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Abstract

The Interface Transparency Thesis (ITT) proposes that peo-
ple tend to use a canonical interpretation of linguistic expres-
sions, even when this interpretation is sub-optimal for the task
at hand. The current paper sought to investigate this claim fur-
ther by adding a time-pressure manipulation to a quantified
sentence verification task and analyzing the results through
a computational model of decision-making. The results indi-
cate that time pressure -while effectively changing behavioral
responses- does not alter cognitive processes associated with
quantifier verification, thus supporting the ITT.
Keywords: quantifiers; verification; speed-accuracy trade-off;
diffusion decision model

Introduction
The meaning of natural language quantifiers (e.g., more
than half, most, less than half, and least) can be captured
in the form of truth-conditional representations, see, e.g.,
(Szymanik, 2016). The Interface Transparency Thesis (ITT)
proposed by Lidz, Pietroski, Halberda, and Hunter (2011)
claims: ”Speakers exhibit a bias towards the verification pro-
cedures provided by canonical specifications of truth condi-
tions. (p.229)” Some studies provided evidence in favor of the
ITT (Lidz et al., 2011; Knowlton et al., 2021). Specifically,
Lidz et al. (2011) have shown that the bias towards canonical
procedures may be stronger than the bias towards the simplest
strategies. The natural question appears: how strong is this
bias? Some studies show that the mental representation of
quantifiers might differ between different contexts (Register,
Mollica, & Piantadosi, 2020), others point to individual dif-
ferences (Talmina, Kochari, & Szymanik, 2017). We ask how
robust the bias is under extra time pressure.

The current study investigates four Dutch quantifiers more
than half (meer dan de helft), most (de meeste), less than half
(minder dan de helft), and least (de minste) and aims to test
the prediction of the ITT experimentally. To operationalize

mental representations of quantifiers, we apply a computa-
tional model proposed by Schlotterbeck, Ramotowska, van
Maanen, Szymanik, et al. (2020) and Ramotowska, Steinert-
Threlkeld, van Maanen, and Szymanik (2023). To test pre-
dictions of the ITT, we tested if the linguistic biases toward
specific mental representations of quantifiers would resist the
time pressure manipulation.

Computational Modeling of Quantifier Verification

Ramotowska et al. (2023) investigated two English quanti-
fiers most and more than half in a truth-value judgement task.
In this task, participants read a sentence of the form ”67% of
the As are B”, followed by a sentence of the form ”Most /
more than half of the As are B”. They verified the second
sentence based on the information from the first sentence.
To jointly analyze participants’ responses and reaction times,
Ramotowska et al. (2023) fitted a modification of the Dif-
fusion Decision Model (DDM, Ratcliff & McKoon, 2008).
They operationalized mental representations of quantifiers in
terms of two model parameters: threshold (proportion above
which participants judge sentences as true) and vagueness (in-
creased uncertainty around the threshold indicated by slower
responses).

The DDM, applied by Schlotterbeck et al. (2020) and
Ramotowska et al. (2023), is a cognitive model for two-
alternative forced choices that describes the decision forma-
tion process as the accumulation of evidence towards one of
two decision boundaries (Ratcliff & McKoon, 2008). As can
be seen in Figure 1A, two boundaries represent the response
alternatives, and the distance between them (denoted by a)
represents the amount of evidence required before a decision-
maker commits to a response. Once the accumulation process
(represented by v or the blue arrows in the figure) crosses a
boundary, decision formation is ended, and a choice is made.
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The time required to reach this point constitutes the decision
process. While there are many parameters in the DDM, the
key components for the current study are the decision bound-
ary parameter a and drift rate parameter v.

The drift rate is the key parameter of the DDM that cap-
tures the evidence accumulation process. Because the speed
of evidence accumulation in the sentence-verification task
depends on the proportion, Schlotterbeck et al. (2020) and
Ramotowska et al. (2023) operationalized the drift rate pa-
rameters as a logistic function of that proportion (Figure 1B):

v(p) = vL +
vU − vL

1+ eB(p−M)
,

Where p is the specific percentage for which the drift rate
is being predicted, M is the midpoint of the logistic curve,
corresponding to the threshold, B is the growth rate of the lo-
gistic curve, corresponding to vagueness, vL are vU the lower
and upper drift rate asymptotes, respectively.

Figure 1: A. A Diffusion Decision Model representation of
choice between a True and a False sentence verification. On
each trial (verification decision), the decision formation pro-
cess is conceptualized as a random walk (grey line) with aver-
age direction v (drift rate, represented by the blue arrows) un-
til one of two boundaries is crossed (separated by the amount
of evidence a). The accumulation process starts at the start-
ing point z, and the total response time RT for the model is
the sum of the decision time and the encoding and motor
execution time, together referred to as t0. B. The drift rate
v(p) is modeled as a logistic function of the proportion (p%)
that participants are asked to verify. The proportion (p%) for
which the drift rate (v(p)) is zero is the quantifier’s threshold.
The shape of the function indicates the quantifier’s vagueness.
Shown here are three example drift rate-proportion relations:
the green line is a drift rate for non-vague quantifiers with
a threshold at 50%, the red line is a drift rate for non-vague
quantifiers with a threshold above 50%, the yellow line is a
drift rate for vague quantifiers with the threshold at 50%.

The flexibility of this drift rate function allows to account
for different effects on verification times and choices. Firstly,
the threshold of a quantifier (represented here by M) is con-
ceptualized as the proportion for which the drift rate is zero.
For quantifiers such as more than half and less than half,
this should logically be at 50% (see the green line in Fig-
ure 1B). A higher threshold above which individuals respond

that a quantified sentence is true given a particular percent-
age can be expressed as a shift in the midpoint (compare red
and green lines in Figure 1B). Secondly, more uncertainty
around the threshold can be modeled with different growth
rates (compare the yellow line in Figure 1B relative to the
green line). Using this approach, Ramotowska et al. (2023)
found variability in midpoints between participants for most
but not for more than half, suggesting different thresholds for
these quantifiers, and a difference in mean growth rate, which
was taken as an indication for a different verification process.

To sum up, the specification of the drift rate as a logis-
tic function makes it possible to measure two crucial aspects
of quantifier representation - the threshold and vagueness.
If these parameters reflect the canonical specification of the
quantifier’s truth conditions, they should not change when
participants verify quantifiers under time pressure. This is
because the time pressure, while affecting participants’ be-
havior, does not affect the specification of truth conditions.

Speed-accuracy Trade-off Manipulation
The current study aims to understand whether the cog-
nitive processes associated with quantifier verification are
the same under time pressure or whether they categorically
differ. To answer this question, we introduced a speed-
accuracy trade-off manipulation. The speed-accuracy trade-
off has been well-known within psychology for over a century
(Woodworth, 1899). It refers to the fact that one can increase
the speed of their reaction at the cost of accuracy and increase
accuracy at the cost of speed.

In one linguistic study, the speed-accuracy trade-off was
successfully applied to investigate the verification of a quan-
tifier some that has two competing interpretations: lower-
bound (some and possibly all) and upper-bound (only some,
Bott & Noveck, 2004). Bott and Noveck (2004) found that
under time pressure, participants more often interpreted some
with its lower-bound meaning than with its enriched, upper-
bound meaning. They concluded that under time pressure,
participants do not compute enriched meaning because this
is cognitively costly. In non-linguistic domains, the speed-
accuracy trade-off has also been a successful method to un-
derstand whether cognitive strategies can be flexibly adjusted
in the face of time pressure. For example, when making
value-based judgments between two lotteries, time pressure
leads to a change of strategy, where individuals tend to follow
their natural default behavior rather than making an optimal
choice (Couto, Van Maanen, & Lebreton, 2020). In contrast,
in perceptual decision-making tasks, the dominant observa-
tion is that individuals do not change their cognitive strategy
for making a decision, despite differences in observed behav-
ior. That is, when placed under time pressure, participants re-
spond faster but also make more erroneous responses. How-
ever, the consensus is that this behavioral pattern is the con-
sequence of executing the same cognitive strategy, but for a
shorter period of time (Bogacz, Wagenmakers, Forstmann, &
Nieuwenhuis, 2010; Katsimpokis, Hawkins, & van Maanen,
2020; Heitz, 2014; Van Maanen, 2016).
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An often-used model to investigate the effects of the speed-
accuracy trade-off on various other underlying cognitive pro-
cesses is the aforementioned DDM (Ratcliff & McKoon,
2008). The DDM captures the effect of time pressure through
its boundary separation parameter a. For example, Winkel et
al. (2012) asked participants to make two-alternative percep-
tual choices and asked them to either focus on being fast or on
being accurate. They found that the best explanation for the
observed reaction time and accuracy differences was a dif-
ference in boundary separation a. The intuition behind this
and similar findings (van Maanen et al., 2011; Katsimpokis
et al., 2020; Forstmann et al., 2008; Boehm, Van Maanen,
Forstmann, & Van Rijn, 2014) is that a shorter distance to a
boundary provides a faster response, as desired under speed
stress. At the same time, due to the noisiness of the evidence
accumulation, a lower boundary separation also means an in-
creased probability of incorrect response, yielding the speed-
accuracy trade-off.

The main contribution of this paper is the introduction of
time pressure manipulation to test its effect on the canonical
representation of quantifiers. In the spirit of the ITT, the lin-
guistic biases associated with specific quantifiers should re-
sist time pressure. Hence, the verification of quantifiers mea-
sured by parameters of the drift rate should stay the same in
speed and accuracy conditions. The only parameter that may
change is the boundary separation parameter, which is not
related to quantifier meaning representation (Schlotterbeck
et al., 2020). This hypothesis entails that behavioral differ-
ences that we observed due to time pressure can be solely
attributed to the time pressure manipulation, and the cogni-
tive processes underlying verification remain the same. This
means that similar to what is often observed in perceptual
decision-making, but contrary to the Bott and Noveck (2004)
study, time pressure only changes the boundary separation
parameter and not any other parameter of the DDM.

Methods
Materials & Participants
The experiment was conducted online and was approved by
the local ethics committee. The experiment included a digital
consent form hosted through the Qualtrics survey tool, which
referred the participant to the actual experiment (Qualtrics,
2021). The experiment used the experiment hosting service
MindProbe to host the experiment itself (MindProbe, 2021).
MindProbe hosts experiments that integrate Just Another Tool
for Online Studies (JATOS), which our experiment integrates
(JATOS, 2021). The experiment itself is programmed using
JavaScript, and all analyses were done in R.

We recruited 48 participants (38 female) for this exper-
iment, 5 of which were excluded because they indicated
that they had not followed instructions. To exclude fast-
guessing participants, we used as an exclusion criterion that
participants, on average, needed to be slower than 300ms
(Ramotowska, Steinert-Threlkeld, Van Maanen, & Szymanik,
2020; Ramotowska et al., 2023; Schlotterbeck et al., 2020).

However, in our experiment, no participants had to be ex-
cluded for this reason. Participants violating the expected
monotonicity effect (more ’true’ responses for most/more
than half if the proportion increases above 50%, and the
opposite for least/less than half ) would also be excluded
(Schlotterbeck et al., 2020), yet no such participants were
present either. Finally, all trials with response times larger
than 5 seconds or shorter than 100ms have also been excluded
(1.08% of the trials).

Design
The trial setup followed a similar setup as found in
Ramotowska et al. (2023). In a trial, participants were given
a sentence of the formula “X of the A’s are B” (”X van de
A’s zijn B” in Dutch), where X is one of the quantifiers most
(de meeste), more than half (meer dan de helft), least (de
minste) and fewer than half (minder dan de helft). These
quantifiers were chosen based on their prevalence in related
research. A and B are two-syllable pseudowords, with 80
pseudo-adjectives and 80 pseudo-nouns, adapted from ran-
domly generated words generated through pseudo-word gen-
eration software Wuggy (Keuleers & Brysbaert, 2010). The
pseudowords were randomly paired for each trail. Following
the first sentence, the participants were presented with an-
other sentence of the form “x% of the A’s are B’s” (x% van
de A’s zijn B). Here, x% is a random percentage between 1%
and 99%. There were no trials with 0% or 100%, as there are
no clear upper limits for most (Ariel, 2003). The participants
had to judge whether the initial sentence accurately described
the second sentence by pressing one of two specified buttons
on their keyboard (J for false, L for true).

The experiment had two conditions, one in which the par-
ticipants had to focus on responding quickly while they had to
focus on responding accurately in the other. Each condition
consisted of 75 trials, and each was performed twice for 300
trials. As each participant had to perform both conditions, the
experiment followed a within-participant design. The order
of the conditions was counterbalanced between subjects, but
due to the number of excluded participants, there was a slight
imbalance (19 participants did ’Fast>Slow>Fast>Slow’
while 24 did ’Slow>Fast>Slow>Fast’). Percentages and
quantifiers were randomized for each trial.

Before each condition, instruction was given to either focus
on responding fast or on focusing on responding accurately.
As motivation to respond quickly, participants were told that
an image of a cute puppy would be displayed at the end of
the experiment if they properly followed the instruction. In
the end, participants were shown a picture of a cute puppy
regardless of whether they had followed the instructions.

Diffusion Decision Model Analysis
Our specification of DDM uses 10 different parameters. In
addition to the standard parameters a, t0, z, sv, sz, st0, we
specified the drift rate by the logistic relationship with the
percentage outlined in the introduction. This leads to an ad-
ditional four parameters (vL, vU , B, and M). To calculate the
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optimal values for each parameter, we used maximum like-
lihood estimation (Myung, 2003). Specifically, to estimate
the parameters, we used particle swarm optimization to op-
timize a set of parameters using parallel searches of the pa-
rameter space (Clerc, 2010). The parameters for variability
(sz, st0, eta) were set to 0 for each of the models, as estimates
for these parameters are inherently unreliable and poor esti-
mates for variability could negatively affect the estimation of
the other parameters (Boehm et al., 2018). To be able to fit
the same model on the negative quantifiers (least, less than
half ) as on the positive quantifiers (most, more than half ), we
flipped the true and false responses for the negative quanti-
fiers in data preprocessing.

Our initial model specification allowed each parameter to
differ between speed-stress conditions and quantifiers. We
simplified this most complex model via stepwise deletion of
factors by constraining the parameter that was least likely to
differ between conditions or quantifiers to the same value for
those conditions/quantifiers, according to an analysis of vari-
ance (ANOVA). This procedure was stopped when ANOVAs
for each parameter suggested that the parameter significantly
differed between the remaining factors. As a negative con-
trol of the experimental manipulation, we also constrained
a over speed-stress conditions. The constrained models were
compared using Akaike Information Criterion (AIC) (Akaike,
1974). AIC penalizes more complex models, as these neces-
sarily have better goodness of fit than more constrained mod-
els (Pitt & Myung, 2002).

To draw inferences from the DDM parameters, we com-
puted Bayesian Model Averages (BMA) for all param-
eters (Hinne, Gronau, van den Bergh, & Wagenmakers,
2020). Specifically, a weighted average of the parame-
ters was computed based on all constrained models, where
the models were weighted according to their Akaike weight
(Wagenmakers & Farrell, 2004).

Results
Descriptive Statistics
The mean response times in the experiment are displayed
in Figure 2. As can be seen, the response times for the
speed stress condition were lower than the response times
for the accuracy condition for all quantifiers. We substanti-
ate this observation using linear mixed-effects models of the
RT data, with fixed effects Quantifier, Instruction (speed or
accuracy), and the percentage deviation from 50% as well as
their interactions. As random effects, we included random
slopes for quantifiers, instruction, and the percentage devia-
tion from 50% for each participant. Via backward stepwise
deletion of factors, we identified the regression model that
best-balanced goodness-of-fit and degrees of freedom accord-
ing to a likelihood ratio test. This model included the main
effects of Quantifier, Instruction, and Percentage as well as
the Quantifier × Percentage interaction. As a manipulation
check, we found a main effect of speed-accuracy trade-off in-
struction, in that accuracy-stressed trials were indeed verified

slower (βSAT = 0.138; p < 0.001). The analysis also revealed
that compared to less than half, most and more than half
are verified faster (βMost = −0.185; p < 0.001 and βMT H =
−0.202; p < 0.001), which is consistent with the monotonic-
ity effect (Schlotterbeck et al., 2020). However, there was
no main effect of least. Crucial for our main research ques-
tion, the best model after stepwise deletion of factors did not
include any interaction with speed-accuracy trade-off instruc-
tion. The quantifiers most, more than half, and least showed
interactions with the percentage mentioned in the first sen-
tence (βMost×p =−0.092; p < 0.001, βMT H×p =−0.083; p <
0.001, βLeast×p =−0.041; p = 0.0027). For these quantifiers,
we found that when percentages were closer to 50%, RTs
were higher. The same interaction was not observed for less
than half.

Figure 2: Mean response times (MRT) in seconds of all quan-
tifiers show a clear speed-accuracy trade-off effect. Error bars
indicate standard errors of the mean. Regression lines illus-
trate trends. SP: speed instruction; AC: accuracy instruction,
MTH: more than half, LTH: less than half

Diffusion Decision Model Analysis Results
For the following comparisons of model fit, the best fitting
model according to AIC was used, as discussed in the ’Dif-
fiusion Decision Model Analysis’ section. This model con-
strained all parameters except for decision boundary a. This
model fits the observed data well, as seen in Figure 3. The ex-
ception may be the quantifier least, where the model slightly
underestimates the proportion of true responses.

Model Constraints Beyond setting the variability parame-
ters, sz, st0 and eta, to 0 for each model due to their inher-
ent unreliability, further stepwise deletion of factors led to
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Figure 3: The overall most preferred model captures meaningful variability in the behavioral data. Top row: Averaged
(Vincentized, Ratcliff, 1979), cumulative response time distribution of the data (points), with the model predictions overlaid.
Bottom row: Running average of the proportion of true and false responses in the data (points), with the same running average
of the model predictions overlaid. SP: speed instruction; AC: accuracy instruction; MTH: more than half ; LTH: less than half

the following constraints: The midpoint was fixed at M = 0.
M = 0 effectively ties the threshold to the logical interpreta-
tion of the quantifiers, where a change in truth value is also
linked to 50%. The growth rate B was set to B = inf, which
effectively models a step function and eliminates vagueness
(Ramotowska et al., 2023). The non-decision time t0, starting
point z, and the upper and lower drift rate asymptotes were
all set equal across speed/accuracy conditions, indicating that
participants do not change these parameters time under speed
stress.

Early analysis of constrained models indicated that con-
straints over most parameters improved the AIC. The best-
fitting models were those in which nearly all parameters are
either constrained across conditions or constrained to an ex-
act value. The only parameter over which constraints only
worsened AIC was the boundary separation parameter a. This
suggests that the only change in the decision-making process
under time stress is a reduction in the decision boundary.

To consider, however, that not every model is equally pre-
ferred by each individual, we computed weighted averages of
each model parameter according to AIC. Figure 4 presents the
distribution of these weighted parameter values per quantifier
and speed-stress condition. ANOVA tests performed on these
model averages show that the only parameter on which time
pressure had a significant effect was the boundary separation
parameter a, F(1,42)=17.32, p < .001.

Discussion
To summarise, we found clear evidence for the speed-
accuracy trade-off in the truth value judgment task. When

put under time pressure, participants responded faster than in
the accuracy condition. In terms of model parameters, the
only parameter that was affected by time pressure was the
boundary separation parameter a. Crucially, however, the
time pressure manipulation did not affect the linguistic be-
havior of participants. In particular, the meaning representa-
tions of quantifiers captured by the drift rate parameters of the
model resisted the time pressure manipulation.

The fact that cognitive processes associated with meaning
representation do not differ under time pressure supports the
ITT, as we hypothesized. According to the ITT, each quanti-
fier has a preferred mental representation that guides the ver-
ification process. In addition, to support the ITT, our study
shows the usefulness of speed-accuracy manipulation and the
DDM application in the investigation of linguistic processing.
For example, previous studies (Bott & Noveck, 2004) showed
that scalar implicatures are less frequently derived under time
pressure. This has been interpreted as evidence for a delay
of pragmatic processing compared to semantic processing of
meaning, yet these studies are burdened by a confound be-
tween the change in participants’ behavior due to changes in
linguistic representation and due to time pressure manipula-
tion. By mapping the semantic and pragmatic processing on
different model parameters than the effect of time pressure,
we could deal with this confound.
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Figure 4: Box plots displaying the parameter values for each parameter across all conditions. On the x-axis, the speed stress
condition is displayed: SP: speed instruction; AC: accuracy instruction. The quantifiers are indicated with different colors, from
left to right: least in green, less than half in blue, most in pink, and more than half in yellow. The speed stress condition is also
consistently displayed in a brighter shade of color for visual clarity. The y-axis represents the value for the parameter.
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