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• The proposed model allows to charac
terize microplastic (MP) fate along river 
networks. 

• Microplastics load is assumed to be 
generated from anthropogenic 
activities. 

• Model validity was assessed using liter
ature data. 

• Predicted microplastics allow to 
perform an assessment of the potential 
pollution.  
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A B S T R A C T   

The excessive use of plastics in modern life has led to a significant increase in production and a corresponding 
rise in plastic waste generation. The slow degradation of plastics results in the introduction and accumulation of 
microplastics (MP) in the environment, posing environmental and health risks. River networks, acting as con
duits between terrestrial and marine environments, play a crucial role in controlling the transport of MP. Pre
dicting the complex processes of MP pathways in these environments is an ongoing challenge. To address this 
issue, we propose a model that integrates the advection-dispersion equation with anthropogenic MP loads and 
hydraulic river network characteristics. The validity of the model was assessed using literature data from three 
river networks worldwide. Model results show a good agreement between predictions and field observations 
(R2 = 0.72). Consequently, predicted MP data was used to perform a potential pollution assessment through the 
pollution load index, revealing in most cases higher MP contamination in headwaters stream and a dilution effect 
along the river network. The structure of the proposed model allows its further implementation to account for 
other transport mechanisms, interactions with other emerging contaminants (i.e., pharmaceuticals), and con
nections with other riverine environments, making it a valuable tool for understanding and mitigating MP 
pollution.   

1. Introduction 

Research on the environmental impacts of microplastics (hereafter 
MP) has gained attention in the past few years, as underlined by the 

elevated numbers of publications tackling this important topic (Guer
ranti et al., 2020; Jenkins et al., 2022; J and Palmquist, 2021). MP are 
tiny plastic particles with a diameter ranging from 0.001 mm to 5 mm 
(Hartmann et al., 2019). They are present in everyday household 
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products like personal care items, laundry detergents, and pharmaceu
ticals (usually referred to as primary MP) or generates by degradation of 
macroplastics (usually referred to as secondary MP). Although occurring 
at slow rates, the degradation of large plastic items through physical, 
chemical, and biological processes is considered an important source of 
MP (Machado et al., 2018; Zhang et al., 2021). Therefore, the significant 
increase in plastic production over the past few decades has led to a 
substantial rise of MP in environmental matrices (i.e. soil, water and air) 
worldwide (Geyer et al., 2017; Shams et al., 2021). Regarding the water 
matrix, only recently research focus shifted from marine to terrestrial 
and freshwater environments (Kallenbach et al., 2022) with streams and 
rivers considered the main export pathways for the MP observed in the 
world’s oceans (van Wijnen et al., 2019; Strokal et al., 2023). MP find 
their way into rivers by means of precipitation, runoff, stormwater 
drainage networks and sewage systems after being treated by Waste 
Water Treatment Plants (WWTPs) (Shams et al., 2021; Boucher and 
Friot, 2017; Kay et al., 2018; Kiran et al., 2022; Müller et al., 2020a; 
Peng et al., 2021). By entering aquatic ecosystems, they threaten the 
human food chain by contaminating aquatic species (i.e. freshwater 
biota, fishes and their food chain) and water sources (Domenech and 
Marcos, 2021; Yuan et al., 2022). Additionally, MP can enter the food 
chain through the soil-plant system in agriculture, as well as through 
other non-aquatic pathways such as salt, sugar, and various food pro
cessing and packaging materials (Mamun et al., 2023). Research in
dicates that these particles also have negative impacts on human health, 
affecting the endocrine, digestive, reproductive, respiratory, and im
mune systems (Yang et al., 2022). In order to understand the potential 
pathways and impacts of MP on ecosystems and human health, different 
interdisciplinary efforts involving data collection, data analysis and 
interpretation, experimental and modeling activities are needed (see 
Szymańska and Obolewski (2020) and references therein). 

In this context, mathematical models able to characterize the fate 
and transport of MP in riverine environments can be extremely helpful 
to detect the paths through which MP moves and interacts with and 
within different environments (i.e. water column and sediments). MP 
transport in fluvial settings is controlled by advection, dispersion, 
sedimentation, erosion and re-suspension as well as transformation 
processes such as: aggregation, dissolution, degradation, etc. The 
importance of these different mechanisms rely on a combination of 
environmental conditions, riverine hydro-morphological parameters 
and MP properties (i.e. size, density, shape, etc.) (see Kooi et al. (2018) 
and references therein). According to both the spatial (i.e. local reach 
scale, watershed scale up to the global scale) and temporal (i.e. flooding 
events, drought events, average yearly flow conditions) scales at which 
these transport-transformation processes are analyzed, methods and 
assumptions are subject to change (Krause et al., 2021; Mennekes and 
Nowack, 2023). Equally, data availability represent an important 
discriminating factor in the development and parameterization of these 
models (Mennekes and Nowack, 2023; Conkle et al., 2018). Models can 
be classified in a different way (see Uzun et al. (2022) and references 
therein); in the following, more attention is given on MP models 
developed and applied at river-networks or larger scales. 

Some of the first mathematical models to characterize the fate of MP 
are based on existing tools developed to analyze contaminants (INCA - 
Contaminants (Nizzetto et al., 2016a)) or nutrients (Global-NEWS 
(Seitzinger et al., 2010)) transport (Nizzetto et al., 2016b; Siegfried 
et al., 2017). These models, nevertheless rigorous and based on realistic 
scenarios, are purely theoretical. The model of Nizzetto et al. (2016b) 
focuses on estimating MP fate at the catchment scale accounting for the 
retention processes occurring in soils and river sediments. The model of 
Siegfried et al. (2017) focuses on estimating MP fluxes emitted to sea 
from European rivers (i.e. at the continental scale) by considering point- 
sources inputs and accounting for riverine retention processes. A step 
forward has been made by models that starting from a similar theoretical 
background and using models developed and tested to analyze the fate 
of engineered nanoparticles (i.e. NanoDUFLOW (de Klein et al., 2016)), 

have been applied on real river systems (Besseling et al., 2017). In 
particular, Besseling et al. (2017) through NanoDUFLOW (de Klein 
et al., 2016) model simulated and interpreted the results of their theo
retical model for detecting the transport-transformation processes con
trolling the fate of spherical nano and micro-plastics along a 40 km 
stretch of the river Dommel (Netherlands). With a similar idea, Domereq 
et al. (2022) propose a compartmental framework (the Full Multi), that 
consider different MP transport-transformation processes along and 
among 4 different aquatic environments (i.e. surface, flowing and 
stagnant water and sediment). According to their parameterization, the 
Full Multi can be used to “describe rivers, lakes or ocean areas at different 
spatial resolutions and temporal scales”. These models consider that all the 
possible transport and transformation pathways of MP depends both on 
their type, size, etc. and from the hydrodynamics of the peculiar: i) 
riverine environment (i.e. water column, sediment, water-sediment 
interface, etc.) or ii) other aquatic systems (i.e. lake) in which they 
move. Respect to previous models, these mathematical frameworks take 
into consideration also biological film formation, particle aggregation, 
sedimentation, re-suspension, polymer degradation, and particle burial 
into sediments. 

Mennekes and Nowack (2023) use a similar approach representing, 
along the entire river-network of Switzerland, a compartmental model 
able to simulate the fate of MP along and among water column and 
sediments in both rivers and lakes. Respect to Domercq et al. (2022), 
Mennekes and Nowack (2023) reduces both the number of processes and 
compartments in favor of a reduction in the uncertainty associated to the 
large amount of input data necessary in the Full Multi. 

All these models represent an important step towards assessing the 
behavior of MP in river networks. However, we need to take into ac
count that increasing the number of transport-transformation processes 
as well as including the interaction among and along riverine com
partments involves the increase in the data required by the model (i.e. 
data regarding particle characteristics, hydrological conditions, etc.) 
that are often missing (Conkle et al., 2018; Atugoda et al., 2022). To 
address this challenge, in order to reduce the model uncertainty, its 
complexity must be balanced by increasing the availability of data (both 
in input and for the parameterization of the processes). Unfortunately, 
the lack of standardized procedures for gathering, identifying, and 
quantifying MP, as well as methods for monitoring their presence in 
surface and subsurface riverine environments further complicate these 
challenges (Zhao et al., 2018). 

Therefore, a possible alternative is to reduce the model complexity 
and testing its capability to capture the MP measured in different river 
networks. Following this strategy, our study has three primary objec
tives: 1) to develop a simplified yet robust modeling framework based on 
the advection-dispersion equation for characterizing the distribution 
and transport of MP in river systems; 2) to make use of open-source 
databases to set key parameters like MP loads and hydraulic charac
teristics, thereby fostering more accessible and replicable research 
(Klugman et al., 2011; Mai et al., 2019; CIESIN, 2018; Yamazaki et al., 
2019); and 3) to establish a framework for a possible pollution assess
ment, enabling targeted mitigation strategies in river segments with 
high concentrations of MPs. To achieve the latter, and in the absence of a 
standardized method for evaluating the environmental risks associated 
with MP exposure, we employ the Pollution Load Index (PLI). This index 
serves as a quantitative tool to measure the overall pollution level of a 
particular location, by relating the concentration of MP to a reference 
condition (Tomlinson et al., 1980). It has been effectively utilized in 
prior research by several authors (Liu et al., 2022a; Xu et al., 2018; He 
et al., 2020; Rakib et al., 2022). 

The capability of the proposed model to capture observed MP data 
has been tested using publicly available data from the DuPage River 
(USA) (McCormick et al., 2016), the Mignone River (Italy) (Gallitelli 
et al., 2020), and the Elbe River (Germany) (Scherer et al., 2020). By 
incorporating these data, the model aims to analyze to which extent 
advection and dispersion processes control the MP loads observed in the 

N. Portillo De Arbeloa and A. Marzadri                                                                                                                                                                                                   



Science of the Total Environment 911 (2024) 168227

3

field. The adopted modeling framework has been built to allow its 
linkage to open-source hydraulic network tools (i.e. MERIT hydro 
(Yamazaki et al., 2019)) and to account for other transport- 
transformation processes of MP throughout different riverine environ
ments. Overall, our objective is to understand how river networks con
trol the transport of MP and to provide potential pollution maps showing 
which parts of the river networks are more critical in terms of MP 
contamination. Despite its simplifications, the proposed model is 
intended to serve as an accessible tool that can be used to quantify the 
distribution of floating MP along streams and rivers and to provide 
useful contamination assessment. 

2. Materials and methods 

This section provides a concise description of the methodology used 
for building the mathematical framework employed in the study. Fig. 1 
schematically represent: i) the procedure designed for the estimation of 
the MP transport in river networks (i.e. input, model and algorithm) and 
ii) how model outputs can be used to provide maps of potential MP 
pollution (that may be employed for a preliminary ecological risk 
assessment). 

2.1. Characterization of the river network hydro-morphological structure 

River networks are complex and dynamic systems that are influenced 
by a variety of physical and environmental factors (Rinaldo et al., 2018). 
Understanding their characteristics is essential for studying the trans
port of MP. From the mathematical point of view, as illustrated in Fig. 2, 
river networks consist of a nested structure of sub-basins, reaches, and 
nodes. Each sub-basin indexed by the variable i corresponds to a distinct 
region of land that drains within the relative i-th stream or river reach. 
Reaches are schematized by segments where MP transport occurs and 
whose starting and ending locations are represented by nodes through 
which MP enters and/or mixes along the river network. In the model we 

assume that MP are injected in the upstream node of each i-th reach 
(major details are reported in Section 2.2). Accordingly, nodes are 
classified into two types: type 1 nodes or boundary nodes (Green dots in 
Fig. 2), which receive input only from the drained i-th sub-basin (i.e. are 
upstream ends of reaches with Strahler order 1); and type 2 nodes or 
confluence nodes (Orange dots in Fig. 2), where two or more reaches 
converge. Confluence nodes receive input both from the drained i-th sub- 
basin and from the connected upstream reaches. Among all the possible 
confluence nodes, the proposed model allows for a maximum of 3 rea
ches per node (typically two upstream and one downstream). 

Fig. 1. Overview of the modeling procedure.  

Fig. 2. Example network.  
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To represent the inland fluvial system of the analyzed case studies 
(Elbe River, Germany (Scherer et al., 2020), Du Page River, USA 
(McCormick et al., 2016) and Mignone River, Italy (Gallitelli et al., 
2020); see Section 3 for major details) we use the MERIT-Hydro dataset 
(Yamazaki et al., 2019). MERIT-Hydro provides a “high-resolution global 
map of river networks” (see (Yamazaki et al., 2019) for major details). 
Consequently, since it provides a good approximation of river systems 
when compared to high-quality dataset (Uuemaa et al., 2020), it has 
been employed by several authors for different applications (e.g. see 
applications for the analysis of inundation dynamics (Shin et al., 2020; 
Cerrai et al., 2020), carbon transport in rivers (Liu et al., 2022b), and 
tracking of aquatic invasive species (Soto et al., 2023)). It is particularly 
suitable for our framework as it provides the nested structure described 
above (i.e. sub-basin-reach-nodes connection) together with informa
tion on basin area, Strahler stream order, stream length and slope. 

Once fixed the dendritic structure of the river network, an essential 
parameter to propagate MP is water discharge (Q [L3T− 1]). Q can be 
measured in the field, retrieved from on-line gauging station data (e.g. 
United States Geological Survey - USGS) or estimated through the 
application of rainfall-runoff models (e.g. the GRADES model from the 
Reach-Hydro database (Lin et al., 2019)). Since the model requires the 
values of Q along each i-th reach of the fluvial system, we utilize data 
from existing gauging stations to evaluate the coefficients m and k of the 
power law relationship between Q and the catchment cumulative 
drainage area (A [L2]) (Galster, 2007; Tucker and Slingerland, 1997). 
Details on the characterization of the scaling law in Eq. (1) for the 
analyzed river networks are reported in Fig. S1 of the Supporting Ma
terial (hereafter, SM). This modeling choice aim to provide a synoptic 
characterization of the MP under normal flow conditions (i.e. no 
flooding or drought): 

Q = m⋅Ak (1) 

The hydraulic characteristics of the river reaches, specifically chan
nel width (w [L]), mean flow depth (d [L]) and average velocity (v [LT− 1]) 
can be derived by using the following formulation: 
⎛

⎝
w = a⋅Qb

h = c⋅Qd

v = e⋅Qf
(2) 

The hydraulic geometry coefficients (a = 12.836, c = 0.408, e =

0.184) and the exponents (b = 0.423,d = 0.294, f = 0.285) were pro
vided by Raymond et al. (2012). 

2.2. Mathematical model 

The model used in this work is based on the solution of the classical 
one-dimensional advection-dispersion equation (Van Genuchten, 1981), 
employed to model the transport of MP between upstream and down
stream nodes of the i-th river network reach. The model employs a 
downstream passing scheme to simulate the movement of MP through 
the river network: 

∂Ci

∂t
+ vi

∂Ci

∂xi
= DL,i

∂2Ci

∂x2
i

(3)  

where Ci [ML− 3] is the MP concentration along the i-th river reach, t [T] is 
time, xi [L] is the downstream coordinate along the i-th river reach, vi 

[LT− 1] is the i-th mean stream velocity and DL,i [L2T− 1] is the i-th longi
tudinal hydrodynamic dispersion coefficient. DL,i can be estimated as a 
function of the hydro-geometrical parameters obtained from Eq. (2), the 
reach slope Si (from MERIT-Hydro) and the kinematic wave celerity 
(vw,i, [LT− 1]) according to the formulation proposed by Saco and Kumar 
(2002): 

DL,i =
vw,i⋅hi

3⋅Si
(4)  

with: 

vw,i =
3
2
vi (5) 

To improve the manuscript readability, the subscript i (identifying 
the i-th reach), was omitted in the rest of the description. 

The transport equation (Eq. (3)) is solved analytically by using the 
Laplace transform technique (Van Genuchten, 1981) under the as
sumptions that: a) the velocity varies reach by reach as a function of the 
water discharge but remain constant along each i-th reach; b) the settling 
and re-suspension processes as well as other removal processes that 
controls the MP transport are balancing each other (Haberstroh et al., 
2021). This latter hypothesis is justifiable considering that the focus of 
the manuscript is on the main processes responsible of the MP fate (i.e. 
advection and dispersion) under average flow conditions and at the river 
network-scale (a detailed discussion on possible limits of this assump
tion are discussed in the Section 3). 

Analytical solution of Eq. (3) can be obtained under different initial 
and boundary conditions (see SM for further details). For the former, we 
consider a null (0) concentration of MP within the river networks at t =
0 (Eq. (6)a). For the latter we model each i-th reach as: i) composed by an 
upstream node in which the release of MP can be represented as a 
constant pulse release (Eq. (6)b) and ii) long enough to have negligible 
impact on the concentration gradient at x→∞ (Eq. (6)c): 
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

C(x, 0) = 0

C(0, t) = C0[H(t) − H(t − tc) ]

∂C
∂x

∣x→∞ = 0

(6a)
(6b)
(6c)

(6)  

where [H(t) − H(t − tc)] corresponds to the Heaviside step function 
mimicking the release of a certain amount of MP (C0) in the upstream 
node of the i-th reach composing the network and tc is the time duration 
of the MP pulse. In order to simulate a continuous and uniform release of 
MP in our specific scenario, we have partitioned the release over a 24-h 
time period, while considering the average load value. 

The concentration of MP injected in the upstream node of the reach is 
estimated according to the following formulation: 

C0 =
MPW ⋅Ac

Q
(7)  

where Ac [L2] is the area of the drainage basin associated with the i-th 
reach and MPW [ML− 2T− 1] is the daily mass of generated plastic waste in 
the study area. This latter quantity is evaluated according to the 
formulation proposed by Mai et al. (2020) to estimate the release of 
plastic waste into rivers by accounting for the population that lives in the 
corresponding drainage basin: 

MPW = HPD⋅SW⋅P⋅(1 − HDI) (8)  

where HPD [capitaL− 2] is the human population density obtained from 
NASA’s Data Center’s gridded population raster map for each basin 
(CIESIN, 2018), SW is the solid waste generation [MT− 1 capita− 1], P [− ] is 
the percentage of plastic present in the generated solid waste and HDI [− ]

is the Human Development Index which ranks countries into four levels 
of human development based on life expectancy, education, and per- 
capita income (Klugman et al., 2011). SW, P and HDI are parameters 
unique by country: the former two are extracted from the World Bank’s 
“What a Waste 2.0” report (Kaza et al., 2018); while values of the latter 
are provided by United Nations (Klugman et al., 2011). HDI index em
ploys the economic growth and the achievements of the population as 
indicators to characterize the development of countries, which is also 
correlated to waste management practices (Namlis and Komilis, 2019). 
All the values used for the computations are reported in Supplementary 
Table S1. 
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Under the above described conditions the flux concentration of MP at 
a given location (x) along the river reach can be calculated using the 
following convolution integral: 

C
(

x, t
)

=

∫ t

0
C0⋅g

(

x, t − t0

)

dt0 (9)  

where g(x, t − t0) represent the transfer function of the transport prob
lem in Eq. (3) under the initial and boundary conditions in Eq. (6) (Van 
Genuchten, 1981) (see Eqs. S5 and S9 and the details on its derivation in 
SM). SM provides the details on how to specialize the transfer function 
g(x, t) in accordance with the node type (injection or confluence) and 
reach characteristics. The specialization takes into account two factors: 
negligible dispersion in reaches with higher Peclet numbers and the 
input signal of MP after confluence nodes. 

2.3. Model implementation 

A Python script that implements the modeling framework described 
above (summarized in Fig. 1) has been developed to predict MP con
centration along the river networks as well as the impact of the associ
ated pollution. Data preparation and acquisition were performed using 
the free, open-source Geographic Information System (GIS) application 
QGIS (QGIS Developed Team, 2023). Shape files containing the river 
network structure and the relative sub-basins (obtained from MERIT- 
Hydro (Yamazaki et al., 2019)) and raster data with information on 
the population (CIESIN, 2018) were imported and processed in QGIS 
that allow an efficient and accurate data management. Data are then 
exported within text files (.csv/.txt) to be read and processed by the 
developed python code (see example in Supplementary Tables S2, S3 
and S4). 

To estimate the MP transport, the model starts by automatically 
identifying type 1 and type 2 nodes. The concentration of MP generated 
within each i-th sub-basin according to Eq. (7) is injected for a constant 
period of time (tc) at the upstream node of its corresponding reach. This 
injection process occurs simultaneously in all nodes of type 1 and type 2, 
regardless of their location along the network. The transport is then 
solved using Eq. (9) where the transfer function g(x, t) is defined by Eq. 
S5. When the injected MP reaches a type 2 node, the concentration from 
the upstream reaches are mixed together by considering the mass bal
ance (Eq. (10)): 

Cc =
CaQ1 + CbQ2

Q3
(10)  

where Cc is the concentration leaving node c, while Ca and Cb are the 
concentrations from reaches 1 and 2, respectively, that arrive at node c. 
The discharges of reaches 1 and 2 are denoted by Q1 and Q2, respec
tively, while Q3 represents the total discharge at node c (i.e. given by the 
sum of the discharges from reaches 1 and 2: Q3 = Q1 + Q2). Subse
quently, the MP input to the downstream reach is estimated by sub
dividing the arriving concentration profile into multiple finite elements 
that simulate a series of instantaneous injections with a Δt ≈ 1minute. 
The resulting MP concentrations are transported using the transfer 
function in Eq. S9 and their resulting curves are added up to obtain the 
breakthrough curve (hereafter, BTC) at the end of each reach. Similar 
approaches have been used in various studies, and solutions for the 
advection-dispersion equation for instantaneous injections can be found 
in literature (Van Genuchten, 1981; Ogata and Banks, 1961; Fan et al., 
2015). The output of the procedure is the characterization of the MP BTC 
at each node and control section of interest. 

Before implementing it to analyze MP transport, we tested our 
framework against the validated advection-dispersion model imple
mented by Runkel (1996) where two hypothetical examples for a non- 
reactive solute were simulated at x = 100 (Fig. 3a) and x = 2000m 
(Fig. 3b). Fig. 3 shows the comparison between our modeled (black 
continuous line) and the BTC of a passive tracer obtained by Runkel 
(Runkel, 1996) (red dashed line). A perfect agreement can be observed, 
also underlined by the values of the coefficient of determination 
R2

x=100 = 0.99 and R2
x=100 = 1.00 between the two BTC testing the 

applicability of the proposed model. 
Finally the model can be employed to do an assessment of the level of 

MP pollution of the reaches using the Pollution Load Index (PLI) (Liu 
et al., 2022a; Xu et al., 2018; He et al., 2020; Rakib et al., 2022). This 
index compares the concentration of a given pollutant against a pre
determined reference condition or baseline (Tomlinson et al., 1980). For 
a singular MP BTC, the PLI can be calculated as shown in Eq. (11). Based 
on the resulting value, there are four risk categorizations: a PLI of less 
than 1 indicates low contamination, between 1 and 3 indicates moderate 
contamination, between 3 and 6 indicates considerable contamination, 
and greater than 6 indicates very high contamination. 

PLI = Ci/Co (11)  

where Ci is the concentration of MP in the studied reach and Co is the 
baseline concentration of MP (i.e. the lowest observed concentration of 
MP along the river network). 

Fig. 3. Comparison between the Breakthrough Curves of a Non-Reactive Solute obtained with the model (black continuous line) and those published by Runkel 
(1996) (red dashed line) at (a) x = 100m and (b) x = 2000m. 
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3. Results and discussions 

In this section, we present the results of our MP transport model and 
discuss the implications and its potential uses for pollution assessment. 
Existing MP models, such as those proposed by Siegfried et al. (2017), 
Nizzetto et al. (2016b), have primarily been used to provide an estimate 
of the total yield of MP. The model proposed here aims to predict the 
concentrations of MP in different sections and points of interest across 
the entire river system. 

The model was applied to three river networks located in different 
parts of the world and for which data of MP were published. These are 
(a) the Mignone River near Civitavecchia, Italy (Fig. 4, (Gallitelli et al., 
2020)); (b) the DuPage River near Chicago, United States (Fig. 5, 
(McCormick et al., 2016)), and (c) the Elbe River near Hamburg, Ger
many (Fig. 6, (Scherer et al., 2020)). Figs. 4, 5 and 6 shows the maps of 
the three river networks with the measurement points (filled circles on 
the map) and, for each of them, the points where MP is estimated 
through the model. 

In all the three river networks, and this is especially visible for the 
Mignone river (Figs. 4), the BTCs at the control points connecting rea
ches with Strahler stream order SO = 1 (i.e. S1, S2, S3, and S4) exhibit 
the characteristic shape of an injected rectangular pulse evolving over 
time because of advection and with a negligible contribution of 
dispersion due to the short length of these reaches. As the MP move 
downstream, the shape of the BTCs changes according to the structure of 
the upstream drainage system and the variability of the MP inputs. For 
example, in Fig. 4, four peaks are clearly visible in the last reach of the 
Mignone river network (from S5 to S8) corresponding to the MP con
tributions of the upstream basins. Similar consideration are valid for the 
BTC represented by the green line in Fig. 5 for the DuPage River. Finally, 
in the Elbe River (Fig. 6), as two watersheds run independently in the 
same sub-basin, the BTCs shape reflects a series of combining factors. 
The green BTC, representing a measuring point close to Hamburg (green 
dot in Fig. 6), is characterized by a higher concentration of MP due 
higher population densities (∼ 610000 inh) that reflects in higher MP 
inputs; while its slimmer shape is given by the size of the watershed that 
results in shorter travel times. On the other hand, the BTC at Geesthacht 

(red dot in Fig. 6), exhibits a low concentration of MP reflecting the 
lower population density (∼ 12000 inh) contributing to MP inputs while 
the multiple peaks reproduce the contribution of its larger upstream 
watershed. 

Some clear differences in MP concentrations are evident between the 
three rivers. The Mignone River displays maximum MP concentrations 
of approximately 700μg/l, whereas the DuPage River reaches concen
trations of about ∼ 22000μg/l in their most upstream reaches. Despite 
their relatively similar catchment areas, (410.71km2 and 632.75km2, 
respectively), their significantly different population densities 
(56.7 inh/km2 and 1129.47 inh/km2 respectively) lead to MP concen
trations up to 30 times higher in the DuPage River. A similar trend is 
observed in the Elbe River, where the basins that arrive to the Hafen
strasse (referenced by the green dot in Fig. 6) transport MP from a larger 
population. Although a larger catchment size can yield higher MP mass, 
it does not necessarily leads to a proportionally increase in 
concentration. 

We have further evaluated the most downstream reach of each 
network by analyzing various BTC features, which are frequently used in 
contaminant and tracer studies (Kwon et al., 2021). These features, 
detailed in Table 1, and include mean and peak concentrations, the time 
of peak concentration and the presence interval. Such parameters can 
give important information about the impact of river networks dendritic 
structure in controlling MP transport. For instance, the Mignone River 
and the DuPage River show similar times of peak concentrations, indi
cating comparable catchment sizes. It is noteworthy that even when 
networks possess similar sub-basins areas, the concentration is directly 
impacted by various factors: these include the MP load input from the 
basin, contributions from upstream sections, effects of mixing at 
confluence nodes, and distinct hydraulic characteristics of various rea
ches (e.g.: discharge, velocity). A case in point is the Elbe River (Small 
Sub-Catchment), which exhibits higher concentrations than the DuPage 
River, despite having comparable catchment sizes (532.45km2 and 
632.74km2 respectively). 

The behavior of MP transport is significantly influenced by 
discharge, which is estimated through a distinctive power-law 

Fig. 4. Model simulation of microplastics in the Mignone River, Italy - Breakthrough Curves and Spatial Distribution. Left: Breakthrough curves showcasing results at 
measurement points, revealing the dynamic behavior of MP transport. Right: Map of basins and river network, indicating the locations of measurement points (filled 
circles) found in literature for comprehensive spatial analysis. 
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Fig. 5. Model simulation of microplastics in the DuPage River, USA - Breakthrough Curves and Spatial Distribution. Left: Breakthrough curves showcasing results at 
measurement points, revealing the dynamic behavior of MP transport. Right: Map of basins and river network, indicating the locations of measurement points (filled 
circles) found in literature for comprehensive spatial analysis. 

Fig. 6. Model simulation of microplastics in the Elbe River, Germany - Breakthrough Curves and Spatial Distribution. Left: Breakthrough curves showcasing results at 
measurement points, revealing the dynamic behavior of MP transport. Right: Map of basins and river network, indicating the locations of measurement points (filled 
circles) found in literature for comprehensive spatial analysis. 
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relationship for each case study (See Tables S5, S6, S7 and Fig. S1). 
Uncertainties of power law relationships in streamflow calculations 
arise from the inherent complexities of natural hydrological systems and 
the challenges in accurately capturing the dynamics of flow behavior at 
various scales (Ayalew et al., 2014). Additionally, there are un
certainties originating from the estimation of hydraulic parameters such 
as river width and depth. These factors are often variable, adding an 
additional layer of complexity to accurate predictions. However, it is 
pertinent to note that in instances where these hydraulic parameters are 
known with certainty, these values can be directly utilized to potentially 
increase the accuracy of predictions. While quantifying these un
certainties lies beyond the scope of this study, acknowledging their 
presence is essential for comprehending the limitations and potential 
variations in the results. 

In specific scenarios where streamflow data derived from power-law 
relationships lead to unusually high values, travel times can be 
dramatically reduced, resulting in a less evident dispersion effect or rate. 
This can be observed in a narrower-shaped BTC. It is essential to note 
that the power-law relationships used in this study, having to represent 
measurements collected during average flow conditions, are based on 
averaged seasonal streamflow data, thus neglecting extreme (i.e. flood 
and drought) conditions. 

MP estimations from our model were compared with MP measure
ments conducted in control sections in all the analyzed basins. Aiming to 
reduce uncertainties related to the moment or stage at which the MP 
samples were collected, we decided to use the mean concentration of the 
resulting BTC for the comparison. Mean concentration was computed by 
averaging concentration values in the presence interval on the BTC 
(C > 0). Moreover, MP measurements in the field are typically expressed 
as number of particles per volume of water. Therefore, to make the 
comparison possible, we used an average particle weight of 962.837 μg 
(Schmidt et al., 2017). While some of the MP collected data distinguish 
the shape of the MP particles (i.e. microbeads, foam, pellets, spheres), 
the transport dynamics related to the shape of the MP particles still 
remain subject to further investigation. For instance, fibers tend to 
agglomerate, leading to the formation of larger particles (da Fonseca 
et al., 2022). 

Fig. 7 shows the comparison between the modeled and the measured 
data. The majority of data points fall within the 95% confidence inter
val, indicating a significant agreement between model predictions and 
the measured data. Furthermore, statistical indicators such as the 
Percent Bias (PBIAS = − 1.3%) suggest a slight tendency for the model 
to overestimate the observed values, although the deviation from zero is 
relatively minor (Moriasi et al., 2007). The Nash-Sutcliffe Efficiency 
(NSE) is 0.70, the coefficient of determination (R2) is 0.72, and the King- 
Gupta Efficiency (KGE) is 0.85. These indicators collectively validate the 
overall performance of our model in predicting “on-average” the MP 
concentrations measured in real river settings. 

It should be stressed that the lack of riverine MP data is a global 
concern. In most cases their unavailability is related to the fact that there 

are no standardized and recognized protocols to measure their concen
trations (Müller et al., 2020b). Sampling and analyzing the MP collected 
in the field, as well as extracting the different MP particles is a chal
lenging process. For most of the cases it requires the combination of 
different laboratory and image acquisition techniques for their auto
matic counting and classification. For instance, She et al. (2022) re
ported a 25 − 50% of spatio-temporal sampling error when using a 
trawling net. Consequently, it is particularly challenging to compare 
data from different studies (with all the associated uncertainties) (Li 
et al., 2020). The non-perfect matching between model results and 
measured data may be attributed both to the model assumptions (i.e. 
settling and re-suspension processes are in equilibrium) and to all the 
uncertainties associated with the model parameterization. Some studies 
underline that the two transport mechanisms neglected are not in bal
ance (Gerolin et al., 2020; Yang et al., 2021) highlighting a limit of the 
proposed procedure but also an avenue for further refinement of the 
model. 

Therefore, placing our model alongside others in the literature 
(Mennekes and Nowack, 2023; Siegfried et al., 2017) is not straight
forward because of our assumption to consider in balance sedimenta
tion, re-suspension and other transformation processes. The model does 
not account of processes that can remove and transform MP during the 
interaction between water column and the surrounding sediments 
(Mennekes and Nowack, 2023) or with the lateral river banks (Scherer 
et al., 2020; Matjašič et al., 2023). Our choice to consider MP transport 
only within the water column is mainly due to: i) the huge amount of 
data required to characterize these interactions both in terms of hy
draulic (i.e. exchange pathways and their change in space and time) and 
MP (i.e. size, shape and density of different MP types) data and ii) the 
impossibility to test and validate possible parameterization because to 
the lack of standardization procedures for measuring MP across and 
among these different environments. Moreover, as reported by Men
nekes and Nowack (2023) analyzing different scenarios (i.e. interaction 
between water column and sediments as well as the presence of lakes), 
streams and rivers are expected to retain ∼ 17% of all input MP. This 
percentage is strongly influenced by the MP type and in the river net
works analyzed in the present study, most of the MP observed are 
buoyant (polyethylene, polypropylene, polyamide) (Fiore et al., 2022). 

Consequently, despite limited data availability for validation, the 
results proposed in Fig. 7 remains significant for several reasons: the 
selected data was carefully reviewed for adequacy, and the algorithms of 
the model were based on established physical theories. The model 

Table 1 
Breakthrough curve (BTC) features at most downstream reach across all 
datasets.   

Mean 
Concentration 

Maximum 
Concentration 

Time to peak 
Concentration 

Presence 
interval 

Start 
time 

End 
time 

[μg/l] [μg/l] [h] [h] [h]

Mignone 
River  

117.19  370.91  66.82  1.77  193.32 

DuPage 
River  

3912.33  10,826.91  48.62  0.03  578.92 

Elbe 
River  

3680.07  19,343.75  28.87  0.83  122.03  

Fig. 7. Measured MP concentration vs Modeled MP Concentration. Dashed red 
line corresponds to the bisector line. 
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showed promising performance on the available datasets, demon
strating its potential for other applications. While more data would help 
strengthen the model’s validity, this research represents a valuable step 
forward in addressing MP transport (by advection and dispersion) in 
river networks. 

3.1. Model application: assessment of MP pollution 

Having established the capability of the model in predict the MP 
transport, its outputs can be utilized to provide a potential pollution 
assessment using the Pollution Load Index (PLI). Results obtained are 
shown in Fig. 8. According to the PLI definition (Tomlinson et al., 1980), 
along the Mignone River network, we observe Moderate contamination in 
most reaches; while moving downstream, the level of pollution decrease, 
with the most downstream reach classified as having Low contamination. 
This trend can be attributed to the attenuation of MP concentration 
caused by dispersion processes and the effect of dilution amplified by the 
increase of water discharge. Along the Mignone river, the effect of MP 
input (reflecting the degree of human impacts on different sub-basins) is 
explained by the three upstream basins having the highest population 
density, which significantly decreases towards the last reach. Addi
tionally, both the MP input and the discharge are proportional to the 
area of each reach, indicating that the PLI is mostly homogeneous 
throughout the river. A similar pattern is observed in the DuPage River. 
Most reaches of order 1 present Considerable contamination with a 
gradual decreases to Moderate contamination levels. It is worth to note 
that the only reach classified with Low contamination is located in the 
sub-basin with the lowest population density (light blue line within the 
Du Page river network). On the Elbe River, overall results indicate 
higher contamination levels. Most reaches of stream order SO = 1 fall 
into the category Very High contamination, with MP concentration levels 
decreasing in downstream reaches, leading to Moderate contamination in 
the small sub-basins and Low contamination levels in the large sub-basins. 
It is possible to hypothesise that reaches of SO = 1 (typically headwa
ters) in high populated areas will exhibit higher contamination levels 
due to the combined effect of smaller water discharge and higher MP 
input (Ferraz et al., 2020). As observed before, moving downstream the 

drainage area of the catchment increases, resulting in an increase of the 
streamflow responsible of a major capability of the river network to 
dilute pollutants. It should be emphasized that currently, there is no 
global consensus on a baseline value of concentration (Co) for MP used 
in environmental assessment purposes. Consequently, the PLI scores 
calculated here cannot be directly compared between case studies. In 
each of the three cases, the minimum concentration estimated by the 
model is higher than the minimum measured value. This might be 
attributed to the lack of continuous MP measurements in rivers, for 
which it is not known the exact value of water discharge during the 
sample collection. Therefore, our approach estimates a higher baseline 
concentration that leads to lower PLI values. It is crucial to consider 
these limitations and to take them into account when interpreting the 
results and making conclusions based on the application of this model. 

4. Conclusions 

Representing the natural connectivity between terrestrial and ma
rine environments, river networks play an important role in controlling 
the fate of MP and consequently the amounts released to seas and 
oceans. The methodology and the analyses presented in this work intents 
to integrate the ongoing research on MP by observing the problem at the 
watershed scale, during average flow conditions and by balancing some 
of the physical and hydrodynamic processes that induce settling and 
resuspension of these harmful particles. 

Set the spatial and temporal scales, among the different mechanisms 
(for example atmospheric deposition, WWTPs effluents and stormwater 
runoff) that controls the injection of MP in fluvial ecosystems, the pro
posed model estimates the MP load combining all these possible sources 
through an anthropogenic effect accounted via the population and solid 
waste generation that characterize the different sub-basins of the 
analyzed areas. 

The developed python script solves the classical advection- 
dispersion equation along the reaches that compose the river network 
by treating it as a nested structure (derived from MERIT-Hydro). The 
nested structure is composed by injection nodes and confluence nodes 
(where in addition to MP input, mixing occurs) that are connected by 

Fig. 8. Maps with potential pollution using the Pollution Load Index (PLI) for the DuPage River (USA), Mignone river (Italy), Elbe River (Germany).  
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reaches where MP transport occurs. To predict the MP fate, the model 
estimates the necessary hydrodynamics parameters of the river reaches 
(i.e. water discharge and hydrodynamic dispersion) by using available 
gauging station data. 

The validity of the model was tested by using available literature 
data on three river networks located in different parts of the world: 
Mignone river (Italy), Du Page river (United States of America) and Elbe 
river (Germany). 

Although with some uncertainty related to both the modeled pa
rameters and the collected data, comparison between model predictions 
(i.e. the average MP concentration obtained from the BTC) and observed 
data shows a quite good agreement as underlined by some statistical 
indexes: NSE = 0.70, R2 = 0.72 and KGE = 0.85. 

The model output is also used to perform a potential pollution 
assessment by using the Pollution Load Index (PLI). This allows to better 
comprehend how the combination of anthropogenic, morphological and 
hydrological factors can combine to provide insights into the level of 
contamination by MP in the different reaches of the river network. Re
sults shows that in all the analyzed systems, headwater streams present a 
higher degree of contamination that reduces by the dilution effect 
operated by the increase of water discharge moving along the river 
network. Evidently, the reduction in the degree of contamination is 
strongly related to the population (i.e. the mass of MP produces) that 
occupies the different sub-basins. The model structure was built in a way 
that it can be further implemented to account for other transport 
mechanisms (i.e. deposition, resuspension and bioaggregation), the 
interaction with other emerging contaminants (i.e. pharmaceuticals) 
and with other riverine connected environments (i.e. hyporheic zone, 
riparian areas and groundwater). 
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