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Abstract. We tackle the problem of establishing the soundness of approximate bisimilarity
with respect to PCTL and its relaxed semantics. To this purpose, we consider a notion
of bisimilarity inspired by the one introduced by Desharnais, Laviolette, and Tracol, and
parametric with respect to an approximation error δ, and to the depth n of the observation
along traces. Essentially, our soundness theorem establishes that, when a state q satisfies a
given formula up-to error δ and steps n, and q is bisimilar to q′ up-to error δ′ and enough
steps, we prove that q′ also satisfies the formula up-to a suitable error δ′′ and steps n. The
new error δ′′ is computed from δ, δ′ and the formula, and only depends linearly on n. We
provide a detailed overview of our soundness proof.

We extend our bisimilarity notion to families of states, thus obtaining an asymptotic
equivalence on such families. We then consider an asymptotic satisfaction relation for
PCTL formulae, and prove that asymptotically equivalent families of states asymptotically
satisfy the same formulae.

1. Introduction

The behaviour of many real-world systems can be formally modelled as probabilistic processes,
e.g. as discrete-time Markov chains. Specifying and verifying properties on these systems
requires probabilistic versions of temporal logics, such as PCTL [HJ94]. PCTL allows to
express probability bounds using the formula Pr≥π[ψ], which is satisfied by those states
starting from which the path formula ψ holds with probability ≥ π. A well-known issue is
that real-world systems can have tiny deviations from their mathematical models, while
logical properties, such as those written in PCTL, impose sharp constraints on the behaviour.
To address this issue, one can use a relaxed semantics for PCTL, as in [DAK12]. There,
the semantics of formulae is parameterised over the error δ ≥ 0 one is willing to tolerate.
While in the standard semantics of Pr≥π[ψ] the bound ≥ π is exact, in relaxed PCTL this
bound is weakened to ≥ π − δ. So, the relaxed semantics generalises the standard PCTL
semantics of [HJ94], which can be obtained by choosing δ = 0. Instead, choosing an error
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Figure 1: A Markov chain modelling repeated tosses of a fair coin.

δ > 0 effectively provides a way to measure “how much” a state satisfies a given formula:
some states might require only a very small error, while others a much larger one.

When dealing with temporal logics such as PCTL, one often wants to study some notion
of state equivalence which preserves the semantics of formulae: that is, when two states
are equivalent, they satisfy the same formulae. For instance, probabilistic bisimilarities
like those in [DGJP10, DEP02, LS91] preserve the semantics of formulae for PCTL and
other temporal logics. Although strict probabilistic bisimilarity preserves the semantics of
relaxed PCTL, it is not robust against small deviations in the probability of transitions
in Markov chains [GJS90]. A possible approach to deal with this issue is to also relax
the notion of probabilistic bisimilarity, by making it parametric with respect to an error
δ [DAK12]. Relaxing bisimilarity in this way poses a choice regarding which properties of
the strict probabilistic bisimilarity are to be kept. In particular, transitivity is enjoyed by
the strict probabilistic bisimilarity, but it is not desirable for the relaxed notion. Indeed,
we could have three states q, q′ and q′′ where the behaviour of q and q′ is similar enough
(within the error δ), the behaviour of q′ and q′′ is also similar enough (within δ), but the
distance between q and q′′ is larger than the allowed error δ. At best, we can have a sort of
“triangular inequality”, where q and q′′ can still be related but only with a larger error 2 · δ.

Bisimilarity is usually defined by coinduction, essentially requiring that the relation is
preserved along an arbitrarily long sequence of moves. Still, in some settings, observing the
behaviour over a very long run is undesirable. For instance, consider the PCTL formula
φ = Pr≥0.5[true U≤n a], which is satisfied by those states from which, with probability ≥ 0.5,
a is satisfied within n steps. In this case, a behavioural equivalence relation that preserves
the semantics of φ can neglect the long-run behaviour after n steps. More generally, if all the
until operators are bounded, as in φ1U

≤kφ2, then each formula has an upper bound of steps
n after which a behavioural equivalence relation can ignore what happens next. Observing
the behaviour after this upper bound is unnecessarily strict, and indeed in some settings
it is customary to neglect what happens in the very long run. For instance, a real-world
player repeatedly tossing a coin is usually considered equivalent to a Markov chain with two
states and four transitions with probability 1/2 (see Figure 1), even if in the long run the
real-world system will diverge from the ideal one (e.g., when the player dies).

Another setting where observing the long-term behaviour is notoriously undesirable
is that of cryptography. When studying the security of systems modelling cryptographic
protocols, two states are commonly considered equivalent when their behaviour is similar
(up to a small error δ) in the short run, even when in the very long run they diverge. For
instance, a state q could represent an ideal system where no attacks can be performed by
construction, while another state q′ could represent a real system where an adversary can
try to disrupt the cryptographic protocol. In such a scenario, if the protocol is secure, we
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would like to have q and q′ equivalent, since the behaviour of the real system is close to
the one of the ideal system. Note that in the real system an adversary can repeatedly try
to guess the secret cryptographic keys, and break security in the very long run, with very
high probability. Accordingly, standard security definitions require that the behaviour of
the ideal and real system are within a small error, but only for a bounded number of steps,
after which their behaviour could diverge.

Contributions. To overcome the above mentioned issues, in this work we introduce a
bounded, approximate notion of bisimilarity ∼nδ , that only observes the first n steps, and
allows for an error δ. Unlike standard bisimilarity, our relation is naturally defined by
induction on n. We call this looser variant of bisimilarity an up-to-n, δ bisimilarity. We
showcase up-to-n, δ bisimilarity on a running example (Examples 3.6, 4.4, 5.2, and 6.6),
comparing an ideal combination padlock against a real one which can be opened by an
adversary guessing its combination. We show that the two systems are bisimilar up-to-n, δ,
while they are not bisimilar according to the standard coinductive notion. We then discuss
how the two systems satisfy a basic security property expressed in PCTL, with suitable
errors. To make our theory amenable to reason about infinite-state systems, such as those
usually found when modelling cryptographic protocols, all our results apply to Markov
chains with countably many states. In this respect, our work departs from most literature
on probabilistic bisimulations [DAK12, SZGN13] and bisimilarity distances [vB17, TvB17,
TvB18, TvB16, Fu12, CvBW12, vBSW08], which usually assume finite-state Markov chains,
as they focus on computing the distances. In Example 4.5 we exploit infinite-state Markov
chains to compare a biased random bit generator with an ideal one.

Our first main contribution is a soundness theorem establishing that, when a state
q satisfies a PCTL formula φ (up to a given error), any bisimilar state q′ ∼ q must also
satisfy φ, at the cost of a slight increase of the error. More precisely, if φ only involves until
operators bounded by ≤ n, state q satisfies φ up to some error, and bisimilarity holds for
enough steps and error δ, then q′ satisfies φ with an additional asymptotic error O(n · δ).

This asymptotic behaviour is compatible with the usual assumptions of computational
security in cryptography. There, models of security protocols include a security parameter
η, which affects the length of the cryptographic keys and the running time of the protocol:
more precisely, a protocol is assumed to run for n(η) steps, which is polynomially bounded
w.r.t. η. As already mentioned above, cryptographic notions of security do not observe the
behaviour of the systems after this bound n(η), since in the long run an adversary can surely
guess the secret keys by brute force. Coherently, a protocol is considered to be secure if
(roughly) its actual behaviour is approximately equivalent to the ideal one for n(η) steps
and up to an error δ(η), which has to be a negligible function, asymptotically approaching
zero faster than any rational function. Under these bounds on n and δ, the asymptotic
error O(n · δ) in our soundness theorem is negligible in η. Consequently, if two states q and
q′ represent the ideal and actual behaviour, respectively, and they are bisimilar up to a
negligible error, they will satisfy the same PCTL formulae with a negligible error.

We formalise this reasoning by providing a notion of asymptotic equivalence. We start
by considering families of states Ξ(η), intuitively representing the behaviour of a system
depending on a security parameter η. Our asymptotic equivalence Ξ1 ≡ Ξ2 holds whenever
the behaviour of the two families is n, δ-bisimilar within a negligible error whenever we only
perform a polynomial number of steps. We further introduce an asymptotic satisfaction
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relation Ξ |= φ which holds whenever the state Ξ(η) satisfies φ under similar assumptions on
the number of steps and the allowed error. Our second main result is the soundness of the
asymptotic equivalence with respect to asymptotic satisfaction. Asymptotically equivalent
families asymptotically satisfy the same PCTL formulae.

We provide a detailed overview of the proof of our soundness theorem for n, δ-bisimilarity
in section 5, deferring the gory technicalities to Appendix A. The proof of asymptotic
soundness, which exploits the soundness theorem for n, δ-bisimilarity, is given in section 6.

2. Related work

There is a well-established line of research on establishing soundness and completeness of
probabilistic bisimulations against various kinds of probabilistic logics [DGJP10, FMM20,
HPS+11, LS91, MS17, Mio18].

The work closest to ours is that of D’Innocenzo, Abate and Katoen [DAK12], which
addresses the model checking problem on a relaxed PCTL differing from ours in a few
aspects. First, their syntax allows for an individual bound on the number of steps k for
each until operator U≤k, while we assume all such bounds are equal and we make the
semantics of PCTL parametrized w.r.t. the number of steps to be considered in until. This
approach allows us to simplify the statement of the soundness theorem and the definition
of asymptotic satisfaction relation, since the bound is not fixed by the formula, but it is a
parameter of the semantics. Dealing with the case where each until in a formula could have
its bound seems possible, at the cost of increasing the level of technicalities. Second, their
main result shows that bisimilar states up-to a given error ε satisfy the same formulae ψ,
provided that ψ ranges over the so-called ε-robust formulae. Instead, our soundness result
applies to all PCTL formulae, and ensures that when moving from a state satisfying φ to
a bisimilar one, φ is still satisfied, but at the cost of slightly increasing the error. Third,
their relaxed semantics differs from ours. In ours, we relax all the probability bounds by
the same amount δ. Instead, the relaxation in [DAK12] affects the bounds by a different
amount which depends on the error ε, the until bound k, and the underlying DTMC.

Desharnais, Laviolette and Tracol [DLT08] use a coinductive approximate probabilistic
bisimilarity, up-to an error δ. Using such coinductive bisimilarity, [DLT08] establishes the
soundness and completeness with respect to a Larsen-Skou logic [LS91] (instead of PCTL).
In [DLT08], a bounded, up-to n, δ version of bisimilarity is only briefly used to derive a
decision algorithm for coinductive bisimilarity under the assumption that the state space is
finite. In our work, instead, the bounded up-to n, δ bisimilarity is the main focus of study.
In particular, our soundness result only assumes n, δ bisimilarity, which is strictly weaker
than coinductive bisimilarity. Another minor difference is that [DLT08] considers a labelled
Markov process, i.e. the probabilistic variant of a labelled transition system, while we instead
focus on DTMCs having labels on states.

Bian and Abate [BA17] study bisimulation and trace equivalence up-to an error ε, and
show that ε-bisimilar states are also ε′-trace equivalent for a suitable ε′ which depends on ε.
Furthermore, they show that ε-trace equivalent states satisfy the same formulae in a bounded
LTL, up-to a certain error. In our work, we focus instead on the branching logic PCTL.

A related research line is that on bisimulation metrics [vB17, vBHMW05, vBW05]. Some
of these metrics, like our up-to bisimilarity, take approximations into account [DGJP99,
CGT16]. Similarly to our bisimilarity, bisimulation metrics allow to establish two states
equivalent up-to a certain error (but usually do not take into account the bound on the
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number of steps). Interestingly, Castiglioni, Gebler and Tini [CGT16] introduce a notion of
distance between Larsen-Skou formulae, and prove that the bisimulation distance between
two processes corresponds to the distance between their mimicking formulae. De Alfaro,
Majumdar, Raman and Stoelinga [dAMRS08] elegantly characterise bisimulation metrics
with a quantitative µ-calculus. Such logic allows to specify interesting properties such as
maximal reachability and safety probability, and the maximal probability of satisfying a
general ω-regular specification, but not full PCTL. Mio [Mio14] characterises a bisimulation
metric based on total variability with a more general quantitative µ-calculus, dubbed
 Lukasiewicz µ-calculus, able to encode PCTL. Both [dAMRS08] and [Mio14] do not take
the number of steps into account, therefore their applicability to the analysis of security
protocols is yet to be investigated.

Metrics with discount [DGJP04, dAHM03, BBL+21, DCPP06, vBSW08] are sometimes
used to relate the behaviour of probabilistic processes, weighing less those events that happen
in the far future compared to those happening in the first steps. Often, in these metrics
each step causes the probability of the next events to be multiplied by a constant factor
c < 1, in order to diminish their importance. Note that this discount makes it so that after
η steps, this diminishing factor becomes cη, which is a negligible function of η. As discussed
before, in cryptographic security one needs to consider as important those events happening
within polynomially many steps, while neglecting the ones after such a polynomial threshold.
Using an exponential discount factor cη after only η steps goes against this principle, since
it would cause a secure system to be at a negligible distance from an insecure one which can
be violated after just η steps. For this reason, instead of using a metric with discount, in
this paper we resort to a bisimilarity that is parametrized over the number of steps n and
error δ, allowing us to obtain a notion which distinguishes between the mentioned secure
and insecure systems.

Several works develop algorithms to decide probabilistic bisimilarity, and to compute
metrics [vBW14, CvBW12, Fu12, TvB16, TvB17, TvB18]. To this purpose, they restrict
to finite-state systems, like e.g. probabilistic automata. Our results, instead, apply also to
infinite-state systems.

In [ZD05] a calculus with cryptographic primitives is introduced, together with a
semantics where attackers have a probability π(η) of guessing encryption keys. It is shown
that, assuming that π(η) is negligible and that attackers run in polynomial time, some
security properties (e.g. secrecy, authentication) are equivalent to the analogous properties
with standard Dolev-Yao assumptions (that is, attackers never guess keys but are not
restricted to polynomial time). This result can be seen as a special case of our asymptotic
soundness theorem.

The interesting work [LG22] proposes a behavioural notion of indistinguishability between
session typed probabilistic π-calculus processes, with the aim of providing a formal system
for proving security of real cryptographic protocols by comparison with ideal ones. The type
system, which is based on bounded linear logic [GSS92, LG16], guarantees that processes
terminate in polynomial time. This differs from our approach, where polynomiality appears
directly in the equivalence definition (Definition 6.2). Moreover, the calculus of [LG22] is
quite restrictive: for instance, it is not possible to specify adversaries that access an oracle a
polynomial number of times. By contrast, our abstract model is general enough to represent
such adversaries.
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Comparison with [BMZ22]. This paper extends the work [BMZ22] in two directions.
First, the current paper includes the proofs of all statements, which were not present
in [BMZ22]. Second, in [BMZ22] we hinted at the possible application of soundness to the
asymptotic behaviour of systems which depend on a parameter η. Here, we properly develop
and formalise that intuition in section 6, providing a new asymptotic soundness result.

3. The probabilistic temporal logic PCTL

Assume a set L of labels, ranged over by l, and let δ, π range over non-negative reals. A
discrete-time Markov chain (DTMC) is a standard model of probabilistic systems. Through-
out this paper, we consider a DTMC having a countable, possibly infinite, set of states q,
each carrying a subset of labels `(q) ⊆ L.

Definition 3.1 (Discrete-Time Markov Chain). A (labelled) DTMC is a triple (Q,Pr, `)
where:

• Q is a countable set of states;
• Pr : Q2 → [0, 1] is a function, named transition probability function;
• ` : Q→ P(L) is a labelling function

Given q ∈ Q andQ ⊆ Q, we write Pr(q,Q) for
∑

q′∈Q Pr(q, q′) and we require that Pr(q,Q) = 1
for all q ∈ Q.

A trace is an infinite sequence of states t = q0q1 · · · , where we write t(i) for qi, i.e. the
i-th element of t. A trace fragment is a finite, non-empty sequence of states t̃ = q0 · · · qn−1,
where |t̃| = n ≥ 1 is its length. Given a trace fragment t̃ and a state q, we write t̃qω for the
trace t̃qqq · · · .

It is well-known that, given an initial state q0, the DTMC induces a σ-algebra of
measurable sets of traces T starting from q0, i.e. the σ-algebra generated by cylinder
sets [BK08]. More in detail, given a trace fragment t̃ = q0 · · · qn−1, its cylinder set

Cyl(t̃) = {t | t̃ is a prefix of t}

is given probability:

Pr(Cyl(t̃)) =
n−2∏
i=0

Pr(qi, qi+1)

As usual, if n = 1 the product is empty and evaluates to 1. Closing the family of cylinder
sets under countable unions and complement we obtain the family of measurable sets. The
probability measure on cylinder sets then uniquely extends to all the measurable sets.

Given a set of trace fragments T̃ , all starting from the same state q0 and having the same
length, we let Pr(T̃ ) = Pr(

⋃
t̃∈T̃ Cyl(t̃)) =

∑
t̃∈T̃ Pr(Cyl(t̃)). Note that using same-length

trace fragments ensures that their cylinder sets are disjoint, hence the second equality holds.
Below, we define PCTL formulae. Our syntax is mostly standard, except for the until

operator. There, for the sake of simplicity, we do not bound the number of steps in the
syntax φ1 U φ2, but we do so in the semantics. Concretely, this amounts to imposing the
same bound to all the occurrences of U in the formula. Such bound is then provided as a
parameter to the semantics.
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Definition 3.2 (PCTL Syntax). The syntax of PCTL is given by the following grammar,
defining state formulae φ and path formulae ψ:

φ ::= l | true | ¬φ | φ ∧ φ | PrBπ[ψ] where B ∈ {>,≥}
ψ ::= X φ | φ U φ

As syntactic sugar, we write Pr<π[ψ] for ¬Pr≥π[ψ], and Pr≤π[ψ] for ¬Pr>π[ψ].

Given a PCTL formula φ, we define its maximum X-nesting Xmax (φ) and its maximum
U-nesting Umax (φ) inductively as follows:

Definition 3.3 (Maximum Nesting). For ◦ ∈ {X,U}, we define:

◦max (l) = 0 ◦max (true) = 0 ◦max (¬φ) = ◦max (φ)

◦max (φ1 ∧ φ2) = max(◦max (φ1), ◦max (φ2)) ◦max (PrBπ[ψ]) = ◦max (ψ)

◦max (Xφ) = ◦max (φ) +

{
1 if ◦ = X

0 otherwise

◦max (φ1Uφ2) = max(◦max (φ1), ◦max (φ2)) +

{
1 if ◦ = U

0 otherwise

We now define a semantics for PCTL where the probability bounds Bπ in PrBπ[ψ] can
be relaxed or strengthened by an error δ. Our semantics is parameterized over the until
bound n, the error δ ∈ R≥0, and a direction r ∈ {+1,−1}. Given the parameters, the
semantics associates each PCTL state formula with the set of states satisfying it. Intuitively,
when r = +1 we relax the semantics of the formula, so that increasing δ causes more states
to satisfy it. More precisely, the probability bounds Bπ in positive occurrences of PrBπ[ψ]
are decreased by δ, while those in negative occurrences are increased by δ. Dually, when
r = −1 we strengthen the semantics, modifying Bπ in the opposite direction. Our semantics
is inspired by the relaxed / strengthened PCTL semantics of [DAK12].

Definition 3.4 (PCTL Semantics). The semantics of PCTL formulae is given below. Let
n ∈ N, δ ∈ R≥0 and r ∈ {+1,−1}.

[[l]]nδ,r = {q ∈ Q | l ∈ `(q)}
[[true]]nδ,r = Q

[[¬φ]]nδ,r = Q \ [[φ]]nδ,−r
[[φ1 ∧ φ2]]nδ,r = [[φ1]]nδ,r ∩ [[φ2]]nδ,r
[[PrBπ[ψ]]]nδ,r = {q ∈ Q | Pr(Cyl(q) ∩ [[ψ]]nδ,r) + r · δ B π}
[[Xφ]]nδ,r = {t | t(1) ∈ [[φ]]nδ,r}
[[φ1Uφ2]]nδ,r = {t | ∃i ∈ 0..n. t(i) ∈ [[φ2]]nδ,r ∧ ∀j ∈ 0..i− 1. t(j) ∈ [[φ1]]nδ,r}

The semantics is mostly standard, except for PrBπ[ψ] and φ1Uφ2. The semantics of
PrBπ[ψ] adds r · δ to the probability of satisfying ψ, which relaxes or strengthens (depending
on r) the probability bound as needed. The semantics of φ1Uφ2 uses the parameter n to
bound the number of steps within which φ2 must hold.

Our semantics enjoys monotonicity. The semantics of state and path formulae is
increasing w.r.t. δ if r = +1, and decreasing otherwise. The semantics also increases when
moving from r = −1 to r = +1.
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Figure 2: A Markov chain modelling an ideal (left) and a real (right) padlock.

Lemma 3.5 (Monotonicity). Whenever δ ≤ δ′, we have:

[[φ]]nδ,+1 ⊆ [[φ]]nδ′,+1 [[φ]]nδ′,−1 ⊆ [[φ]]nδ,−1 [[φ]]nδ,−1 ⊆ [[φ]]nδ,+1

[[ψ]]nδ,+1 ⊆ [[ψ]]nδ′,+1 [[ψ]]nδ′,−1 ⊆ [[ψ]]nδ,−1 [[ψ]]nδ,−1 ⊆ [[ψ]]nδ,+1

Note that monotonicity does not hold for the parameter n, i.e. even if n ≤ n′, we can
not conclude [[φ]]nδ,+1 ⊆ [[φ]]n

′
δ,+1. As a counterexample, let Q = {q0, q1}, `(q0) = ∅, `(q1) = {a},

Pr(q0, q1) = Pr(q1, q1) = 1, and Pr(q, q′) = 0 elsewhere. Given φ = Pr≤0[true U a], we have
q0 ∈ [[φ]]00,+1 since in n = 0 steps it is impossible to reach a state satisfying a. However, we

do not have q0 ∈ [[φ]]10,+1 since in n′ = 1 steps we always reach q1, which satisfies a.

Example 3.6. We compare an ideal combination padlock to a real one from the point of
view of an adversary. The ideal padlock has a single state qok, representing a closed padlock
that can not be opened. Instead, the real padlock is under attack from the adversary who
tries to open the padlock by repeatedly guessing its 5-digit PIN. At each step the adversary
generates a (uniformly) random PIN, different from all the ones which have been attempted
so far, and tries to open the padlock with it. The states of the real padlock are q0, . . . , qN−1

(with N = 105), where qi represents the situation where i unsuccessful attempts have been
made, and an additional state qerr that represents that the padlock was opened.

Since after i attempts the adversary needs to guess the correct PIN among the N − i
remaining combinations, the real padlock in state qi moves to qerr with probability 1/(N − i),
and to qi+1 with the complementary probability.

Summing up, we simultaneously model both the ideal and real padlock as a single
DTMC with the following transition probability function (see Figure 2):

Pr(qok, qok) = 1
Pr(qerr, qerr) = 1
Pr(qi, qerr) = 1/(N − i) 0 ≤ i < N
Pr(qi, qi+1) = 1− 1/(N − i) 0 ≤ i < N − 1
Pr(q, q′) = 0 otherwise

We label the states with labels L = {err} by letting `(qerr) = {err} and `(q) = ∅ for all
q 6= qerr.

The PCTL formula φ = Pr≤0[true U err] models the expected behaviour of an unbreakable
padlock, requiring that the set of traces where the padlock is eventually opened has zero
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probability. Formally, φ is satisfied by state q when

q ∈ [[φ]]nδ,+1 ⇐⇒ q ∈ [[¬Pr>0[true U err]]]nδ,+1

⇐⇒ q /∈ [[Pr>0[true U err]]]nδ,−1

⇐⇒ ¬(Pr(Cyl(q) ∩ [[true U err]]nδ,−1)− δ > 0)

⇐⇒ Pr(Cyl(q) ∩ [[true U err]]nδ,−1) ≤ δ (3.1)

When q = qok we have that Cyl(qok) ∩ [[true U err]]nδ,−1 = ∅, hence the above probability
is zero, which is surely ≤ δ. Consequently, φ is satisfied by the ideal padlock qok, for all
n ≥ 0 and δ ≥ 0.

By contrast, φ is not always satisfied by the real padlock q = q0, since we have q0 ∈ [[φ]]nδ,+1

only for some values of n and δ. To show why, we start by considering some trivial cases.
Choosing δ = 1 makes equation (3.1) trivially true for all n. Furthermore, if we choose n = 1,
then Cyl(q0) ∩ [[true U err]]nδ,−1 = {q0q

ω
err} is a set of traces with probability 1/N . Therefore,

equation (3.1) holds only when δ ≥ 1/N . More in general, when n ≥ 1, we have

Cyl(q0) ∩ [[true U err]]nδ,−1 = {q0q
ω
err, q0q1q

ω
err, q0q1q2q

ω
err, . . . , q0 . . . qn−1q

ω
err}

The probability of the above set is the probability of guessing the PIN within n steps. The
complementary event, i.e. not guessing the PIN for n times, has probability

N − 1

N
· N − 2

N − 1
· · · N − n

N − (n− 1)
=
N − n
N

Consequently, (3.1) simplifies to n/N ≤ δ, suggesting the least value of δ (depending on n)
for which q0 satisfies φ. For instance, when n = 103, this amounts to claiming that the real
padlock is secure, up to an error of δ = n/N = 10−2.

4. Up-to-n, δ Bisimilarity

We now define a relation on states q ∼nδ q′ that intuitively holds whenever q and q′ exhibit
similar behaviour for a bounded number of steps. The parameter n controls the number of
steps, while δ controls the error allowed in each step. Note that since we only observe the
first n steps, our notion is inductive, unlike unbounded bisimilarity which is co-inductive,
similarly to [CGT16]. Our notion is also inspired by [DLT08].

Definition 4.1 (Up-to-n, δ Bisimilarity). We define the relation q ∼nδ q′ as follows by
induction on n:

(1) q ∼0
δ q
′ always holds

(2) q ∼n+1
δ q′ holds if and only if, for all Q ⊆ Q:

(a) `(q) = `(q′)
(b) Pr(q,Q) ≤ Pr(q′,∼nδ (Q)) + δ
(c) Pr(q′, Q) ≤ Pr(q,∼nδ (Q)) + δ

where ∼nδ (Q) = {q′ | ∃q ∈ Q. q ∼nδ q′} is the image of the set Q according to the bisimilarity
relation.

We now establish two basic properties of the bisimilarity. Our notion is reflexive and
symmetric, and enjoys a triangular property. Furthermore, it is monotonic on both n and δ.
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Lemma 4.2. The relation ∼ satisfies:

q ∼nδ q q ∼nδ q′ =⇒ q′ ∼nδ q q ∼nδ q′ ∧ q′ ∼nδ′ q′′ =⇒ q ∼nδ+δ′ q′′

Proof. Straightforward induction on n.

Lemma 4.3 (Monotonicity).

n′ ≤ n =⇒ ∼nδ ⊆ ∼n
′
δ

δ ≤ δ′ =⇒ ∼nδ ⊆ ∼nδ′

Example 4.4. We use up-to-n, δ bisimilarity to compare the behaviour of the ideal padlock
qok and the real one, in any of its states, when observed for n steps. When n = 0 bisimilarity
trivially holds, so below we only consider n > 0.

We start from the simplest case: bisimilarity does not hold between qok and qerr. Indeed,
qok and qerr have distinct labels (`(qok) = ∅ 6= {err} = `(qerr)), hence we do not have
qok ∼nδ qerr, no matter what n > 0 and δ are.

We now compare qok with any qi. When n = 1, both states have an empty label set,
i.e. `(qok) = `(qi) = ∅, hence they are bisimilar for any error δ. We therefore can write
qok ∼1

δ qi for any δ ≥ 0.
When n = 2, we need a larger error δ to make qok and qi bisimilar. Indeed, if we perform

a move from qi, the padlock can be broken with probability 1/(N− i), in which case we reach
qerr, thus violating bisimilarity. Accounting for such probability, we only obtain qok ∼2

δ qi for
any δ ≥ 1/(N − i).

When n = 3, we need an even larger error δ to make qok and qi bisimilar. Indeed, while
the first PIN guessing attempt has probability 1/(N − i), in the second move the guessing
probability increases to 1/(N − i− 1). Choosing δ equal to the largest probability is enough
to account for both moves, hence we obtain qok ∼3

δ qi for any δ ≥ 1/(N − i− 1). Technically,
note that the denominator N− i−1 might be zero, since when i = n−1 the first move always
guesses the PIN, and the second guess never actually happens. In such case, we instead
take δ = 1. More in detail, we verify item (2b) of Definition 4.1 for qok ∼3

δ qi, assuming
δ ≥ 1/(N − i− 1). We must prove that:

Pr(qok, Q) ≤ Pr(qi,∼2
δ (Q)) + δ

When qok 6∈ Q we have Pr(qok, Q) = 0, hence the inequality holds trivially. Otherwise, if
qok ∈ Q we first observe that Pr(qok, Q) = 1. From the case n = 2, we have qok ∼2

δ qi+1,
since δ ≥ 1/(N − (i+ 1)). Hence, qi+1 ∈ ∼2

δ (Q) and so:

Pr(qi,∼2
δ (Q)) + δ ≥ Pr(qi, {qi+1}) + δ = 1− 1

N − i
+ δ ≥ 1− 1

N − i
+

1

N − i− 1
≥ 1

This proves item (2b); the proof for item (2c) is similar.
More in general, for an arbitrary n ≥ 2, we obtain through a similar argument that

qok ∼nδ qi for any δ ≥ 1/(N − i− n+ 2). Intuitively, δ = 1/(N − i− n+ 2) is the probability
of guessing the PIN in the last attempt (the n-th), which is the attempt having the highest
success probability. Again, when the denominator N − i− n+ 2 becomes zero (or negative),
we instead take δ = 1.

Note that the DTMC of the ideal and real padlocks (Example 3.6) has finitely many
states. Our bisimilarity notion and results, however, can also deal with DTMCs with a
countably infinite set of states, as we show in the next example.
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Figure 3: A Markov chain modelling an unfair random generator of bit streams.

Example 4.5. We consider an ideal system which randomly generates bit streams in a fair
way. We model such a system as having two states {qa, qb}, with transition probabilities
Pr(x, y) = 1/2 for any x, y ∈ {qa, qb}, as in Figure 1. We label state qa with label a denoting
bit 0, and state qb with label b denoting bit 1.

We compare this ideal system with a real system which generates bit streams in an
unfair way. At each step, the real system draws a ball from an urn, initially having g0

a-labelled balls and g0 b-labelled balls. After each drawing, the ball is placed back in the
urn. However, every time an a-labelled ball is drawn, an additional a-labelled ball is put in
the urn, making the next drawings more biased towards a.

We model the real system using the infinite1 set of states N×{a, b}, whose first component
counts the number of a-labelled balls in the urn, and the second component is the label of
the last-drawn ball. The transition probabilities are as follows, where g0 ∈ N+ (see Figure 3):

Pr((g, x), (g + 1, a)) = g/(g + g0)
Pr((g, x), (g, b)) = g0/(g + g0)
Pr((g, x), (g′, x′)) = 0 otherwise

We label each such state with its second component.
We now compare the ideal system to the real one. Intuitively, the ideal system, when

started from state qa, produces a sequence of states whose labels are uniform independent
random values in {a, b}. Instead, the real system slowly becomes more and more biased
towards label a. More precisely, when started from state (g0, a), in the first drawing the next
label is uniformly distributed between a and b, as in the ideal system. When the sampled
state has label a, this causes the component g to be incremented, increasing the probability
g/(g + g0) of sampling another a in the next steps. Indeed, the value g is always equal to g0

plus the number of sampled a-labelled states so far.
Therefore, unlike the ideal system, on the long run the real system will visit a-labelled

states with very high probability, since the g component slowly but steadily increases.
While this fact makes the two systems not bisimilar according to the standard probabilistic
bisimilarity [LS89], if we restrict the number of steps to n� g0 and tolerate a small error δ,
we can obtain qa ∼nδ (g0, a).

For instance, if we let g0 = 1000, n = 100 and δ = 0.05 we have qa ∼nδ (g0, a). This is
because, in n steps, the first component g of a real system (g, x) will at most reach 1100,
making the probability of the next step to be (g + 1, a) to be at most 1100/2100 ' 0.523.
This differs from the ideal probability 0.5 by less than δ, hence bisimilarity holds.

1Modelling this behaviour inherently requires an infinite set of states, since each number of a-labelled
balls in the urn leads to a unique transition probability function.
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5. Soundness

Our soundness theorem shows that, if we consider any state q satisfying φ (with steps n and
error δ′), and any state q′ which is bisimilar to q (with enough steps and error δ), then q′

must satisfy φ, with the same number n of steps, at the cost of suitably increasing the error.
For a fixed φ, the “large enough” number of steps and the increase in the error depend
linearly on n.

Theorem 5.1 (Soundness). Let kX = Xmax (φ) be the maximum X-nesting of a formula φ,
and let kU = Umax (φ) be the maximum U-nesting of φ. Then, for all n, δ, δ′ we have:

∼n̄δ ([[φ]]nδ′,+1) ⊆ [[φ]]nn̄·δ+δ′,+1 where n̄ = n · kU + kX + 1

Example 5.2. We apply Theorem 5.1 to our padlock system in the running example. We
take the same formula φ = Pr≤0[true U err] of Example 3.6 and choose n = 103 and δ′ = 0.
Since φ has only one until operator and no next operators, the value n̄ in the theorem
statement is n̄ = 103 · 1 + 0 + 1 = 1001. Therefore, from Theorem 5.1 we obtain, for all δ:

∼1001
δ ([[φ]]1000

0,+1) ⊆ [[φ]]1000
1001·δ,+1

In Example 3.6 we discussed how the ideal padlock qok satisfies the formula φ for any
number of steps and any error value. In particular, choosing 1000 steps and zero error, we
get qok ∈ [[φ]]1000

0,+1.
Moreover, in Example 4.4 we observed that states qok and q0 are bisimilar with n̄ = 1001

and δ = 1/(N − 0− n̄+ 2) = 1/99001, i.e. qok ∼n̄δ q0.
In such case, the theorem ensures that q0 ∈ [[φ]]1000

1001/99001,+1, hence the real padlock can

be considered unbreakable if we limit our attention to the first n = 1000 steps, up to an
error of 1001/99001 ≈ 0.010111. Finally, we note that such error is remarkably close to
the least value that would still make q0 satisfy φ, which we computed in Example 3.6 as
n/N = 103/105 = 0.01.

In the rest of this section, we describe the general structure of the proof in a top-down
fashion, leaving the detailed proof for Appendix A.

We prove the soundness theorem by induction on the state formula φ, hence we also need
to deal with path formulae ψ. Note that the statement of the theorem considers the image of
the semantics of the state formula φ w.r.t. bisimilarity (i.e., ∼n̄δ ([[φ]]nδ′,+1)). Analogously, to
deal with path formulae we also need an analogous notion on sets of traces. To this purpose,
we consider the set of traces in the definition of the semantics: T = Cyl(p) ∩ [[ψ]]nδ,r. Then,
given a state q bisimilar to p, we define the set of pointwise bisimilar traces starting from q,
which we denote with R̃nδ,q(T ). Technically, since ψ can only observe a finite portion of a

trace, it is enough to define R̃nδ,q(T̃ ) on sets of trace fragments T̃ .

Definition 5.3. Write Fnq0 for the set of all trace fragments of length n starting from q0.

Assuming p ∼nδ q, we define R̃nδ,q : P(Fnp )→ P(Fnq ) as follows:

R̃nδ,q(T̃ ) = {ũ ∈ Fnq | ∃t̃ ∈ T̃ .∀0 ≤ i < n. t̃(i) ∼n−iδ ũ(i)}

In particular, notice that F 1
q = {q} (the trace fragment of length 1), and so:

R̃1
δ,q(∅) = ∅ R̃1

δ,q({q}) = {q}
The key inequality we exploit in the proof (Lemma 5.4) compares the probability of

a set of trace fragments T̃ starting from p to the one of the related set of trace fragments
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R̃mδ,q(T̃ ) starting from a q bisimilar to p. We remark that the component n̄δ in the error that
appears in Theorem 5.1 results from the component mδ appearing in the following lemma.

Lemma 5.4. If p ∼nδ q and T̃ is a set of trace fragments of length m, with m ≤ n, starting
from p, then:

Pr(T̃ ) ≤ Pr(R̃mδ,q(T̃ )) +mδ

Lemma 5.4 allows T̃ to be an infinite set (because the set of states Q can be infinite).

We reduce this case to that in which T̃ is finite. We first recall a basic calculus property:
any inequality a ≤ b can be proved by establishing instead a ≤ b + ε for all ε > 0. Then,
since the probability distribution of trace fragments of length m is discrete, for any ε > 0
we can always take a finite subset of the infinite set T̃ whose probability differs from that
of T̃ less than ε. It is then enough to consider the case in which T̃ is finite, as done in the
following lemma.

Lemma 5.5. If p ∼nδ q and T̃ is a finite set of trace fragments of length n > 0 starting from
p, then:

Pr(T̃ ) ≤ Pr(R̃nδ,q(T̃ )) + nδ

We prove Lemma 5.5 by induction on n. In the inductive step, we partition the traces
according to their first move, i.e., on their next state after p (for the trace fragments in T )
or q (for the bisimilar counterparts). A main challenge here is caused by the probabilities
of such moves being weakly connected. Indeed, when p moves to p′, we might have several
states q′, bisimilar to p′, such that q moves to q′. Worse, when p moves to another state
p′′, we might find that some of the states q′ we met before are also bisimilar to p′′. Such
overlaps make it hard to connect the probability of p moves to that of q moves.

To overcome these issues, we exploit the technical lemma below. Let set A represent the
p moves, and set B represent the q moves. Then, associate to each set element a ∈ A, b ∈ B
a value (fA(a), fB(b) in the lemma) representing the move probability. The lemma ensures
that each fA(a) can be expressed as a weighted sum of fB(b) for the elements b bisimilar
to a. Here, the weights h(a, b) make it possible to relate a p move to a “weighted set” of q
moves. Furthermore, the lemma ensures that no b ∈ B has been cumulatively used for more
than a unit weight (

∑
a∈A h(a, b) ≤ 1).

Lemma 5.6. Let A be a finite set and B be a countable set, equipped with functions
fA : A → R+

0 and fB : B → R+
0 . Let g : A → 2B be such that

∑
b∈g(a) fB(b) converges for

all a ∈ A. If, for all A′ ⊆ A : ∑
a∈A′

fA(a) ≤
∑

b∈
⋃
a∈A′ g(a)

fB(b) (5.1)

then there exists h : A×B → [0, 1] such that:

∀b ∈ B :
∑
a∈A

h(a, b) ≤ 1 (5.2)

∀A′ ⊆ A :
∑
a∈A′

fA(a) =
∑
a∈A′

∑
b∈g(a)

h(a, b)fB(b) (5.3)

We visualize Lemma 5.6 in Figure 4 through an example. The leftmost graph shows a
finite set A = {a1, a2, a3} where each ai is equipped with its associated value fA(ai) and,
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Figure 4: Graphical representation of Lemma 5.6 (left) and its proof (right).

similarly, a finite set B = {b1, . . . , b4} where each bi has its own value fB(bi). The function
g is rendered as the edges of the graph, connecting each ai with all bj ∈ g(ai).

The graph satisfies the hypotheses, as one can easily verify. For instance, when A′ =
{a1, a2} inequality (5.1) simplifies to 0.3 + 0.5 ≤ 0.5 + 0.6. The thesis ensures the existence
of a weight function h(−,−) whose values are shown in the graph on the left over each edge.

These values indeed satisfy (5.2): for instance, if we pick b = b2 the inequality reduces
to 0.5 + 0.16̄ ≤ 1. Furthermore, (5.3) is also satisfied: for instance, taking A′ = {a2} the
equation reduces to 0.5 = 0.4 · 0.5 + 0.5 · 0.6, while taking A′ = {a3} the equation reduces to
0.2 = 0.16̄ · 0.6 + 1.0 · 0.05 + 1.0 · 0.05.

The rightmost graph in Figure 4 instead sketches how our proof devises the desired
weight function h, by constructing a network flow problem, and exploiting the well-known
min-cut/max-flow theorem [DF55], following the approach of [Bai98]. We start by adding a
source node to the right (white bullet in the figure), connected to nodes in B, and a sink
node to the left, connected to nodes in A. We write the capacity over each edge: we use
fB(bi) for the edges connected to the source, fA(ai) for the edges connected to the sink, and
+∞ for the other edges in the middle.

Then, we argue that the leftmost cut C shown in the figure is a min-cut. Intuitively, if
we take another cut C ′ not including some edge in C, then C ′ has to include other edges
making C ′ not any better than C. Indeed, C ′ can surely not include any edge in the middle,
since they have +∞ capacity. Therefore, if C ′ does not include an edge from some ai to
the sink, it has to include all the edges from the source to each bj ∈ g(ai). In this case,
hypothesis (5.1) ensures that doing so does not lead to a better cut. Hence, C is indeed a
min-cut.

From the max-flow corresponding to the min-cut, we derive the values for h(−,−).
Thesis (5.2) follows from the flow conservation law on each bi, and the fact that the incoming
flow of each bj from the source is bounded by the capacity of the related edge. Thesis (5.3)
follows from the flow conservation law on each ai, and the fact that the outgoing flow of each
ai to the sink is exactly the capacity of the related edge, since the edge is on a min-cut.
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6. Asymptotic equivalence

In this section we transport the notion of bisimilarity and the semantics of PCTL to families
of states, thus reasoning on their asymptotic behaviours. More precisely, given a state-
labelled DTMC Q, we define a family of states to be an infinite sequence Ξ : N → Q.
Intuitively, Ξ(η) can describe the behaviour of a probabilistic system depending on a security
parameter η ∈ N.

When using bisimilarity (Definition 4.1) to relate two given states Q1 and Q2, we have
to provide a number of steps n and a probability error δ. By contrast, when relating two
families Ξ1 and Ξ2 we want to focus on their asymptotic behaviour, and obtain an equivalence
that does not depend on specific values of n and δ. To do so, we start by recalling the
standard definition of negligible function:

Definition 6.1 (Negligible Function). A function f : N→ R is said to be negligible whenever

∀c ∈ N. ∃η̄. ∀η ≥ η̄. |f(η)| ≤ η−c

We say that Ξ1 and Ξ2 are asymptotically equivalent (Ξ1 ≡ Ξ2) when the families are
asymptotically pointwise bisimilar with a negligible error δ(η) whenever n(η) is a polynomial.

Definition 6.2 (Asymptotic Equivalence). Given Ξ1,Ξ2 : N→ Q, we write Ξ1 ≡ Ξ2 if and
only if for each polynomial n(−) there exists a negligible function δ(−) and η̄ ∈ N such that

for all η ≥ η̄ we have Ξ1(η) ∼n(η)
δ(η) Ξ2(η)

Lemma 6.3. ≡ is an equivalence relation.

Proof. Reflexivity and symmetry are trivial. For transitivity, given a polynomial n(−), let
δ1(−), δ2(−) be the negligible functions resulting from the hypotheses Ξ1 ≡ Ξ2 and Ξ2 ≡ Ξ3,
respectively. Asymptotically, we obtain

Ξ1(η) ∼n(η)
δ1(η) Ξ2(η) ∧ Ξ2(η) ∼n(η)

δ2(η) Ξ3(η)

By the transitivity of ∼, we get

Ξ1(η) ∼n(η)
δ1(η)+δ2(η) Ξ3(η)

Hence we obtain the thesis since the sum of negligible functions δ1(η)+δ2(η) is negligible.

We now provide an asymptotic semantics for PCTL, by defining its satisfaction relation
Ξ |= φ. As done above, this notion does not depend on specific values for n and δ (unlike the
semantics in Definition 3.4), but instead considers the asymptotic behaviour of the family.

Definition 6.4 (Asymptotic Satisfaction Relation). We write Ξ |= φ when there exists
a polynomial n̄(−) such that for each polynomial n(−) ≥ n̄(−) there exists a negligible

function δ(−) and η̄ ∈ N such that for all η ≥ η̄ we have Ξ(η) ∈ [[φ]]
n(η)
δ(η),+1

In the above definition, we only consider polynomials greater than a threshold n̄(−).
This is because a family Ξ representing, say, a protocol could require a given (polynomial)
number of steps to complete its execution. It is reasonable, for instance, that Ξ(η) needs to
exchange η2 messages over a network to perform its task. In such cases, we still want to make
Ξ satisfy a formula φ stating that the task is eventually completed with high probability. If
we quantified over all polynomials n(−), we would also allow choosing small polynomials
like n(η) = η or even n(η) = 1, which would not provide Ξ enough time to complete. Using
a (polynomial) threshold n̄(−), instead, we always provide enough time.
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We now establish the main result of this section, asymptotic soundness, stating that
equivalent families of states asymptotically satisfy the same PCTL formulae. The proof
relies on our previous soundness Theorem 5.1.

Theorem 6.5 (Asymptotic Soundness). Let Ξ1,Ξ2 be families of states such that Ξ1 ≡ Ξ2.
For every PCTL formula φ:

Ξ1 |= φ ⇐⇒ Ξ2 |= φ

Proof. Assuming Ξ1 |= φ and Ξ1 ≡ Ξ2, we prove Ξ2 |= φ. Let kX = Xmax (φ) be the
maximum X-nesting of φ, and let kU = Umax (φ) be the maximum U-nesting of φ.

Let n̄1(−) as in the definition of the hypothesis Ξ1 |= φ. To prove the thesis Ξ2 |= φ, we
choose n̄2(−) = n̄1(−), and we consider an arbitrary n2(−) ≥ n̄2(−) = n̄1(−). We can then
choose n1(−) = n2(−) in the same hypothesis, and obtain a negligible δ1(−) and η̄1, where
for any η ≥ η̄1 we have

Ξ1(η) ∈ [[φ]]
n2(η)
δ1(η),+1 (6.1)

We now exploit the other hypothesis Ξ1 ≡ Ξ2, choosing the polynomial

n(η) = n2(η) · kU + kX + 1 (6.2)

and obtaining a negligible δ(−) and η̄ where for any η ≥ η̄ we have

Ξ1(η) ∼n(η)
δ(η) Ξ2(η) (6.3)

To prove the thesis, we finally choose the negligible function δ2(η) = n(η) · δ(η) + δ1(η)
and η̄2 = max(η̄1, η̄). By Theorem 5.1 we have that for any η ≥ η̄2:

∼n(η)
δ(η) ([[φ]]

n2(η)
δ1(η),+1) ⊆ [[φ]]

n2(η)
n(η)·δ(η)+δ1(η),+1 where n(η) is as in (6.2).

Applying this to (6.1) and (6.3) we then have that, for any η ≥ η̄2:

Ξ2(η) ∈ [[φ]]
n2(η)
n(η)·δ(η)+δ1(η),+1

which is our thesis

Ξ2(η) ∈ [[φ]]
n2(η)
δ2(η),+1

Example 6.6. We now return to the padlock examples 3.6 and 4.4. We again consider an
ideal padlock modelled by a state qok, but also a sequence of padlocks having an increasing
number of digits η, hence an increasing number N = 10η of combinations. We assume that
state qi,10η models the state of a padlock having η digits where the adversary has already
made i brute force attempts, following the same strategy as in the previous examples. The
transition probabilities are also similarly defined.

In this scenario, we can define two state families. Family Ξ1(η) = qok represents a
(constant) sequence of ideal padlocks, while family Ξ2(η) = q0,10η represents a sequence
of realistic padlocks with no previous brute force attempt (i = 0), in increasing order of
robustness. Indeed, as η increases, the padlock becomes harder to break by brute force since
the number of combinations N = 10η grows.

In Example 4.4, we have seen that

Ξ1(η) ∼n(η)
δ(η) Ξ2(η) where δ(η) =

1

N − 0− n(η) + 2
=

1

10η − n(η) + 2

and we can observe that the above δ(η) is indeed negligible when n(η) is a polynomial. This
means that Ξ1 ≡ Ξ2 holds, hence we can apply Theorem 6.5 and conclude that the families
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Ξ1 and Ξ2 asymptotically satisfy the same PCTL formulae. This is intuitive since, when
the adversary can only attempt a polynomial number of brute force attacks, and when the
number of combinations increases exponentially, the robustness of the realistic padlocks
effectively approaches that of the ideal one.

We now discuss how Theorem 6.5 could be applied to a broad class of systems. Consider
the execution of an ideal cryptographic protocol, modelled as a DTMC starting from the
initial state qi. This model could represent, for instance, the semantics of a formal, symbolic
system such as those that can be expressed using process algebras. In this scenario, the
underlying cryptographic primitives can be perfect, in the sense that ciphertexts reveal no
information to whom does not know the decryption key, signatures can never be forged, hash
preimages can never be found, and so on, despite the amount of computational resources
available to the adversary.

Given such a model, it is then possible to refine it making the cryptographic primitives
more realistic, allowing an adversary to attempt attacks such as decryptions and signature
forgeries, which however succeed only with negligible probability w.r.t. a security parameter
η. This more realistic system can be modelled using a distinct DTMC state qηr whose
behaviour is similar to that of qi: the state transitions are essentially the same, except for
the cases in which the adversary is successful in attacking the cryptographic primitives.
Therefore, the transition probabilities are almost the same, differing only by a negligible
quantity.

Therefore, we can let Ξ1(η) = qi and Ξ2(η) = qηr , and observe that they are indeed
asymptotically equivalent. Note that this holds in general by construction, no matter what
is the behaviour of the ideal system qi we started from.

Finally, by Theorem 6.5 we can claim that both families Ξ1,Ξ2 asymptotically satisfy
the same PCTL formulas. This makes it possible, in general, to prove properties on the
simpler qi system, possibly even using some automatic verification tools, and transfer these
results in the more realistic setting qηr .

A special case of this fact was originally studied in [ZD05], which however only considered
reachability properties. By comparison, Theorem 6.5 is much more general, allowing one to
transfer any property that can be expressed using a PCTL formula.

The construction above allows one to refine an ideal system qi into a more realistic
one qηr by taking certain adversaries into account. However, if our goal were to study the
security of the system against all reasonable adversaries, then the above approach would
not be applicable. Indeed, it is easy to find an ideal system and a corresponding realistic
refinement, comprising a reasonable adversary, where the asymptotic equivalence does not
hold. For instance, consider an ideal protocol where Alice and Bob exchange ten messages,
after which Alice randomly chooses and exchanges a single bit. To assess the security of a
realistic implementation, we might want to consider the case where Alice is an adversary. In
such case, a malicious Alice could exchange the first two messages, then flip a coin b← {0, 1}
in secret, exchange the other eight messages, and finally send the value b. The behaviour
of such realistic system differs from the ideal one, since the ideal one has a probabilistic
choice point only at the end, while the realistic system anticipates it after the first two
moves. It is easy to check (and well known) that moving choices to an earlier point makes
standard bisimilarity fail, and this is the case also for asymptotic equivalence. The failure of
asymptotic equivalence prevents us from applying the asymptotic soundness theorem. In
particular, assume that we have proved that the ideal system enjoys certain specifications



22:18 M. Bartoletti, M. Murgia, and R. Zunino Vol. 19:1

expressed as PCTL formulae. We can not exploit the theorem to show that also the realistic
system with the adversary enjoys the same specifications.

7. Conclusions

In this paper we studied how the (relaxed) semantics of PCTL formulae interacts with
(approximate) probabilistic bisimulation. In the regular, non relaxed case, it is well-known
that when a state q satisfies a PCTL formula φ, then all the states that are probabilistic-
bisimilar to q also satisfy φ ([DGJP10]). Theorem 5.1 extends this to the relaxed semantics,
establishing that when a state q satisfies a PCTL formula φ up-to n steps and error δ,
then all the states that are approximately probabilistic bisimilar to q with error δ′ (and
enough steps) also satisfy φ up-to n steps and suitably increased error. We provide a way to
compute the new error in terms of n, δ, δ′. Theorem 6.5 extends such soundness result to
the asymptotic behaviour where the error becomes negligible when the number of steps is
polynomially bounded.

Our results are a first step towards a novel approach to the security analysis of cryp-
tographic protocols using probabilistic bisimulations. When one is able to prove that a
real-world specification of a cryptographic protocol is asymptotically equivalent to an ideal
one, then one can invoke Theorem 6.5 and claim that the two models satisfy the same PCTL
formulae, essentially reducing the security proof of the cryptographic protocol to verifying
the ideal model. A relevant line for future work is to study the applicability of our theory in
this setting. As discussed in section 6, our approach is not applicable to all protocols and all
adversaries. A relevant line of research could be the study of larger asymptotic equivalences,
which allow to transfer properties from ideal to realistic systems. This could be achieved,
e.g., by considering weaker logics than PCTL, or moving to linear temporal logics.

Another possible line of research would be investigating proof techniques for establishing
approximate bisimilarity and refinement [JL91], as well as devising algorithms for approx-
imate bisimilarity, along the lines of [vBW14, CvBW12, Fu12, TvB16, TvB17, TvB18].
This direction, however, would require restricting our theory to finite-state systems, which
contrasts with our general motivation coming from cryptographic security. Indeed, in the
analysis of cryptographic protocols, security is usually to be proven against an arbitrary ad-
versary, hence also against infinite-state ones. Hence, model-checking of finite-state systems
would not directly be applicable in this setting.
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Appendix A. Proofs

Proof of Lemma 3.5. We simultaneously prove the whole statement by induction on the
structure of the formulae φ and ψ. The cases φ = l and φ = true result in trivial equalities.
For the case φ = ¬φ′ we need to prove

[[¬φ′]]nδ,+1 ⊆ [[¬φ′]]nδ′,+1

[[¬φ′]]nδ′,−1 ⊆ [[¬φ′]]nδ,−1

[[¬φ′]]nδ,−1 ⊆ [[¬φ′]]nδ,+1

which is equivalent to

Q \ [[φ′]]nδ,−1 ⊆ Q \ [[φ′]]nδ′,−1

Q \ [[φ′]]nδ′,+1 ⊆ Q \ [[φ′]]nδ,+1

Q \ [[φ′]]nδ,+1 ⊆ Q \ [[φ′]]nδ,−1

which, in turn, is equivalent to

[[φ′]]nδ′,−1 ⊆ [[φ′]]nδ,−1

[[φ′]]nδ,+1 ⊆ [[φ′]]nδ′,+1

[[φ′]]nδ,−1 ⊆ [[φ′]]nδ,+1

which is the induction hypothesis.
For the case φ = φ1 ∧ φ2 we need to prove

[[φ1 ∧ φ2]]nδ,+1 ⊆ [[φ1 ∧ φ2]]nδ′,+1

[[φ1 ∧ φ2]]nδ′,−1 ⊆ [[φ1 ∧ φ2]]nδ,−1

[[φ1 ∧ φ2]]nδ,−1 ⊆ [[φ1 ∧ φ2]]nδ,+1

which is equivalent to

[[φ1]]nδ,+1 ∩ [[φ2]]nδ,+1 ⊆ [[φ1]]nδ′,+1 ∩ [[φ2]]nδ′,+1

[[φ1]]nδ′,−1 ∩ [[φ2]]nδ′,−1 ⊆ [[φ1]]nδ,−1 ∩ [[φ2]]nδ,−1

[[φ1]]nδ,−1 ∩ [[φ2]]nδ,−1 ⊆ [[φ1]]nδ,+1 ∩ [[φ2]]nδ,+1

which immediately follows from the induction hypothesis on φ1 and φ2. For the case
φ = PrBπ[ψ] we need to prove

[[PrBπ[ψ]]]nδ,+1 ⊆ [[PrBπ[ψ]]]nδ′,+1

[[PrBπ[ψ]]]nδ′,−1 ⊆ [[PrBπ[ψ]]]nδ,−1

[[PrBπ[ψ]]]nδ,−1 ⊆ [[PrBπ[ψ]]]nδ,+1

The first inclusion follows from

[[PrBπ[ψ]]]nδ,+1 = {q ∈ Q | Pr(Cyl(q) ∩ [[ψ]]nδ,+1) + δ B π}
⊆ {q ∈ Q | Pr(Cyl(q) ∩ [[ψ]]nδ′,+1) + δ′ B π}
= [[PrBπ[ψ]]]nδ′,+1
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where we exploited δ ≤ δ′, the induction hypothesis [[ψ]]nδ,+1 ⊆ [[ψ]]nδ′,+1, the monotonicity

of Pr(−), and the fact that ≥ ◦B ⊆ B. The second inclusion follows from an analogous
argument:

[[PrBπ[ψ]]]nδ′,−1 = {q ∈ Q | Pr(Cyl(q) ∩ [[ψ]]nδ′,−1)− δ′ B π}
⊆ {q ∈ Q | Pr(Cyl(q) ∩ [[ψ]]nδ,−1)− δ B π}
= [[PrBπ[ψ]]]nδ,−1

where we exploited −δ′ ≤ −δ, the induction hypothesis [[ψ]]nδ′,−1 ⊆ [[ψ]]nδ,−1, the monotonicity

of Pr(−), and the fact that ≥ ◦B ⊆ B.
For ψ = Xφ, we can observe that [[Xφ]]nδ,r = f([[φ]]nδ,r) where f is a monotonic function

mapping sets of states to sets of traces, which does not depend on δ, r, n. Hence, the thesis
follows from the set inclusions about the semantics of φ in the induction hypothesis.

Similarly, for ψ = φ1Uφ2, we can observe that [[φ1Uφ2]]nδ,r = gn([[φ1]]nδ,r, [[φ2]]nδ,r) where gn
is a monotonic function mapping pairs of sets of states to sets of traces, which does not
depend on δ, r (but only on n). Hence, the thesis follows from the set inclusions about the
semantics of φ1 and φ2 in the induction hypothesis.

Proof of Lemma 4.3. The statement follows by induction on n− n′ from the following
properties:

δ ≤ δ′ ∧ p ∼nδ q =⇒ p ∼nδ′ q (A.1)

p ∼n+1
δ q =⇒ p ∼nδ q (A.2)

To prove (A.1) we proceed by induction on n. In the base case n = 0 the thesis trivially
follows by the first case of Definition 4.1.

For the inductive case, we assume (A.1) holds for n, and prove it for n+ 1. Therefore,
we assume p ∼n+1

δ q and prove p ∼n+1
δ′ q.

To prove the thesis, we must show that all the items of Definition 4.1 hold. Item (2a)
directly follows from the hypothesis. For item (2b) we have

Pr(p,Q) ≤ Pr(q,∼nδ (Q)) + δ ≤ Pr(q,∼nδ′ (Q)) + δ′

where the first inequality follows from the hypothesis p ∼n+1
δ q, while the second one follows

from the induction hypothesis (which implies ∼nδ (Q) ⊆∼nδ′ (Q)) and δ ≤ δ′. Item (2c) is
analogous.

We now prove (A.2), proceeding by induction on n. In the base case n = 0, the thesis
trivially follows by the first case of Definition 4.1. For the inductive case, we assume the
statement holds for n, and we prove it for n+ 1. Therefore, we assume p ∼n+2

δ q and prove

p ∼n+1
δ q.
To prove the thesis, we must show that all the items of Definition 4.1 hold. Item (2a)

directly follows from the hypothesis. For item (2b) of the thesis we have

Pr(p,Q) ≤ Pr(q,∼n+1
δ (Q)) + δ ≤ Pr(q,∼nδ (Q)) + δ

where the first inequality follows from the hypothesis p ∼n+2
δ q, while the second one

follows from the induction hypothesis (which implies ∼n+1
δ (Q) ⊆∼nδ (Q)). Item (2c) is

analogous.
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Lemma A.1. Let a, b ∈ R. If ∀ε > 0 : a ≤ b+ ε then a ≤ b.

Proof. If a > b, taking ε = (a− b)/2 contradicts the hypothesis.

Proof of Lemma 5.4. By Lemma 4.3 we have that p ∼mδ q. If T is finite the thesis follows
from Lemma 5.5. If T is infinite, it must be countable: this follows by the fact that Markov
chains states are countable and the length of the traces in T is finite. So, let t̃0t̃1 . . . be an
enumeration of T . By definition of infinite sum, we have that:

Pr(T ) = lim
k→∞

k∑
i=0

Pr(t̃i)

By definition of limit of a sequence, we have that for all ε > 0 there exists v ∈ N such that
for all k > v: ∣∣∣∣∣∣Pr(T )−

k∑
i=0

Pr(t̃i)

∣∣∣∣∣∣ < ε

Since Pr(t̃i) ≥ 0 for all i, we can drop the absolute value and we get:

Pr(T )−
k∑
i=0

Pr(t̃i) < ε (A.3)

By Lemma A.1 it suffice to show Pr(T ) ≤ Pr(R̃mδ,q(T )) + δm+ ε for all ε > 0, or equivalently:

Pr(T )− ε ≤ Pr(R̃mδ,q(T )) + δm

So, let ε > 0 and let k be such that Lemma A.3 holds. Then we have:

Pr(T )− ε <
k∑
i=0

Pr(t̃i)

Let T ′ = {t̃i | i ≤ k}. Since
∑k

i=0 Pr(t̃i) = Pr(T ′) and T ′ is finite, by Lemma 5.5 we have:

k∑
i=0

Pr(t̃i) ≤ Pr(R̃mδ,q(T
′)) + δm

Since R̃mδ,q(T
′) ⊆ R̃mδ,q(T ) we have that:

Pr(R̃mδ,q(T
′)) + δm ≤ Pr(R̃mδ,q(T )) + δm

Summing up, we have that Pr(T )− ε ≤ Pr(R̃mδ,q(T )) + δm for all ε > 0. By Lemma A.1 it

follows that Pr(T ) ≤ Pr(R̃mδ,q(T )) + δm as required.
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Proof of Lemma 5.6. Without loss of generality, we prove the statement under the
following additional assumptions:

∀b ∈ B : fB(b) > 0 (A.4)

∀b ∈ B : {a ∈ A | b ∈ g(a)} 6= ∅ and (A.5)

∀b1, b2 ∈ B : {a ∈ A | b1 ∈ g(a)} = {a ∈ A | b2 ∈ g(a)} =⇒ b1 = b2

If B does not satisfy Equation A.4, just remove from B the elements b such that fB(b) = 0
adjust g accordingly, and set h(a, b) = 0. Equation 5.1 still holds since we removed only
elements whose value is zero. If B does not satisfy Equation A.5, it can be transformed to a
set that does. To see why, let ≡⊆ B ×B be defined as:

b ≡ b′ iff {a ∈ A | b ∈ g(a)} = {a ∈ A | b′ ∈ g(a)}

Let B̂ be the set of equivalence classes w.r.t. ≡. For an equivalence class [b], define:

fB̂([b]) =
∑
b′∈[b]

fB(b′) g′(a) = {[b] | b ∈ g(a)}

It is easy to verify that (A.5) is satisfied. Notice that
∑

[b]∈g′(a) fB̂([b]) converges, since:∑
[b]∈g′(a)

fB̂([b]) =
∑

[b]∈g′(a)

∑
b′∈[b]

fB(b) =
∑
b∈g(a)

fB(b)

We now show that A, B̂ and g′ satisfy Equation 5.1. We have that, for all b ∈ B, fB(b) ≤
fB̂([b]) and b ∈ g(a) =⇒ [b] ∈ g′(a). Therefore, for all A′ ⊆ A:∑

a∈A′
fA(a) ≤

∑
b∈

⋃
a∈A′ g(a)

fB(b) ≤
∑

[b]∈
⋃
a∈A′ g

′(a)

fB̂([b])

From a function h′ satisfying Equation 5.2 and Equation 5.3 for A, B̂ and g′ we can easily

obtain a function h for A,B and g: e.g., set h(a, b) = h′(a, [b]) fB(b)
fB̂([b]) . Notice that fB̂([b]) > 0

by Equation A.4, and that if B satisfies Equation A.5 it then holds that |B| < 2|A|, and
so B is finite. That said, we show that the thesis holds by reducing to the max-flow
problem [DF55]. Assume w.l.o.g. that A and B are disjoint. Let N = (V,E) be a directed
graph, where V = A ∪B ∪ {s, t} with s, t 6∈ A ∪B and:

E = {(s, b) | b ∈ B} ∪ {(b, a) | a ∈ A, b ∈ g(a)} ∪ {(a, t) | a ∈ A}
Define edge capacity w : E → R+

0 ∪ {∞} as follows:

w(s, b) = fB(b) w(b, a) =∞ w(a, t) = fA(a)

Consider the cut C = {(a, t) | a ∈ A} associated with partition (V \ {t}, {t}). Such cut has
capacity

∑
a∈A fA(a) and we argue it is minimum. Take a cut C ′ of the network. First notice

that if C ′ contains edges of the form (b, a) its capacity would be infinite. We can therefore
consider only cuts whose elements are of the form (s, b) or (a, t), and thus for all a ∈ A we
have that a and the elements of g(a) are in the same partition. In other words, s partition
is of the form A′ ∪

⋃
a∈A′ g(a) ∪ {s}, t partition is of the form A \A′ ∪

⋃
a∈(A\A′) g(a) ∪ {t},

where A′ ⊆ A. So capacity of C ′ is
∑

a∈A′ fA(a) +
∑

b∈g(A\A′) fB(b). Now, capacity of C is∑
a∈A′ fA(a) +

∑
a∈(A\A′) fA(a). Since

∑
a∈(A\A′) fA(a) ≤

∑
b∈g(A\A′) fB(b) by assumption

Equation 5.1, we have that capacity of C is minimal. By the min-cut max-flow theorem
[DF55], we have that the max flow of the network has capacity

∑
a∈A fA(a).
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Let flow : E → R+
0 be the a flow associated to such cut. Consequently, we have that

flow(a, t) = fA(a) for all a ∈ A. Define:

h(a, b) =

flow(b,a)
fB(b) if b ∈ g(a)

0 otherwise

We have to show that h satisfies Equation 5.2 and Equation 5.3. Let A′ ⊆ A. We have that:∑
a∈A′

∑
b∈g(a)

h(a, b)fB(b) =
∑
a∈A′

∑
b∈g(a)

flow(b, a)

fB(b)
fB(b)

=
∑
a∈A′

∑
b∈g(a)

flow(b, a)

By the conservation of flow constraint, we have that:∑
a∈A′

∑
b∈g(a)

flow(b, a) =
∑
a∈A′

flow(a, t)

=
∑
a∈A′

fA(a)

So summing up we have that:∑
a∈A′

∑
b∈g(a)

h(a, b)fB(b) =
∑
a∈A′

fA(a)

For the remaining part, let b ∈ B. We have that:∑
a∈A

h(a, b) =
∑

a∈{a′ | b∈g(a′)}

h(a, b)

=
∑

a∈{a′ | b∈g(a′)}

flow(b, a)

fB(b)

=
1

fB(b)

∑
a∈{a′ | b∈g(a′)}

flow(b, a)

≤ fB(b)

fB(b)

= 1

Proof of Lemma 5.5. By induction on n. The base case (n = 1) is trivial as T = {p} and

R̃nδ,q(T ) = {q}, or T = ∅ and R̃nδ,q(T ) = ∅. Therefore, Pr(T ) = Pr(R̃nδ,q(T )) = |T |. For the
inductive case, first notice that:

Pr(T ) =
∑
t̃∈T

Pr(p, t̃(1)) Pr(t̃(1..n− 1))

Referring to Lemma 5.6, letA = {t̃(1) | t̃ ∈ T}, B = {q′ | p′ ∼n−1
δ q′ for some p′ ∈ A}∪{D},

where D is a special element not occurring in A∪B. Let fA(p′) = Pr(p, p′), fB(q′) = Pr(q, q′)
and fB(D) = δ. Finally, let g(p′) = ∼n−1

δ (p′) ∪ {D}.
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By Definition 4.1, we have that A,B, fA, fB and g satisfy Equation 5.1 of Lemma 5.6.
Indeed, for all A′ ⊆ A, we have that:∑

a∈A′
fA(a) = Pr(p,A′) ≤ Pr(q,∼n−1

δ (A′)) + δ =
∑

b∈
⋃
a∈A′ g(a)

fB(b)

We can then conclude that there exist h such that, for all A′ ⊆ A:

Pr(p,A′) =
∑
p′∈A′

(
h(p′, D)δ +

∑
q′∈∼n−1

δ (p′)

h(p′, q′) Pr(q, q′)
)

Let TP = {t̃(1..n− 1) | t̃ ∈ T ∧ t̃(1) ∈ P} where P ⊆ A. We simply write Tp′ if P = {p′}.
So, we have that:

Pr(T ) =
∑
t̃∈T

Pr(p, t̃(1)) Pr(t̃(1..n− 1))

=
∑
p′∈A

Pr(p, p′) Pr(Tp′)

=
∑
p′∈A

Pr(Tp′)
(
h(p′, D)δ +

∑
q′∈∼n−1

δ (p′)

h(p′, q′) Pr(q, q′)
)

≤ δ +
∑
p′∈A

Pr(Tp′)
∑

q′∈∼n−1
δ (p′)

h(p′, q′) Pr(q, q′)

= δ +
∑
p′∈A

∑
q′∈∼n−1

δ (p′)

h(p′, q′) Pr(q, q′) Pr(Tp′)

≤ δ +
∑
p′∈A

∑
q′∈∼n−1

δ (p′)

h(p′, q′) Pr(q, q′)
(

Pr(R̃n−1
δ,q′ (Tp′)) + δ(n− 1)

)
= δ + s1 + s2

where:

s1 =
∑
p′∈A

∑
q′∈∼n−1

δ (p′)

h(p′, q′) Pr(q, q′)δ(n− 1)

s2 =
∑
p′∈A

∑
q′∈∼n−1

δ (p′)

h(p′, q′) Pr(q, q′) Pr(R̃n−1
δ,q′ (Tp′))

Now:

s1 = δ(n− 1)
∑
p′∈A

∑
q′∈∼n−1

δ (p′)

h(p′, q′) Pr(q, q′)

≤ δ(n− 1) Pr(p,A)

≤ δ(n− 1)

Therefore δ + s1 ≤ δn. It remains to show that s2 ≤ Pr(R̃nδ,q(T )). First notice that s2 can
be rewritten as follows by a simple reordering of terms:

s2 =
∑

q′∈∼n−1
δ (A)

∑
p′∈A∩∼n−1

δ (q′)

h(p′, q′) Pr(q, q′) Pr(R̃n−1
δ,q′ (Tp′))
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So:

s2 =
∑

q′∈∼n−1
δ (A)

∑
p′∈A∩∼n−1

δ (q′)

h(p′, q′) Pr(q, q′) Pr(R̃n−1
δ,q′ (Tp′))

≤
∑

q′∈∼n−1
δ (A)

∑
p′∈A∩∼n−1

δ (q′)

h(p′, q′) Pr(q, q′) Pr(R̃n−1
δ,q′ (TA∩∼n−1

δ (q′)))

≤
∑

q′∈∼n−1
δ (A)

Pr(q, q′) Pr(R̃n−1
δ,q′ (TA∩∼n−1

δ (q′)))
∑

p′∈A∩∼n−1
δ (q′)

h(p′, q′)

≤
∑

q′∈∼n−1
δ (A)

Pr(q, q′) Pr(R̃n−1
δ,q′ (TA∩∼n−1

δ (q′)))

= Pr(R̃nδ,q(T ))

The last equality follows by partitioning R̃nδ,q(T ) according to the second state of each trace

q′. The set of all such second states is the set of those bisimilar to (some state of) A, namely
∼n−1
δ (A). Given any such q′, the probability of its partition is Pr(q, q′) Pr(Uq′) where Uq′

is the set of the tails of R̃nδ,q(T ) starting from q′. Since this set is defined taking pointwise

bisimilar traces, we can equivalently express Uq′ by first taking the tails of T (i.e., TA), and

then considering the bisimilar traces: in other words, we have Uq′ = R̃n−1
δ,q′ (TA). Note that

the states in A which are not bisimilar to q′ do not contribute to R̃n−1
δ,q′ (TA) in any way, so

we can also write the desired Uq′ = R̃n−1
δ,q′ (TA∩∼n−1

δ (q′)).

Lemma A.2. Let T = {t | t(0) = p ∧ t |=n
δ,r Xφ} for some p, φ, and let m ≥ 2. Then:

Pr(T ) = Pr({t̃ | |t| = m ∧ t̃(0) = p ∧ t̃ |=n
δ,r Xφ})

Proof. Trivial.

Lemma A.3. Let T = {t | t(0) = p ∧ t |=n
δ,r φ1Uφ2} for some p, φ1, φ2, and let m ≥ n+ 1.

Then:

Pr(T ) = Pr({t̃ | |t̃| = m ∧ t̃(0) = p ∧ t̃ |=n
δ,r φ1Uφ2})

Proof. (Sketch) Let T̃ = {t̃ | |t̃| = m ∧ t̃(0) = p ∧ t̃ |=n
δ,r φ1Uφ2}. The thesis follows from

the fact that T =
⋃
t̃∈T̃ Cyl(t̃).

For notational convenience, hereafter we will often write q |=n
δ,r φ instead of q ∈ [[φ]]nδ,r.

Lemma A.4. Let k and n be, respectively, the maximum nesting level of U and of X in φ,
and let p ∼mk+n+1

δ1
q. Then:

(1) p |=m
δ2,+1 φ =⇒ q |=m

δ2+δ1(mk+n+1),+1 φ

(2) p 6|=m
δ2,−1 φ =⇒ q 6|=m

δ2+δ1(mk+n+1),−1 φ

Proof. By induction on φ. The cases true and a are trivial.

• ¬φ′. We only show item 1 as the other item is similar. So, suppose p |=m
δ2,+1 ¬φ′. Then,

p 6|=m
δ2,−1 φ. By the induction hypothesis we have that q 6|=m

δ2+δ1(mk+n+1),−1 φ, and hence

q |=m
δ2+δ1(mk+n+1),+1 ¬φ

′ as required.
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• φ1 ∧φ2. We only show item 1 as the other item is similar. So, suppose p |=m
δ2,+1 φ1 ∧φ2.

Then p |=m
δ2,+1 φ1 and p |=m

δ2,+1 φ2. By the induction hypothesis q |=m
δ2+δ1(mk+n+1),+1 φ1

and q |=m
δ2+δ1(mk+n+1),+1 φ2. Therefore q |=m

δ2+δ1(mk+n+1),+1 φ1 ∧φ2 as required.

• PrBπ[ψ]. For item 1, suppose that p |=m
δ2,+1 PrBπ[ψ]. We only deal with the case B =≥,

since the case B => is analogous. Let:

T = {t̃ | |t̃| = mk + n+ 1 ∧ t̃(0) = p ∧ t̃ |=m
δ2,+1 ψ}

We start by proving that:

∀ũ ∈ R̃mk+n+1
δ1,q

(T ) : ũ |=m
δ2+δ1(mk+n+1),+1 ψ (A.6)

Let ũ ∈ R̃mk+n+1
δ1,q

(T ). Then, there is t̃ ∈ T such that, for all 0 ≤ i < mk + n+ 1:

t̃(i) ∼mk+n+1−i
δ1

ũ(i)

We proceed by cases on ψ.
– φ1Uφ2. First notice that mk + n+ 1 ≥ m+ 1, and hence by Lemma A.3 we have that:

Pr(T ) = Pr({t | t(0) = p ∧ t |=m
δ2,+1 φ1Uφ2})

We then have Pr(T ) + δ2 ≥ π. Since t̃ |=m
δ2,+1 φ1Uφ2, we have that:

∃i ≤ m : t̃(i) |=m
δ2,+1 φ2 ∧ ∀j < i : t̃(j) |=m

δ2,+1 φ1

Let n′ be the maximum nesting level of X in φ2. We know that:

t̃(i) ∼mk+n+1−i
δ1

ũ(i) ∧ mk + n+ 1− i > m(k − 1) + n′ + 1

Then, by Lemma 4.3 (monotonicity of ∼), we have that:

t̃(i) ∼m(k−1)+n′+1
δ1

ũ(i)

Then, by the induction hypothesis, we have that:

ũ(i) |=m
δ2+δ1(m(k−1)+n′+1),+1 φ2

By Lemma 3.5 (monotonicity of |=) it follows that:

ũ(i) |=m
δ2+δ1(mk+n+1),+1 φ2

With a similar argument we can conclude that, for all j < i:

ũ(j) |=m
δ2+δ1(mk+n+1),+1 φ1

Hence Equation A.6 holds.
– Xφ1. First notice that mk + n+ 1 ≥ 2, and hence by Lemma A.2 we have that:

Pr(T ) = Pr({t | t(0) = p ∧ t |=m
δ2,+1 Xφ1})

Then, Pr(T ) + δ2 ≥ π. Since t̃ |=m
δ2,+1 Xφ1, we have that t̃(1) |=m

δ2,+1 φ1. We know that

ũ(1) ∼mk+n
δ1

t̃(1). By the induction hypothesis, ũ(1) |=m
δ2+δ1(mk+n),+1 φ1. By Lemma 3.5

(monotonicity of |=) it follows that: ũ(i) |=m
δ2+δ1(mk+n+1),+1 φ1. Hence, (A.6) holds.
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Back to the main statement, we have that, by Lemma 5.4:

Pr(R̃mk+n+1
δ1,q

(T )) + δ2 + δ1(mk + n+ 1) ≥ Pr(T ) + δ2

So, summing up:

Pr({t | t(0) = q ∧ t |=m
δ2+δ1(mk+n+1),+1 ψ}) + δ2 + δ1(mk + n+ 1)

= Pr({t̃ | |t̃| = mk + n+ 1 ∧ t̃(0) = q ∧ t̃ |=m
δ2+δ1(mk+n+1),+1 ψ})

+ δ2 + δ1(mk + n+ 1)

≥ Pr(R̃mk+n+1
δ1,q

(T )) + δ2 + δ1(mk + n+ 1)

≥ Pr(T ) + δ2

≥ π
Therefore, q |=m

δ2+δ1(mk+n),+1 Pr≥π[ψ].

For item 2, suppose that p 6|=m
δ2,−1 Pr≥π[ψ]. Then:

Pr({t | t(0) = p ∧ t |=m
δ2,−1 ψ})− δ2 < π

From the above, by a case analysis on ψ, and exploiting Lemma A.3 and Lemma A.2, we
conclude that Pr(T )− δ2 < π, where:

T = {t̃ | |t̃| = mk + n+ 1 ∧ t(0) = p ∧ t |=m
δ2,−1 ψ}

Let:
T̄ = {t̃ | |t̃| = mk + n+ 1 ∧ t(0) = p ∧ t̃ 6|=m

δ2,−1 ψ}
We have that 1− Pr(T̄ ) = Pr(T ). We start by proving that:

∀ũ ∈ R̃mk+n+1
δ1,q

(T̄ ) : ũ 6|=m
δ2+δ1(mk+n+1),−1 ψ

Let ũ ∈ R̃mk+n+1
δ1,q

(T̄ ). Then, there exist t̃ ∈ T̄ such that, for all 0 ≤ i < mk + n+ 1:

t̃(i) ∼mk+n−i
δ1

ũ(i)

We proceed by cases on ψ.
– φ1Uφ2. Since t̃ 6|=m

δ2,−1 φ1Uφ2, we have that:

∀i ≤ m : t̃(i) 6|=m
δ1,−1 φ2 ∨ ∃j < i : t̃(j) 6|=m

δ2,−1 φ1

Take i ≤ m. Let n′ be the maximum nesting level of X in φ2. If t̃(i) 6|=m
δ1,−1 φ2, since

t̃(i) ∼mk+n+1−i
δ1

ũ(i) ∧ mk + n+ 1− i > m(k − 1) + n′ + 1

by Lemma 4.3 (monotonicity of ∼) we have that:

t̃(i) ∼m(k−1)+n′+1
δ1

ũ(i)

By the induction hypothesis we have that:

ũ(i) 6|=m
δ2+δ1(m(k−1)+n′+1),−1 φ2

By Lemma 3.5 (monotonicity of |=) it follows:

ũ(i) 6|=m
δ2+δ1(mk+n+1),−1 φ2

If t̃(j) 6|=m
δ1,−1 φ1 for some j < i, with a similar argument we can conclude that:

ũ(j) 6|=m
δ2+δ1(m(k−1)+n+1),−1 φ1
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– Xφ1. Since t̃ 6|=m
δ2,−1 Xφ1, we have that: t̃(1) 6|=m

δ2,−1 φ1. Since t̃(1) ∼mk+n
δ1

ũ(1), by the

induction hypothesis we have ũ(i) 6|=m
δ2+δ1(mk+n),−1 φ1. By Lemma 3.5 it follows that:

ũ(i) 6|=m
δ2+δ1(mk+n+1),−1 φ1

Back to the main statement, by Lemma 5.4 we have that:

Pr(T̄ ) ≤ Pr(R̃mk+n+1
δ1,q

(T̄ )) + δ1(mk + n+ 1)

Summing up, we have that:

Pr({t | t(0) = q ∧ t |=m
δ2+δ1(mk+n+1),−1 ψ})− δ2 − δ1(mk + n+ 1)

= Pr({t̃ | |t̃| = |t̃| = mk + n+ 1 ∧ t̃(0) = q ∧ t̃ |=m
δ2+δ1(mk+n+1),−1 ψ})

− δ2 − δ1(mk + n+ 1)

= 1− Pr({t̃ | |t̃| = mk + n+ 1 ∧ t̃(0) = q ∧ t̃ 6|=m
δ2+δ1(mk+n+1),−1 ψ})

− δ2 − δ1(mk + n+ 1)

≤ 1− Pr(R̃mk+n
δ1,q

(T̄ ))− δ2 − δ1(mk + n+ 1)

≤ 1− Pr(T̄ )− δ2

= Pr(T )− δ2 < π

Therefore, q 6|=m
δ2+δ1(mk+n),−1 Pr≥π[ψ].

Proof of Theorem 5.1. Immediate consequence of Lemma A.4.
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