 37, 38, 39, 40, 41, 42, 7]. This
susceptibility represents a measure of the volume of dynamically correlated regions; it is
defined as the integral of the four-point correlation function:

χ4(t) = β

∫

V

g4(r, t)dr. (4.7)

An increasing correlation length is in fact related to an increasing susceptibility, hence
the interest of χ4(t). Correlation function g4(r, t) may be written in terms of the local
overlap field:

g4(r, t) = 〈q(r, t)q(r, 0)〉 − 〈q(r, t)〉〈q(r, 0)〉. (4.8)

From the definition of the total overlap

Q(t) =
1

V

∫

drq(r, t) (4.9)

it follows that:
χ4(t) = βV

[

〈Q(t)2〉 − 〈Q(t)〉2
]

, (4.10)

i.e., the dynamical susceptibility is proportional to the mean square deviation of the time
correlation Q(t) of the system. Because a supercooled liquid is an ergodic system, at
long times the memory of the inital configuration is lost: the average value of overlap
〈Q(t)〉, i.e., the correlation C(t), decreases monotonically to zero (see fig.4.1). When the
temperature is lowered, a supercooled liquid manifests a transient tendency to glassiness,
i.e., the particle mobility becomes correlated on an increasing length-scale ξ(t), which has
its maximum at the relaxation time τ of the system, hence ξDYN = ξ(τ). This tendency is
transient in that ξ(t→ ∞) = 0. Regarding glass transition as a dynamical critical point,
in approaching this point, according to the theory of dynamics at criticality, the physics
of the system must be invariant under a rescaling of time —and length— scales [70]. In
this case, the correlation function g4(r, t) must obey the simple scaling:

g4(r, t) = r2−d−ηĝ4(r/ξ, t/τ), (4.11)

where ξ and τ are the relevant length and time scales at a given temperature. Together
with the above scaling assumption the integral in eq.(4.7) yields:

χ4(t) ∼ ξ(t)2−η〈Q(t)〉2. (4.12)

As mentioned above, at long times the correlation vanishes due to ergodicity, 〈Q(t)〉2 → 0,
and therefore also susceptibility vanishes. What about dynamic correlation length ξ(t)? In
principle, it may be different from zero. Numerical results have shown that ξ(t→ ∞) → 0
[71]. As when χ4(t) = 0, also ξ(t) is zero, χ4(t) may be regarded as a reliable indicator of
the extent of dynamical correlations.
Equation (4.10) shows that non-linear susceptibility can easily be computed from the
fluctuations ofQ(t), with no need to deal with g4(r, t). Although χ4(t) is a reliable measure
of dynamical correlations in a standard situation, what about constrained dynamics? Is it
still possible to measure the extent of dynamical correlations from the fluctuations of Q(t)
(eq.(4.10))? The behavior of χ4(t) when the dynamic is constrained is shown in fig.4.2,
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dynamics,Q̂ = 0.25, circles. χ4(t) along constrained dynamics drops to zero at t∗ such
that Q(t∗) ∼ Q̂, cfr fig.(4.1).

where it is compared with the same quantity measured along free dynamic. With a free
dynamic, χ4(t) displays its well-known non-monotonic behavior. Instead the constrain on
Q(t) suppresses sample-to-sample fluctuations as soon as Q(t) ∼ Q̂, so that Var[Q(t)] = 0
and χ4(t) = 0. When Q(t) ∼ Q̂, we have 〈Q(t)〉2 = Q̂2 > 0. Therefore, from eq.(4.12) we
can say that, as χ4(t) = 0 and 〈Q(t)〉2 > 0, correlation length ξ(t) must also be zero. It
is not true.
The simplification that leads from eq.(4.7) to eq.(4.12) assumes that g4(r, t) is a positive
definite function, which amounts to saying that χ4(t) vanishes only when modulus |g4(r, t)|
vanishes. This is equivalent to assuming the following relation:

∫

d(r/ξ) (r/ξ)4−d−η ĝ4 (r/ξ, t/τ) ∼ 〈Q(t)〉2, (4.13)

from which the scaling relation in eq.(4.12) follows. Nevertheless, susceptibility χ4(t) may
also vanish, because of the compensation of the positive and negative areas subtended by
g4(r, t), in the special case where the function develops some nodes. Thus, even with a
finite modulus |g4(r, t)| > 0 (except for the nodes), we may have zero susceptibility. In
this case:

∫

d(r/ξ) (r/ξ)4−d−η ĝ4 (r/ξ, t/τ) 6= 〈Q(t)〉2, (4.14)

and, consequently the scaling of eq.(4.12) is wrong. A correlation function normally
defined as positive may develop one or more nodes when a global conservation law is
imposed on a system [72]. As shown in the following, this is the case of dynamics with
constrained overlap.
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4.3 Asymptotic ξ(t) with constrained overlap

4.3.1 Four-point correlation function

With the coarse-graining of space in cubic cells of side l, our description of the liquid
passed from a continuum to a discretum: overlap field q(ri, t) is defined on the centers of
the cubic cells, which in turn form a cubic lattice. The connected part of the isotropic
four-point correlation function g4(r, t) is calculated as:

g4(r, t) =

∑

ij〈δqi(t)δqj(t)〉δ(r − rij)
∑

ij〈qi(0)qj(0)〉δ(r − rij)
. (4.15)

where sum indexes i,j label the cells of the box, rij is the distance between the centers of
the i-th and j-th cells, and:

δqi(t) = qi(t) − 〈Q(t)〉,
δqj(t) = qj(t) − 〈Q(t)〉. (4.16)

The above definition matches with the initial condition:

χ4(t = 0) = 0 =

∫

V

g4(r, t)dr. (4.17)

The correct discrete counterpart of the above (eq.4.17) integral is:

χ4(t) =
∑

r

ρ(r)g4(r, t)

χ4(t) =
∑

r

(

∑

ij

〈qi(0)qj(0)〉δ(r − rij)

)

g4(r, t)

χ4(t) =
1

N

∑

r

∑

ij

〈δqi(t)δqj(t)〉δ(r − rij)

χ4(t) =
1

N

∑

ij

〈δqi(t)δqj(t)〉 (4.18)

from which it also follows that:

χ4(t) =
1

N

∑

ij

〈δqi(t)δqj(t)〉 = N
[

〈Q(t)2〉 − 〈Q(t)〉2
]

. (4.19)

The time evolution of isotropic g4(r, t) is shown in figs.(4.3) and (4.5) for free dynamics
and figs.(4.4) and (4.5) for dynamics with constrained overlap. The four-point correlation
function g4(r, t), is closely related to the Van-Hove correlation function, g(r), of the liquid
[15], i.e.:

g4(r, t = 0) = g(r) − 1. (4.20)

Therefore, g4(r, t) is not positively defined, but rather fluctuates around zero. Comparing
figs.(4.3) and (4.4), it is clear that, along free dynamics, g4(r, t) fluctuations are more and
more damped, while modulus |g4(r, t)| remains finite with Q(t) constrained. That is, at
large times, g4(r, t) splits into two parts, subtending respectively a negative and a positive
area: clearly, the node placed between r = 6 and r = 7 (fig.4.4) has nothing to do with
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Figure 4.3: g4(r, t) at different times, measured in MC steps, along free dynamics.

the standard fluctuations of g4(r, t). As mentioned in [72], when describing the conserved
order parameter (COP) dynamics of an Ising model, the connected correlation function
of the system, although positive with free dynamics, may develop nodes when the order
parameter is conserved. In particular, the position of the first node yields an estimate of
the correlation length of the system [72]. In the present study, we are also dealing with
COP dynamics, the overlap playing the role of the conserved order parameter. Therefore
also the position of the node of g4(r, t) along our constrained dynamics may be regarded
as an estimate of correlation length ξ(t). The behavior of g4(r, t) along constrained dy-
namics shows that not only correlation length ξ(t) does not vanish for large times, but
also apparently saturates to a value ξ ∼ 6.5. This datum was found in agreement with
the analysis of dynamical structure factor S4(k, t) (see below).
Focusing on the behavior of the four-point correlation function and the related suscepti-
bility, the difference between free and constrained dynamics may be summarized as:

unconstrained dynamics =⇒ χ4(t→ ∞) = 0 =

∫

g4(r, t) ∼
∫

|g4(r, t)|

constrained dynamics =⇒ χ4(t > t∗) = 0 =

∫

g4(r, t) 6=
∫

|g4(r, t)| > 0,(4.21)

where, as usual, t∗ is the shortest time when Q(t∗) ∼ Q̂.
Let us now consider the representations of g4(r, t) with y axis in log scale. The envelope of
the peaks is well fitted with a function a(t) exp [−(r/ξ(t)))]. With constrained dynamics,
as can be seen from the straight lines in fig. 4.6, length scale ξ(t) —the inverse slope of
the lines— increases with time. Less clear is what happens with free dynamics: it is really
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difficult to disentangle the decrease of correlation length ξ(t) → 0 from the damping of
signal a(t) → 0.
As already mentioned, the problem of the behaviour of ξ(t) is still debated. In order
to fix the framework, let us choose the more conservative interpretation of the data:
ξ(t → ∞) → 0. A detailed study of the behavior of χ4(t) and g4(r, t) in a glass-forming
liquid may be found in [73, 71]. In particular, in [71] it is suggested that the behavior of
ξ(t) is better extrapolated from the low-momentum tail of the dynamic isotropic structure
factor Sc4(k, t), rather than from the envelope of g4(r, t) peaks.

4.3.2 Dynamic structure factor

The dynamic structure factor of a liquid is usually defined as [15]:

S(k, t) =
1

N
〈ρ(k, t)ρ(−k, t)〉, (4.22)

where ρ(k, t) is the Fourier transform of the density field. Similarly, we can define the
four-point isotropic dynamic structure factor as:

S4(k, t) =
1

N
〈q(k, t)q(−k, t)〉, (4.23)

where q(k, t) is the Fourier transform of the overlap field:

q(k, t) =
∑

i

exp [ik · ri] qi(t) (4.24)
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Figure 4.5: g4(r, t) at different times, measured in MC steps, along free dynamics, T = Tc;
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and index i labels lattice sites, i.e., centers of cells. The connected Sc4(k, t) differs from
S4(k, t) only by a delta function:

Sc4(k, t) =
1

N
= 〈δq(k, t)δq(−k, t)〉 = S4(k, t) − 〈Q(t)〉δk,0, (4.25)

where δq(k, t) is:

δq(k, t) =
∑

i

exp [ik · ri] (qi(t) − 〈Q(t)〉) . (4.26)

Therefore, except for k = 0, Sc4(k, t) = S4(k, t). We can show that connected dynamic
structure factor Sc4(k, t) is the Fourier transform of g4(r, t), according to the definition of
g4(r, t) given in eq.(4.15):

Sc4(k, t) = 〈δq(k, t)δq(−k, t)〉 =

=
1

N

∑

ij

exp [ik(ri − rj)] 〈δqi(t)δqj(t)〉

=
1

N

∑

r

exp [ikr]
∑

ij

〈δqi(t)δqj(t)〉δ(r − (ri − rj))

=
1

N

∑

r

exp [ikr]

[

∑

ij

〈qi(0)qj(0)〉δ(r − rij)

]

∑

ij〈δqi(t)δqj(t)〉δ(r − rij)
∑

ij〈qi(0)qj(0)〉δ(r − rij)

=
∑

r

exp [ikr] ρ(r)g4(r, t), (4.27)
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Figure 4.6: g4(r, t) at different times, measured in MC steps, along constrained dynamics,
Q̂ = 0.25, T = Tc; y-axis in log scale. At fixed time, the exponential decay of g4(r, t) peaks
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where ρ(r) =
∑

ij〈qi(0)qj(0)〉δ(r−rij). Moreover, from the definition of eq.(4.27) it follows
that:

χ4(t) =
1

β
Sc4(k → 0, t), (4.28)

because:

Sc4(k → 0, t) =
1

N

∑

r

ρ(r)g4(r, t)

=
1

N

∑

r

∑

ij

〈δqi(t)δqj(t)〉δ(r − rij)

=
1

N

∑

ij

〈δqi(t)δqj(t)〉 = χ4(t). (4.29)

Dynamical correlation length ξ(t) can be extracted from the low-k behavior of isotropic
dynamical structure factor Sc4(k, t). According to the Ornstein-Zernike approximation
[15], for small values of k we can write:

Sc4(k, t) =
Sc4(0, t)

1 + ξ(t)2k2
, (4.30)

so that ξ(t) can be obtained as a fit parameter from the low-k tail of Sc4(k, t). Fig.(4.7)
shows the behavior of Sc4(k, t) at different times along free (right panel) and constrained
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Figure 4.7: Sc4(k, t) measured at different times along constrained (left panel) and free
(right panel) dynamics, T = Tc; log-log scale.

(left panel) dynamics; the values of free and constrained ξ(t) are shown in fig.4.8. When
the system is free, ξ(t) decays to zero at large times, and with constrained dynamics size
ξ(t) of correlations keeps on increasing and saturates at a certain value. Studying both
the position of the node in g4(r, t) and the low-k behavior of Sc4(k, t), we can state that
this value is 6 < ξ(t→ ∞) < 7.

Let us note that the damping of Sc4(k, t) observed in fig.(4.7), right panel, corresponds
to the damping of g4(r, t) fluctuations observed in fig.(4.5). The extrapolation ”by eye”
to small k values of curves Sc4(k, t), in order to check that Sc4(0, t) ∼ χ4(t), can only be
done for the curves in the right panel of fig. 4.7 (free dynamics). More interesting is the
behavior of Sc4(k, t) along constrained dynamics. Let us stress in particular the following
points:

• We cannot expect Sc4(k → 0, t) ∼ χ4(t), because the conservation of Q(t) represents
a constraint on χ4(t) and hence exactly on Sc4(0, t). Therefore, we cannot expect
continuity from values of Sc4(k, t) at small k and Sc4(0, t).

• The values of ξ(t), obtained as a fit parameter from eq.(4.30), are in agreement with
the behavior of the low-k tail of Sc4(k, t). Fig.4.8 clearly shows that not only ξ(t) no
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Figure 4.8: ξ(t) vs t for free (empty circles) and constrained (full circles) dynamics, T =
Tc. Half error bars, which are very large, are reported in figure, only at the relaxation time
t = τ —peak of unconstrained ξ(t)– and at a large time. Error bars have been evaluated
by means of the bootstrap method. Their large size is the signature of the difficulty in
estimating the exact value of ξ(t) by fitting the low-k tail of the dynamic structure factor.

longer decreases, but also that it keeps on increasing and levels off at a finite value.

Outlook. We claim that the leveling of ξ(t) at a finite value signals that the system
has attained a phase separation between high, Q ∼ 1, and low, Q ∼ 0, overlap. Further
evidence supporting this assumption will be highlighted while summarizing results in sec.
5.4. In the following are presented some real-space snapshots of the q(r, t) field, in order
to show that, with constrained dynamics, correlations over large length-scales persist over
times beyond the relaxation time.

4.3.3 Visualizing phase separation.

Let us stress the different behavior of dynamical correlation length ξ(t) along free and
unconstrained dynamics. With free dynamics, ξ(t) decays to zero at large times1; with
constrained overlap, it keeps on increasing for times larger than the relaxation time and
levels off at a finite value. Fig. 4.9 and 4.10 show snapshots of field q(r, t) at the relaxation

1ξ(t) does not decrease exactly to zero but to ξ(t = ∞) = 0.2. This is because, according to the
definition of sec. 4.1.1, the overlap between two configurations is never precisely 0. At any time, there
is a finite probability of finding a particle of type A in a cell occupied by a particle of the same type at
time t = 0. More precisely, this probability corresponds to the total number of type-A particles divided
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Figure 4.9: Local fluctuations of the overlap field, δq(r, t)/Q(t) = (q(r, t) − Q(t))/Q(t).
The snapshot represents a slice of the system at fixed height, along free dynamics, at the
relaxation time of the system, t = τ , at the mode coupling temperature, T = Tc.

time, i.e. τ ∼ 4.0 · 104 MC steps for T = Tc, when large-scale fluctuations of the field
are present both with free and constrained dynamics. Conversely, at times larger than
the relaxation time, the constrained system still displays large-scale fluctuations of q(r, t)
(fig. 4.12); in the unconstrained system (fig.4.11) the length-scale of q(r, t) correlations is
significantly reduced. In the latter case, deviations from the average value of the overlap
over the sample, Q(t) = 1/V

∑

i q(ri, t), are isolated and due to the event of a single
particle occupying a cell also filled at t = 0. Our interpretation is that, with constrained
dynamics, the size of regions with the same value of order parameter Q increases until
phase separation between high and low Q regions is attained. This should happen, in
order to minimize the surface tension stored in the interfaces between regions with high
and low value of the overlap. Study of the internal energy of the system along constrained

by the number of cells, i.e., q(t = ∞) = 0.032. From the definition of gr(r, t) :

g4(r, t) =

∑

ij〈δ(qi(t) − 〈Q(t)〉)(qj(t) − 〈Q(t)〉)〉δ(r − rij)
∑

ij〈qi(0)qj(0)〉δ(r − rij)
(4.31)

we know that, the larger the deviation of qi(t) from 〈Q(t)〉, the larger |g4(r, t)|. Hence, correlation length
ξ(t) calculated from Fourier transform Sc

4
(k, t) measures the size of regions where the the value of q(r, t)

has larger fluctuations from the average 〈Q(t)〉. Then, when Q(t) ∼ 0.032, ξ(t) measures the size of
regions with high overlap q. As mentioned above, it is possible to find a cell occupied at t = 0 filled with
a particle of the same type at any time; hence, over a region of volume l3, the overlap shows a pronounced
fluctuation from the asymptotic value. It is the linear size, l = 0.2, of this region that is measured by
ξ(t = ∞) along unconstrained dynamics.
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Figure 4.10: Local fluctuations of the overlap field, δq(r, t)/Q(t) = (q(r, t) − Q(t))/Q(t).
The snapshot represents a slice of the system at fixed height, along constrained dynamics,
Q̂ = 0.25, at the relaxation time of the system, t = τ , at the mode coupling temperature,
T = Tc.

dynamics, which will be discussed in sec. 5.4, gives further support to this interpretation.
The following discusses the effect of the overlap constraint at different temperatures, in
order to show that the leveling of ξ(t) at a finite value is not a trivial effect of the threshold,
Q̂, choosen for the overlap.

4.3.4 Constrained dynamics above Tc.

Monte Carlo simulations with the efficient algorithm of [51], which employs non-local
moves, are not suitable to study the dynamics of the system. Nevertheless, this algorithm
allows us to save computing time when we are only interested in the asymptotic value
ξ(t → ∞) = ξ∞. While the dynamics of the system has been studied in detail only at
T = Tc, the asymptotic behavior of ξ(t) has also been studied for other temperatures,
i.e., T = 2.13, 1.55 and 1.15Tc. At all these temperatures, the constrained dynamics was
performed with the same threshold value, Q̂ = 0.25, for the overlap. The various values
of ξ∞ are listed in Tab.(4.1): clearly, ξ∞ increases as the temperature falls. The finding
of ξ∞ values that actually depend on temperature, ξ∞ = ξ∞(T ), is enough to rule out the
possibility that the effect of the constraint on the dynamics is trivial.
The finding of a finite ξ∞ when constraining the overlap —i.e. breaking the ergodicity of

the system— may in principle be trivial. As observed for p-spin models and mode coupling
theory, ergodicity breaking is always associated with finite correlations at infinite time,
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Figure 4.11: Local fluctuations of the overlap field, δq(r, t)/Q(t) = (q(r, t) − Q(t))/Q(t).
The snapshot represents a slice of the system at fixed height, along free dynamics, at a
time when overlap is significantively decreased, Q(t) ∼ 0.05 (t = 6.4 · 105 MC steps), at
the mode coupling temperature, T = Tc.

Q(t = ∞) 6= 0: therefore, ξ(t = ∞) 6= 0 can be expected. Following the same line
of reasoning, we should also expect that for identical values of the correlation function
at infinite time, i.e., 〈Q(t = ∞)〉 = Q̂, must be found the same value of ξ(t = ∞),
independently of temperature. The fact that ξ∞ changes with temperature while imposing
the same constraint, Q̂ = 0.25, is the main evidence that the phenomenon observed does
not depend trivially on the induced breaking ergodicity.

T ξ∞
1.00 Tc 6.49(21)
1.15 Tc 4.12(19)
1.55 Tc 1.31(03)
2.13 Tc 0.75(03)

Table 4.1: Asymptotic values of dynamical correlation length ξ∞ = ξ(t→ ∞); results are
from simulations with MC non-local algorithm. Errors are evaluated from fluctuations of
ξ(t) since it attains a nearly costant value.
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Figure 4.12: Local fluctuations of the overlap field, δq(r, t)/Q(t) = (q(r, t) − Q(t))/Q(t).
The snapshot represents a slice of the system at fixed height, along constrained dynamics,
Q̂ = 0.25, at a large time, t >> τ (t = 1.28 · 106 MC steps), at the mode coupling
temperature, T = Tc.
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Chapter 5

Surface tension, RFOT and

dynamical heterogeneities

This section describes the most important results obtained facing the problem of surface
tension in supercooled liquids with the two strategies outlined in previous chapters: first,
selecting the amorphous phases of the supercooled liquid and artificially introducing the
interfaces; second, performing a fixed overlap dynamic in order to test the hypothesis of
a surface tension existing even between dynamically cooperative regions. In order, these
results concern the following points:

Spinodal point for RFOT excitations. RFOT theory pictures a supercooled as a mo-
saic of amorphous domains, whose typical linear size ξRFOT is:

ξRFOT =

(

Υ

TΣ

)
1

d−θ

(5.1)

The numerical calculation of Υ allows us to fix an upper limit of validity of the
RFOT scenario. This limit turns out to be well-definied as a function of energy, not
of temperature. Connections with the topological crossover scenario [2, 23, 27, 28]
are outlined.

Surface tension fluctuations and RFOT. The increase in length-scale ξRFOT at low
temperatures is traced in the behaviour of the point-to-set correlation function qc(R)
[6]. The landmark of the liquid/supercooled-liquid crossover is the crossover to a
low-temperature non-exponential decay of qc(R). The shape of the non-exponential
decay is governed by the shape of surface tension distribution P (Υ). Below the
MCT temperature T < Tc we find a distribution, P (Υ), in quantitative agreement
with previous results on qc(R) [6].

Time and length scale within RFOT. We introduce the measure of surface tension
as a tool to study relaxation of amorphous excitations. As the formation and relax-
ation of excitations are closely related, we can study the scaling of the free energy
barrier to nucleate an amorphous droplet:

∆F = ξψRFOT , (5.2)

in order to fix a value for the exponent ψ, which is left free in the RFOT formulation
of [4].
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Surface tension and dynamical heterogeneities: COP coarsening. We show fur-
ther evidence supporting the phase separated scenario achieved with fixed overlap
dynamics. That is, the behaviour of system energy is shown to be compatible with
conserved orderd parameter (COP) coarsening, a phenomenon were surface tension
plays a major role.

5.1 Spinodal point for RFOT excitations

The existence of many amorphous excitations is central to the mechanism of relaxation of
RFOT. But, in order for such non-trivial excitations to exist, a non-zero surface tension is
necessarily required. Moreover, the regime of validity of RFOT is bounded by a spinodal
mechanism. While, at mean-field level, the spinodal transition corresponds to the point
at which metastable states disappear[74], RFOT predicts that it is rather the surface ten-
sion Υ between finite-dimensional amorphous excitations which vanishes at temperatures
higher than a spinodal value [31], loosely identified with the Mode Coupling temperature
[14].
Having fixed exponents θ and ω in eq. (5.3), governing the increase in the energy cost of
an amorphous droplet (sec. 3.3.1 and 3.3.2):

〈∆E(R)〉 = Υ∞R
θ − δRω (5.3)

∆E(R) data can be fitted very well (fig. 3.7 sec. 3.3.1) to obtain asymptotic surface
tension Υ∞ as a function of temperature T (fig. 5.1, top). We find that Υ∞ decreases with
increasing T , and becomes quite small above Tc. This behaviour makes sense, indicating
that amorphous excitations become softer as the temperature is raised. This is indeed
what we expect physically as the system moves towards a spinodal point. Yet the decrease
in surface tension is quite smooth, so that it is hard to define a spinodal temperature
sharply. Since Tc roughly corresponds to the point at which activated processes become
important for the relaxation of the system, we might expect that spinodal temperature
and Tc would coincide [31]. However, our numerical data show that this is not really
the case: although Tc is definitely within the range of temperatures where Υ∞ becomes
negligible, amorphous excitations with non-zero surface tension do exist even above Tc.
However, the onset of glassiness is never sharp in temperature. Nevertheless, regarding

energy rather than temperature as a control parameter, a well-defined spinodal point
clearly emerges: the Υ∞ vs. eIS(T ) curve is nearly linear (fig. 5.2, left), and Υ∞ vanishes
at energy eth.
It is quite interesting to note that eth is very close to threshold energy, i.e., the value
below which minima start to dominate the energy landscape [27, 28]. More precisely,
the threshold is defined as the point at which the instability index of saddles vanishes
(fig. 5.2, right). Hence, the true spinodal point of amorphous excitations, fixing the upper
limit of stability of the RFOT mechanism, is the very same energy eth where a topological
transition from saddle to minima takes place. This sharp transition in phase space, i.e. the
vanishing of the saddle index from above and the surface tension from below, becomes a
smooth crossover when studied as a function of temperature. Our results therefore indicate
that energy, and not temperature, is the control parameter of dynamic glass transition,
and that eth truly marks the onset of glassiness: below the threshold energy, unstable
saddles give way to stable minima and a non-zero surface tension develops, making it
possible to sustain local amorphous excitations, whose relaxation is responsible for the
sharp increase in relaxation time.
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Figure 5.1: Upper panel: Y∞ as a function of the quenching temperature of the inherent
structures. The vertical dotted line marks the mode coupling temperature. The surface
tension decreases on increasing T , although too smoothly to indicate a sharp spinodal
temperature. Lower panel: inherent structure energy as a function of the quenching tem-
perature.
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Figure 5.2: Left: Y∞ (squares) vs. IS energy. Right: intensive saddle instability index k
(circles) vs. IS energy (data from ref. [28]). Lines are linear fits. Both the surface tension
and the instability index seem to vanish at a similar energy, the threshold eth, which is
therefore the spinodal point.
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Linear decrease of Υ(T ). Let us recall here the behaviour of barriers between adjacient
minima, found in [27] and mentioned in sec.2.3 (fig.2.4) speaking about the connection
between the topological crossover and the mode coupling temperature. It is interesting to
note that both the height of barriers shown in fig. 2.4 and surface tension (fig.5.2), are
linear functions of the energy of the IS. This suggests a link between the two phenomena.
Not only the crossover from saddles to minima is related to the appearance of finite surface
tension. Furthermore the way surface tension increases, when lowering the energy below
eth, is qualitatively similar to the increase of barriers between adjacient minima. Therefore
the existence of RFOT excitations, i.e. local realization of mean-field metastable states,
appears to be, studying the behaviour of surface tension, intimately connected with the
topology of Potential Energy Landscape.

Spinodal point and Mode Coupling Theory. According to our data (fig.5.1) acti-
vated events start to play a role even above Tc. How can we recover an agremeent with
[27], in which the authors produced evidence that threshold temperature Tth corresponds
to mode coupling temperature Tc?
Should we really expect saddle-minima threshold temperature Tth and mode coupling
temperature Tc to be the same? A strong point made in [27] is that, as soon as activated
mechanisms are required for relaxation —RFOT escitations enter the game— they are
very inefficient, hence the abrupt increase in relaxation times. Conversely our data on sur-
face tension indicate that, when they appear, activated events are very efficient, because
of very small surface tension. This means that at the threshold the time-scales for barrier
hopping and for finding unstable directions can hardly be distinguished. We do agree
with the strong point that, at Tc, the activation mechanism is inefficient: we only claim
that Tth lies slightly above Tc and that, at Tth, activation and relaxation along unsta-
ble directions are still competitive. This scenario is quite interesting. RFOT excitations
turn out to be well-defined also above Tc, although there activation is not the dominant
relaxational mechanism. At temperatures above Tc, the slowing down of glass-forming
liquids is well described in the context of dynamical heterogeneities, where the dynamical
length-scale ξDYN is studied. The existence of a temperature range, that is, from our
data, Tc ≤ T ≤ Tth, where both dynamical and thermodynamical excitations are well
defined, seems interesting in order to investigate the relation between the two different
length-scales ξRFOT and ξDYN . Numerical evidence of a temperature interval in which
ξRFOT and ξDYN are both finite can be found in [12] and is also supported theoretically
in [11].

5.2 Surface tension fluctuations and RFOT

In [6], the signature of mosaic-like anomalous behaviour is traced in the overlap with a
reference configuration of an equilibrated sphere in the presence of a frozen boundary. A
fit of this overlap, q(R;T ), vs the radius of the sphere defines the non-trivial exponent of
a compressed exponential, low temperature anomaly ζ. In this context, it is suggested
that the width of the surface tension distribution governs the extent of such an anomaly
(cfr sec.2.4.3), due to the following connection between q(R;T ) and P (Υ;T ):

q(R;T ) − q0 = (q1 − q0)

∫ ∞

TΣRd−2

dΥ′P (Υ′;T ) (5.4)
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where q1 and q0 stand for the self-overlap and the mutual-overlap of the low temperature
mosaic states.
Distribution of tensions between RFOT states were numerically obtained (cfr. sec. 3.3.3),
but comparison of our results with those for q(R;T ) in [6] needs some attention. First, we
measured the contact cost of each pair of inherent structures arbitrarily chosen. Instead,
the spontaneous formation of a nucleus in the cavity with a frozen boundary only happens
if the final configuration is convenient from the energy viewpoint. To take into account
only such configurations, we must restrict analysis to a subset of contact energy values
∆EIS

αβ. Consider all the hybrid minima Cαβ, in which the parent IS β of particles outside
the spherical cavity is fixed, while the state α inside the cavity can change. Among these
let us retain only the hybrid minimum with the lowest value of energy EIS

αβ:

EIS
α∗β = min

α
{EIS

αβ}. (5.5)

Thus, only the subset of contact energy ∆EIS
α∗β is such that the final energy is the lowest

for fixed external configuration β, i.e.:

∆EIS
α∗β = EIS

α∗β − EIN
α∗ − EOUT

β , (5.6)

which represents the surface energy typical of a droplet which grows spontaneously in the
numerical experiment studied in [6].
From

y(R) =
∆EIS

α∗β

R2
, (5.7)

we again find distribution P(y;R, T ) for each temperature T and each radius R. When
the surface tension distribution was introduced in [6] no dependence of P (y, T ) on the
size of the excitation was accounted for. Differently, as described in sec.3.3.3 (cfr. fig.
3.13) the distributions we find strongly depend on the size of the excitation:

P (y, T ) =⇒ P (y,R, T ) (5.8)

We have a collection of P (y;R, T ) for each temperature T , instead of the single distribution
P (Υ;T ) suggested in [6]. This is because we artificially construct droplets of arbitrary
size. However, we think that the probability distribution playing the main role in free
droplet formation is, at each temperature, the probability distribution at critical size,
P (y;Rc(T ), T ). Only around Rc, according to RFOT, does the most frequent droplet
formation occour. Recovering q(R;T ) using our distribution, P (y;Rc(T ), T ), in eq.(5.4),
needs the not clearly known value of complexity Σ of our system. Due to the lack of this
parameter, it is worth defininig a new function, q̂(y;T ), linked to q(R;T ) via a simple
change of variable:

q̂(y;T ) =

∫ ∞

y

P (y′;Rc(T ), T )dy′. (5.9)

Indeed, if distribution P (y′;Rc(T ), T ) has the same shape as distribution P (Υ′;T ), as
suggested in (5.4), it follows that:

q(R;T ) = (q1 − q0)q̂(TΣRd−2;T ). (5.10)
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, with yc and ζ fit parameters, ζ = 4.4 ± 0.3. Remarkable agreement
is found with ζ = 4.0 ± 0.6, non-exponentiality degree of qc(R, T ) [6] at T = 0.89Tc.
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with: Σ = 0.39, T = 0.89Tc. q(y/TΣ) is q(y) =
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P (y′;Rc(T ), T )dy′ with x-axis rescaled

by TΣ. Value Σ = 0.39 of complexity leads to a remarkable collapse of the two curves.

The feature showing the anomaly with respect to simple exponential decay of the
point-to-set correlation function, is exponent ζ 6= 1 of the best fitting function for q(R;T ):

q(R;T ) = Ω exp(−(R/Rc(T ))ζ). (5.11)
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From (5.10), it follows that, for q̂(y;T ) we have:

q̂(y;T ) = exp(−(y/yc(T ))ζ) (5.12)

where yc = TΣRd−2
c , while the parameter was only Ω giving an estimate of q1 − q0.

Without any assumption regarding the value of complexity Σ, a fit as shown in eq.(5.12),
with yc(T ) and ζ as fit parameters, gives the value of the anomaly deriving from the
distribution of the surface tension.
The result for the exponent ζ at T = 0.89Tc is

ζ = 4.4 ± 0.3, (5.13)

which is a value comparable with the anomaly obtained from the fit of q(R;T ) in [6]:

ζ = 4.0 ± 0.6. (5.14)

Instead, direct comparison of q(R;T ) in [6] with q̂(y;T ) can lead to an extimate of com-
plexity. From eq.(5.10) an x-axis rescaling in q̂(y;T ) by a factor TΣ should make it
collapse on q(R;T ). In particular, after rescaling the y-axis by constant prefactor q1 − q0,
a variation of factor TΣ is achieved, yielding the best collapse of the two curves. Fig. 5.4
shows the collapse of q̂(y;T = 0.89Tc) onto q(R;T = 0.89Tc) obtained with Σ = 0.39.
Unfortunately, extimates of Σ with which to compare this result are not abundant in
the literature; the only reference value calculated for the same soft-sphere binary-mixture
system is Σ ∼ 0.7 in [75].

The numerical data of the energy cost of a surface between two inherent structures are
perfectly sufficient to justify, in the RFOT theory scheme, the compressed exponentiality
in the overlap found in [6] at T = 0.89Tc: at this temperature, we have quantitative
evidence that the mosaic mechanism is effectively at work [45]. At higher temperatures,
the correspondence between the results in [6] and ours is not as good as at T = 0.89Tc.
Indeed, while at T = 1.09Tc, in [6], a compressed exponential for the overlap is still found,
at the same temperature we find a distribution P (y;Rc(T = 1.09Tc)) which displays a
large fraction of negative energy costs (cfr. fig. 3.14 in sec. 3.3.3) and has also a mean
value smaller than zero. The presence of a large number of negative surface tensions and
a negative mean value in the high-temperature cases is due to the disorder correction
term δRω, not previously considered. As mentioned, bove Tc the surface tension Υ∞

between amoprhous states is very small [45], therefore in eq.(5.3) quadratic term Υ∞R
θ is

dominated by roughening correction δRω. The functional form introduced in [6] for P (y)
obviously does not account for negative valuse of y, therefore is not possible to compare
our P (y,Rc(T = 1.09Tc), T ) with data at T = 1.09Tc found in [6].

5.3 Time and length scales within RFOT

Starting from its first formulation in [3], the main challenge for the RFOT theory was to
establish a functional relation between the increase in cooperative length ξRFOT and the
increase in relaxational time τ of a supercooled liquid. As noted in sec. 2.4.2, in order to
do this we need to know exponents θ and ψ appearing in:

τ ∼ exp

[

(

A

T − TK

)
ψ

d−θ

]

. (5.15)
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In sec. 3.3.1 and 3.4.2 it was shown how the value of θ can be fixed to θ = 2 in the
glass-forming liquid model studied here. This section describes how to estimate exponent
ψ from the relaxation of amorphous droplets at finite temperature.
The relaxation in deeply supercooled liquids proceeds through the activated rearrange-
ment of clusters of correlated particles. As a result, the relaxation time increases expo-
nentially with the size of these regions (eq. (2.36)). In this framework it is expected that
the time-scales involved in the formation and relaxation of cooperative regions are in fact
the same: each excitation relaxes through the cooperative rearrangement of new excita-
tions. This means that we can follow the process of relaxation of an artificially produced
excitation, rather than detect the spontaneous formation of it. This is the main working
hypothesis we need to obtain ψ from data.
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Figure 5.5: 〈∆E(R, t)〉 vs. t for R ranging from 4 to 8, left to right. Points are ex-
perimental data, curves are power law 〈∆E(t, R)〉 ∼ t−γ(R) fits. The fits are used to
give an estimate of τ ∗(R), as shown in figure. The values of γ are within the range
0.2 < γ(R) < 0.4.

Actually, according to the method introduced in sec.3.4.1 to simulate amorphus excita-
tions at finite temperature, we studied how average excess energy 〈∆E(t, R)〉 of different
sized excitations relaxes with time. In particular we studied how at T = 0.89Tc, that is
the temperature at which mosaic mechanism is certainly at work, the rate of relaxation of
the excitations changes with their size R. These data are shown in fig. 5.5: larger spheres
relax over larger time scales. By simply fixing a threshold value ∆E∗ for 〈∆E(t, R)〉
and measuring the time needed to have 〈∆E(t, R)〉 < ∆E∗, yields an estimate of time τ
needed to relax an excitation of size R. The same procedure was performed at different
sizes R of the sphere, thus obtaining a function, τ(R). According to:

τ ∼ exp
(

Rψ/T
)

, (5.16)

T log(τ) must scale as Rψ. The log-log plot of fig. 5.6 is reported shows T log(τ) vs. R.
The data lie on a straight line with good approximation, thus confirming that the process
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Figure 5.6: T log(τ) vs. R ; the linear behaviour on log-log plot allows for a scaling ansatz
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of relaxation of the excitations does follow the Arrhenius law. A fit of the exponent gives
ψ = 1.01 ± 0.04, and we may therefore conclude:

ψ = 1. (5.17)

Inserting our results for exponent θ [45, 76] and ψ [76] in eq.(5.15), we get back the well-
known Vogel-Fulcher-Tamman law that link relaxation time and temperature in fragile
glass-forming liquids:

τ ∼ exp

(

A

T − TK

)

(5.18)

Free energy barriers within the RFOT. Our result, θ = 2, is somewhat sensible
and not particularly exciting: it is basically telling us that disorder in a supercooled
liquid is not strong enough to change the leading term of the surface energy cost in any
exotic way: surfaces remain surfaces, albeit a bit rough. It must be said that the value
θ = d/2 derived in [3], by means of RG arguments, always had its greatest appeal in the
fact that, together with ψ = θ, it gave back the VFT equation (5.18). The arguments
used in [3] to fix θ do not belong to RFOT itself, and other values are, in principle,
compatible with the conceptual structure of RFOT. Instead, the value found for ψ within
RFOT regards a crucial aspect of the theory. Hence, it seems that the really interesting
comparison is about the exponent ψ, after all. Value ψ = 1 implies that the barrier for
the rearrangement of a correlated region scales linearly with its size:

∆F ∼ ξRFOT . (5.19)

Let us check if, within the theoretical scheme of RFOT, there is any theoretical constraint
against this small value of the free energy barrier, i.e., ψ = 1. How much should pay the
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system in order to rearrange a region of linear size ξRFOT ? The first expectation is
that the greatest part of the energy necessary to create the excitation is stored in the
interface. Hence, one may expect that the barrier scales with the same exponent as the
surface energy cost, i.e. θ. This idea is deeply rooted in the theory of nucleation, which was
indeed a source of inspiration for the original formulation of RFOT [3]. According to this
formulation there are two competing forces: the free-energy cost to create an excitation,
scaling as ΥRθ, and the configurational entropy gain due to the change of state of the
rearranging region, scaling as TΣRd. In these two expressions Υ is the surface tension
and Σ is the configurational entropy. Hence, the total free energy for the formation of the
excitation is, according to RFOT,

∆F (R) = ΥRθ − TΣRd. (5.20)

At this point, in perfect analogy with nucleation theory, RFOT proceeds by finding the
maximum of such non-monotonous function (recall that θ < d). This maximum provides
two essential pieces of information: first, the position of the maximum, R = ξ, gives the
critical size of the rearranging region, i.e., the mosaic correlation length:

ξRFOT =

(

Υ

TSc

)
1

d−θ

. (5.21)

Second, and most important in this contex, the height of the maximum, ∆F (R = ξRFOT ),
gives the size of the free-energy barrier to be crossed to rearrange the region:

∆F (R = ξRFOT ) ∼ ξθRFOT . (5.22)

This fixes ψ = θ, and coincides with the intuitive notion that the barrier should scale in
exactly the same way as the interface cost.

This last result, however, is at variance with what we find here, eq.(5.19). Whatever
one may think about our numerical result for θ, a value of θ as small as 1 seems rather
unlikely. In any case, it is important to emphasize that ψ = θ is a consequence of
the maximization of eq. (5.20), which, in turn, follows from the nucleation paradigm.
However, as mentioned in the introductory section 2.4.2, it has been noted that nucleation
is perhaps not a fully correct paradigm to describe the formation of amorphous excitations
within a deeply supercooled liquid [4]. The essence of RFOT — i.e., the competition
between a surface energetic term and a bulk entropic term— retains its deepest value
even though we do not enclose it within the strict boundaries of nucleation theory. The
value of the correlation length may come from the point where the two contributions
balance, rather than from the maximum of (5.20), and (for obvious dimensional reasons)
we obtain the same expression (5.21) for ξRFOT (up to an irrelevant constant), while ψ
remains undetermined. These points are discussed in depth in ref. [4]. Here we simply
note that our present results are quite compatible with RFOT in the form in which it was
recast in ref. [4], without reference to a nucleation mechanism.

Free energy barriers in structural and spin glasses. Regarding the comparison
between θ and ψ, there is a final point to be to discussed. Readers familiar with spin-glass
physics will probably remember the Fisher-Huse (FH) inequality, [33]:

ψ ≥ θ, (5.23)
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which is plainly violated by the values we find here. The physical motivation of eq.(5.23)
is basically the following: if we represent the excitation as an asymmetric one-dimensional
double well, where the abscissa is the order parameter and the ordinate is the energy of
the excitation, the height of the barrier (which scales as ξψ) is always larger than (or equal
to) the height of the secondary minimum (which scales as ξθ), and hence ψ ≥ θ. How is it,
then, that we find ψ < θ? The FH argument was formulated in the context of the droplet
picture for spin-glasses, where there are only two possible ground states. In supercooled
liquids, in contrast, a rearranging region can choose among an exponentially large number
of target configurations. In these conditions, although the FH constraint still applies to
the energy barrier, there may be a non-trivial entropic contribution that decreases the
free energy barrier to rearrangement. We determine ψ by measuring a time, and hence a
free-energy barrier, not an energy barrier, so that the FH constraint does not necessarily
hold in the case of supercooled liquids. This entropic effect is absent in the original FH
argument, due to the lack of exponential degeneracy of target configurations (in fact, one
would expect relation (5.23) to hold even in the mean-field picture of spin-glasses, where
the number of ground states is large but the configurational entropy is still zero). How
the FH argument should be modified in the presence of such a large entropic contribution
is, however, not clear at this point.

5.4 Surface tension and dynamical heterogeneities

In this section data are presented which put on firmer basis the phase-separated scenario
described in sec. 4.3.3. In particular, it is shown that the total energy of the system, when
the overlap is constrained, decreases with time according to the predictions of constrained
order parameter coarsening (COP coarsening).
This is the basis allowing us to state that interfaces with a well-defined surface tension
are present even between dynamically cooperative regions (DCR).

COP Coarsening Let us consider a system which has a phase transition at the critical
temperature T0, with two low-temperature equilibrium phases. If we perform a fast quench
of this system from above to below T0, domains of the two equilibrium phases start to
grow until a complete phase separation is attained.
Along the transient regime where domain growth takes place, the correlation length ξ of
the system actually depends on time, ξ = ξ(t): this transient regime is called coarsening.
The scaling of ξ(t) with time along coarsening was studied for the first time in [77, 78, 79],
while a comprehensive review of the subject is found in [80]. Independently Lifshitz and
Slyozov [77], and Wagner [78], developed a theory which describes the growth of a nucleus
of one phase in the bulk of the other phase. In this situation, the linear size ξ(t) of the
nucleus grows according to:

ξ(t) ∼ (Υt)1/3, (5.24)

where Υ is the surface tension between the two phases. Eq.(5.24) is obtained when the
order parameter is globally conserved and the dynamics of the system is local (ξ(t) ∼
(Υt)1/2 for non conserved order parameter).
Along coarsening, at late times, the dominant growth mechanism is the flattening of
interfaces, which is carried on by the system in order to minimize surface tension, in turn
proportional to interface curvature. What is very interesting for our purposes is that, on
one hand, the dynamics of interfaces in the system is driven by surface tension Υ, on the
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other hand, this theory yields a simple prediction fot the scaling of ξ(t). Therefore, if the
value of ξ(t), which we measure along fixed overlap dynamic, scales like in eq.(5.24), we
may state that surface tension between DCR is present.
Are we really allowed to compare our result from fixed overalap dynamics with COP
coarsening? Two basic conditions are required in order to obtain the scaling law of
eq.(5.24):

• The dynamics must be local.

• The order parameter must be conserved.

In our case both conditions are fulfilled: we use a local MC algorithm and have conserva-
tion of total overlap Q(t), which is our order parameter. So far, so good.
Now, is the scaling law in eq.(5.24) the only signature of COP coarsening we can look
for? Indeed, there is another quantity, whose time scaling is well defined along COP
coarsening, and which we can study: the total energy of the system, E(t). Recall that,
within coarsening, domain growth is driven by the minimization of the energy stored in
interfaces, therefore we can write:

E(t) − k0 ∼ S(t), (5.25)

where E(t) is the total energy of the system, S(t) measures the total area of interfaces
present at time t, and k0 is a costant depending on system energy in the phase separated
equlibrium. The total area of interfaces S(t) may be simply assumed to scale like:

S(t) ∼ n(t)ξθ(t), (5.26)

where n(t) is the number of domains of different phases at time t and ξθ is proportional
to the size of a surface enclosing a domain of linear size ξ. Considering a system confined
in a fixed volume V , we also have n(t) = V/ξd(t). Therefore we can rewrite eq.(5.25) as:

E(t) − k0 ∼ S(t)

∼ n(t)ξθ(t)

∼ ξθ−d(t). (5.27)

Let us for a moment consider as free the exponent 1/3 of eq.(5.24), assuming that its
precise value may depend on the system, and call it α. Then eq.(5.27) reads as:

E(t) − k0 ∼ tα(θ−d). (5.28)

Assuming that in our system ξ(t) scales like:

ξ(t) ∼ tα, (5.29)

the consistency of our data with COP coarsening can be, in turn, checked in two ways:

θ and α free. Without any assumption on the values of exponents θ and α, one can
study the scaling of E(t) vs. ξ(t), i.e., find θ from eq.(5.27). This route allows us
to check the coarsening scenario independently of the particular value of α in our
system, and at the same time to work out an extimate exponent θ for the surface
tension between DCR. Nevertheless, while E(t) can be measured accurately, the
values of ξ(t) has very large error bars (cfr. sec. 4.3.2). Hence estimation of θ may
be plagued by relevant errors.
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Figure 5.7: Scaling of 〈E(t)〉−k0 vs t; free (triangles) and constrained (circles) dynamics.
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1/3.

θ and α fixed. Let us assume a plain scenario, in which a good degree of universality
is ascribed to the value α = 1/3 of the coarsening exponent, and the conservative
choiche θ = 2 is also accepted. Evidence that the same exponent, θ = 2, rules the
scaling of surface tension between RFOT amorphous excitations was presented in
[76] and discussed in sec.3.3.1. With θ and α fixed, only the data of E(t) are needed.
If energy matches with the scaling law

(E(t) − k0) ∼ t−1/3, (5.30)

it is enough to state that COP coarsening is at work. In this case we can also state
that the data are compatible with the presence of interfaces between high and low
overlap regions, whose energy cost is:

∆E = ΥL2, (5.31)

with L the linear size of the interface and Υ surface tension.

Energy vs. time: checking coarsening with θ = 2 and α = 1/3. Fig.(5.7) shows
the behavior of total energy 〈E(t)〉, averaged over 18 samples, along fixed overlap (Q =
0.25) dynamics at T = Tc. Data are fitted to 〈E(t)〉 = k0 +bt−1/3, within the time interval
where 〈E(t)〉 is decreasing, with k0 and b fit parameters. The scaling law of eq.(5.30) fits
very well our data. This analysis allows us to conclude that COP coarsening is a good
model for the fixed overlap dynamics studied here.
Let us note, comparing figs. 5.7 and 4.8 in sec. 4.3.2, that ξ(t) and 〈E(t)〉 saturates at
different times. This may happen because ξ(t) was obtained from a low-k fit of S(k, t);
hence, only large-scale fluctuations of the overlap field are accounted in estimating ξ(t).
After the moment in time when ξ(t) saturates, it is still possible for the system to lower
its energy by making rearrangements on small length-scales, to which the low-k tail of
S(k, t) is not sensitive.
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Energy vs. length: measuring θ. Fig. 5.8 shows the behaviour of (〈E(t)〉 − k′0) as a
function of ξ(t), both considered at the same time. Hence is plotted (〈E(ξ)〉 − k′0) vs ξ,
with k′0 obtained by fitting energy data with:

〈E(t)〉 = k′0 + btα. (5.32)

Exponent α is here a fit parameter, with value α = 0.21 ± 0.10, which seems compatible
with α = 1/3. At early times, i.e. when Q(t) > Q̂ = 0.25, the length ξ(t) is increasing
whereas 〈E(t)〉 is costant, hence (〈E(ξ)〉 − k′0) vs ξ is costant. Then is found a time
interval where ξ(t) is increasing and at the same time 〈E(t)〉 decreases. This is the time
window in which we fit (〈E(t)〉 − k′0) vs ξ(t), finding that:

(〈E(ξ)〉 − k′0) ∼ ξθ−d with θ − d = 0.90 ± 0.15. (5.33)

At larger times, while 〈E(t)〉 is still decreasing, ξ(t) saturates (cfr. fig. 4.8), therefore
the scaling (〈E(ξ)〉 − k′0) vs ξ cannot be studied. From this analysis, being d = 3, we
have θ = 2.10 ± 0.15. This direct estimate of θ, which is largely compatible with the
value θ = 2, yiels evidence that: 1) surface tension is present between regions with a
different value of the overlap, 2) the energy cost of interfaces, which act as a drive for
coarsening, scales with the size of interfaces in the same way it does in the context of
RFOT excitations. Nevertheless, due to the uncertainty which plagues the estimate of
ξ(t) values (cfr. sec. 4.3.2), this study must be regarded with some circumspection.

Comments. If the check of COP coarsening scenario has to be considered, we regard
as more reliable the test done by simply studying the scaling with time of total energy
E(t) along fixed overlap dynamics. The assumption that coarsening exponent is precisely
α = 1/3 also for our system appeared harmless, considering that by simply fitting energy
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data is found α = 0.21 ± 0.10.
We can conclude that the COP coarsening scaling law:

(E(t) − k0) ∼ t−1/3, (5.34)

matches our data. This allows us to state that surface tension, at T = Tc, is present
also between dynamically cooperative regions, in particular it drives a phase separation
between high and low overlap regions.

Speculating a bit, we may ask why along fixed overlap dynamics something similar to
coarsening —i.e., domain growth driven by surface tension— should be found. Actually,
when we constrain overlap Q(t), we are reducing the volume of phase space available to
the system, and thus also total entropy is reduced. Let us call Sconstr the entropy of the
constrained system and ∆S = Sfree − Sconstr > 0 the entropy difference between free and
unconstrained system. Thus, if nothing else happens, apart the shrinking of phase space
volume available, it would be:

fconstr = U − TSconstr = U − TSfree + T∆S > U − TSfree = ffree

fconstr > ffree (5.35)

The system, nevertheless, will always try to minimize its free-energy. Maybe, an opti-
mization of the total energy, which compensates the loss of entropy, is the simplest way
to do that. A new value of energy, Uconstr, should be attained, Uconstr < Ufree, such that:

fconstr = Uconstr − TSconstr = Ufree − TSfree = ffree. (5.36)

A sistem can lower its energy in many different ways. Our data are compatible with the
hypothesis that interfaces with definite energy cost are present in the system, and that
the total energy is decreased by reducing the size of these interfaces.
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Chapter 6

Conclusions

Two competing length-scales dominated the physics of supercooled liquids along the last
decade. The length-scale ξDYN , that defines the exent of dynamic correlations, and the
length-scale ξRFOT . The latter, differently from ξDYN , is defined within a thermodynamic
contex, the random first-order theory. Depending on the viewpoint, it is perhaps more
desirable to give a thermodynamical —rather than dynamical— definition of a particular
phase of matter, as it is the supercooled liquid phase. A supercooled liquid, according
to RFOT, differs from a simple liquid in that it is characterized by the coexistence of
many amorphous phases, each defined over the characteristic length-scale ξRFOT . These
domains, being equally amorphous, are not recognizable in a snapshot of the system.
Still, they are present, and moreover, according to RFOT, are divided by well defined
interfaces.

We were able to measure the energy stored in these interfaces. An ad-hoc numerical
method was studied and applied to circumvent the problem of locating the position of
interfaces. More precisely: first, it was decided the identity of amorphous phases; second,
according to this definition, an amorphous excitation was produced and its energy cost
studied. This was not done arbitrarily: the identity we choosed for the phases, i.e., minima
of potential energy, is deeply rooted in the physics of supercooled liquids.
The method we used to build the excitation, and in turn the interface, had two main
guidelines: make it local and make it static. By exchanging particles between inherent
structures, we aimed at realizing excitations which were local realizations of an inherent
structure. Moreover, as an inherent structure is defined independently of time, its local
realization appeared as a good candidate to represent a static excitation. This was done
in order to study objects as close as possible to the excitations defined within RFOT. This
set-up is also the main approximation of our work, to be accepted in order to accept, in
turn, the results.

At different temperatures the system explores stationary points of the energy lanscape
characterized by a different energy. As quoted in the introductory chapter, there is a well
defined map between the temperature and the average energy of the inherent structures
sampled by the system at that temperature. By measuring the energy stored in interfaces
between IS at the same energy, and by doing this at different energies, we were able to
study how surface tension Υ depends on temperature. We found that Υ decreases for
increasing T and attains small values above mode coupling temperature Tc, although it
is difficult to state exactly at which temperature it vanishes. The vanishing of surface
tension, which marks the spinodal point for RFOT amorphous excitations, was found to
be sharply defined as a function of the inherent structures energy. A spinodal energy
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esp was identified where Υ vanishes. The energy esp has a value in plain agreement with
the threshold energy eth, which marks the saddle-minima topological crossover in the
potential energy landscape. In our opinion, the coincidence eth ∼ esp is remarkable for
the following reason: whereas eth is defined from a global feature of the system, i.e., the
number of unstable directions of stationary point of energy, esp is defined studying a
local property, i.e., the cost of an interface. This is one evidence more of how intimately
the RFOT theory, which describes local activated events, and the topological crossover
scenario, which describes a global property of the system, are connected. Moreover,
the measure of a finite surface tension Υ, below Tc, strongly supports the ”multi-state”
scenario of mosaic: amorphous phases are well defined because divided by interfaces of
finite energy cost.

Results on Υ fluctuations are also interesting. It is quite reasonable to imagine that,
among all the mosaic states, some are more similar, others are less. Within the work
of this thesis further evidence was provided that RFOT amorphous states are intimately
connected with potential energy minima. Carrying on this paradigm, we can say that
the definition of mosaic states is sharper the lower the temperature, as it is for config-
urations which are minima of potential energy landscape (PEL). As the surface tension
is determined by the mismatch between mosaic states, we expect it to be defined more
sharply when states are well distinguished, hence at low temperatures. Clearly, when
talking about how sharply an observable is defined, we refer to the width of its distribu-
tion. Also, Υ is the average over the cost of all the unitary elements of an interface: it
is therefore reasonable to expect that Υ fluctuations are smaller the larger the interface.
Hence, we can expect that, the larger the linear size ξRFOT of an amorphous excitation,
the smaller the fluctuations of its energy cost. Recalling that ξRFOT increases as the
temperature is decreased, we can guess that two main effects are competing in deter-
mining the shrinking of surface tension fluctuations when going deeply supercooled: the
more pronounced difference between phases and the larger size of droplets. By measuring
the surface tension between a whole population of amorphous states, we checked that
these were not only speculations. Without going further into details, we found that, for
increasing sizes, the amorphous droplets show decreasing fluctuations in their surface cost.

The shape of the surface tension distribution of a size ξRFOT (T ) droplet, at tempera-
ture T = 0.89 Tc, was found in plain agreement with the prediction already given on that
in a completely different framework, i.e., by measuring the behaviour of the point-to-set
correlation function [6]. This datum is particularly significative in that the point-to-set
correlation function, until now, was the only one able to capture the increse of ξRFOT in
the supercooled liquid phase. The simplest version of RFOT [4] predicts a sharp transi-
tion from non-ergodic to ergodic behavior at the length-scale ξRFOT . As a matter of fact
this transion appeared much smoother in numerical experiments, so that surface tension
fluctuations were introduced to account for this [6]. At that stage, people who are not
supporters of RFOT were perhaps allowed to say that the fluctuating surface tension was
an ad-hoc ingredient of the theory. Our finding of a surface tension distribution in quan-
titive agreement with the expectations from the behaviour of the point-to-set coorelation
function is therefore remarkable.

Checked that surface tension is a good order parameter, in order to decide whether
neighbouring bunch of particles are in the same amorphous phase or not, we used it as a
tool to study the relaxational dynamics of amorphous droplets. The distinguishing feature
of a supercooled liquid is its increasing relaxational time τ : succeeding in predicting a
behaviour of τ in agreement with experimental data is therefore of primary importance

96



for RFOT. The relation between τ and ξRFOT is determined by the exponent ψ of the
free energy cost ∆F to rearrange a region of linear size ξRFOT : τ ∼ exp(∆F/T ) ∼
exp(ξψRFOT/T ). Studying the relaxation of amorphous droplets, we were able to estimate
ψ. That is, we found that ∆F scales linearly with ξRFOT : ∆F ∼ ξRFOT , ψ = 1. This
piece of information, together with the measure exponent θ = 2, which rules the scaling
of droplets energy cost, allowed us to derive the Vogel-Fulcher-Tamman law within the
formalism of RFOT. The VFT law is probably the most famous phenomenological law
which links time and temperature in fragile glass-forming liquids, providing good fits of
experimental data. Beacause of that, there is a widespread attitude in modeling the
theoretical details of RFOT theory in order to work out VFT from RFOT. The debate
is precisely focused on the values of the exponents θ and ψ, which are not strictly fixed
by the RFOT theory. We walked along this same path, but precisely in the opposite
direction. Starting with no theoretical claims on the values of ψ and θ we fixed them
from numerical simulations: they turned out to be perfectly suited to give VFT back
from RFOT.

Last but no least, a comment on the interplay between surface tension and dynamical
heterogeneities. The approximation of RFOT amorphous states with inherent structures,
together with our method to mimic RFOT excitations, could be criticized. That is why
surface tension was investigated also in a completely different framework, i.e., fixed overlap
dynamics. In this framework we studied the behaviour of dynamical, rather than statical,
cooperative excitations. On one hand, we lost a clear connection with RFOT; on the
other hand, we studied excitations spontaneously forming in the system and detectable
by means of a standard kind of correlation function, i.e., the four-point correlation function
g4(r, t) —or its fourier transform S4(k, t). According to our data the lengh-scale ξ(t) of
dynamical correlations behaves differently whether dynamics is constrained or not; more
precisely, instead of decaying with time, the extent of dynamical correlations increases
and levels off at a finite value under the effect of the constraint. We propose that a phase
separation between high an low overlap regions occours, driven by the surface tension
stored in the interfaces between regions with a different value of overlap. This scenario is
supported by the behaviour of the total energy of the system: this is in plain agreement
with the predictions of conserved order parameter coarsening.
Fixed overlap dynamics was studied at mode coupling temperature Tc, at which there are
indications that both dynamic, ξDYN , and static, ξRFOT , correlation lengths are finite [6,
12, 45]. First remark: although studying dynamically cooperative regions instead RFOT
excitations, we found another evidence supporting the existence of interfaces with a finite
surface tension in the supercooled liquid phase. Second, and last, remark: we ended up
with the evidence that at Tc not only static and dynamic correlation lengths are both
finite, but also both static and dynamic excitations are separated by interfaces with a
finite energy cost. This is perhaps a good starting point for further investigations aimed
at finding the common physical roots of static and dynamic exctitations in supercooled
liquids.
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