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Abstract

The Smart Musical Instruments (SMIs) are an emerging category of musical instruments that belongs to the wider
class of Musical Things within the Internet of Musical Things paradigm. SMIs encompass sensors, actuators, embedded
intelligence, and wireless connectivity to local networks and to the Internet. Interoperability represents a key issue within
this domain, where heterogeneous SMIs are envisioned to exchange information between each other and a plethora
of Musical Things. This paper proposes an ontology for the representation of the knowledge related to SMIs, with
the aim of facilitating interoperability between SMIs as well as with other Musical Things interacting with them.
There was no previous comprehensive data model for the SMIs domain, however the new ontology relates to existing
ontologies, including the SOSA Ontology for the representation of sensors and actuators, the Audio Effects Ontology
dealing with the description of digital audio effects, and the IoMusT Ontology for the representation Musical Things
and IoMusT ecosystems. This paper documents the design of the ontology and its evaluation with respect to specific
requirements gathered from an extensive literature review, which was based on scenarios involving SMIs stakeholders,
such as performers and studio producers. The SMI Ontology can be accessed at: https://w3id.org/smi#.
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1. Introduction

Recent advances in digital musical instruments research
have led to the proposal of “smart musical instruments”
(SMIs), an emerging category of instruments characterized
by sensors, actuators, wireless connectivity, and embedded
intelligence [1]. These features enable SMIs to directly ex-
change musically-relevant information with one another as
well as communicate with a plethora of external devices
(such as smartphones, wearables, virtual reality headsets,
or stage equipment). Examples of existing SMIs are the
Smart Mandolin [2], the Smart Cajón [3], smart guitars by
Elk1 [4] and HyVibe, the INSTRUMENT 1 by Artiphon,
Gtar by Incident, and the Retrologue Hardware Synthe-
sizer by Elk [5].

SMIs draw upon different lines of existing research in-
cluding augmented instruments [6], embedded acoustic in-
struments [7], embedded audio [8, 9], and networked mu-
sic performance systems [10, 11]. They are instances of
Musical Things within the “Internet of Musical Things”
(IoMusT) paradigm [12], an extension of the Internet of
Things [13] to the musical domain. Within this paradigm,
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SMIs can exchange content with other Musical Things
leveraging application and services built on top of the con-
nectivity infrastructure.

In more detail, according to the vision proposed by
Turchet in [1], an SMI is characterized by five core capa-
bilities that define its embedded intelligence: i) knowledge
management, i.e., the capability of maintaining knowledge
about itself and the environment; ii) reasoning, i.e., the ca-
pability of making inferences on the acquired knowledge;
iii) learning, i.e., the capability of learning from previ-
ous experience; iv) human-smart instrument interaction,
i.e., the capability of interacting with the player in ways
that extend the bare sound production, such as adapta-
tion and proactivity; v) smart instrument-Musical Things
interaction, i.e., the capability of wirelessly exchanging in-
formation with a diverse network of interoperable Musical
Things.

The sound engine of an SMI is responsible for the gen-
eration of the instrument’s digital sounds and may encom-
pass various components. Examples of such components
are illustrated in Fig. 1. For instance, a component can
process the sounds detected by a microphone by applying
digital audio effects to it; a component can trigger sound
samples thanks to a sampler; a component can generate
sounds resulting from the control of synthesizers and drum
machines; a component can play back different backing
tracks. The parameters of each of these components of the
sound engine can be modulated by the sensors composing
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Figure 1: Block diagram of an example of sound engine running on a smart musical instrument.

the sensor interface, by means of a set of mapping rules
[14]. The sound engine is also responsible for recording the
overall sound resulting from the mixing of all such compo-
nents, but can also record in separate files the contribution
of each component. Furthermore, the configuration of the
instrument can also be saved. This configuration is com-
posed by metadata describing i) all the components of the
sound engine, e.g., which components are present (such as
how many synthesizers or how many effects and in which
order), which are the parameters governing them; ii) what
are the sensors embedded in the instrument, including the
type of microphones and the sensors composing the sensor
interface tracking the performer gestures; iv) the mapping
strategies linking the sensor values to the parameters of
the sound engine; v) the actuators embedded in the the
instrument, including loudspeakers, vibration speakers or
actuators for haptic feedback.

To date, a topic that has received remarkably little at-
tention in SMIs research is that of defining an interoper-
able file format specific to this kind of instruments. Such
a format is useful for at least two main purposes: i) for
the exchange of content produced by SMIs (e.g., a studio
producer receives a recording of a SMIs player and can
modify it in novel ways by leveraging the information on
the instrument configuration); ii) for the automatic con-
figuration of the instrument via presets downloaded from
the Internet (e.g., a smart guitar player downloads a pre-

set of another smart guitar that produces a certain set of
sounds, and as a result of the automatic configuration the
instrument will be able to generate those wanted timbres).

The work reported in [15] describes a preliminary inves-
tigation of the design of a format specific to SMIs, which
at the same time enables interoperability with other de-
vices. Such investigation led to the identification of a set
of requirements that a file format encoding data generated
by SMIs should satisfy. In addition, that study investi-
gated the existing standardized formats that are closest
to meet the identified requirements. Such formats are the
IEEE 1599 [16, 17] and the IM AF (MPEG-A: Interactive
Music Application Format) [18]. However, as highlighted
in [15], such formats are not adequate to support inter-
operability across heterogeneous SMIs as well as Musical
Things related to them. They are not equipped with in-
ference mechanisms and do not support easy integration
with the Web, as they were not devised for these purposes.
Issues around metadata interoperability in the music do-
main have been discussed thoroughly in [19], with partic-
ular attention to the lack of mechanism for supporting the
heterogeneity of view points and applications [20] that is
a strong characteristic of this domain, and the potential
synergistic benefits of creating loosely coupled and flexible
metadata models for musical applications. Semantic tech-
nologies, such as semantic web [21] and knowledge repre-
sentation [22], possess these features, which would allow to
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achieve greater interoperability compared to standardised
file formats as primary means for data exchange. These
observations have been confirmed empirically in a large 5
year project recently completed in the UK, with the aim of
deploying a semantic infrastructure over the entire music
production-consumption value chain [23].

Turchet and Kudumakis proposed in [15] to use ontolo-
gies to represent the knowledge about SMIs’ sound engine,
which could be integrated in a dedicated format. Seman-
tic technologies based on an ontology for SMIs can assist
in managing, querying, and combining information char-
acterizing an IoMusT ecosystem based on SMIs, including
data about the music produced, the involved stakehold-
ers, the utilized SMIs and their application and services.
Nevertheless, an ontology specific to SMIs scenario is cur-
rently missing. Existing ontologies devised for some as-
pects of the musical domain that are mostly related to
SMIs, such as the Audio Effect Ontology [24], the Studio
Ontology [25], the Music Ontology [26], or the Audio Fea-
tures Ontology [27] have proved useful in relevant musical
use cases such as controlling audio effects using high-level
metadata[28, 29]. However, these existing ontologies are
insufficient to represent the knowledge base required to
create a truly interoperable format for SMIs. Due to the
novelty of the SMI class, these instruments pose substan-
tial new requirements that have not been considered in
prior ontologies, albeit the Studio Ontology, with its situ-
ation agnostic and layered conceptualisation provides good
grounds for extension, as we will discuss in Section 3 and 6.

In this paper, we propose the “Smart Musical Instru-
ments Ontology” (SMI Ontology), an ontology devised to
represent the knowledge related to SMIs. We describe the
design process of the SMI Ontology and its first (and cur-
rent) version, i.e., 1.0.0. The description of the SMI On-
tology follows the MIRO (minimum information for the re-
porting of an ontology) guidelines [30]. For reference, the
paper reports the MIRO designations (e.g., E.9 for On-
tology relationships), where the specific information item
is provided. The ontology name (A.1) and its need (B.1)
have been already introduced. The ontology is available at
https://w3id.org/smi# (A.4) with license GPL3 (A.3).

2. Methodology, audience, and scope

This section describes the methodology adopted for the
design and development of the SMI Ontology, as well as
the audience of the ontology and its scope.

2.1. Methodology for ontology development

The SMIs Ontology is developed and maintained by the
authors as well as other members of the emerging SMIs
research community, which is currently composed by lead-
ing research institutes in Sound and Music Computing and
Internet of Things (A.2 and C.2). The design and develop-
ment of the ontology was mainly inspired by METHON-
TOLOGY [31] (A.6), a methodological framework com-

prising six phases: i) the specification, i.e., the identifi-
cation of the audience, scope, scenarios of use, and re-
quirements (Sections 2.2 and 5); ii) the conceptualization
of an informal model (first paragraph of Section 6); iii)
the formalization of the ontology namespaces, classes and
properties; and iv) the integration of existing ontologies
in a description and its formalization and publication us-
ing OWL2 [32] (Section 6); v) the implementation of the
ontology with an appropriate serialization language (Sec-
tion 7); vi) the maintenance of the ontology once imple-
mented (Section 7).

In addition, METHONTOLOGY describes three tasks,
orthogonal to the six phases, which are accomplished dur-
ing the lifetime of the ontology: i) knowledge acquisition
through research of related ontologies and models (Sec-
tion 3) as well as gathering data from potential users (Sec-
tion 4), to inform multiple phases of the design process,
mainly conceptualization and integration; ii) documenta-
tion of the process phases (internal) and the ontology spec-
ification (public) (Section 7); iii) the evaluation of the on-
tology before its release (Section 8).

Other studies, such as those reported in [33] and [34]
suggest different methodologies for ontology engineering.
However, these approaches focus on techniques to formal-
ize new ontologies from scratch. This is not the case in
the current research, where the goal is to provide a new
contribution based as much as possible on the integration
of pre-existing ontologies.

2.2. Scope and audience

The role of the SMIs Ontology is to offer a common
data model enabling interoperability among heterogeneous
SMIs, which allows both people and virtual agents to
seamlessly generate, explore, access, or transform music-
related content produced within an IoMusT ecosystem
based on SMIs. Therefore, the scope of the ontology (C.1)
is represented by all ecosystems forming around existing
or future IoMusT technologies devised for SMIs.

The expected target audience of the ontology (B.3) is
represented by all actors and stakeholders that are in-
volved in such ecosystems, including performers, com-
posers, studio producers, live sound engineers.

3. Related ontologies and data models

Before defining an ontology specific to the SMIs domain
a review of existing ontologies was conducted. Such a re-
view indicated that no existing ontology was able to cover
the requirements of the identified use cases or satisfied a
design goal of representing concepts and relations in the
context of networked musical activities (see Sections 4 and
5). This section describes ontologies and data models (B.2)
that are related to the SMIs vision reported in [1]. They
have been gathered through the research of literature and
online resources (D.1 and D.2) and evaluated as part of
the design process (D.3).
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3.1. Ontologies for the musical domain

Numerous ontologies for the musical domain have been
proposed in recent years. Table 1 provides a description
of the features of SMIs knowledge not satisfied by existing
music-related ontologies, which justifies the need for a new
ontology specific to SMIs.

The Musical Instruments Ontology [35] provides an on-
tological model for encoding well known instrument clas-
sification systems. For instance, it allows one to aggre-
gate instruments into categories such as Aerophones or
Idiophones, based on their sound production or excitation
mechanism. Such ontology proposes a solution to deal
with terminological heterogeneity among different knowl-
edge representation systems in this domain.

The Music Ontology (MO) [26, 36] is a general pur-
pose high-level ontology for the music domain that models
the music value-chain from production to consumption.
Therefore its focus is on editorial metadata, e.g. artist
name and title associated with audio recordings, as well as
the representation of major steps in the music production
workflow for recorded music, from composition, through
performance and recording, to release. It deals with the
notion of musical works, expressions, manifestations and
musical items, to identify e.g. a mo:MusicalWork and its
performances by different artists, and potentially different
recordings and releases. MO binds these concept together
using events from the Event Ontology2, to describe tran-
sitions between states of intellectual works. For example,
placing a microphone in front of an instrument implies a
recording event (event:Event) that facilitates transition
from one representation of a work to another (sound to sig-
nal). When the recorded signal is transferred to a medium
and released (a release event) we move from musical ex-
pression to musical manifestation.

The Studio Ontology [25] is a framework consisting of
a set of modular ontologies that represents the domain
of technical workflows occurring in music production, by
providing an explicit, application and situation indepen-
dent modeling of the studio environment. The ontology
is a framework encompassing various ontologies, includ-
ing the Connectivity Ontology, the Device Ontology, the
Mixer Ontology, the Multitrack Ontology, the Microphone
Ontology, and the Signal Processing Ontology. The Stu-
dio Ontology involves hooks provided by the Music On-
tology to represent the behaviors between the expression
and manifestation layers. This includes common proce-
dures in audio engineering as well as signal processing. For
instance, the ontology describes microphone placement,
physical signal connectivity (e.g., studio wiring), mixing,
editing and mastering of audio, a process involving sev-
eral sound signal transformations. The core model and
innovation of this ontology is a parallel event flow and sig-
nal flow, aiming to represent a series of actions performed
by audio engineers, coupled with a series of signal trans-
formations together with the technical artifacts involved

2http://purl.org/NET/c4dm/event.owl#

in them and their configuration parameters. For exam-
ple, this enables to identify signal transformations using
the model described in [37]. Notably, the Studio Ontology
framework includes a Device Ontology (see [25] for details)
to describe technological artefacts in a broad sense. This
ontology features a device decomposition model that al-
lows for describing complex devices and their relations to
its individual components, either in a software, hardware
of mixed environment. The SMI ontology reuses the de-
composition model in several modelling decisions detailed
in Section 6.

The Audio Effect Ontology [24, 38] is an ontology highly
relevant to the domain of SMIs, which represents audio ef-
fects in music production workflows. It was designed as an
extension to the Studio Ontology, with the aim of provid-
ing a framework for the detailed description and sharing of
information about audio effects, as well as their implemen-
tations and use within actual production contexts. This
facilitates the reproducibility of audio effect applications,
as well as the detailed analysis of music production prac-
tices. Moreover, as its authors highlight, such an ontology
has the potential to be used for informing the creation of
metadata standards for adaptive audio effects that map
high-level semantic descriptors to control parameter val-
ues. This parallels the need for a format encoding such
aspects within the domain of SMIs. Notably, the Audio
Effect Ontology uses hooks provided by the Studio Ontol-
ogy to connect to the broader domain.

Another ontology relevant to the SMIs domain is the Au-
dio Features Ontology [27]. This addresses audio features,
which are descriptors representing specific characteristics
of sound signals. These descriptors may relate to mea-
surable properties of the signal (such as spectral centroid
or bandwidth), perceptual qualities (such as loudness and
pitch), as well as musical characteristics (such as notes,
musical key and chords). A fundamental characteristic of
SMIs is their ability to process audio and extract features
that are relevant in a particular interaction scenario. As a
consequence, a formal model of audio features is crucial to
provide interoperability among SMIs and in the IoMusT
at large.

3.2. Ontologies for sensors and actuators

Two of the most widespread ontologies designed for
the IoT field are the Semantic Sensor Network Ontology
(SSN)3 [39] and the Sensor, Observation, Sample, and Ac-
tuator Ontology (SOSA)4 [40]. Both ontologies describe
hardware as well as observation of physical quantities and
actuation. SSN covers the majority of the SensorML stan-
dard5. It has been devised to describe sensors and observa-
tions, as well as the context in which sensors are used. In a
different vein, SOSA adopts a lightweight approach to de-
scribe sensors, actuators and the processes of observation

3https://www.w3.org/TR/vocab-ssn/
4https://www.w3.org/2015/spatial/wiki/SOSA_Ontology
5https://www.opengeospatial.org/standards/sensorml
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Table 1: A description of the features of SMIs knowledge not satisfied by existing music-related ontologies.

Ontology Name Features not satisfied for representing SMIs knowledge
Musical Instruments Ontology It does not account for the representation of any smart feature of an SMI
Music Ontology Only high-level concepts related to music are present, low-level concepts are

missing which are capable of representing knowledge specific to SMIs
Audio Effects Ontology It just deals with knowledge related to audio effects, it is not capable of repre-

senting other aspects of and SMI sound engine such as sensor to sound param-
eter mappings

Studio Ontology The focus is on knowledge related to the studio environment, it is incapable of
representing hardware and software components of an SMI

IoMusT Ontology It represents general knowledge on Musical Things, but it is not capable of
representing the specificities of SMIs

Audio Features Ontology Its focus is solely on properties of acoustic signals, and therefore it is incapable
of representing more general aspects of SMIs

and actuation. SOSA acts as a replacement of the Sensor-
Stimulus-Observation (SSO) design pattern provided by
SSN, that offers greater expressivity [41].

3.3. The Internet of Musical Things Ontology

The Internet of Musical Things (IoMusT) is an emerging
research area consisting of the extension of the Internet of
Things paradigm to the musical domain. This field is posi-
tioned at the confluence of music technology, the Internet
of Things, human-computer interaction, and artificial in-
telligence. The IoMusT relates to the networks of comput-
ing devices embedded in physical objects (Musical Things)
dedicated to the production and/or reception of musical
content. Considering the computer science perspective,
Turchet and colleagues defined a Musical Thing as “a
computing device capable of sensing, acquiring, processing,
or actuating, and exchanging data serving a musical pur-
pose”. The IoMusT was then defined as “the ensemble of
interfaces, protocols and representations of music-related
information that enable services and applications serving a
musical purpose based on interactions between humans and
Musical Things or between Musical Things themselves, in
physical and/or digital realms. Music-related information
refers to data sensed and processed by a Musical Thing,
and/or exchanged with a human or with another Musical
Thing” [12].

To accomplish the IoMusT vision, the Musical Things
within an ecosystem need to communicate through a com-
mon language. For this purpose, Turchet et al. proposed
the Internet of Musical Things Ontology6. [42]. SMIs are
instances of Musical Things. Nevertheless, the IoMusT
Ontology is insufficient for representing the specific knowl-
edge base of SMIs, as it was conceived of facilitating in-
teroperability across heterogeneous Musical Things, espe-
cially in live performances. This work focuses on the spe-
cific domain of SMIs, and on the interoperability problem
related to the instrument configuration as well as record-
ing, by means of dedicated exchange formats.

6https://w3id.org/iomust#

4. Knowledge acquisition

Knowledge acquisition is an activity that has been per-
formed since the initial phases of the ontology building
and is continuously carried out. For the purposes of the
proposed ontology, we conducted a review of the exist-
ing literature on SMIs. In particular, the studies reported
in [15, 4, 2, 43, 12, 1, 44, 45, 46, 47], and [5], represent
the most relevant sources for the creation of the knowl-
edge base. Such works are based on extensive literature
reviews of SMIs-related topics and contain descriptions of
different scenarios involving SMIs and stakeholders within
various IoMusT ecosystems based on SMIs. Furthermore,
we defined additional scenarios consisting of use cases for
IoMusT ecosystems not present in the previous literature.

Hereinafter, we summarize three instances of scenarios,
which represent the most relevant examples of use cases
around which the ontology design is framed.

Automatic configuration. Cristina is a smart guitar
player and is passionate about the sounds of the smart gui-
tar player of her favorite rock band FolkRockers. One day
she decides to learn the solo of one song of the band’s last
album and she navigates the band’s website to reach the
download section. There she finds the preset for her smart
guitar, which relates to the audio plugins and the con-
figuration of the smart guitar used by the FolkRock lead
guitar player in that specific song. The plugins relate to a
delay effect, a particular distortion, and a certain ampli-
fier cabinet, but she does not know the brand and model
of those plugins, nor how they are configured and their
position in the effects chain. She downloads and uploads
the preset on her smart guitar, which in turn configures
itself automatically. Now Cristina’s smart guitar can pro-
duce not only the sounds involved in the song she wants
to learn, but also all the mappings between the sensors in
the smart guitar interface and the parameters of the sound
engine. After having practiced with that song, moved by
curiosity, Cristina decides to search in a social network for
smart guitar players, other songs that contain the audio
plugins involved in the song of FolkRockers. She down-
loads on her smart guitar the backing tracks (without the
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leading guitar) of the first three of the list of retrieved
songs. Now Cristina can improvise on each of the three
backing tracks, and as soon as she passes from a song to
the other the smart guitar automatically configures itself
accordingly (e.g., the delay time parameter of the delay
effect is set to be consistent with the beat-per-minute of
the song).

Intelligent music productions. Waliyah and Qiang
are respectively a smart flute and a smart cello players.
They are about to recording a disk of their duo and they
need to rehearse frequently. They live in different cities
placed at 80Km from each other, but thanks to the point-
to-point connectivity of their smart instruments they can
rehearse at a distance. They are in need of a preliminary
feedback on their recording before going in the recording
studio, so they contact their studio producer Karim. They
send him a recording of their music, which also encom-
passes metadata related to the configuration of the sound
engine of both smart instruments, where each sensor in
the sensor interface is associated to a musical parameter
of a certain audio effect. Karim receives such multi-layer
recording and use all the available information first to
recreate an authentic rendering of the rehearsal in their
studio environment, and then to create a new version of
the recording (e.g., by modifying the mapping function
between a sensor and a parameter of the associated audio
effect or by substituting an audio plugin with another one).
Then he sends back to the musicians not only the record-
ing so they can listen to it, but also the files containing the
configuration for both smart instruments, which he used to
produce the modified recording. Waliyah and Qiang agree
that the recording version of Karim is better and upload
on their instruments the configurations he produced.

Enhanced music learning. During his practice activ-
ities, Mark uses an app for tablet connected to his smart
ukulele. The smart ukulele detects the errors made by
the student and the tablet app provides recommendations
about how to improve his playing and which musical piece
to play next. Such recommendations are based on a con-
nected cloud-based service that receives information on
how Mark plays, which is retrieved by the smart ukulele.
Following the recommendation service’s suggestions, Mark
accepts to play the suggested musical piece by issuing a
command on the tablet app. As a consequence of this
choice, the app sends a message to the smart ukulele which
configures it with the effects chain needed to practice that
musical piece.

These scenarios show the intelligent characteristics of
the SMIs, which were proposed in the vision reported in [1].
As a matter of fact, such scenarios would not be possible if
the instrument was not capable of maintaining knowledge
about itself, thanks to a model about its physical (e.g.,
shape, materials, number of strings, types and position of
sensors and actuators) and digital properties (e.g., how the
sound engine is composed), as well as a model about what
it can offer to the player in terms of services, interaction,

information (e.g., the musical goals for which it was de-
signed, the functions it can offer to achieve these goals,
and how it behaves when such functions are activated).
In addition, those scenarios illustrate the reasoning and
learning ability of SMIs as well as their capability of in-
teracting with other Musical Things locally or remotely
connected.

5. Specification

The acquired knowledge was then analyzed to identify
a set of requirements that the ontology should satisfy [48].
The literature review led to a total of 17 distinct scenarios
(3 scenarios from [15], 4 from [1], 2 from [12], 2 from [4]
and [47], 2 from [2], [45] and [43], 1 from [44] and [46],
and 3 defined by the authors or derived from recent ex-
periments with users described in the literature, which are
described in Section 4). For each scenario we derived a set
of requirements, and then applied an inductive thematic
analysis [49] to reduced them. The resulting requirements
are represented below as a list of example questions that
the ontology should be able to support answering [50], as
well as a list of formal requirements.

5.1. Competency questions

The following sample questions are meant to be asked
with respect to an SMI or a broader IoMusT ecosystem
based on SMIs:

1. Which type of sensors and actuators compose a smart
saxophone?

2. How many smart violins are equipped with a given
microphone system?

3. Which synthesizers are used in the sound engine of a
given smart banjo?

4. Which audio files and which MIDI scores are associ-
ated respectively to backing tracks and MIDI tracks
in the sound engine of a given smart piano?

5. How many smart guitars are using a given audio plu-
gin associated to a given sensor in the sensor inter-
face?

6. Which services and applications are available for
smart guitars and what are their purposes?

7. Which pieces of stage equipment are connected to a
smart piano at a given time during the concert?

8. What SMIs are connected to smartphones at a given
time during the concert?

Appendix B details such competency questions in
SPARQL.

5.2. Formal requirements

The SMI Ontology should be able to:

1. represent the concept of SMIs as an instance of Mu-
sical Things, including:

(a) its type (e.g., percussive or plucked instrument);
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(b) its characteristics including the number and type
of inputs (e.g., microphones, sensors tracking the
player’s gestures) and outputs (e.g., auditory, vi-
sual, haptic);

(c) the structure of its sound engine (e.g., audio ef-
fects, mappings between sensor values and audio
effects parameters);

(d) its geographical position7;

2. represent the concept of application and service re-
lated to an SMI, including:

(a) its purpose (e.g., for music learning, perfor-
mance, composition, studio production)

(b) its level of interactivity (e.g., interactive, non-
interactive)

(c) its type (e.g., based on an online music content
repository, based on a social network)

3. describe attributes of the music (produced live) at a
given time, including:

(a) low-level features (e.g., the amplitude and fre-
quency of notes);

(b) high-level features (e.g., the mood)

6. Ontology description

It is a common understanding that developing ontologies
is in general a complex task and it requires an iterative
approach based on continuous refinement and control of
concepts and relationships. The SMI Ontology is not an
exception: it has been developed incrementally through an
iterative process. In the following, for the sake of clarity,
we have kept the prefixes in a contracted form. For their
expanded version, please see Table A.3 in Appendix A.

The very first step has been that of defining a novel
namespace smi: to describe the core knowledge related to
SMIs. Secondly, we defined how to integrate the knowledge
base related to the SMI domain within the general field of
the IoMusT. This was an easy task as it was sufficient to
reuse the concept of SMI present in the IoMusT Ontology
described in [42]. Indeed, an SMI is by definition a Musical
Thing (see [1] and [12]) and, therefore, it inherits all prop-
erties and relations of the class iomust:MusicalThing.
These include concepts related to sensors and actuators
from SOSA [40], which is a W3C recommendation, as
well as device location from PROV-O [51] and agent from
FOAF [52]. However, the level of detail of the SMI concept
specified in the IoMusT Ontology was insufficient to appro-
priately represent the SMI knowledge base at large and en-
able the envisioned advanced applications that could lever-
age such a representation [1, 15]. Therefore, all subsequent
efforts concentrated on the specification of the concepts
that are fundamental to the SMI domain, with particular
focus on hardware and software aspects.

7SMIs are IoT devices, and can encompass sensors such as GPS.
There are a number of innovative applications that can be based on
location services. The geographical position requirement is impor-
tant to enable such services.

The underlying conceptualisation of the SMI ontology
concerns the signals resulting from user interaction, the
composition of the SMI in terms of its hardware and soft-
ware components as well as the mapping between these.
Similarly to signal mappings in the studio domain [25], a
parallel signal and event flow may be described in con-
junction or in isolation using the SMI ontology. This al-
lows us to describe, for instance, how gestures are mapped
to sound generator or processing components. The sound
engine of an SMI is conceptualised as a composite device
consisting of hardware and software components. In the
ontological representation of the SMI, these may be fur-
ther divided into concepts that represent elements of the
signal chain as well as elements that may be used as place-
holders for static media entities (e.g. Audio or MIDI files)
that are used during interaction with an SMI. This con-
ceptualisation is outlined in Figure 2 showing a high level
structural overview of the ontology.

6.1. Basic components and imported ontologies

In first instance, we categorized the SMI family
into purely electric, electroacoustic, and virtual real-
ity musical instruments [53], also specifying that an
SMI can’t be a purely acoustic instrument (since by
definition it needs to incorporate some kind of elec-
tronics). An important design decision was that of
reusing as much as possible the existing ontologies (see
Section 3.1). For the purpose of representing concepts
related to hardware and software we leveraged the
Device Ontology [25], which is part of the Studio Ontol-
ogy, by defining the class iomust:SmartInstrument

as a subclass of device:Device and by uti-
lizing device:HardwareDevice (subclass of
device:PhysicalDevice) and device:SoftwareDevice

(subclass of device:AbstractDevice) to declare, re-
spectively, the subclasses smi:SMIHardwareDevice and
smi:SMISoftwareDevice. To define these classes, firstly
we identified and described the main hardware and
software components, secondly we described the rela-
tionships between them. By inheriting all hardware and
software components from the device:Device class we
could exploit the component relation between devices, to
express the concept that a certain component is part of
another one. The Device Ontology has also the benefit to
allow for the specification of an SMI vendor and model,
which are important aspects to represent not only for the
SMI as a whole, but also for each of its hardware and
software components.

The following classes were defined to describe the
main hardware input and output components of an
SMI: smi:AudioInputInterface represents how the
hardware system handling the audio input is made
(e.g., how many microphones are present and of which
kind); smi:GestureInterface represents how the in-
strument sensor interface is made (i.e., it relates to the
class Sensor from SOSA); smi:SingleBoardComputer

represents the embedded platform that supports
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all the processing; smi:SoundDeliverySystem,
smi:HapticDeliverySystem, and
smi:VisualDeliverySystem that represent how, re-
spectively, the various systems related to sound, haptic,
and visual delivery are made (e.g., embedded loudspeakers
for the sound system, vibration motors for the haptic
system, and OLED display for the visual system).

6.2. Sensors and other hardware components

As far as sensors are concerned, we differen-
tiated between smi:AudioTrackingSensor and
smi:GestureTrackingSensor (where the former are
related to smi:AudioInputInterface and the latter
are related to smi:GestureInterface). It is important
to express this differentiation since the types of signals
generated by these two kinds of inputs of an SMI are
typically diverse (e.g., different sample rates); in addition,
their purpose is different since whereas the microphones
detect audio signals (and may not be present in the case
of an SMI without microphones), the sensors belonging to
the sensor interface of an SMI are used to capture various
kinds of gestures of the musician. Notably, we have spec-
ified several subclasses of smi:GestureTrackingSensor

to represent different types of sensors typically used in
current exemplar of SMIs (e.g., accelerometers, pressure
sensors). Importantly, we performed ontology alignment
between SOSA and Music Ontology, where one of the
possible sosa:result (i.e., the result linked to an obser-
vation produced by a sensor) may be a mo:signal (i.e.,
we have extended the possible results of an observation
also to a mo:signal via the relation sosa:hasResult).
Notably, we also defined the classes smi:ADCSensor and
smi:ADCAudio as subclasses of device:analogue to

digital converter, which are fundamental aspects of
an SMI. Along the same lines, we defined the classes
smi:DACActuator and smi:DACAudio as subclasses of
device:digital to analogue converter.

6.3. Software components

The following classes were defined to describe the
main software components of an SMI, which cap-
italize on the hardware-related classes listed above:
smi:GestureSensorHandler represents a software agent
that handles the sensor signals deriving from the sen-
sor interface embedded into the SMI, which are dedi-
cated to tracking the gestures of the performer (it re-
lates to the smi:GestureInterface); smi:SoundEngine

represents the software handling all audio processing (an
example structure of which is represented in Fig. 1);
smi:MappingHandler represents the software that handles
the mapping function from sensor values to plugins param-
eters; smi:HapticEngine represents the software handling
haptic signals processing; smi:VisualEngine represents
the software handling visual signals processing. To ex-
press the signal flow between hardware and software com-
ponents we exploited the Connectivity Ontology, a part of

the Studio Ontology, which also allows to define the signal
routing within and between the various software agents
encompassed in an SMI.

To specify the parts which an SMI’s sound
engine is made of, we use device decompo-
sition by introducing mx:SoftwareMixer and
smi:SoftwareMultitrackProject as components
of smi:SoundEngine (notably, the new class
smi:SoftwareMultitrackProject was introduced as
the intersection between a mt:MultitrackProject and a
device:SoftwareDevice). This essentially allows for the
definition of a placeholder for a group of audio recordings,
e.g., elements from an audio library, which are bound
together as part of a musical project or endeavour and
described in software, much like a project in a digital
audio workstation. It also allows for representing symbolic
music data, e.g., in MIDI format, that may be rendered on
board by the instrument using a built-in synthesizer unit.
In this way, we could represent both those channels in an
SMI sound engine that contain audio effects, synthesizers
or drum machines, and those channels linked to tracks
containing clips or backing tracks (see Fig. 1). We then
used the Audio Effects Ontology, which has hooks to
the Studio Ontology, to specify the behaviour of the the
audio channels of the sound engine, in particular using
the concept of audio plugin (fx:Plugin) and its relation
with an audio mixer channel.

Due to the specialisation of concepts from the De-
vice and Connectivity Ontology components of the Stu-
dio Ontology framework, a detailed description of the
signal paths within the SMI may be provided if nec-
essary. This involves describing the inputs and out-
puts of sound production and processing devices using
con:InputTerminal and con:OutputTerminal for exam-
ple. These are linked to signal entities which may be clas-
sified using signal types defined in the Music and Studio
Ontologies and bind the components together (as exem-
plified in [25], Fig. 3.). For example mo:Signal may be
used for audio rate data, while Studio Ontology terms,
such as studio:MIDISignal, studio:TimecodeSignal or
studio:ClockSignal, may be used for other signal cate-
gories exemplified in Figure 1.

We also used device decomposition to represent the fact
that a smi:GestureSensorHandler has as component a
lowpass filter. For this purpose, we leveraged the Signal
Processing Ontology (part of the Studio Ontology), using
the class spd:LowPassFilter and adding to it some prop-
erties that are important to represent in an SMI (especially
for its configuration), namely the filter type (e.g., But-
terworth) and cutoff frequency. Moreover, we added the
property smi:threshold to smi:GestureSensorHandler

(each sensor may have a different threshold).

6.4. Sound production and signal mapping terms

For the purpose of representing the various pro-
cessing steps involved in the sensor-to-parameter
mapping which are encompassed in the classes
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smi:GestureSensorHandler and smi:MappingHandler,
we used the concept of studio:Transform from
the Studio Ontology and specialized it by creat-
ing the subclasses smi:GestureSensorTransform

and smi:MappingTransform. The
smi:GestureSensorTransform represents a transfor-
mation applied by a smi:GestureSensorHandler to the
signal observed by a sensor tracking a player’s gesture
(thus involving the signal processing steps deriving from
the application of smi:ADCsensor, spd:LowPassFilter

and in general smi:GestureSensorHandler described
earlier). smi:MappingTransform represents the map-
ping function between the values of a signal gen-
erated by smi:GestureSensorHandler and the val-
ues of a parameter of a fx:Plugin. We also used
a property smi:sensor handler implementation

to link smi:GestureSensorTransform to
smi:GestureSensorHandler, as well as we added
the property smi:mapping implementation to link
smi:MappingTransform to smi:MappingHandler.
Finally, we used the smi:maps relation between
smi:MappingTrasnform and fx:Parameter to link
the concept of mapping function to the concept of plugin
parameter, therefore concluding the path between a sen-
sor in the instrument sensor interface and the controlled
plugin parameter. Similar mappings are exemplified in
[28] in the context of controlling audio processing plugins.

7. Implementation and maintenance

The ontology development is accomplished in an online
public git repository hosted on GitHub8 (A.5). The issue
tracking system offered by GitHub, will be used as commu-
nication channel for maintenance and future development
of the ontology (C.3).

The SMI Ontology is an implementation-driven ontol-
ogy that is evaluated and evolves during its use while
developing applications. Therefore, the ontology will be
growing depending on the introduction of novel hardware
and software components that have not already been rep-
resented in the current ontology, and that may form a SMI,
as well as on the appearance of new components around
which IoMusT ecosystems are structured, such as novel
Musical Things, connectivity infrastructures, or innovative
applications and services (F.1). We expect more special-
ized and expressive ontologies to be developed for specific
classes of SMIs reusing the proposed ontology.

The latest version of the ontology will always be acces-
sible at the SMI Ontology URI, while previous versions
will remain accessible using an URI scheme including the
version ID (F.3). To guarantee backward compatibility,
all the defined concepts will remain in the ontology and
keep their current meaning. In case, at some point, the

8https://github.com/lucaturchet/smi_ontology

ontology maintainers decide that a concept is “not to be
used any more”, it will be annotated as deprecated (F.2).

To document the ontology we used the Wizard for Doc-
umenting Ontologies (Widoco) [54], which uses LODE [55]
for generating ontology documentation and WebVOWL
[56] for its visualisation. The resulting HTML documenta-
tion is available online9, and is indexed with a permanent
identifier 10.

8. Evaluation and Validation

The SMI Ontology has been evaluated by means of for-
mal methods as well as by checking its fitness for our do-
main and purposes. The evaluation parallels the one con-
ducted in [42] for the IoMusT Ontology. The approach
involves the use metrics that provide insight into the size,
scope and richness of the ontology, as well as logical vali-
dation and tests against competencies to examine the con-
sistency and domain fit of the ontology. A discussion on
the expressivity of the proposed ontology is also provided.
The section concludes with a list of current systems using
the SMI Ontology at their core.

8.1. Metrics and formal validation

To assess the quality of the SMI Ontology, we utilized
the metrics defined by Fernández et al. [57]. Referring
to this evaluation methodology, not all the twelve met-
rics have been applied, and some of them required some
adaptations to the specific scenario. These choices are due
to the fact that ontology engineering is often a matter of
personal interpretation of the designers, and most of the
validation process is conducted through experimentation
with real-world data in real-world scenarios. The met-
rics considered relevant for our study are those belonging
to the class of “Knowledge coverage and popularity mea-
sures”. On the other hand, as the SMI Ontology is built
up as a compound of sub-vocabularies, global metrics are
considered less relevant, and will not be included here.
Specifically, the following metrics were utilized:

• Number of classes: consists of the number of classes
in the analyzed ontology;

• Number of properties: represents the number of
datatype and object properties in the analyzed ontol-
ogy;

• Number of individuals: represents the number of
individuals in the analyzed ontology;

• Direct popularity: represents the number of ontolo-
gies importing the analyzed ontology: in our case, be-
ing the proposed ontology new, the popularity is equal
to zero;

9https://lucaturchet.github.io/smi_ontology/
10https://w3id.org/smi#
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iomust:SmartInstrument
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fx:Plugin

smi:hosts_plugin
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fx:has_parameter
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mt:AudioClip
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mt:MidiTrack

smi:MIDIScore

mt:track

smi:midi_score

Figure 2: High level structural overview of the ontology. The diagram represents the process of sensor to sound parameter mapping as well
as the main components of a smart musical instrument’s sound engine.

• Inverse popularity: the number of well-established
ontologies, classes, datatype and object properties im-
ported within the given ontology. This measures in-
teroperability with previous works vs the novelty in-
troduced, and is calculated on the most basic possible
usage (i.e., the one provided in the OWL of the on-
tology).

Values for this metric are reported in Table 2.
Based on our previous experience on developing ontolo-

gies, metrics belonging to the “structural ontology mea-
sures” were replaced by the following alternative set of
metrics:

• Minimum SMI triple count: in our first tests, the
number of triples needed to describe a very simple
SMI is less than 30 triples.

• Maximum SMI triple count: this metric is more
complex to calculate, as we do not have a complete
scenario of the complexity of the devices that will be
available in the future. To the best of authors’ knowl-
edge, the number of triples that can be used to de-
scribe a complex SMI should not exceed 400 triples.

Most classes and properties have been provided with
a textual description (rdfs:comment) in English (E.7).
The ontology editor Protégé [58] and the Visual Notation

Metric Value

Number of classes 121
Number of properties 35
- Datatype properties 13
- Object properties 22
Number of individuals 0
Direct popularity 0
Inverse popularity:
- Ontology direct imports 14
- Ontology indirect imports 10
- Classes 735
- DataType Properties 248
- Object Properties 596

Table 2: Evaluation of the SMI Ontology according to the “Knowl-
edge coverage and popularity measures” proposed by Fernandez et
al. [57].

for OWL Ontologies tool (VOWL) [59] have been used to
check the correctness of the ontology. The logical consis-
tency has been checked by running (through Protégé) three
reasoners, HermiT (version 1.4.3.456) [60], Pellet (version
2.2.0) [61], and FaCT++ (version 1.6.5) [62]. No inconsis-
tencies were found.

Furthermore, we evaluated the ontology using the On-
tOlogy Pitfall Scanner! (OOPS!) online service [63]. This
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service performs a set of checks to detect common pit-
falls in ontology design based on the existing literature.
No pitfalls classified as “Important” or “Critical” have
been detected in the SMI Ontology. Minor pitfalls have
been identified respect to 1) the absence of labels defined
through rdfs:label; 2) the absence of an inverse relation-
ship; 3) the presence of URIs containing file extensions. As
regards the first point, it is ascribable to a design choice:
since the ontology (in our opinion) is already easy to read,
the adoption of labels would be redundant. The last two
points instead, depend on two of the imported ontologies
(i.e., the Event and Timeline ontologies).

8.2. Evaluation against requirements and competency
questions

Whereas quantitative measures deriving from the appli-
cation of formal metrics are useful to obtain comparable
evaluation of ontologies, the assessment of the conceptual
validity of the ontology requires to dive into the ontology,
ask questions and evaluate the answers. The SMI Ontol-
ogy underwent the application of three sets of questions:

1. The academic community of one of the major confer-
ences for Semantic Web research, namely ISWC, de-
fined in its website11 a set of guidelines that resulted
in specific evaluation criteria;

2. MIRO evaluation [30], that provides an organized list
of standardized questions;

3. Section’s 5 competency questions.

Firstly, the analysis using the ISWC guidelines (which
are also included partially in MIRO report) resulted in
the following assessment. Regarding the Impact criteria,
it is possible to conclude that the SMI Ontology fulfills
all the requests (the answers to the questions were largely
discussed over the previous sections of this paper). Con-
cerning the questions of the Reusability criteria, these are
answered by the explanations given in Section 6. Notably,
reusability is maximized by integrating into the SMI On-
tology well established ontologies like SOSA, FOAF and
PROV-O as well as other ontologies specific to the musical
domain like the IoMusT, Audio Effects and Studio ontolo-
gies. Moreover, Design & Technical Quality and Avail-
ability criteria are appropriately fulfilled by the concepts
provided in Section 7.

Nevertheless, it is important to highlight that among all
possible evaluations, the check for competency questions
and requirements satisfaction is the most important, be-
cause it justifies the utility of the whole work. In particu-
lar, the competency questions in Section 5.1 are completely
and successfully handled. The SMI Ontology provides all
the tools to perform semantic discoveries as complex as
needed. Therefore, the ontology provides all the tools nec-
essary to create SPARQL queries that would answer the

11http://iswc2018.semanticweb.org/

call-for-resources-track-papers/#

questions. Besides the queries listed in Appendix B, the
study reported in [64] provides an additional set of queries
based on a triplestore representing knowledge associated
to existing SMIs.

As far as the Formal Requirements are concerned (see
Section 5.2) the discussion is similar, as some points can be
obtained by direct usage of SMI ontology as we described
it, while some others need the inclusion of additional re-
sources.

The expressivity of the ontology is limited by the scope
as defined in Section 2.2. The primary objective of the on-
tology is to provide an initial interoperability framework
for the SMI ecosystem. A more expressive ontology can be
introduced for specific classes of SMIs extending the ontol-
ogy proposed in this paper. We argue that stronger onto-
logical commitments would be limiting in the current state
of the new and fast evolving field of SMIs and may result
in limited adaptation of the ontology. For example, cardi-
nality constraints on the number of sound engines may not
anticipate future developments well, and may exclude cer-
tain technological solutions, e.g. could-based simulation of
SMI components, that are plausible in the future.

8.3. Systems and applications

We further validated the SMI Ontology by devising the
following applications and systems based on it.

SMI database and interface. We created a triple-
store structured around the SMI Ontology, which gathers
existing SMIs instances [64]. We also created a Web-based
interface for such a database, which enables users to popu-
late it and make queries. Such a linked data service expos-
ing metadata about SMIs is useful to gather and organize
information about this class of musical instruments.

Presets sharing. The system reported in [65] proposes
a solution to the issue of sharing presets among hetero-
geneous SMIs, which are used to configure an SMI. An
interoperable file format for the exchange of content pro-
duced by heterogeneous SMIs was defined and was based
on the SMI Ontology. Specifically, the proposed approach
allows one to share presets between heterogeneous SMIs
by mapping information about the configuration of an in-
strument to the concepts of the ontology. Thanks to this
approach, SMIs developers can implement programs that
convert proprietary formats for the configuration of the in-
strument into a common format for SMIs, and vice versa.
Such a system implements the scenario “Automatic con-
figuration” presented in Section 4.

SMI file format. The study reported in [66] describes
SMIF (Smart Musical Instruments Format), a new file for-
mat for the offline exchange of content produced by SMIs.
An implementation of an encoder, a decoder and a player
for this format is also provided. Such format is not com-
pletely fitting any current standard, but is strongly in-
spired by MPEG-A: Interactive Music Application For-
mat. SMIF allows one to describe the sound engine, sen-
sor interface and mapping system of an SMI, using the
concepts of the SMI Ontology.
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MUSEPA. We used the SMI Ontology in conjunc-
tion with the system MUSEPA (Musical Semantic Event
Processing Architecture) we developed [67]. This is
a semantically-based architecture designed to meet the
IoMusT requirements of low-latency communication, dis-
coverability, interoperability, and automatic inference.
The architecture is based on the CoAP protocol, a seman-
tic publish/subscribe broker, and the adoption of shared
ontologies for describing Musical Things and their inter-
actions. The SMI Ontology is used to represent the SMIs
participating to an IoMusT ecosystem and interacting be-
tween them and other Musical Things via MUSEPA. No-
tably, MUSEPA also leverages the IoMusT Ontology, and
the SMI Ontology has hooks to it being SMIs instances of
Musical Things. Nevertheless, whereas the IoMusT On-
tology is used in MUSEPA to represent general knowledge
about Musical Things, the SMI Ontology is used to repre-
sent specific knowledge about SMIs. The two ontologies,
therefore, complement each other in the representation of
complex IoMusT ecosystems.

9. Conclusions

This paper described the development of the Smart Mu-
sical Instruments Ontology, an ontology for the model-
ing of the emerging class of smart musical instruments
[1] as well as related applications and services. Our re-
search was motivated by the need of facilitating interop-
erability across heterogeneous SMIs and within IoMusT
ecosystems based on SMIs. Moreover, it was motivated
by the need of implementing the capability of an SMI of
maintaining knowledge about itself and the environment,
which was envisioned in [1]. The ontology was presented
in OWL and its design was largely informed by scenar-
ios and use cases present in the growing literature about
SMIs [1, 4, 12, 15, 47, 2, 43, 45, 44]. The SMIs Ontol-
ogy is related to existing ontologies and models, including
the IoMusT Ontology [42] for the representation of Inter-
net of Musical Things ecosystems, SOSA Ontology [40, 41]
for the representation of sensors and actuators, the Audio
Effects Ontology [24] for the description of digital audio
effects.

The conducted evaluation showed that the ontology is
consistent and follows good practices. As of today, the on-
tology has been already successfully utilized in four con-
crete applications. The study reported in [64] describes a
triplestore structured around the SMI Ontology which can
be interactively populated and queried via a web-based
interface. The study reported in [65] proposes a system
where two smart guitars exchange configuration presets
structured around the SMI Ontology. The third applica-
tion, consists in a novel file format conceived to describe
the sound engine, sensor interface and mapping system of
an SMI [66]. The fourth system is an IoMusT architecture
enabling SMIs to be automatically discovered and inter-
act within an IoMusT ecosystem [67]. These four systems

show how the ontology can be concretely utilized in a va-
riety of application scenarios.

However, the performed evaluation did not assess the us-
age of the ontology in a real IoMusT setting where various
SMIs communicate between each other and other Musical
Things. In future work, we plan to investigate the use of
the SMI Ontology in an IoMusT ecosystem involving sev-
eral, distributed, heterogeneous SMIs and Musical Things
connected through the semantic architecture reported in
[67]. In addition, we plan to test the ontology with users,
based on client applications that make use of it. Further-
more, as the ontology is disseminated more feedback is
expected in the near future. These inputs will allow one
to evolve the ontology based on potentially unexpected use
cases as well as conduct a more in-depth evaluation.
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Appendix A. Prefixes and Namespaces

Table A.3 lists the prefixes used in the present work and
their corresponding expanded URI.

Appendix B. SPARQL queries associated to the
competency questions
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SELECT DISTINCT ?audioSensor ?audioSensorType ?gestureSensor ?gestureSensorType

?audioActuator ?audioActuatorType ?hapticActuator ?hapticActuatorType

?visualActuator ?visualActuatorType

WHERE {

?instrument rdfs:label "Smart Sax n10" .

{

?instrument smi:smi_component ?audioInputInterface .

?audioInputInterface rdf:type smi:AudioInputInterface .

?audioInputInterface sosa:hosts ?audioSensor .

?audioSensor rdf:type ?audioSensorType .

?audioSensorType rdfs:subClassOf microphone:Microphone .

}

UNION

{

?instrument smi:smi_component ?GestureInterface .

?GestureInterface rdf:type smi:GestureInterface .

?GestureInterface sosa:hosts ?gestureSensor .

?gestureSensor rdf:type ?gestureSensorType .

?gestureSensorType rdfs:subClassOf smi:GestureTrackingSensor .

}

UNION

{

?instrument smi:smi_component ?SoundDeliverySystem .

?soundDeliverySystem rdf:type smi:SoundDeliverySystem .

?soundDeliverySystem sosa:hosts ?audioActuator .

?audioActuator rdf:type ?audioActuatorType .

?audioActuatorType rdfs:subClassOf smi:AudioActuator

}

UNION

{

?instrument smi:smi_component ?HapticDeliverySystem .

?HapticDeliverySystem rdf:type smi:HapticDeliverySystem .

?HapticDeliverySystem sosa:hosts ?hapticActuator .

?hapticActuator rdf:type ?hapticActuatorType .

?hapticActuatorType rdfs:subClassOf smi:HapticActuator

}

UNION

{

?instrument smi:smi_component ?VisualDeliverySystem .

?VisualDeliverySystem rdf:type smi:HapticDeliverySystem .

?VisualDeliverySystem sosa:hosts ?visualActuator .

?visualActuator rdf:type ?visualActuatorType.

?visualActuatorType rdfs:subClassOf smi:VisualActuator

}

}

Listing 1: SPARQL query retrieving the type of sensors and actuators that compose the smart saxophone “Smart Sax n10” .

SELECT COUNT (? instrument)

WHERE {

?instrument rdf:type smi:SmartViolin .

?instrument smi:smi_component ?audioInputInterface .

?audioInputInterface rdf:type smi:AudioInputInterface .

?audioInputInterface sosa:hosts ?microphone .

?microphone rdf:type microphone:CondenserMicrophone .

}

Listing 2: SPARQL query retrieving the number of smart violins equipped with a condenser microphone.
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SELECT ?synthesizer

WHERE {

?instrument rdfs:label "Smart Banjo v1" .

?instrument smi:smi_component ?soundEngine .

?soundEngine rdf:type smi:SoundEngine .

?soundEngine device:component ?softwareMixer .

?softwareMixer rdf:type mixer:SoftwareMixer .

?softwareMixer mixer:channel ?channel .

?channel smi:hosts_plugin ?plugin .

?plugin rdf:type fx:PlugIn .

?plugin smi:plugin_type ?synthesizer .

?synthesizer rdf:type smi:Synthesizer .

}

Listing 3: SPARQL query retrieving the synthesizers used in the sound engine of the smart banjo “Smart Banjo v1”.

SELECT DISTINCT ?audioFileLabel ?midiScoreLabel

WHERE {

?instrument rdf:type smi:SmartPiano .

?instrument rdfs:label "Smart Piano Iamakhaa n3b" .

?instrument smi:smi_component ?soundEngine .

?soundEngine rdf:type smi:SoundEngine .

?soundEngine device:component ?SoftwareMultitrackProject .

?SoftwareMultitrackProject rdf:type smi:SoftwareMultitrackProject .

{

?SoftwareMultitrackProject multitrack:track ?audioTrack .

?audioTrack rdf:type multitrack:AudioTrack .

?audioTrack multitrack:clip ?audioFile .

?audioFile rdf:type multitrack:AudioClip .

?audioFile rdfs:label ?audioFileLabel .

}

UNION {

?SoftwareMultitrackProject multitrack:track ?MIDITrack .

?MIDITrack rdf:type multitrack:MidiTrack .

?MIDITrack smi:midi_score ?midiScore .

?midiScore rdf:type smi:MIDIScore .

?midiScore rdfs:label ?midiScoreLabel .

}

}

Listing 4: SPARQL query retrieving the audio files and MIDI scores associated respectively to backing tracks and MIDI tracks in the sound
engine of a given piano piano.
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SELECT (COUNT(DISTINCT ?instrument) as ?count)

WHERE {

?instrument rdf:type smi:SmartGuitar .

?instrument smi:smi_component ?soundEngine .

?instrument smi:smi_component ?GestureInterface .

?GestureInterface rdf:type smi:GestureInterface .

?GestureInterface sosa:hosts ?gestureSensor .

?gestureSensor rdf:type smi:PressureSensor .

?soundEngine rdf:type smi:SoundEngine .

?soundEngine device:component ?softwareMixer .

?softwareMixer rdf:type mixer:SoftwareMixer .

?softwareMixer mixer:channel ?channel .

?channel smi:hosts_plugin ?plugin .

?plugin rdf:type fx:PlugIn .

?plugin rdfs:label "RetrologueSynth" .

?plugin fx:has_parameter ?parameter .

?gestureSensor smi:mapping_function ?transform .

?transform rdf:type smi:MappingTransform .

?transform smi:maps ?parameter .

}

Listing 5: SPARQL query retrieving the number of smart guitars using a RetrolologueSynth audio plugin associated to a pressure sensor in
the sensor interface.

SELECT ?instrument ?service ?servicePuropose ?application ?applicationPuropose

WHERE {

?instrument rdf:type smi:SmartGuitar .

{

?instrument smi:smi_service ?service .

?service smi:smi_service_purpose ?servicePuropose .

}

UNION

{

?instrument smi:smi_application ?application .

?application smi:smi_application_purpose ?applicationPuropose .

}

}

Listing 6: SPARQL query retrieving all services and applications available for smart guitars and their purposes.

SELECT ?instrument ?stageEquipment

WHERE {

?instrument rdf:type smi:SmartPiano .

?instrument rdfs:label "Smart Piano DX7v10" .

?instrument iomust:hasConnectionWith ?stageEquipment .

?stageEquipment rdf:type iomust:StageEquipment .

?stageEquipment iot:isInvolvedIn ?concert .

?concert iot:produces/event:time/timeline:starts "22:00 min" .

}

Listing 7: SPARQL query retrieving the pieces of stage equipment connected to a given smart piano at a given time during a concert.
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Table A.3: Expanded SPARQL prefixes

Prefix URI
rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#

rdfs: http://www.w3.org/2000/01/rdf-schema#

owl: http://www.w3.org/2002/07/owl#

smi: http://purl.org/ontology/iomust/smi

iot: http://purl.org/ontology/iomust/internet of things

iomust: http://purl.org/ontology/iomust/internet of things/iomust

mo: http://purl.org/ontology/mo/

studio: http://purl.org/ontology/studio/

device: http://purl.org/ontology/studio/device/

mx: http://purl.org/ontology/studio/mixer/

mt: http://purl.org/ontology/studio/multitrack/

con: http://purl.org/ontology/studio/connectivity/

spd: http://purl.org/ontology/studio/sigproc/

fx: https://w3id.org/aufx/ontology/1.0#

af: https://w3id.org/afo/onto/1.1#

prov: http://www.w3.org/ns/prov#

sosa: http://www.w3.org/ns/sosa/

foaf: http://xmlns.com/foaf/0.1/

event: http://purl.org/NET/c4dm/event.owl#

timeline: http://purl.org/NET/c4dm/timeline.owl#

SELECT DISTINCT ?instrument ?instrumentType

WHERE {

?instrument rdf:type iomust:SmartInstrument .

?instrument rdf:type ?instrumentType .

?instrumentType rdfs:subClassOf iomust:SmartInstrument .

?instrument iomust:hasConnectionWith ?smartphone .

?smartphone rdf:type iomust:Smartphone .

?instrument iot:isInvolvedIn ?concert .

?smartphone iot:isInvolvedIn ?concert .

?concert iot:produces/event:time/timeline:starts "43:00 min" .

}

Listing 8: SPARQL query retrieving all SMIs (and their type) connected to the smartphones used during a concert.
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