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Abstract: Catchment geology has a major influence on the relative impact of the main seasonal
hydrological predictability sources (initial conditions (IC), climate forcing (CF)) on the forecast skill
as it defines the system’s persistence. A quantification of its effect, though, on the contribution of
the predictability sources to the forecast skill has not been previously investigated. In this work
we apply the End Point Blending (EPB) framework to assess the contribution of IC and CF to the
seasonal streamflow forecast skill over two catchments that represent the end members of a set of
catchments of contrasting geology, hence contrasting hydrological response: a highly-permeable,
hence slow-responding catchment and a fast-responding catchment of low permeability. Our results
show that the contribution of IC in the slow-responding catchment is higher by up to 44% for forecasts
initialized in winter and spring and by up to 21% for forecasts initialized in summer. IC are important
for up to 4 months of lead in the slow-responding catchment and 2 months of lead in the flashier
catchment. Our analysis highlights the added value of the EPB in comparison to the traditional
ESP/revESP approach for identifying the sources of seasonal hydrological predictability, on the basis
of catchment geology.
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1. Introduction

Seasonal streamflow predictability is a key element to the efficient design of water-related
management strategies as it has a major impact on the resilience of several sectors like hydropower
production, water supply and agriculture. Seasonal hydrological forecasts can provide knowledge of
the future land surface hydrological conditions several months in advance [1,2], contributing to early
preparedness against disasters and to optimal water usage. Therefore, identifying the sources of skill
of such forecasts can be crucial for human safety as well as for sustainable water management [3–7].

Seasonal hydrological forecasting relies on both statistical and dynamic methods. The former
link land surface conditions or climate precursors to hydrological predictands [8–11], whereas the
latter employ hydrological models to predict seasonal hydrology [12,13]. The predictive skill of
such models depends principally on the initial hydrological conditions (IC) at the start date of the
simulation and the climate forcing (CF) during the forecast period [6,7,14,15]. Predictability related to
IC arises from the relatively slow evolution of land surface moisture states, mainly subsurface water
content (SWC) and snow water equivalent (SWE), that defines the hydrological system’s persistence
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(i.e., its memory) [1,16]. CF is another source of skill influencing seasonal hydrological predictions and
it can either be resampled from the historical climatology (Ensemble Streamflow Prediction approach,
ESP) [17] or generated by climate forecast models [18–20].

Establishment of the dominant factor determining the seasonal forecast skill is crucial to funnel
the efforts into improving the appropriate predictive tools, either by developing data assimilation
techniques to improve the IC estimates or by enhancing the accuracy of the CF. The relative contribution
of the two major sources of seasonal hydrological predictability (i.e., IC, CF) has been investigated in
several catchments worldwide [2,14,21–24] by applying the ESP/reverse ESP (revESP) framework [25]
that compares the predictability stemming from perfect IC and climatological CF (ESP) with the
predictability related to known CF and climatological IC (revESP). Recent advances in the ESP/revESP
methodology involve the End Point Blending (EPB) [1], a computationally-light alternative to the
Variational Ensemble Streamflow Prediction Assessment (VESPA) [15] that accounts for intermediate
levels of knowledge between perfect knowledge and climatological (total lack of knowledge), allowing
for the calculation of the effect of changes in IC and CF skill on the streamflow forecast skill—a metric
termed “skill elasticity” [15].

Many studies have focused on the impact of catchment location [2,22,25], size [21], elevation [23,24],
season and lead time (LT) [2,22,25] on the ESP/revESP skill. A number of studies have also evaluated
the effect of geology on the ESP seasonal predictive skill [14,23,24,26]. Geological characteristics have a
substantial impact on catchment permeability, subsurface storage and evolution of moisture states,
thereby determine flow variability and drive IC-related seasonal hydrological predictability [26–28].
Water stored in the soil and the snowpack establishes a memory effect controlled by the timescale
required to dismiss the impact of varying soil wetness [29]. In permeable catchments with large
groundwater storage that dampens the high-frequency rainfall fluctuations to a slower and smoother
hydrological response, this memory effect persists longer whereas catchments of low permeability and
storage have shorter memory of hydrological states, hence smaller persistence [24]. Therefore, seasonal
hydrological predictability stemming from knowledge of IC is higher for regions with longer IC
persistence, as defined by their geological characteristics. For example, Paiva et al. [14] suggested that
the geological characteristics in the southeastern part of the Amazon could constitute groundwater
storage important for seasonal discharge predictability during the low-flow period. The presence
of high groundwater storages was related to increased streamflow forecast predictability related
to known IC in the Seine catchment in northern France [23] and the UK [26]. Staudinger and
Seibert [24] also confirmed longer persistence of IC in mountainous catchments in Switzerland with
large groundwater storage.

The aforementioned studies, however, focused on identifying regions (and seasons) where (and
when) predictability was related to perfect knowledge of IC, hence associated with skillful or unskillful
ESP. On the other hand, the recently developed VESPA [15] and EPB [1] methodologies that evaluate
the effect of varying levels of IC and CF uncertainty on the seasonal forecast skill, have been applied to
regions that differ in terms of hydroclimatic conditions, without considering their geological properties.
Therefore, to the best of our knowledge, no previous work has quantified the contribution of the
hydrological predictability sources (IC, CF) to the seasonal streamflow forecast skill in regions of
contrasting geology, hence differing persistence.

In this study we build upon the work of Norbiato et al. [27] who analyzed the streamflow
characteristics of a set of alpine catchments of differing geology, hence of diverse subsurface storage
capacity and hydrological response (with a focus on event runoff coefficients, though). From the set of
catchments investigated in the above-mentioned study, we selected two catchments that represent the
end members as far as geology-induced subsurface water storage capacity is concerned, for which we
applied the EPB methodology to identify how geology affects the dominant factors (IC, CF) controlling
the seasonal streamflow forecast skill. These two case studies are representative of two extreme
hydrological behaviors, with one being characterized by a fast-responding hydrological regime due to
the presence of low-permeability rocks and the other being dominated by highly-permeable lithological
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units resulting in a slower response. Moreover, the case studies were chosen to be uninfluenced by
human interventions (e.g., dams, irrigation, water diversion) and have similar characteristics (similar
size, mean elevation and climatic conditions), differing only in terms of geology. This way we isolate
the effect of the contrasting hydrological regime induced by the differing geological properties on the
diverse contribution of the predictability sources to the seasonal streamflow forecast skill. Specifically,
the experimental work addresses the following scientific questions: (1) what is the effect of geology on
the contribution of each predictability source to the forecast skill; (2) how does the contribution of each
predictability source to the forecast skill evolve with season and LT over catchments of contrasting
geology; and (3) what is the added value of the EPB methodology in comparison to the traditional
ESP/revESP approach for identifying the sources of seasonal hydrological predictability in regions of
contrasting geological characteristics? The insights provided by answering these questions can set the
guidelines for effectively selecting the components of a forecasting system for a given catchment on the
basis of its geological characteristics, including investments in more sophisticated models, assimilation
of higher-quality observational or remote-sensing data and better seasonal forecasts.

2. Materials and Methods

2.1. Case Studies

The case studies selected for this work are located in the upper Adige River Basin (Eastern Italian
Alps; Figure 1a) and constitute the end members of a set of catchments that are characterized by diverse
geology, hence by diverse water storage capacity and hydrological response. As aforementioned, this set
has been previously analyzed by Norbiato et al. [27] who used the ratio of daily flow exceeded 90% of
the time to the median daily flow as an indicator of subsurface water storage capacity. The reader is
referred to the above-cited study for detailed information on the characteristics of the set of catchments.
The case studies selected for the purpose of this paper involve two unregulated catchments of this
set of similar size and mean elevation and fairly similar climate pattern but differing lithology,
hence contrasting water storage capacity and hydrological response: the Passirio catchment closed at
Merano (Figure 1b) that is fast-responding and the Gadera catchment closed at Mantana (Figure 1c)
that is slow-responding. An analysis of these case studies allows for the embracement of relevant
aspects of hydrological behavior within the river basin in relation to its geological characteristics.

The case studies feature the typical characteristics of alpine environments such as complex
topography, high altitude and a snow-dominated hydrological regime but are diverse in terms of
geology, implying diverse permeability and storage capacity. The Passirio catchment, located at
the northwestern part of the upper Adige River Basin, is part of the Austroalpine geological group
containing medium- to high-grade alpine and variscan metamorphic rocks like gneiss (orthogneiss
and paragneiss) that are characterized by low permeability, resulting in low groundwater storage
capacity. In the Gadera catchment at the eastern part of the basin the lithology changes to formations
belonging to the Southern Alps geological group that comprise of metamorphic and carbonate
rocks of low-grade metamorphism like phyllites (including limestones and dolostones), while karst
processes prevail indicating high permeability and groundwater storage. The diverse properties
of the case studies result in a variable hydrological response that renders them representative of
the two extreme hydrological behaviors that characterize the basin: a fast-responding hydrological
regime governed by quick subsurface flow and surface runoff generation dominates the Passirio
catchment, whereas a slow-responding hydrological regime caused by the damping effect of the large
groundwater storage prevails over the Gadera [27,30,31]. Land use consists mainly of grassland,
sparse vegetation and coniferous forests in the Passirio catchment, while the Gadera catchment is
mainly dominated by coniferous forests, meadows and sparsely vegetated areas including outcrop
rocks of high permeability [27].
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due to the sheltering effect caused by the mountainous ranges located in the north and the south and 
a higher value over the Passirio attributed to the stau effect. For the period from October until March 
snow is accumulated in both catchments, with the end of March marking the onset of the melting 
period during which the largest part of runoff is generated. Seasonal streamflow generally follows 
the same pattern as precipitation, with low flows during winter due to snow accumulation in the 
high-altitude areas and peak flows due to snow melting during summer and cyclonic storms during 
autumn [27,32]. 
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Three streamflow gauging stations are present in the Passirio catchment (Figure 1b), with the 
station of Merano denoting the outlet section with a contributing area of approximately 402 km2. A 
set of eight precipitation and temperature stations located in an elevation range of 300–3000 m 
provide weather data for this catchment. In the Gadera catchment (Figure 1c) there are five 

Figure 1. (a) Location of the two study catchments within the upper Adige River Basin. The inlet
at the bottom left shows the location of the upper Adige River Basin in Italy; (b) Passirio catchment;
and (c) Gadera catchment.

An overview of the main characteristics of the two case studies is presented in Table 1. The climate
in the study areas is continental with dry winters and wet summers characterized by intense convective
thunderstorms. The monthly distribution of precipitation exhibits two maxima during August and
November, with a lower value of mean annual precipitation over the Gadera catchment due to the
sheltering effect caused by the mountainous ranges located in the north and the south and a higher
value over the Passirio attributed to the stau effect. For the period from October until March snow
is accumulated in both catchments, with the end of March marking the onset of the melting period
during which the largest part of runoff is generated. Seasonal streamflow generally follows the same
pattern as precipitation, with low flows during winter due to snow accumulation in the high-altitude
areas and peak flows due to snow melting during summer and cyclonic storms during autumn [27,32].

Table 1. Main characteristics of the two case studies.

Catchment Passirio Gadera

Gauging station Merano Mantana
Contributing area (km2) 402 390
Mean elevation (m a.s.l.) 1874 1858
Elevation range (m a.s.l.) 360–3500 810–3050

Mean annual precipitation (mm) 1124 932
Mean annual temperature (◦C) 3.1 2.6

Three streamflow gauging stations are present in the Passirio catchment (Figure 1b), with the
station of Merano denoting the outlet section with a contributing area of approximately 402 km2. A set
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of eight precipitation and temperature stations located in an elevation range of 300–3000 m provide
weather data for this catchment. In the Gadera catchment (Figure 1c) there are five precipitation
stations in an elevation range of 700–1600 m and eight temperature stations covering a range of
700–3000 m, while three streamflow gauging stations exist also in this catchment closing at Mantana,
with a contributing area of approximately 390 km2.

For catchments located in similar climatic regions that imply comparable boundary forcing,
catchment geology can exert a major influence on seasonal hydrological predictability as it defines
the persistence of the catchment’s land surface IC, i.e., the temporal dependence of sequential values
of moisture states like SWC and SWE [33]. IC persistence can be quantified by calculating the
autocorrelation of the above-mentioned moisture states for different time lags [29], as shown in Figure 2,
where the autocorrelation was computed for time lags ranging from 1 to 6 months in accordance with
the LT of the seasonal streamflow forecasting exercise presented in this study. For the calculation
of the autocorrelation, data from all months in the historical record were considered for the SWC
as well as for the SWE, that even in summer had extremely low monthly cumulative values which,
however, never equaled zero.
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Figure 2. (a) Persistence of the land surface moisture states (sum of snow water equivalent (SWE) and
subsurface water content (SWC)); and (b) persistence of the individual moisture states (SWE, SWC) in
the two case studies.

The calculated autocorrelation (i.e., persistence) of the land surface hydrological states (sum of
SWC and SWE) after time lag 2 was found to be higher in the Gadera catchment due to the longer
memory imposed by large storages that render the statistical interdependence between successive time
periods more important (Figure 2a). A further analysis of the individual components (i.e., SWC, SWE)
affecting IC persistence indicated a higher SWE persistence for all time lags and a lower SWC persistence
mainly for times lags 2–4 in the Passirio catchment, compared to the respective values calculated for
the Gadera (Figure 2b). These findings imply that the hydrological regime in the Passirio catchment is
strongly snow-dominated, in contrast to the hydrological regime in the Gadera where both snow and
precipitation drive the hydrological response.
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2.2. Hydrological Model

The Integrated Catchment-Scale Hydrological Model (ICHYMOD) [34–36] was employed in
this study to perform the ESP and revESP experiments as prerequisites for the application of the
EPB. The reader is referred to the above-cited literature for a detailed description of the model.
Briefly, ICHYMOD is a continuous, conceptual, semi-distributed rainfall-runoff model operating on an
hourly or daily time step and it comprises of modules describing snow accumulation and melt, glacier
melt, soil moisture, groundwater and flow generation. Snow and glacier melt are calculated applying
a distribution function approach according to a combined radiation index degree-day concept [37],
as adjusted by Zaramella et al. [36]. Potential evapotranspiration is calculated based on the Hargreaves
method [38]. The water storage capacity across the basin is described using a probability distribution
function [39].

Saturation at any point in the basin leads to the generation of surface runoff, which integrated
over the basin results in the total direct runoff entering the fast response pathways to the basin outlet.
The direct runoff routing is based on the Muskingum–Cunge method [40]. Water drainage from the
soil due to percolation enters the slow response pathways and is represented by a function of basin
moisture storage [41]. The slow components (i.e., base flow) of the total runoff are routed through an
exponential store. The total flow at the outlet of the basin is calculated as the summation of the storage
representations of the fast and slow response pathways. For the purpose of this study the version of
the model operating on a daily time step was used. Following the methodological approach adopted
by previous studies that employed hydrological models running on a daily time step [2,21,25,26],
the results were aggregated to monthly values given that aggregate (cumulative) values of hydrological
variables are important for seasonal forecasting.

2.3. Model Calibration and Validation

Model parameter calibration was performed using the Particle Swarm Optimization method [42].
The Kling–Gupta efficiency (KGE) [43] was utilized for model calibration and validation. A simple
split-sample test [44] was implemented by splitting the available dataset in two parts, one for calibration
and one for validation. Observed streamflow data was available throughout the period 2000–2018
for the gauging station at Mantana (outlet of the Gadera catchment), whereas for the gauging station
at Merano (outlet of the Passirio catchment) observational data was available only for the period
2013–2018. Hence, for the Gadera catchment the calibration period was set from 1 October 2010 until
1 October 2018 (due to the availability of observational data of better quality with less gaps) and the
validation period from 1 October 2000 until 1 October 2010, whereas for the Passirio the calibration
was performed from 1 October 2013 until 1 October 2015 and the validation from 1 October 2015 until
1 October 2018. The KGE values for the calibration were 0.76 and 0.79 for the Passirio and the Gadera,
respectively, whereas in validation mode the KGE dropped to 0.75 for the Passirio and 0.78 for the
Gadera. The efficiency over the whole period that data was available was 0.77 for the Passirio and 0.81
for the Gadera.

Given the short time series of available streamflow data for the Merano gauging station and to verify
the model’s performance over the Passirio catchment, simulated streamflow values (i.e., after model
calibration) were compared to observed values at the gauging station of Saltusio (Figure 1b) (with
a contributing area of approximately 342 km2), located approximately 6 km upstream of Merano
(contributing area of 402 km2). The KGE over the whole simulation period for the Saltusio station
was equal to 0.73, hence we concluded that the ICHYMOD model is able to efficiently reproduce the
temporal changes in streamflow in both case studies.

The differing geology of the two case studies translated into differential parameterization of the
subsurface processes that define the contribution of the main flow components (surface flow, subsurface
flow, base flow) to the total runoff simulated by the hydrological model. Geologic characteristics in
the flashier Passirio catchment resulted in a low fraction of the simulated total flow originating from
base flow (nearly 30%), while in the more permeable Gadera catchment approximately 70% of the
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simulated total flow stemmed from the large groundwater aquifers. These values are in line with
the base flow index (BFI) [45] calculated from the observed streamflow data, after applying a simple
separation method.

2.4. Experimental Design

This study is focused on the implementation of the EPB elasticity framework for the generation
of hindcasts (i.e., retrospective forecasts) with a LT of 1 to 6 months, initialized on the first day of
each calendar month of the period 2002–2018. To this end, we utilized ESP and revESP hindcasts
as well as a simulation of the climatology (CLIM). The period 2000–2001 was used for model
spin-up. Moreover, following the common approach adopted by previous studies [2,15,25,26,46–48],
a retrospective simulation spanning the entire period was performed to create surrogate observations
of streamflow data in order to exclude model error. This simulation (hereon referred to as perfect)
was employed both for the application of the EPB and for the evaluation of the performance of the
EPB-generated hindcasts. The four above-stated experiments (ESP, revESP, CLIM and perfect) represent
the four end points of uncertainty in the predictability sources and constitute the prerequisites for the
application of the EPB analysis.

As aforementioned, the daily forecasted streamflow time series resulting from the ESP, revESP and
CLIM experiments as well as from the perfect simulation were aggregated to monthly values as, in view
of the relevant uncertainties within seasonal hydrological applications (e.g., for reservoir management),
the interest lies mostly in monthly uncertainties. Model simulations, however, were performed on a
daily time step to provide accurate estimates of IC on the first day of each calendar month, when the
hindcasts were initialized. In this work, month one of LT refers to the first month of the forecast.
For example, for a forecast initialized on 1 January, month one of LT refers to January, month two to
February and so on.

2.4.1. EPB Implementation

Both the ESP and the revESP rely on the assumption of perfect knowledge of either IC or CF,
respectively. In reality, however, even the best estimates or measurements of hydrological and
meteorological variables encompass a certain degree of uncertainty. Hence, an analysis of intermediate
levels of uncertainty between perfect knowledge and climatological (i.e., deducted by the distribution
of all data in the historical record) can provide a more realistic insight on the seasonal hydrological
predictability under different levels of accuracy in the predictability source (IC and/or CF). The strategy
involves blending linearly the perfect and climatological IC and CF, using weights [15]. The weights
utilized for the blending were w = (0, 0.05, 0.10, 0.25, 0.50, 0.75, 0.90, 0.95, 1.0). A weight of zero
represents zero uncertainty (perfect knowledge), while a weight equal to one represents climatological
uncertainty (total lack of knowledge). Weights denoted as wIC refer to the weights used to blend the
IC, while weights denoted as wCF refer to the weights used to blend the CFs. Thus, using wIC = 0 and
wCF = 1 yields the ESP forecast, wIC = 1 and wCF = 0 yields the revESP forecast, wIC = 1 and wCF = 1
yields the CLIM forecast and wIC = 0 and wCF = 0 yields the perfect forecast. For every combination
of wIC and wCF the forecast skill can be calculated, resulting in skill plots displaying the forecast
skill as a function of the IC and CF skill (Figure S1 in the Supplementary Materials). The horizontal
and vertical axes represent the IC and CF skill, respectively, corresponding to weights wIC and wCF,
and result from the following equations:

IC skill = 100×
(
1−w2

IC

)
(1)

CF skill = 100×
(
1−w2

CF

)
(2)

Hence, for a weight equal to zero (i.e., zero uncertainty) the skill of the predictability source
(IC, CF) will have its maximum value (100%), corresponding to a forecast with perfect knowledge of
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the specific predictability source. On the contrary, for a weight equaling unity the skill will be null,
indicating complete lack of knowledge in the predictability source.

As shown in Figure S1, the grey rhomboid shapes represent a specific forecast for each combination
of IC and CF skill, whereas the red circles are the four end points of uncertainty: the ESP, the revESP,
the perfect simulation and the CLIM. The EPB approach [1] involves combining the four end points of
the variable weight assessment [15] using for the blending the same weights as the VESPA methodology.
Thus, new hindcasts are generated for each wIC–wCF combination, without the necessity to perform
the additional computationally-heavy simulations required by the VESPA. For each combination point,
the four end points are blended given the specific weights to create a new ensemble of 100 members.
The percentage of each point used to generate the new ensemble (i.e., the number of members randomly
resampled from each end point) is provided by the following equation:

EP(%) = (1− |xEP −wIC|) ×
(
1−

∣∣∣yEP −wCF
∣∣∣) (3)

where wIC and wCF refer to the weights of the specific combination point for which the new ensemble is
created, while xEP and yEP refer to the wIC and wCF values of the end point for which the percentage is
calculated, respectively (e.g., if the combination point reproduced refers to the ESP, then wIC = xEP = 0
and wCF = yEP = 1; hence 100% of the EPB hindcasts are resampled from the ESP point).

The skill plots obtained with the EPB method allow for the quantification of the change in forecast
skill related to a change in IC and/or CF skill. To this end, the skill elasticities for the IC and the
CF can be calculated as the gradient in streamflow prediction skill relative to changes in IC and CF
skill. For the purposes of this study, the skill elasticities were calculated across three transects in the
center of the response surface (highlighted with the magenta-colored rectangle in Figure S1 in the
Supplementary Materials) and averaged according to the equations:

EIC =
{

S[F(75,19)]−S[F(19,19)]
75%−19% +

S[F(75,44)]−S[F(19,44)]
75%−19% +

S[F(75,75)]−S[F(19,75)]
75%−19%

}
/3 (4)

ECF =
{

S[F(19,75)]−S[F(19,19)]
75%−19% +

S[F(44,75)]−S[F(44,19)]
75%−19% +

S[F(75,75)]−S[F(75,19)]
75%−19%

}
/3 (5)

where the numerators, expressed as S[F(IC skill, CF skill)] − S[F(IC skill, CF skill)], comprise of the
gradients in streamflow forecast skill between IC skill (or CF skill) values of 75% and 19% (the
denominator). A positive skill elasticity value implies that an improvement in the predictability source
(IC or CF) results in an improvement in the streamflow forecast skill. Negative skill elasticity values
imply that improving the skill of the predictability source leads to a deterioration of the forecast skill,
whereas a skill elasticity of zero indicates that improving the predictability source has no influence on
the forecast skill. The calculated skill elasticities were transformed to percentages of contribution of
each predictability source to the streamflow forecast skill according to the equations:

IC contribution = (EIC/(EIC + ECF)) × 100 (6)

CF contribution = (ECF/(EIC + ECF)) × 100 (7)

2.5. Forecast Evaluation

In this study the skill of the EPB streamflow hindcasts is calculated as a skill score that indicates
the improvement of a specific forecast over a reference forecast. The generic equation for the calculation
of a skill score is given by:

Skill scoreHC = 1−
scoreHC
scoreRe f

(8)

where HC refers to the EPB hindcast and Ref to the reference forecast against which the EPB hindcasts
were benchmarked, here the CLIM. The skill score equals unity for a perfect forecast. Declining values
of the skill score indicate declining forecast skill until the value of zero where the forecast skill equals
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that of the reference forecast. Negative skill score values imply that the forecast is less skillful than the
reference (CLIM).

For the evaluation of the EPB hindcasts, deterministic and probabilistic metrics were employed
to assess different forecast attributes like accuracy, sharpness and reliability. The probabilistic metric
used is the Continuous Ranked Probability Score (CRPS, and its corresponding skill score, CRPSS),
that is the most common score exploited for the evaluation of the general performance of hydrological
ensemble forecasts [48]. The deterministic metrics involve the mean squared error skill score (MSEss)
and the mean absolute error skill score (MAEss, the deterministic equivalent of the CRPSS) and were
calculated using the ensemble mean. The pattern of the results regarding the contribution of the
predictability sources to the seasonal streamflow forecast skill over the two case studies of contrasting
geology was found to be practically irrelevant of the forecast metric applied, hence, to the interest of
parsimony, the rest of the paper is based upon the MAEss only.

3. Results

3.1. Hydroclimatic Regime

The observed temperature and precipitation as well as the simulated hydrological variables for the
two case studies averaged over the simulation period (2002–2018) are presented in Figure 3. The climate
pattern in the two case studies is fairly similar, with increased precipitation during summer and autumn
and decreased precipitation during winter and spring. The average annual precipitation is higher over
the Passirio catchment, with monthly precipitation values being equal to that over the Gadera only for
the period from June until September. Snow accumulation, as indicated by the increasing values of
SWE in both catchments, starts in October and reaches its maximum values in February and March,
after which the increased temperature leads to melting and to the generation of the largest part of
runoff volume, which at monthly time scales in small catchments equals approximately streamflow [25].
Increased spring and summer temperatures also cause increased losses due to evapotranspiration.
Snow accumulation is higher over the Passirio catchment resulting in a mostly snow-dominated
hydrological regime, with declining SWC and streamflow trends after the major part of the snowpack
has melted. The Gadera catchment, on the other hand, is dominated by both snow and precipitation
leading to increased SWC and streamflow values even after the melting season is over. Simulated SWC
exhibits its maximum value during June in the Passirio catchment and during September in the Gadera,
while the highest SWC variability (in terms of interannual standard deviation) in both case studies is
manifested in May.

The low groundwater storage capacity over the Passirio catchment results in a quick response
to rainfall, hence in a highly variable hydrological regime as illustrated in Figure 3a. In contrast,
the variance of monthly flow over the Gadera catchment (Figure 3b) is lower due to the attenuating
effect of large groundwater storages sustained by the karstified and limestone/dolostone aquifers that
prevail in the subsurface. The contrasting hydrological behavior of the two case studies is also reflected
in the value of the coefficient of variation (CV) of monthly flow that equals 0.74 for the flashier Passirio
catchment, while it drops to 0.44 for the slower-responding Gadera catchment.
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Figure 3. Mean monthly hydrological variables (left vertical axis) and temperature (right vertical axis) for
(a) the Passirio catchment; and (b) the Gadera catchment, over the period 2002–2018. Mean precipitation
(P) and temperature (T) refer to observed values; snow water equivalent (SWE), evapotranspiration
(ET), subsurface water content (SWC) and total runoff (TR) refer to simulated values. The simulated
SWC drawn has been reduced by the lowest monthly value to show only the active range. Note the
difference in the left vertical axes between the two case studies, as well as the difference in the left and
right vertical axes for each case study.

3.2. Predictability Variations

As shown in Figure 3, the land surface hydrological conditions and the climate conditions vary
considerably with the season under consideration. The variation of streamflow, however, is affected not
only by the climatic settings but also by the subsurface processes that highly depend on the catchment’s
geological characteristics, ultimately affecting the water storage capacity and the catchment’s memory.
These variations are shown in Figures 4 and 5 and Figure S2 in the Supplementary Materials for chained
time series of ensemble streamflow hindcasts with varying levels of skill in the predictability sources
(IC, CF), as generated by the EPB approach for the two case studies of differing geology. Figures 4
and 5 refer to LT equal to 1 and 6 months, respectively, while Figure S2 refers to LT 3 months. For better
visual inspection, only the results for the period 2002–2007 are presented. The black line represents the
time series of surrogate observed streamflow data (perfect simulation) while the red line illustrates the
forecast ensemble mean. The uncertainty band between the 5th and 95th percentiles is also shown.
The 90% interquartile range (i.e., the difference between the 95th and the 5th percentiles of the forecast
distribution) is used as a measure of the forecast spread, with lower spreads indicating less uncertain,
hence sharper forecasts [49]. The left panel of the graph for each of the two case studies depicts forecasts
with decreasing level of IC skill (from top to bottom) considering climatological uncertainty for the
CF, while the right panel shows forecasts with decreasing level of CF skill, considering unskillful IC.
Thus, the top left graph for each case study represents the ESP forecast, the top right the revESP and
the bottom graph the CLIM.
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Figure 4. Chained time series of ensemble streamflow forecasts initialized on the first day of each
month for varying levels of initial conditions (IC) and climate forcing (CF) skill (assuming null skill
in the alternate predictability source), for lead time (LT) 1 month (a) over the Passirio catchment;
and (b) over the Gadera catchment. The black line represents the surrogate streamflow observations
created by the perfect simulation and the red line represents the forecast ensemble mean. The range of
the forecast streamflow values (forecast spread) is shown by the grey 5th and 95th percentile band.
Note the difference in the vertical axis between the two case studies.
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Figure 5. Chained time series of ensemble streamflow forecasts initialized on the first day of each
month for varying levels of initial conditions (IC) and climate forcing (CF) skill (assuming null skill in
the alternate predictability source), for LT 6 months (a) over the Passirio catchment; and (b) over the
Gadera catchment. Line colors and forecast spreads are explained in Figure 4. Note the difference in
the vertical axis between the two case studies.
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In the Passirio catchment, a decrease in the IC skill from 100% (ESP) to 75% for the first month of
LT (Figure 4a) magnified substantially the spread and reduced the forecast skill, whereas an additional
reduction in the IC skill to 44% and 0% (the latter representing the CLIM) resulted in a small further
amplification of the forecast spread and in additional deterioration of the forecast skill. The same
experiments for the Gadera catchment (Figure 4b) revealed an even more dramatical increase in
the spread and a sharper decline in the forecast skill for a decrease in the ESP IC skill from 100%
(ESP) to 75%, whereas also for this catchment further reductions in the IC skill led to a slight spread
magnification but higher forecast error.

A gradual decrease in the CF skill, ranging from 100% (revESP) to 0% (CLIM), led to a rather
small increase in the forecast spread and error for all cases in both case studies (Figure 4a,b), implying
that, for such a short lead, CF does not exert a major effect on the forecast’s predictive capability.
IC clearly dominate streamflow forecast predictability in both case studies for the first month of LT
as indicated by the narrower spreads of the graphs on the left panel compared to the graphs on the
right panel. A reduction in the IC skill below 75% led to spreads comparable to that of the CLIM
forecast but resulted in a considerable increase of the forecast error, suggesting the importance of IC
persistence in providing forecast skill in both the case studies of contrasting geological characteristics.
In the Gadera catchment, however, IC predictability plays a more critical role for the forecast skill
and sharpness in comparison to the Passirio, as even a small decrease in the IC skill resulted in a
much wider amplification of the spread (hence in reduced sharpness) and in a vast decrease in the
forecast skill.

Forecast predictions for the third month of LT in the Passirio catchment (Figure S2a in the
Supplementary Materials) induced no notable differences in the forecast spread when IC skill diminished
from perfect (ESP) to climatological, whereas the forecast skill decreased slightly when IC skill dropped
below 44%. On the contrary, a marginal decrease in the CF skill from perfect (revESP) to 75% resulted
in a considerable increase in the spread and the forecast error. Further reduction in CF skill led to an
additional sharp decline in the forecast skill but had little effect on the spread. The stronger memory
of IC in the Gadera catchment (Figure S2b in the Supplementary Materials) caused an increase in
the spread and a considerable gradual decrease in the forecast skill when reduced knowledge of IC
ranging from 75% to climatological was introduced. However, a reduction in the CF skill also yielded
an increase in the spread, albeit lower than the one noticed in the Passirio and a major deterioration
of the forecast skill. From these results it is evident that by the third month of LT the memory of
antecedent moisture conditions in the Passirio catchment has waned while predictability related to
knowledge of CF starts dominating the hydrological regime. In the Gadera, however, both IC and
CF contribute to the forecast skill, with IC-related predictability favoring the forecast skill during the
low-flow period and CF skill benefitting the forecast skill during the high-flow period.

By the sixth month of LT and as deducted by the graphs shown in Figure 5, all predictability in
both case studies arises from knowledge of CF. Forecasts of any level of knowledge of IC (combined
with unskillful CF), as depicted in the left panel of the graphs, are characterized by an ample ensemble
spread (hence large uncertainty) and a low forecast skill, as a result of the land surface memory in the
two case studies not extending to such long leads. In the Passirio catchment (Figure 5a), a decrease in
IC skill generally resulted in a slightly narrower forecast spread but had no impact on the forecast skill,
whereas a decline in the CF skill from perfect (revESP) to climatological resulted in a vast increase in
the spread even for a small reduction (by 25%) and in gradual diminution of the forecast skill. In the
Gadera catchment (Figure 5b), declining IC skill led to a negligible increase in the forecast spread and
error, while even a small degradation in the CF skill caused the forecast spread to reach the spread of
the CLIM forecast and the forecast skill to decay dramatically.

3.3. Plots of Streamflow Forecast Skill

Better understanding of the predictive capability of the hindcasts of varying level of IC and CF
skill can be acquired by drawing skill plots displaying the streamflow forecast skill as a function of the
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IC and CF skill. Such plots can provide a more comprehensive qualitative assessment of the primary
predictability source affecting the streamflow forecast skill in the two case studies of contrasting geology.
Figures 6–9 show plots of the streamflow forecast skill (MAEss) for the two case studies and for forecast
initialization on the first day of December, March, June and September, respectively. These forecasts
were selected to represent the changes in streamflow forecast skill over each season. Skill plots for
other indicative initialization months are displayed in Figures S3–S6 in the Supplementary Materials.
Along the horizontal axis, IC skill increases from left to right with the end point representing the ESP
(perfect IC with climatological CF). Likewise, along the vertical axis CF skill increases from bottom to
top, with the end point corresponding to the revESP (perfect CF with climatological IC). The perfect
forecast is situated in the top right corner of each panel (perfect IC and CF), whereas the CLIM is located
in the bottom left corner (climatological uncertainty in both IC and CF). Generally, (more) vertical
gradients indicate predictability stemming from knowledge of the IC, while (more) horizontal gradients
suggest predictability arising from knowledge of CF.

For both catchments and for forecasts initialized during early to mid-winter (December, Figure 6;
and January (figure not included for the sake of brevity), IC are generally important for streamflow
predictability for the first two months of LT that include the low-flow period when streamflow
originates principally from SWC-driven base flow, with some IC predictability also extending until the
third month of lead over the Gadera catchment. The forecast skill related to IC is generally higher over
the highly-permeable Gadera catchment (indicated by the steepest gradient of the contours) as a result
of the higher SWC persistence in this catchment (as shown in Figure 2b) during the low-flow period
when the major part of streamflow consists of base flow. Forecasts initialized in February (Figure S3
in the Supplementary Materials) show the longest predictability arising from IC as melt-dominated
months with a major contribution to streamflow enter the forecast. The importance of IC is notable up
to the fifth month of lead, with increased IC predictability suggested for the Gadera catchment. During
March as the second month of LT (Figure S3) and for both case studies, predictability originating from
IC results somehow lower compared to the subsequent month of April (as the third month of lead) due
to the lack of snowmelt contributing to streamflow.
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For forecasts initialized in spring, IC are critical for one to four months of LT due to the onset of
melt-based streamflow generation (with diminishing duration of IC predictability moving from forecast
initialization in March through May). However, the plots reveal a considerably higher IC predictability
in the Gadera catchment compared to the Passirio for forecasts initialized in March (Figure 7) and April
(Figure S4 in the Supplementary Materials) as a result of the higher IC persistence exhibited in the
Gadera, whereas for initialization in May (figure not included for the sake of brevity) the forecast skill
arising from knowledge of IC in the two case studies results quite similar. Generally, the high SWC
variability manifested in May in both case studies leads to increased forecast predictability arising
from knowledge of IC for all forecasts that include this month in the forecasting period. As expected,
this effect wanes as May shifts away from the initialization date.

During early to mid- summer (June, Figure 8; and July, Figure S5 in the Supplementary Materials),
IC are important only for the first month of LT, after which CF becomes critical as increased precipitation
controls the hydrological regime during the high-flow period. Knowledge of IC in the Passirio catchment
in June seems to be more important than in the Gadera (as implied by the slightly steeper gradient of
the contours for LT 1 month) as a result of both increased SWC states and the ongoing contribution of
snowmelt to streamflow. For forecasts initialized in August (figure not shown in the interest of brevity),
September (Figure 9), October (Figure S6 in the Supplementary Materials) and November (figure not
presented for the same of brevity), CF is generally fundamental as a consequence of the rainfall effects
on streamflow. Two exceptions are noted: for September as the first month of LT (Figure 9) over the
Gadera catchment where IC predictability results to be highly important due to the increased SWC
levels and SWC persistence, combined with a decline in precipitation, as well as for October as the
first month of lead (Figure S6 in the Supplementary Materials) over the Passirio, increased and faster
snow accumulation and higher SWE persistence compared to the Gadera lead to increased streamflow
predictability related to IC.

The above qualitative analysis based on the forecast skill plots solely gives a general outlook of
the sensitivity of the streamflow forecast skill to changes in the IC and CF skill and how this differs
between the two case studies of contrasting geology, given the season and LT under consideration.
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Overall, predictability originating from knowledge of IC is more important for the slower-responding
Gadera catchment for forecasts initialized in winter and spring, whereas summer and autumn forecasts
show nearly the same sensitivity to changes in the IC and CF skill (with the exceptions of September
and October as LT 1 month, as stated in the previous paragraph). Moreover, IC play a major role to
forecast predictability for longer leads over the Gadera catchment as a result of its longer memory of
moisture states that transfers predictability to longer leads.

3.4. Contribution of Predictability Sources to Forecast Skill

A deeper insight into the benefits of improving the IC or CF skill as depicted in the potential
improvements in streamflow forecast skill can be achieved by calculating the forecast skill elasticities as
described in Section 2.4.1. Equations (4)–(7) allow for a quantitative assessment of the contribution of
each predictability source to the seasonal streamflow forecast skill, ultimately indicating how geology
affects the hydrological predictability in the two case studies of contrasting geological characteristics.
Figure 10 shows the contribution of IC (Figure 10a) and CF (Figure 10b) to the seasonal streamflow
forecast skill (expressed in percentage of contribution to the total forecast skill) over the Passirio
catchment (red line) and the Gadera catchment (blue line), for each initialization month and for LT
equal to 1, 3 and 6 months.
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It is evident that differing geology results in different persistence of the IC, which in turn leads to
a different contribution of IC and CF to the seasonal streamflow forecast skill. The contribution of
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IC over the more-permeable Gadera catchment is generally higher than the contribution of IC over
the less-permeable Passirio for all seasons and LTs, with the difference being more pronounced for
shorter leads. The contribution of CF is generally higher over the Passirio catchment due to the shorter
persistence of moisture states that transfers predictability to the meteorological forcing. A comparison
of the relative importance of the two predictability sources over the case studies suggests that IC
dominate the forecast skill for forecasts initialized during the low-flow season and the beginning of
the melting season for up to four months of lead in the slow-responding Gadera catchment and for
up to two months of lead in the faster-responding Passirio, with their contribution to the forecast
skill exceeding 75%. For longer leads as well as for forecasts initialized during summer and autumn,
mainly as of LT 2, the contribution of CF to the forecast skill is generally higher than that of IC.
However, for the first month of lead of late summer and autumn forecasts and over both case studies,
the contribution of IC and CF to the forecast skill is comparable.

Given that the focus of this work is the analysis of the impact of geology on the contribution of
the predictability sources to the seasonal streamflow forecast skill, it would be useful to investigate the
difference in the contribution of the IC to the forecast skill between the two case studies of contrasting
geological characteristics. This difference is presented in Figure 11a for each initialization month and
LT. Positive values denote that the contribution of IC over the Gadera catchment exceeds that over the
Passirio whereas negative values (highlighted with the red-colored boxes) demonstrate the opposite.
The results have also been averaged over each initialization month (Figure 11b) and LT (Figure 11c),
to gain an overall perspective of the evolution of the contribution of IC to the forecast skill over the
different seasons and LTs.Water 2020, 12, x FOR PEER REVIEW 17 of 25 
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Figure 11. (a) Difference in IC contribution (in %) to the streamflow forecast skill for each initialization
month (along each line) and LT (along each column) between the two case studies. Positive values
indicate that the contribution of IC over the Gadera exceeds that over the Passirio, whereas negative
values (included within the red-colored boxes) indicate the opposite. The averaged values over each
initialization month (b) and LT (c) are also shown.

The calculated contribution of IC in the Gadera catchment is higher than in the Passirio for forecasts
initialized in winter, spring and summer (Figure 11a), with more notable differences for winter and
spring (Figure 11a,b). The higher SWC persistence in the slow-responding Gadera catchment during
the low-flow period (January till March) and at the beginning of the melting period (April) renders
memory of hydrological states more important than in the fast-responding Passirio catchment, resulting
in up to 44% more streamflow forecast predictability originating from knowledge of IC. For forecasts
initialized in summer, IC contribute by up to 21% more to the streamflow forecast skill in the Gadera
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catchment as a result of elevated SWC levels. For forecasts initialized in June, however, and for the
first two months of LT, the contribution of IC to the forecast skill in the Passirio is slightly higher than
in the Gadera (by 1% to 8%). On average, the higher importance of IC in the Gadera catchment starts
diminishing as of the fifth month of LT (Figure 11c), implying that the different memory of land surface
hydrological conditions in the two case studies induced by the contrasting geology tends to become
unimportant for such long leads. The (positive) difference in IC contribution between the two case
studies swaps sign in autumn (Figure 11a,b), when the higher accumulation of snow in the Passirio
catchment leads to the contribution of IC in the Passirio becoming more important, with up to 14%
more forecast skill stemming from IC.

3.5. Classification of ESP Efficiency

Given that the common practice in seasonal hydrological forecasting involves the application of
the ESP, the EPB can allow for the classification of the efficiency of the ESP over catchments of differing
geology, resulting in a guide map that could be utilized by water practitioners relying on the ESP as
a tool for seasonal hydrological forecasting, informing them when (in terms of season and LT) and
where (in terms of regions of specific geological characteristics) it could be skillful. Figure 12 illustrates
such a classification of the ESP efficiency over each initialization month and LT for the two case studies.
The ESP efficiency is classified into four classes according to the contribution of IC to the streamflow
forecast skill as, very good: more than 75% of the forecast skill originates from knowledge of IC;
good: 50–75% of the forecast skill originates from knowledge of IC; moderate: 25–50% of the forecast
skill originates from knowledge of IC; and poor: less than 25% of the forecast skill originates from
knowledge of IC.
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Figure 12. Classification of the ESP efficiency (a) for the Passirio catchment; and (b) for the Gadera
catchment, for each initialization month (along each line) and LT (along each column). Four ESP
efficiency classes can be distinguished; very good: more than 75% of the forecast skill originates from
knowledge of IC; good: 50% to 75% of the forecast skill originates from knowledge of IC; moderate:
25% to 50% of the forecast skill originates from knowledge of IC; poor: less than 25% of the forecast
skill originates from knowledge of IC.

Considering the ESP generally skillful when the IC contribution to the forecast skill is higher
than 50%, Figure 12 indicates that, overall, the ESP is expected to be more skillful and for longer
LTs over the slow-responding Gadera catchment. For forecasts initialized in winter, the skill of the
ESP extends until up to five months of LT in the slow-responding Gadera catchment and until up to
three months in the flashier Passirio (note that the high IC-related forecast predictability in May as
the fourth month of LT is discussed in Section 4 below). Spring forecasts show predictability for up
to four months of LT and three months of LT in the Gadera and the Passirio catchment, respectively,
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while for forecasts initialized in summer and autumn and in both case studies, the ESP results skillful
only for the first month of lead. A stricter evaluation of IC-related predictability (involving more than
75% of the forecast skill stemming from IC) reveals that the ESP would be highly skillful for forecasts
initialized during the low-flow season (December–March) and the melting season (April–June) for
up to four months of LT in the Gadera catchment and for up to two months of LT in the Passirio.
For initialization in late summer and autumn, when precipitation controls the hydrological regime in
both case studies, the contribution of CF to the forecast skill is paramount.

The above analysis illustrates the added value of the EPB sensitivity analysis framework in
comparison to the traditional ESP/revESP approach as the EPB does not only show when and where
the main predictability sources (IC, CF) dominate the forecast skill but also quantifies the contribution
of each of them on the streamflow forecast skill. Therefore, it can effectively identify the locations (and
periods) where (and when) the application of the ESP is expected to be successful, while also indicating
the suitability of climate-model-based seasonal hydrological forecasting when predictability originates
from skillful CF. The former possibility (i.e., the ESP) would be beneficial for regions where the
contribution of IC is high, like regions where geological characteristics cause high and long persistence
of moisture states. On the contrary, the latter approach (i.e., climate-model-based forecasting) is
recommended for regions where the persistence of IC is low as a result of geology-induced low
permeability and groundwater storage capacity. However, in cases when predictability originates from
both IC and CF that the ESP/revESP framework would be able to identify whether solely perfect IC
(ESP) or perfect CF (revESP) could provide skill to the forecast, the EPB allows for a more in-depth
analysis of the contribution of the predictability sources, revealing when and where practices could
benefit equally from both proper model initialization and skillful boundary forcing.

4. Discussion

The present study applied the EPB framework to identify how geology affects seasonal streamflow
predictability related to IC and CF over two case studies of contrasting lithology, representing the end
members of a set of catchments of diverse hydrological behavior [27]. Despite the fact that the selection
criteria of the two case studies relied on the similarity of the catchments in terms of climatic conditions,
size and mean elevation so that they would only differentiate in terms of geological characteristics,
some climate-induced effects were inevitable within the present analysis. Generally, IC predictability in
March in both case studies is low compared to the rest of the spring months as a result of the depleted
SWC levels encountered during this month as well as because of the negative temperatures that prohibit
snow from melting. In April, the increase in temperature above zero signifies the onset of the melting
period that leads to an increase in SWC and thus in streamflow, transferring predictability to the IC.
Moreover, the high SWC variability manifested in May in both case studies results in increased streamflow
forecast skill stemming from knowledge of IC for all forecasts that include this specific month, regardless
of the geology-induced hydrological behavior of the case study under consideration. Thus, the forecast
initialized in February in the Passirio catchment, which would have led to skillful ESP only for the first
month of LT shows skill also for the fourth month of lead that involves the month of May.

Increased SWC levels in the Passirio in June and the ongoing contribution of snowmelt to
streamflow leads to a slightly higher contribution of the IC to the forecast skill compared to the
Gadera, where all snow has melted by June. Better IC-related predictability for autumn forecasts in the
Passirio is related to a rapid increase in snow depth, in combination with higher snow dominance
over the hydrological regime in this catchment that transfer predictability to the IC. Water stored
within the soil and the snowpack establishes a memory effect determined by the timescale necessary
to dismiss the impact of varying wet or dry hydrological conditions like precipitation or drought,
respectively [29]. In catchments with large groundwater storage that dampens the high-frequency
rainfall fluctuations to a slower and smoother hydrological response, this memory effect persists longer
whereas catchments with low storage have shorter memory of hydrological states, hence smaller
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persistence [24]. Therefore, seasonal hydrological predictability stemming from knowledge of IC is
higher for regions with longer IC persistence, as defined by their geological characteristics.

The EPB method provides a further insight into where and when forecasting investments have
the greatest ability to improve streamflow predictions made to assist water managers. Although for
some months or seasons the seasonal hydrological predictability source is evident like, for example,
during winter when IC play a key role due to low flow, there are cases when the EPB results
contradict the common expectancy. For instance, operational forecasts for May in the Passirio
catchment as early as three months in advance would typically rely on IC predictability given
snowmelt-dominance over the hydrological regime during spring. However, the calculated contribution
of the two predictability sources to the streamflow forecast skill within the EPB analysis is similar,
implying that equal improvements in IC and in CF would result in equal improvements to the forecast
skill. Hence, despite the melt-based generation of streamflow in May, the EPB shows that skillful
IC estimates as well as the incorporation of climate model-based streamflow predictions would
equally enhance the forecast skill. The same conclusion can be drawn for the one month-lead late
summer and autumn forecasts over both case studies, implying that, for certain seasons and LTs,
even in highly persistent catchments with large storages CF can be equally important as IC. Therefore,
for forecasts made to provide information regarding, e.g., reservoir management, the calculated
contribution of IC and CF based on the EPB can clearly indicate both towards which direction attempts
to improve the forecast skill should be made as well as how much improvement could be achieved.
Such an improvement could be accomplished according to the current reservoir management rules
and rationally attainable improvements, on the basis of their costs.

As already discussed earlier, a “perfect-model” assumption was adopted by generating surrogate
observations of streamflow time series, utilized both as an EPB end point (perfect simulation) as well as
a reference to estimate the performance of the EPB hindcasts. The rationale behind this choice is the
exclusion of errors related to model structure or parameter estimation that would introduce a further
source of uncertainty, complicating the identification of uncertainty originating from the IC and the
CF. Errors related to model parameterization can be reduced by properly calibrating the hydrological
model so that the simulated outputs are as close as possible to the observations [50–53]. In practice,
the calibration procedure cannot completely remove the model errors as some level of uncertainty is
still included in the model predictability. Nonetheless, many studies focusing on seasonal hydrological
forecasting have performed “perfect-model” experiments [14,21,22,25] since the impact of the residual
(i.e., after calibration) model error on the model’s idealized forecast capability is hard to evaluate [15].
Future assessments should move towards the incorporation of observed data in an effort to determine
the impact of model uncertainty in seasonal dynamic forecasting applications. Moreover, further work
involves the extension of the current analysis to include catchments of geological characteristics that
result in intermediate levels of hydrological response, to allow a thorough evaluation of the impact of
geology on the contribution of the two main predictability sources to the forecast skill.

5. Conclusions

In this study, we applied the EPB methodology to analyze the effect of geology on the contribution
of the seasonal hydrological predictability sources (IC, CF) to the seasonal streamflow forecast skill
over two case studies of contrasting hydrological behavior. The case studies were extracted from a set
of catchments of differing geology previously investigated by Norbiato et al. [27] and represent the end
members of the set in terms of geology: a slow-responding catchment dominated by low-permeability
rocks, hence low water storage and a fast-responding catchment characterized by high permeability
and high storage capacity. Our work resulted in the following main conclusions:

1. Geological characteristics have a substantial impact on the persistence of moisture states, hence on
the seasonal hydrological predictability arising from knowledge of IC. An analysis of the
difference in IC contribution to the seasonal streamflow forecast skill over the two case studies
of contrasting geology suggested that, generally, when compared to the contribution of IC over
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the fast-responding Passirio catchment, the contribution of IC in the slow-responding Gadera
catchment is higher by up to 44% for forecasts initialized in winter and spring and by up to 21% for
forecasts initialized in summer. In autumn, however, the higher and rapid accumulation of snow
in the Passirio catchment, in combination with the higher SWE persistence exhibited compared
to respective value in the Gadera, leads to the contribution of IC in the Passirio becoming more
important by up to 14%.

2. The sensitivity analysis based on the EPB indicated that knowledge of IC is more important
than CF for forecasts initialized during the low-flow season (in winter) and the beginning of the
melting season (in spring) for up to four months of LT in the slow-responding Gadera catchment
and for up to two months of LT in the flashier Passirio catchment. During these seasons and
LTs, more than 75% of the forecast skill stems from IC. For longer LTs as well as for forecasts
initialized during summer and autumn (as of LT 2), the contribution of CF to the forecast skill
is higher than that of IC, with generally similar contribution for the one month-lead forecasts.
Our results corroborate the key role of geology in the IC-dominance over the seasonal streamflow
forecast skill. Catchments with geological characteristics that induce large water storages have
a slow response in precipitation events, leading to temporal dependence of streamflow for
longer leads [28] during the low-flow period and the melting period. In summer and autumn,
however, CF controls the forecast skill in both case studies indicating the importance of climate
even in regions characterized by large subsurface storage.

3. The sensitivity analysis framework (EPB) provides an added value in comparison to the traditional
ESP/revESP approach. Whereas the latter methodology can only individuate predictability
stemming from perfect knowledge of either IC or CF, the EPB allows for a quantification of the
contribution of each predictability source to the forecast skill. Hence, the EPB can identify regions
(and periods) where (and when) predictability can be attributed to both predictability sources
and clarify the predictability source for periods when the ESP/revESP approach shows unclear
or ambiguous results. In this work, the EPB allowed for a classification of the efficiency of the
ESP over the two cases studies representing the end members of a set of catchments of differing
geology. The presented framework could be utilized as a guide map for a successful application
of the ESP or of a climate-model-based hydrological forecasting tool, according to the geological
characteristics of the area under consideration. For regions where the ESP results highly skillful
(i.e., regions where the major part of the forecast skill stems from knowledge of IC), water managers
could invest in data assimilation techniques that merge information from model simulations
and observational data (either in-situ [51,54] or satellite [55–58]) of hydrological variables to
reduce IC error. This could be the case for e.g., snow-dominated catchments where accurate
estimates of initial SWE levels could lead to a potential improvement in forecasts initialized
in spring, when snowmelt is a major component of streamflow [25,59]. On the other hand,
in regions of low-skilled ESP, the focus should be on climate forecast products as precipitation
and/or temperature are the main drivers of forecast predictability. In the cases, however, when the
forecast skill is related to both IC and CF, attempts for forecast improvements should carefully
consider the necessity for both advanced data acquisition tools and meteorological forecasts.

This study complements previous findings on the importance of IC for seasonal hydrological
predictability over catchments with large subsurface storage [23,26]. Moreover, our results underpin
the importance of CF for certain seasons and LTs also over catchments with large subsurface storage,
where IC typically dominate. This finding is of particular importance for operational practice that
traditionally relies on IC predictability, with seasonal climate forecasts being only recently incorporated
to operational hydro-meteorological forecasting chains [15]. Our work provides an insight into the
contribution of the dominant predictability sources over catchments of diverse geology, highlighting
the importance of the EPB as a powerful tool that could advance efforts to improve seasonal forecast
accuracy over specific regions, on the basis of their geological characteristics.
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Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4441/12/8/2255/s1,
Figure S1: Schematic illustration of a skill plot according to the Variational Ensemble Streamflow Prediction
Assessment (VESPA) and the End Point Blending (EPB) methodologies. The x and y axes represent the initial
conditions (IC) and climate forcing (CF) skill, respectively (%). The skill values are included within the dark grey
rectangles, while the respective blending weights wIC and wCF from which the skill values are derived are shown
in the light grey rectangles. The grey rhomboid shapes represent a forecast for a specific wIC–wCF combination
point, while the red circles are the four end points of forecast uncertainty: the Ensemble Streamflow Prediction
(ESP), the reverse Ensemble Streamflow Prediction (revESP), the perfect forecast and the climatology (CLIM).
The magenta-colored rectangle defines the center of the response surface within which skill elasticities were
calculated in this study. Figure S2: Chained time series of ensemble streamflow forecasts initialized on the first
day of each month for varying levels of IC and CF skill (assuming null skill in the alternate predictability source),
for lead time (LT) 3 months (a) over the Passirio catchment; and (b) over the Gadera catchment. The black line
represents the surrogate streamflow observations created by the perfect simulation, while the red line represents
the forecast ensemble mean. The range of the forecast streamflow values (forecast spread) is shown by the grey
5th and 95th percentile band. Note the difference in the vertical axis between the two case studies. Figure S3:
Plots of the mean absolute error skill score (MAEss) for the two case studies, for hindcasts generated over the
period 2002–2018 and forecast initialization on 1 February versus the skill in the two predictability sources (IC, CF).
The results are presented for a LT of 1 to 6 months. Figure S4: As in Figure S3 but for forecast initialization on
1 April. Figure S5: As in Figure S3 but for forecast initialization on 1 July. Figure S6: As in Figure S3 but for
forecast initialization on 1 October.
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