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Abstract
Heterogeneous treatment effects represent a major issue for medicine as they under-
mine reliable inference and clinical decision-making. To overcome the issue, the 
current vision of precision and personalized medicine acknowledges the need to 
control individual variability in response to treatment. In this paper, we argue that 
gene-treatment-environment interactions (G × T × E) undermine inferences about 
individual treatment effects from the results of both genomics-based methodolo-
gies—such as genome-wide association studies (GWAS) and genome-wide inter-
action studies (GWIS)—and randomized controlled trials (RCTs). Then, we argue 
that N-of-1 trials can be a solution to overcome difficulties in handling individual 
variability in treatment response. Although this type of trial has been suggested as 
a promising strategy to assess individual treatment effects, it nonetheless has limita-
tions that limit its use in everyday clinical practice. We analyze the existing vari-
ability within the designs of N-of-1 trials in terms of a continuum where each design 
prioritizes epistemic and pragmatic considerations. We then support wider use of 
the designs located at the pragmatic end of the explanatory-pragmatic continuum.

Keywords  Gene-environment interactions · Conflicting results · Randomized 
controlled trials (RCTs) · P-medicine · Genome-wide association studies (GWAS) · 
N-of-1 trials

 *	 Mariusz Maziarz 
	 mariusz.maziarz@uj.edu.pl

1	 Department of Economics and Management, University of Trento, Via Vigilio Inama 5, 
38122 Trento, Italy

2	 Interdisciplinary Centre for Ethics & Institute of Philosophy, Jagiellonian University, Grodzka 
52, 31‑044 Kraków, Poland

3	 Doctoral School in the Humanities, Faculty of Philosophy, Interdisciplinary Centre for Ethics & 
Institute of Philosophy, Jagiellonian University, Grodzka 52, 31‑044 Kraków, Poland

http://crossmark.crossref.org/dialog/?doi=10.1007/s13194-023-00559-0&domain=pdf
http://orcid.org/0000-0003-3997-3056
http://orcid.org/0000-0003-1979-0746


	 European Journal for Philosophy of Science           (2023) 13:59 

1 3

   59   Page 2 of 28

1  Introduction

Heterogeneous treatment effects are widely considered a major issue for medi-
cine as they undermine reliable inference and clinical decision-making. Under the 
strain of empirical literature reporting conflicting results across clinical studies, 
researchers have pointed to the need for a more precise or personalized approach 
in medicine (generally named P-Medicine) to account for the variation among 
patients and thus improve diagnosis and treatment. However, the question of 
whether P-medicine has the conceptual and methodological resources to deliver 
on its promises remains open (Gamma, 2016; Lemoine, 2017; Plutynski, 2020).

In this paper, we approach the problem of individual treatment effect heteroge-
neity and argue that gene-treatment-environment interactions (G × T × E) under-
mine the results of both randomized controlled trials (RCTs) and the repertoire 
of genomics-based P-medicine — genome-wide association studies (GWAS) and 
genome-wide interaction studies (GWIS). We then support the use of N-of-1 
trials as a source of evidence for predicting individual treatment responses and 
informing therapeutic decisions. Below is a detailed structure of the article.

In Section 2, we explain that the evidence-based medicine (EBM) movement 
focuses on average causal effects in developing its evidence appraisal tools and 
argue that such averages are not representative of individual treatment effects, 
which may differ significantly from the average. The heterogeneity of individ-
ual treatment effects makes clinical decisions based on average treatment effects 
(ATEs) likely ineffective in cases where individual outcomes differ from the pop-
ulation-wide average.

In Section  3, we argue that part of the heterogeneity in individual treatment 
effects depends on the genetic variability of populations and variability in envi-
ronmental exposures that interact with treatments. In other words, individual 
response to treatment is generated not just by interactions between the absence/
presence of specific genetic variants and drugs (G × T), as it is often assumed in 
pharmacogenomics studies, but also by further interactions with environmental 
exposures that are difficult to operationalize and control for (G × T × E). We will 
review pharmacogenetics studies on asthma to highlight major limitations in the 
systematic and reliable identification of G × T × E. Findings on asthma represent 
an interesting case study because asthma, compared with more complex pheno-
types (e.g., major depression), is a relatively simple trait related to well-known 
physiological mechanisms. Thus, shortcomings in the study of asthma unlikely 
depend on the operationalization of the trait but rather on more general issues 
relating to the control of population stratification in genetic and environmental 
variability.

In Section 4, we argue that N-of-1 trials can be a solution to overcome diffi-
culties in handling individual variability in treatment response. This type of trial 
has been suggested as a promising strategy to assess individual treatment effects, 
but major limitations affect this approach, too, including their low feasibility in 
everyday clinical practice. By drawing an analogy with the explanatory/prag-
matic RTCs distinction, we thus discuss the plurality of existing single-patient 
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designs in terms of a continuum ranging from explanatory to pragmatic aims: on 
this view, different N-of-1 designs put different emphasis on methodological rigor 
(at the expense of lower feasibility) or pragmatic considerations (at the expanse 
of lower internal validity). Finally, we outline the main features of N-of-1 designs 
that are closer to the pragmatic end of the continuum as potential ways in which 
this type of trial can be simplified to make it more feasible without negatively 
impacting the results’ integrity.

2 � The omission of the individual patient by the evidence‑based 
medicine approach

The standard approach to assess evidence in medicine and inform clinical deci-
sions has been developed by the evidence-based medicine (EBM) movement. This 
approach to the appraisal of evidence for treatment effectiveness and safety (or, more 
broadly, causal generalizations, i.e., type-level causality) is based on assessing the 
risk of bias or confounding of each study type (Borgerson, 2009; La Caze, 2009). 
Accordingly, factors unaccounted for in a study (e.g., genetic differences, envi-
ronmental exposures, or the researchers’ expectations) make a difference between 
treatment and control groups and undermine an accurate assessment of treatment 
effectiveness.

According to the EBM approach, randomized-controlled trials (RCTs) are prior-
itized over non-randomized interventional studies and other observational designs 
(e.g., cohort and case–control studies) (National Institute for Health & Care Excel-
lence, 2014; OCEBM Levels of Evidence Working Group, 2009). RCTs allow for 
estimating the average treatment effect and measuring the dispersion of individual 
treatment responses. However, as we will argue, they provide little information 
regarding what confounders mediate treatment effectiveness and about individual 
treatment effects TE(n) . This problem is further aggravated when the evidence pro-
duced by RCTs is aggregated with meta-analyses: sample sizes, in such analyses, are 
much larger than in individual studies and hence deliver more precise estimates for 
the average treatment effects (ATE). However, obtaining ATE estimates with nar-
rower confidence intervals does not change the distribution of individual treatment 
effects; hence, the empirical rule cannot be applied to estimate the dispersion of out-
comes (Maziarz, 2022).1

RCTs deliver the most trustworthy evidence for average treatment effects but are 
unable to inform regarding individual treatment effects. As Borgerson put it,

RCTs produce data that is averaged over the patients in the trial. Physicians 
and practitioners encounter individual patients. The gap between the aver-
age patient (after inclusion and exclusion criteria) and the individual patient 
[despite equaling zero in expectancy] is a significant one, and is the first thing 

1  The empirical rule states that 99.7% of observations of a normally distributed variable fall within three 
standard deviations from the average.



	 European Journal for Philosophy of Science           (2023) 13:59 

1 3

   59   Page 4 of 28

critics of RCTs mention when listing the problems with the RCT (2008, p. 
190).

This feature of RCTs inspired the view that the EBM movement oversimpli-
fies the complexity of clinical decision-making because it ignores heterogeneity in 
treatment responses. For instance, Aron (2020) observes that treatment response is 
a function of not only intervention but also of the context in which it is delivered 
(constituted by an organism and its peculiar characteristics). Additionally, individ-
ual treatment responses are further shaped by environmental exposures and disease 
severity. As Feinstein observed,

[p]harmaceutical companies, regulatory agencies, and public policymakers 
may be satisfied to receive those average results, but practicing clinicians and 
patients are not. The clinicians and patients want to know the results in sub-
groups having a pertinent ‘clinical resemblance’ to the current patient (1995, 
p. 73)

The Potential Outcomes Approach (POA) seems to be the predominant posi-
tion underlying inferences from RCTs despite often being considered too restrictive 
about the notion of cause (Vandenbroucke et al., 2016). The POA defines treatment 
effect in terms of the difference between the outcome observed by the patient receiv-
ing the intervention under investigation and the outcome observed when the n-th 
patient is treated with the comparator drug:

Where:
TE(n)−n-th patient treatment effect
Y
T
(n) the outcome of n-th patient receiving treatment

Y
C
(n) the outcome of n-th patient receiving control

The impossibility of observing, at the same time, both the outcome of the treat-
ment with intervention and control of the same patient constitutes the fundamen-
tal problem of causal inference (Rubin, 1974, 2005). The solution to this problem 
endorsed by the proponents of the EBM movement is to focus on the population-
wide average treatment effects that can be estimated by comparing (calculating the 
difference in means between) the average outcomes observed in the treatment group 
and in the control group (Hernan & Robins, 2018):

This solution relies on randomization, which, in the long run, balances the over-
all impact of confounders between the treatment and the control group, so that the 
only explanation for the observed difference in means is the intervention under test 
(La Caze, 2013). However, the estimate of the average treatment effect ( ÂTE ) does 
not inform the dispersion of individual treatment effects TE(n) in the population of 
patients. Indeed, the variance in outcomes ( Y  ) is generated by individual differences 
in the values of confounding variables. To illustrate how confounders impact indi-
vidual outcomes, consider the following situation analyzed by Greenland:

TE(n) = Y
T
(n) − Y

C
(n)

ÂTE =

1

N
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[s]uppose I wish to study whether lidocaine prophylaxis prevents death 
within the 72 hours following hospital admission for acute myocardial 
infarction. I will enroll two patients for this study, two successive admis-
sions to a hospital emergency room. When the first patient is admitted, I 
will toss a fair coin: If heads, the first patient will receive lidocaine and the 
second will not; if tails, the second admission will receive lidocaine and 
the first will not. Suppose now that the first admission is massively com-
promised and is certain to die within 72 hours of admission, whereas the 
second is a mild case and is certain to survive, whether or not either of them 
receives lidocaine therapy (1990, p. 421).

To obtain warranted conclusions regarding the ATE, researchers need to recruit a 
sample of a size sufficient to ensure that the impact of confounders on an outcome 
of interest will average out (e.g., both the treatment and control groups will include 
similar numbers of mild and severe cases). This sample size is determined at the 
research design stage, given a chosen power ( � ) and a threshold of statistical sig-
nificance (�) . The exact number of patients that need to be recruited depends on the 
absolute effect size ( ||�̂T

− �̂
C
|
| ) and the dispersion of outcomes (measured by their 

variance �2 ) (see Cook & DeMets, 2007, pp. 115–139; Chow, 2018, pp. 47–49).
Random differences in the distribution of confounders are not an obstacle to 

sound inferences, as the hypothesis of treatment effectiveness is tested statistically. 
Usually, the null hypothesis of no difference is chosen ( H

0
 : �

T
= �

C
 ) versus the 

alternative ( H
1
 : �

T
≠ �

C
 ), although the more warranted choice would be to test if 

the difference between trial arms is larger than the minimal clinically important dif-
ference (MCID) (Lawler & Zimmermann, 2021; McGlothlin & Lewis, 2014). As we 
mentioned, the randomization procedure is expected to assert that the confounders 
are distributed equally between the trial arms and their impact averages out (Deaton 
& Cartwright, 2018). While this is a demanded feature of RCTs if one is interested 
in the population-wide average treatment effects, the loss of the individual charac-
teristics that determine treatment outcomes is detrimental to predicting individual 
treatment responses. Indeed, only a small number of patients will experience treat-
ment outcomes similar to the population-wide average.

For simplicity, let us take a trial testing a treatment against a placebo and no 
placebo effects. In that case, the difference in mean outcome for the treatment 
and control groups ( ̂�

T
− �̂

C
 ) measures the effect size of the intervention (instead 

of an average difference in the effectiveness of two alternative therapies). The 
differentiation of individual treatment responses in the population of all patients 
fulfilling the inclusion and exclusion criteria is measured by the variance ( �2 ) of 
the primary outcome. In particular, the empirical rule (see above) allows for cal-
culating the range including about 95% of individual treatment responses, which 
is given by the formula �Y

T
− 2𝜎;�Y

T
+ 2𝜎 > (Freund & Wilson, 2003, p. 27).

Kent et al. (2016) re-analyzed data from 32 large (phase III) trials and observed 
that “the absolute risk reduction between the extreme risk quartiles ranged from 
-3.2 to 28.3%” (p. 2075) despite the phase III trials “are often characterized as 
enrolling relatively homogenous populations” (p. 2084). The surprising level of 
treatment effect heterogeneity made Kent and colleagues conclude that
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clinically important differences in effect across predicted risk are likely to be 
common in trials with statistically significant average treatment effects. How-
ever, even when these factors are taken into account, considerable variation 
remains unexplained and could potentially be attributable to genetic differ-
ences between patients (2016, p. 2085).

However, the empirical rule is only valid for inferences concerned with outcomes 
distributed normally. A growing body of evidence suggests that there are non-linear 
effects of substantial size in cases when treatments interact with moderators that 
produce non-normal distributions of individual treatment responses. For example, 
patients who inherited a thiopurine S-methyl transferase deficiency are more than 
ten times more sensitive to the effects of a leukemia drug on marrow suppression 
(Coulthard et al., 2002). Another example of treatment outcome heterogeneity that 
does not follow the Gaussian distribution is the outcome distribution of glioblas-
toma patients, which effectiveness is determined by the presence/absence of one sin-
gle genetic variant (Blunt, 2019).2

Another problem related to applying ATE estimates to individuals is that clinical 
trials are usually characterized by relatively strict inclusion criteria (e.g., excluding 
polypharmacy patients or those with comorbidities) resulting in samples being not 
representative of the general population of patients (Stegenga, 2018), which creates 
the problem of extrapolation: even if an individual patient sufficiently resembles the 
average of all patients in the clinic, the ÂTE reported by a clinical trial may be dif-
ferent from the average treatment effect of the population of patients in the clinic. 
But this is only one side of the problem of extrapolation, as strict inclusion and 
exclusion criteria narrow down the estimates of variance ( ̂�

Y
 ) of the primary out-

come and hence the variability in treatment responses observed in the clinic may be 
larger than the variance measured in a clinical trial. What follows, more than about 
5% of patients will experience treatment effects deviating from the average by more 
than the interval described by the empirical rule.

Notably, the farther away from the average an individual treatment effect is, the 
less accurate the clinical decision concerning that patient based on average treat-
ment effect estimates stemming from large RCTs or meta-analyses. This inaccuracy 
of applying population-wide averages to individuals is related to the following two 
problems: first, uncertainty about the outcomes of untreated disease and, second, 
uncertainty about the individual response to treatment.

For illustration, suppose that a patient suffers from a condition for which only one 
treatment is available. The patient may either be a moderate case or be unsusceptible 
to that drug and experience only limited benefits from the treatment while being 
exposed to the risk of adverse events (leaving the disease untreated). Or the patient 
may either be a severe case whose benefits outweigh potential risks and harm or a 

2  As we argue in Section 3, however, genetic heterogeneity is not the only confounding factor that mod-
erates treatment response: other sources of uncontrolled heterogeneity are environmental exposures and 
interactions between them and genetic differences.
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moderate case that tolerates the treatment well and still benefits from treatment. As 
Kravitz et al. put it,

misapplying averages can cause harm, by either giving patients treatments that 
do not help or denying patients treatments that would help them (2004, p. 662).

To sum up, RCTs are designed to control for individual-level confounders by 
averaging the effects across individual patients in treatment and control groups. 
However, this strategy risks overlooking important aspects of individual variability 
(Deaton & Cartwright, 2018; Greenhalgh et al., 2014; Kent et al., 2010). While this 
criticism to the EBM evidence hierarchies is not new, in the next section we show 
that it also applies to typical evidentiary sources for genomics-based P-Medicine.

3 � P‑medicine and individual variability

One of the major aims of P-medicine is to deliver evidence for therapeutic decisions 
concerned with individual patients and overcome the problem of applying popula-
tion-wide averages in the clinic. Knowledge about individual differences in heredity, 
environmental exposures, lifestyle, and epigenetic profiles would help understand 
variability in treatment response, prescribe more effective drugs, and avoid prescrib-
ing drugs with negative side effects. In this sense, P-medicine differs from the stand-
ard ‘one-size-fits-all approach’ where medical treatments are designed for the ‘aver-
age patient’.3

Generally speaking, the presence of gene-environment interactions (G × E) 
implies that the effect of an environmental factor (E) on the phenotype is medi-
ated by genetic factors (G). For instance, the effects of environmental exposure can 
depend on the presence/absence of a certain allele and thus have a different impact 
on different individuals. This type of interaction has been observed in several com-
plex traits and diseases, including cancer, psychopathologies, obesity, and general 
intelligence (see e.g., Caspi et  al., 2003; Hyde et  al., 2011; Serpico & Borghini, 
2021; Turkheimer et al., 2003).

Current trends in pharmacogenomic use GWAS to identify statistical associa-
tions between genetic variation (G) and response to treatment (T).4 An increasing 
number of studies identifies G × T as a major source of treatment effect heterogene-
ity, suggesting that part of the variability in response to treatment can depend on 
how the drug interacts with the relevant genes. Here, a treatment is taken as the 

3  P-medicine is a heterogeneous field involving a variety of evidentiary sources and methodologies, 
ranging from genomics to proteomics, metabolomics, and many others (Snyderman, 2012). In our 
analysis, we mostly focus on pharmacogenomics studies on the role of genetic differences in response 
to drugs targeting multifactorial diseases, although we acknowledge that personalized health care can 
involve much more than this. The analysis of individual genetic profiles plays such a key role in the 
emerging vision of P-medicine that it is genetic P-medicine that is usually practiced (Abettan & Welie 
2020; Gamma 2016).
4  GWAS are a hypothesis-free methodology that scan hundreds of thousands of single-nucleotide poly-
morphisms (SNPs), the most common type of genetic variants in the human genome.
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environmental factor (T = E). The major strength of pharmacogenomics studies is 
that drugs are relatively simple compared to other environmental factors that may 
interact with genetic variability: as Ritz and colleagues (2017) argue, drugs are often 
associated with a specific outcome phenotype (e.g., lowering blood pressure) and 
their mechanism of action and metabolic pathways are well understood.

A context in which pharmacogenomics studies have been performed widely is 
the study of asthma, a complex condition characterized by chronic airway inflam-
mation (Global Initiative for Asthma, GINA 2019). Here, interactions have been 
identified between dozens of genetic variants and a variety of treatments, including 
short-acting beta2-agonists (SABAs), long-acting beta2-agonists (LABAs), inhaled 
corticosteroids (ICS), and leukotriene modifiers (LTMs) (Farzan et al., 2018; Ker-
sten & Koppelman, 2017; Lima et al., 2006; Turner, 2009; Wang & Tantisira, 2016).

Unfortunately, evidence on interactions between genetic variability and asthma 
treatments (G × T) is unsystematic and usually inconsistent across studies: reported 
results are often not replicated and associations between genetic variants and treat-
ment response do not reach the threshold of statistical significance, with the con-
sequence that much variability remains unexplained.5 As Farzan and colleagues 
conclude (2018, p. 3), these genomics markers are currently not ready for clinical 
application. And, indeed, while GINA (2019) acknowledges different treatment 
responses to standard therapies (e.g., inhaled corticosteroids, p. 52), its recommen-
dations still adhere to the one-size-fits-all approach: patients with poorly controlled 
symptoms are advised to receive a next-step treatment based on the results of clini-
cal trials.

To clarify, the case of asthma is not isolated: similarly unclear are the findings 
obtained through genomics techniques on other complex conditions, such as major 
depression and obesity (Chang et al., 2015; Giacomelli et al., 2021; Keers & Uher, 
2012; Pedersen, 2017). Asthma represents to us an interesting case for two main rea-
sons: first, it is a widely investigated condition; second, it is related to well-under-
stood physiological mechanisms and symptoms and is thus a relatively ‘simple’ phe-
notype compared with more complex traits like psychiatric ones. For these reasons, 
methodological issues in the identification of G × T in asthma treatment are unlikely 
dependent on limited data or conceptual imprecision in the definition of asthma. 
For instance, in studies on conditions such as major depression, questions may arise 
about how the trait is operationalized and the severity of symptoms assessed through 
psychometric methods — including questions on whether we should consider fine-
grained phenotypes (e.g., serotonin dysregulation) rather than major depression 
itself. So, considerations that are often made about the genetics of human behavior 
can be made for simpler traits, too: the literature on asthma suggests that conflict-
ing results regarding individual response to treatment do not depend on the lack of 
data or due to mere phenotypic complexity, but rather emerge because of difficul-
ties with controlling for population stratification and genotype-treatment interactions 
(we focus on such difficulties in the next section).

5  On ICS and LTMs, see Farzan et al. (2018). On conflicting outcomes for SABAs and LABAs, see Ker-
sten & Koppelman (2018).
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Contradictory findings are usually explained in terms of methodological limita-
tions or biases.6 However, we suggest that some of these inconsistencies could be 
read in a different light: if we consider the variability that characterizes any human 
population, such results are unsurprising and can rather tell us something interesting 
about how treatments happen to interact with genetic and environmental factors that 
differ across individuals. As we explain below, the problem is that our current ability 
to detect and control for individual variability in G × T may be severely impaired by 
the complexity at stake.

3.1 � Genetic and environmental heterogeneity

There are major limitations affecting methodologies investigating G × T in large 
populations. A recent set of methods to test systematically for interaction effects 
between each single-nucleotide polymorphism (SNP) and a specific environmental 
factor (like a drug) is provided by GWIS. Like GWAS, GWIS is a hypothesis-free 
approach, and for this reason, it is also affected by the methodological issues usually 
imputed to GWAS.7 Here, we would like to focus on limitations relating more spe-
cifically to population heterogeneity at the genetic and environmental levels — how 
it can bias the results of GWAS and GWIS, how heterogeneity is usually handled, 
and why such strategies are often ineffective.

The first issue regards population stratification, i.e., undetected heterogeneity in 
allele frequencies due to non-random mating and geographical isolation (Hellwege 
et al., 2017; Lawson et al., 2020). In any population, there are arguably different sets 
of individuals that differ systematically in both the genetic ancestry and the pheno-
type under investigation. If the effects of stratification are not properly corrected, 
spurious associations can arise due to differences in ancestry, especially in large 
meta-analyses (Uffelmann et al., 2021).8

The stratification problem is intertwined with other sources of heterogeneity, par-
ticularly variability in disease etiology and mechanisms (Ogino et al., 2013a, 2013b), 
including their genetic basis (Fuller, 2021; Gravel et al., 2011). For instance, a sam-
ple may comprise subgroups of individuals with similar phenotypes (e.g., asthma 
typical symptoms and immunological biomarkers), but such phenotypes may be due 
to different mechanisms associated with different genetic variants. At the same time, 
even in single-gene diseases, carrying a given genetic variant can bring about differ-
ent phenotypic effects in different individual (see Chen et al., 2016; Cooper et al., 
2013; Katsanis, 2016; Lynch, 2021). In all such cases, statistical associations would 
likely be spurious, and the results reported by different studies in conflict.

6  On G × E, see Dick et  al. (2015). On behavioral genetics, see Chabris et  al., (2012, 2013); Hewitt 
(2012). More generally on clinical trials, see Ioannidis (2005).
7  On the difficulty of making causal claims based on genome-wide methods, see Craver et al. (2020); 
Kaplan and Turkheimer (2021); Oftedal (2022). On statistical biomarkers more generally, see Tabb and 
Lemoine (2021).
8  Note that genetic studies can be affected by stratification biases even in relatively homogenous popula-
tions with common geographic origins (Sarmanova et al., 2020).
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The ideal strategy to avoid stratification biases would be ensuring that the sample 
is homogenous at the genetic level (Rivadeneira & Uitterlinden, 2021). The trouble 
is that statistical associations are investigated through hypothesis-free methods like 
GWAS precisely when we know little about the genetic composition of a popula-
tion and the genetic basis of a given disease. There exist other ways to correct for 
stratification, but current methods (e.g., principal component analysis and linear 
mixed models) come with important shortcomings (Lawson et al., 2020). Particu-
larly worrying is the fact that they are based on common variants, but the genetic 
basis of complex diseases involves a variety of types of genetic variants beyond 
SNPs that are difficult to capture through GWAS, such as rare genetic variants (fre-
quency < 1%), copy-number variants, and structural variants (Baverstock, 2019; 
Burt, 2023; Fries, 2020; Génin, 2020; McClellan & King, 2010; Uffelmann et al., 
2021; Zaidi & Mathieson, 2020).

Environmental factors enter this already very complex picture by multiplying 
exponentially the number of moderators of individual treatment effects. Indeed, 
stratification biases regard not only genetic factors but also environmental factors 
and thus epigenetic markers (i.e., subgroups of individuals in a large sample can 
be exposed to different environmental influences). Moreover, inconsistency is to be 
expected when the interactions involve rare genetic variants that are difficult to cap-
ture through genome-wide methods.

This leads us to a second major issue, which depends on the difficulty of assess-
ing environmental exposures and thus controlling for individual variability in such 
factors. As explained above, pharmacogenomics studies usually focus on interac-
tions between genetic variants and treatments (G × T). However, we argue that the 
causal network generating an individual’s response to treatment can involve not just 
a given treatment (T) and the relevant gene (G) but also undetected environmental 
factors that can interact with both G and T, generating multiplicative interactions 
that we will call G × T × E. In the case of asthma, such environmental variables can 
involve air pollution and allergens, for example.9

Over the past two decades, scholars have repeatedly called for an increase in sam-
ple sizes as the solution to the many limitations of genome-wide studies: ideally, 
bigger numbers would come with more statistical power, and confounding factors 
of any sort are more likely to average out in larger trials. However, there is disa-
greement as to whether this strategy alone could bring substantial benefits. In fact, 
with the development of better techniques, geneticists have become able to test 
thousands of individuals, but inconsistencies and low replicability have never fully 

9  These triadic interactions have been investigated, for instance, in major depression. Chang et al. (2015) 
pointed out that interactions between corticotropin-releasing hormone (CRH) polymorphisms and anti-
depressants is mediated by stressful life events. Unfortunately, assessing environmental variables like 
stressful life events can be difficult due to the lack of standardized measures, which limited the integ-
rity of data collected by Chang and colleagues (for a review including other studies, see Keers & Uher, 
2012). Moreover, due to the small sample size (193 and 149 individuals in the control and case groups, 
respectively), Chang et al. (2015) could not stratify the populations according to types of antidepressants 
with different mechanisms of action. This is a further source of heterogeneous treatment effects that is 
beyond the aims of this paper.
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disappeared. This led many to believe that genetic effect sizes are even smaller and 
more elusive than initially expected, rather than questioning the very reliability of 
genome-wide methods.10

Something very similar is going on in the study of gene-environment interac-
tions, including studies where the investigated environmental factor is just one sin-
gle drug. Even by considering only interactions between genetic variants and one 
environmental factor, interactions have turned out to be extremely elusive: indeed, 
an environmental effect on phenotypic variance can be weak in the general popula-
tion but extremely relevant in a subgroup of individuals that carry a relevant allele. 
To scan effectively for G × E through GWIS, the required numbers are thus much 
greater than in standard GWAS (Dai et al., 2018, p. 470).

The power of GWIS to detect sources of heterogeneity in response to treatment 
is likely to decrease further if we consider what we said above about G × T × E: if 
we take treatment as the only environmental factor at stake, we might be unable to 
account for the actual network of relevant interactions, which arguably includes not 
just the genotype and the drug, but also uncontrolled (and often poorly understood) 
environmental variance.

How far should we go with an increase in sample sizes before considering a dif-
ferent approach? There is clearly a tradeoff between analyzing increasingly larger 
populations and focusing on smaller groups: although larger sample sizes may allow 
for more generalizable results, this will also bring more genetic and environmen-
tal heterogeneity into the analysis, making it even harder to get biologically signifi-
cant or interpretable results (note that larger studies are more acutely affected by 
stratification biases, see Hellwege et al., 2017; Marchini et al., 2004). By contrast, 
smaller and more homogeneous samples allow for finer phenotyping and better con-
trol of the extensive genetic and environmental heterogeneity involved in treatment 
response (for similar considerations, see Giangrande et al., 2022).

The literature on G × T × E suggests that individual-level variation is not ‘an 
exception’ or a factor to ‘average out’ from clinical studies: accounting for individ-
ual variability is rather necessary given the aims of P-medicine. As we have shown, 
heterogeneity in individual treatment response is, however, an obstacle that neither 
RCTs nor GWAS seems to be able to handle easily: when major G × T × E are pre-
sent, running effective studies ideally needs subtyping the population in such a way 
to track down actual biological differences; however, this requires (often missing) 
prior knowledge from GWAS, candidate-gene studies, and environmental epigenet-
ics on what specific G × T × E can affect treatment response.

10  See long-standing debates on the missing heritability problem (Downes & Matthews 2019; Maher 
2008; Manolio et al., 2009; Matthews & Turkheimer 2022; Turkheimer 2011).
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4 � N‑of‑1 trials as a potential solution

In the previous sections, we explained that individual treatment responses are 
determined by individual-level genetic and environmental characteristics and 
their interactions with an intervention. We also argued that existing methods to 
assess such interactions have major limitations and that incremental improve-
ments in such techniques may be unable to overcome the issue. If so, pharmacog-
enomics will not solve the problem of predicting individual treatment response 
as it would require screening every relevant factor to which a given patient is 
exposed and understanding their role in shaping phenotypic outcomes. This 
might turn out to be an unachievable ideal due to the difficulty of controlling for 
G × T × E in systematic and unbiased ways.

However, one research design already used in some areas of medicine allows 
for estimating individual treatment responses even when the interactions among 
the treatment, environment, and genes remain unknown: in N-of-1 studies, single 
patients undergo cycles of a treatment under test followed by the appropriate con-
trol conditions. For instance, Nikles and Mitchell suggested that

[u]ntil pharmacogenetics […] becomes further developed and widely avail-
able, N-of-1 trials remain the best method of identifying patients who 
respond to certain drugs (2015, p. 13).

Measuring outcomes repeatedly allows for averaging out random environmen-
tal exposures or spontaneous deteriorations and improvements and measuring 
the immediate treatment effects (as opposed to long-term effects). Together with 
randomization, such features have various advantages, e.g., they help ensure the 
integrity of results and offer a solution to the problem of extrapolation that we 
discussed in Section 2.

N-of-1 trials have mostly fallen outside the range of topics studied by philoso-
phers of medicine (Jukola, 2019). However, a few voices speak for their poten-
tial. Guyatt et  al. (1990) concluded that N-of-1 studies are feasible and useful 
in clinical practice. N-of-1 trials have been observed to be a promising source 
of evidence regarding individual treatment response, especially in chronic condi-
tions (Duan et al., 2013), and have a track record of informing clinical decisions 
that allowed the reduction of pharmaceutical treatments (e.g., the number of pre-
scribed drugs) or the prescription of more effective drugs for individual patients. 
For instance, N-of-1 trials of methylphenidate (Nikles & Mitchell, 2015) proved 
that some individuals benefit from the treatment while others suffer from its 
side effects, which makes the ATE estimate close to zero. Scuffham et al. (2010) 
observed that fewer treatments were prescribed after N-of-1 trials aimed at find-
ing treatments most effective for those individuals. Both patients and physicians 
questioned by Kronish et al. (2017) in New York Presbyterian Hospital perceived 
N-of-1 studies as useful for individualizing treatments (see also Moise et  al., 
2018). Recently, Vogt (2022, p. 66) voiced his belief that N-of-1 “studies do pre-
sent one promising way forward for precision medicine in aligning with the ten-
ets of evidence-based medicine.” Finally, the Oxford Centre for Evidence-Based 
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Medicine (OCEBM) guidelines elevated this research design to the highest level 
of evidence quality for evaluating treatment effectiveness (Bradbury et al., 2020).

Despite their virtues, the popularity of N-of-1 trials is limited so far. At first sight, 
this is surprising if we consider two aspects. First, using them to make clinical deci-
sions could allow for the reduction of overtreatment and overall healthcare costs 
compared to standard care (Scuffham et  al., 2010). Second, there is an increasing 
prevalence of chronic diseases and elderly patients suffering from multiple comor-
bidities. This corresponds to an increase in the number of patients that would benefit 
from a careful assessment of their individual treatment effects, which provides the 
perfect environment for wider use of N-of-1 trials, given that the N-of-1 trials can 
mainly be used to study chronic conditions that are stable in time. Indeed, such stud-
ies are suitable for patients with chronic conditions, multiple comorbidities, polyp-
harmacy, and rare diseases (Vohra et al., 2015) and less adequate for studying indi-
vidual treatment responses in acute or progressive conditions (Duan et al., 2013).

The limited use of N-of-1 trials in standard clinical practice seems to result from 
the low feasibility of such studies and the burden imposed both on the physicians 
willing to use them and on patients whose treatment response is to be assessed. This, 
for instance, is the explanation provided by Kravitz et al. (2008) based on a litera-
ture review and in-depth interviews with proponents of N-of-1 trials, who pointed 
at the physicians’ lack of interest in reducing uncertainty about individual treatment 
response. As Mirza and colleagues put it:

The obstacles to conducting N-of-1 trials as an element of routine clinical 
practice have been too great. For many pharmacists, preparing identical drug 
and placebo combinations proved too labour-intensive. For clinicians, N-of-1 
trials take too much time, even with easy-to-use guidance: preparing question-
naires, instructing patients, and examining the results all require clinician com-
mitment (2017, p. 334).

Furthermore, Selker et  al. (2022) observed recently that the stakeholders have 
not sufficiently recognized the benefits of using N-of-1 studies in clinical practice 
and listed the requirements for N-of-1 studies to be adopted more broadly: (1) clear 
articulation of the reasons for patients to participate in the N-of-1 studies; (2) defini-
tion of needs and costs of N-of-1 studies; (3) understanding the inter-patient hetero-
geneity; (4) specification of the criteria for covering participation in N-of-1 studies; 
(5) understanding how N-of-1 studies help patients and healthcare systems; (6) spec-
ification of the types of evidence stemming from N-of-1 trials required by regulatory 
agencies for drug approval.

It is beyond our aim to consider all such facets of this complex issue. Below, we 
will focus on various versions of N-of-1 designs involving different methodological 
choices. Our aim is to assess the epistemic and pragmatic trade-offs of such trials 
and encourage wider use of the N-of-1 trials that rely on more pragmatic choices. In 
this view, the N-of-1 design can be simplified to achieve higher feasibility without 
significantly impacting study integrity.

Let us emphasize that, as in other aspects of scientific research, balancing epis-
temic (e.g., methodological choices) and non-epistemic aspects (e.g., feasibility) 
involved in clinical trials is crucial: indeed, such trials do not represent a value-free 
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epistemic enterprise but are rather entangled with pragmatic considerations regard-
ing their very applicability. If the aim of a clinical study is to impact medical prac-
tice (e.g., by helping us select the best treatment option for a given patient), we do 
need not only strict methodological requirements but also agile and feasible prac-
tices that can be applied in real-world scenarios by clinicians. In other words, N-of-1 
trials are susceptible to an adequacy-for-purpose evaluation exactly like scientific 
models, which demands considering how epistemic factors promote or facilitate 
their practical aims.11

4.1 � Towards a greater feasibility of n‑of‑1 trials

Some attempts have already been made to increase the feasibility of N-of-1 trials in 
day-to-day clinical practice. One way to limit the burden for physicians and patients 
is to use new technologies for measuring outcomes and reporting. For example, the 
mobile health app Trialist allows for designing and conducting personalized N-of-1 
studies. The app was studied in an RCT, where patients suffering from chronic pain 
were assigned to either the Trialist app or standard care (Barr et al., 2015). Despite 
patients’ positive opinions about the app, no statistically significant difference in 
pain management was observed (Kravitz et al., 2008). Another attempt that relies on 
technological developments is described by Mande et al. (2022) pilot study on the 
iMTracker app involving the N-of-1 design to self-manage chronic conditions such 
as chronic pain, headaches, anxiety, and depression.

An alternative way to make the N-of-1 trials more feasible would be to simplify 
their design. This possibility was considered by Kravitz and colleagues, who pointed 
out that

in a single-patient head-to-head trial of (generic) omeprazole versus Nex-
ium® for acid reflux, considerable information might be gleaned by simply 
alternating the two medications (without blinding) every fortnight for a total 
of eight to twelve weeks and asking patients to keep detailed symptom diaries. 
Research is needed to determine whether the reduction in costs and burden and 
the gain in acceptability from such diluted designs would be worth the reduc-
tion in scientific rigor (2008, p. 548-549).

In what follows, we will consider a continuum of alternative N-of-1 designs, each 
of which involves different methodological choices and comes with different degrees 
of feasibility. Before considering such a continuum, though, we need to introduce a 
distinction between the standard vs. pragmatic dimensions of trials. This distinction 
draws, by analogy, on a distinction made by Schwartz and Lellouch (1967) between 
standard RCTs (also known as explanatory) and pragmatic RCTs.

The main purpose of standard RCTs is to assess treatment effectiveness (i.e., 
assert internal validity). To narrow down the variability of outcomes and make valid 

11  For recent discussions on this type of evaluation in scientific models, see Lusk & Elliott (2022); 
Parker (2020).
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conclusions about effectiveness, such RCTs have inclusion and exclusion criteria 
that make trial participants differ systematically from the population of patients suf-
fering from the condition targeted by the tested treatment. Some standard RCTs thus 
exclude certain subpopulations (e.g., patients with comorbidities) that experience 
outcomes systematically different from the population-wide averages. By contrast, 
pragmatic RCTs aim to test the effects of treatment on the population of patients 
suffering from the condition targeted by the tested treatment, i.e., establishing that 
treatment benefits the actual population of patients (pragmatic RCTs have become 
increasingly popular, see Patsopoulos, 2011). For this purpose, they have broader 
inclusion criteria and fewer exclusion criteria, pose only a limited burden related 
to participation, and rely on outcome measures that are relevant to study partici-
pants and patients (Loudon et  al., 2015). Moreover, some pragmatic RCTs do not 
use blinding to mask patient assignment, but substantial heterogeneity exists in the 
design of pragmatic trials (Dal-Ré et al., 2018).

It is worth noting that pragmatic RCTs do not represent a solution to the problems 
we analyzed in Sects. 2 and 3. In fact, by analyzing a broader population, the out-
comes observed in a pragmatic RCT may be more heterogeneous than in an explana-
tory RCT; thus, such trials may require larger sample sizes to achieve the same sta-
tistical power under the assumption of the same effect size. But even if pragmatic 
RCTs deliver effect size estimates that are closer to the actual average benefit of the 
population of patients suffering from a condition, obtaining outcome measures that 
are closer to the true average effect size of the target population does not address the 
problem of individual treatment effect heterogeneity. As La Caze argued:

The main selling point for large pragmatic trials is that by allowing consid-
erably more variability in the patients recruited and in the non-experimental 
treatments that they receive, the trial provides more insight into the likely 
effects of the treatment in routine clinical care. This is true to an extent. A 
well-conducted successful large pragmatic trial provides good evidence that 
the average effects of giving the treatment are positive. However, in extend-
ing the results of such a trial to a given specific population or individual, the 
critical assumption is that the positive average effects are consistent across 
the many subpopulations included in the trial. Sometimes this seems to be a 
reasonable assumption, but often it is an assumption that is difficult to justify 
(2016, p. 204-205).

Thorpe et al. (2010) suggested that the distinction between pragmatic and explan-
atory trials is not to be considered dichotomous but in terms of a continuum (see 
also Patsopoulos, 2011). As we mentioned, the same can be said about single-patient 
designs and the alternations of N-of-1 design and the traditional trial-and-error 
approach to choosing a therapy. On this view, like the distinction between alterna-
tive RCTs, various types of N-of-1 trials can be put on a continuum that takes into 
account epistemic and pragmatic aspects (see Fig. 1).

The left end of the continuum is populated by standard (explanatory) trials, 
which aim to higher results’ integrity but pose a burden on participants and phy-
sicians. These can be understood as such trials that include all possible measures 
to assert integrity, such as blinding, randomized assignment, and washout periods. 
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On the right end of the continuum, we have instead trial-and-error approaches to 
select therapies. Such approaches, which are the default strategy to making thera-
peutic decisions when a patient does not respond to the treatment of first choice, rely 
on an informal assessment of treatment response and the prescription of alternatives 
when the patient is not content with their treatment outcome due to poor symptoms 
control or adverse effects (Kravitz et al., 2014, ch. 1).

Although such two extremes capture idealized versions of existing trials, intro-
ducing this distinction might be useful for clinicians and patients willing to make 
decisions adjusted to a single patient. Moreover, the scheme in Fig. 1 could be used 
(and further refined) to frame various designs within a comprehensive framework 
where single-patient designs can be seen as somewhat explanatory and somewhat 
pragmatic depending on the emphasize a design puts on methodological rigor (at the 
expense of lower feasibility) or pragmatic considerations (at the expanse of lower 
internal validity).

There is, in fact, much heterogeneity in how N-of-1 trials can be designed. But 
as Kravitz et al. (2014, ch. 1) pointed out, the defining feature of N-of-1 trials is the 
use of multiple crossovers conducted on a single patient. What are, then, the peculi-
arities of different designs? What kind of methodological choices do they typically 
make?

As we mentioned, on the explanatory end of the continuum, we find designs that 
leverage blinding, randomized assignment, and washout periods to achieve higher 
rigor.

As regards randomization and blinding, they are used in the majority but not all 
N-of-1 studies (Punja et al., 2016). Considering, however, that the decision-makers 
in clinical practice are usually concerned with the overall effect size of treatments 
rather than the net effect of the therapy in comparison to the placebo, blinding may 
not be necessary (Kravitz et  al., 2014, ch. 1). N-of-1 trials dispensing of blinding 
can report biased results in cases when patients are too optimistic about one of the 
treatments or exaggerate a treatment’s harms (Howard & Rajasundaram, 2022), but 
the nocebo effect seems to have only a limited impact on patients’ decisions after 
the N-of-1 trial concludes (Tudor et al., 2022). In contrast, if a patient is expected 
to have positive views about only the tested treatment and not the control (e.g., in a 

Fig. 1   A continuum of single-patient designs prioritizing validity and feasibility to different degrees
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N-of-1 study that tests the effects of an expensive drug and its generic version), then 
blinding might be necessary as the placebo effect confounds results.

Some N-of-1 studies use washout periods, whose application depends on a phar-
macokinetic understanding of a drug’s metabolism and effects duration. In a paper 
discussing the use of cross-over trials in drug development, Senn (2001) admitted 
that the trialists should determine the length of the treatment period or washout 
based on knowledge concerning carry-over effects. Since some treatments are less 
likely to have carryover effects, washout periods can sometimes be omitted without 
much impact on the risk of biases. However, N-of-1 studies differ regarding design 
even when testing similar drugs’ effectiveness. For example, Kronish et al., 2018) 
reviewed five N-of-1 studies assessing the effectiveness of depression drugs: three 
out of five psychiatric trials reported using a washout period shorter than or equal to 
one day, and two other studies set its duration at one or six weeks.12

In some cases, methodological rigor imposes a burden that exceeds the patient’s 
and physician’s resources, which undermines the use of N-of-1 trials altogether. 
Resigning from some methodological aspects, potentially reducing rigor, may none-
theless make N-of-1 trials more popular and benefit the patients participating in 
them. In fact, each of the methodological decisions above results from pragmatic 
considerations (a study’s feasibility, the worry that having washout periods will lead 
to patient deterioration), also bearing in mind the context (a patient’s values, dis-
eases-specific characteristics, available resources, etc.). In other words, differences 
among N-of-1 designs are not shaped exclusively by epistemic reasons, but also by 
non-epistemic factors.

Closer to the pragmatic end of the continuum (depicted in Fig.  1) are thus 
attempts to simplify the N-of-1 design.

For example, Smith, Yelland & Del Mar supported the use of Single Patient Open 
Trials (SPOTs), which “lie somewhere in between formal N-of-1 trials and totally 
informal trials of treatment in terms of rigor” (2015, p. 195). SPOTs employ at least 
one crossover with in-between washout, rely on patient-centered outcome measures, 
and do not require physicians to arrange the study in a way that asserts blinding, ran-
domized assignment, or statistical analysis of results. The rationale for using SPOTs 
instead of the standard N-of-1 design is that they are less demanding to arrange than 
the latter.

Still, SPOTs are more demanding than the trial-and-error approach but promise 
higher validity of results. The reason is that repeated crossovers make confound-
ing effects less likely, washout periods prevent carryover effects, and predefining 
outcome measures assert that neither patients nor doctors choose outcome assess-
ment post-factum based on non-epistemic values. However, the higher feasibility 
of SPOTs is nevertheless related to the higher risk of biases. For example, using 

12  Another aspect that could reduce the burden on physicians, thus increasing the feasibility of single-
patient trials, regards using outcome measures that are easier to self-report. While some N-of-1 stud-
ies use objective outcome measures, Gabler et al., (2011, p. 764) reported that 82% of trials employed 
“patient-reported outcome measurement such as a patient diary (46%), visual analog scale (27%), or a 
Likert scale (12%)”.
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patient-centered outcome measures without conducting statistical analysis poses a 
risk of interpreting random differences between treatment regimes as resulting from 
drugs’ actions.

A more radical alternative is the type-2 N-of-1 design. Selker et  al. (2022) 
recently argued that in some cases (e.g., when testing treatments for severe, rare dis-
eases), having only one cycle of candidate treatment alternation is sufficient. But 
such studies can also be used to study the effects of interventions targeting com-
mon chronic diseases in cases when the expected effect size of the intervention sig-
nificantly exceeds the potential impact of all other confounders. In a sense, type 2 
N-of-1 studies can be considered a more pragmatic version of SPOTs. However, 
these studies can be seen as close to a trial-and-error approach that uses formal out-
come assessment defined prior to trying a new therapy: if the treatment effect size 
is expected to vastly exceed the summary impact of confounders (such as expected 
deterioration during the trial duration), then this type of design offers a promising 
way of testing treatment candidates.

Overall, there exists a menu of alternations in the N-of-1 designs aimed at choos-
ing the best treatment options that differ with respect to the use of assignment pro-
cedures, blinding, outcome assessment, the number of crossovers, and washout 
periods. Decisions concerned with each of those characteristics of N-of-1 trials 
can arguably be made separately depending on the patient’s values, the resources 
available to the physician, and treatment- and disease-specific characteristics. This 
implies that the question of which design would do better is highly contextual and 
will depend on the explanatory and pragmatic aims at stake.

4.2 � Potential caveats

In the previous section, we introduced a distinction between explanatory (standard) 
and pragmatic trials. Two observations are in place here.

First, the distinction between explanatory and pragmatic RCTs, on which our 
distinction draws by analogy, has received criticism in the literature. For example, 
Karanicolas et  al. (2009a) criticized the notion of pragmatic trials on the grounds 
that there are varying perspectives in clinical decision-making, and hence the 
results of such trials are not directly applicable to each decision problem at hand. 
Kent and Kitsios (2009) argued that extrapolating the results of pragmatic RCTs to 
individual patients may be as problematic as the extrapolation of outcomes reported 
by explanatory trials and warned that diminishing the problem of extrapolation in 
such cases may lead to introducing harmful policies. Pawson (2019) pointed out 
that the problem of extrapolation is simplified in the literature concerned with the 
pragmatic-explanatory trials distinction, and regardless of where a particular trial 
is located on this continuum, no single result can be generalized without a mecha-
nistic understanding of how an intervention works in a particular context. Recently, 
Tresker (2022) analyzed the relationship between the pragmatic/explanatory distinc-
tion with generalizability, internal validity, external validity, efficacy, and effective-
ness, and argued that the distinction is conceptually problematic. However, despite 
being aware of some drawbacks of the distinction, other authors support the use of 
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pragmatic trials in medicine (e.g., Casey et al., 2022; Patsopoulos, 2022). We think 
that the distinction is useful as it allows one to focus on the trade-off between feasi-
bility and epistemic rigor. This is particularly relevant given that the variety of prag-
matic trials has grown in the last ten years (Palakshappa et al., 2022), which speaks 
of their growing importance, even if some conceptual issues remain to be resolved 
in future research.

Second, applying the explanatory/pragmatic distinction to N-of-1 trials fruitfully 
or coherently may be difficult for the reason that N-of-1 trials “enable us to compare 
two treatments under the conditions in which they would be applied in practice” 
(Schwartz & Lellouch, 1967, p. 638) and deliver evidence “aimed at decision" (p. 
647). While we fully agree that all N-of-1 trials are aimed at assessing treatment 
effectiveness for the patient participating in them (and some constitute evidence 
amalgamated with other N-of-1 trials), for patients other than trial participants, 
some N-of-1 trials create an artificial context, as some features of N-of-1 studies 
are unlikely to be used in clinical practice (e.g., in the traditional trial-and-error 
approach to choosing therapy). For instance, wash-out periods, which are used in 
some N-of-1 studies (those located towards the explanatory end of the continuum) 
are unlikely to be used when treatments are changed in the clinic because they pose 
a risk of deterioration for the patient not receiving any treatment for their condition.

Other distinctions have been introduced to replace the explanatory/pragmatic 
divide. For instance, Karanicolas et al. (2009b) distinguished between mechanistic 
trials that assess a biological relationship and ‘practical’ studies that deliver evi-
dence for decision-makers in the clinic. Our distinction could be read in the latter 
sense, in terms of ‘feasibility’, so that N-of-1 designs that are closer to the explana-
tory end of the continuum are less feasible, i.e., more difficult to execute in everyday 
clinical practice, while those closer to the pragmatic end of the continuum are more 
feasible. However, such a simplification would omit the matter of fact that the trials 
that are easier to implement in clinical practice are epistemically inferior to those 
that are less feasible. For this reason, again, we still think that it can be useful for 
providing a workable taxonomy of the many existing trials.

Furthermore, the literature does include some suggestions about applying the 
explanatory/pragmatic distinction to N-of-1 studies. For example, in a recent article 
criticizing the distinction, Tresker (2022) considered whether pragmatic trials are 
better in terms of representativeness of the population of patients and observed that

[r]epresentativeness can certainly be important in certain contexts, though it is 
inadequate as a unifying conceptual approach for indicating a trial’s potential 
for informing valid treatment effectiveness claims. Possibly only in N-of-1 tri-
als is the “population” the same, although even here the “population” is differ-
ent at different time points, which complicates simple inferences of effective-
ness because of carryover effects and other issues (pp. 315-316).

This suggests that some types of N-of-1 trials (e.g., those including washout peri-
ods) might have a higher degree of verisimilitude to the counterfactual situation of a 
patient being treated in a clinic.

Before concluding, it is worth asking how one can evaluate the success of differ-
ent types of N-of-1 designs. At present, there is no definitive evidence of the effects 
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of participating in standard versus pragmatic versions of N-of-1 trials. The lack of 
such evidence can depend on the mixed results of existing RCTs comparing the use 
of standard N-of-1 trials in clinical practice to standard care (Samuel et al., 2022).

The ideal way to compare alternative designs would be to run an RCT where 
patients are randomly assigned to either a treatment group involved in a pragmatic 
version of an N-of-1 study or a control group employing the standard N-of-1 design. 
If the two trial arms tested the same treatment and were sufficiently powered, the 
observed difference in outcomes (if any), could be ascribed to how the two types of 
N-of-1 trials are designed.

This methodology has been applied to compare the effects of participating in 
(standard) N-of-1 study versus standard care for patients suffering from irreversible 
chronic airflow limitation (Mahon et al., 1996; Mahon et al., 1999). Such research 
shows that using N-of-1 trials to assess individual response to theophylline allows 
for reducing drug use without adverse effects. The results of 39% of 57 N-of-1 tri-
als conducted at McMaster Hospital convinced physicians to change their treatment 
advice before patients participated in the trial (ibid.).

Samuel et al. (2022) reviewed the literature comparing the outcomes of N-of-1 
trials to standard care using parallel arm design. Only one out of 12 studies showed 
the superiority of the N-of-1 arm in the primary outcome, and five studies reported 
statistically significant and positive differences in at least one secondary outcome. 
However, all those studies suffered from methodological drawbacks such as the lack 
of blinding patients and outcome assessors, and non-randomized assignment. As 
we mentioned in Section 4, other studies reported positive effects experienced by 
patients participating in N-of-1 studies (e.g., Duan et al., 2013; Guyatt et al., 1990; 
Nikles et al., 2021; Scuffham et al., 2010).

Although the success of different N-of-1 designs is yet to be assessed in rand-
omized trials, we believe that the implications of simplifying the standard N-of-1 
design can be predicted based on an empirically informed methodological analysis 
of the decisions involved in planning and executing N-of-1 trials in clinical prac-
tice. Designing N-of-1 trials in a more pragmatic way would allow practitioners to 
choose a therapy more suitable for a given patient instead of using the recommen-
dations for the average patient or applying the trial-and-error approach. Even if the 
epistemic gain from using such a pragmatic N-of-1 trial is lower compared with the 
application of standard designs, pragmatic trials are more feasible and hence more 
likely to become part of the standard clinical practice.

5 � Conclusions

In this paper, we argued that neither RCTs (a key research design in EBM) nor 
GWAS/GWIS (the main tools of genomics-based P-medicine) can easily elucidate 
and predict individual treatment responses. A convincing solution to handle individ-
ual variability lies in N-of-1 trials. Unfortunately, their use in everyday clinical prac-
tice is limited at present. We have analyzed a continuum of single-patient designs 
that range from restrictively designed N-of-1 trials that mimic explanatory RCTs to 
the trial-and-error approach. We have argued that the N-of-1 trials that are closer to 
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the pragmatic end of the continuum are more suited for everyday clinical practice 
while their epistemic tradeoffs are limited.

More specifically, in Sects. 2 and 3, we argued that both standard RCTs and 
GWAS struggle with the characterization and control of inter-individual heteroge-
neity at various levels of analysis: first, we showed that gene-treatment interactions 
(G × T) and gene-treatment-environment interactions (G × T × E) are an ineliminable 
source of individual differences in response to treatment that undermine using the 
results of RCTs to inform therapeutic decisions concerned with a single patient; sec-
ond, systematic attempts to investigate such interactions through genomics methods 
come with major limitations. This may suggest the need for larger populations with 
the hope that genetic and environmental variability would ‘average out.’

However, here we considered a different strategy: identifying principled methods 
to capitalize on individual variability rather than trying to exclude it from the pic-
ture. This basic idea is consistent with recent trends toward P-medicine. In classical 
clinical trials aimed at establishing universally applicable treatments, the variability 
in populations is often perceived as an impediment and a ‘threat’ to the reliability 
of the results. But, in P-medicine, such variability is arguably the main source of 
information: understanding where it comes from and using such knowledge for a 
patient’s good, are key epistemic goals. Heterogeneity in treatment response is thus 
precisely the kind of factor that P-medicine should aim to include into medical mod-
els and clinical decisions.

In Section  4, we considered N-of-1 trials as one potential methodology that 
would help handle individual variability effectively. However, standard N-of-1 tri-
als pose a significant burden on practitioners and patients, and their complication 
is likely a factor that limits their use in clinical practice despite the growing preva-
lence of chronic diseases and comorbidities. We thus applied the distinction between 
explanatory and pragmatic RCTs to analyze the differences among the menu of sin-
gle-patient trials and argued for the use of N-of-1 studies that are designed in a more 
pragmatic way.

The main selling point of pragmatic N-of-1 trials is that they would solve the 
problem of extrapolation and uncertainty about individual-level gene-environment-
treatment interactions: indeed, the evidence informing therapeutic decisions about 
a given patient stems from the outcomes of that patient. For this reason, applying 
N-of-1 trials in everyday clinical practice would lead to more precise therapeutic 
decisions. So far, the N-of-1 trials are rarely used in everyday clinical practice; due 
to the lower burden for both the practitioner and the patient, pragmatic N-of-1 tri-
als represent a more suitable choice for everyday clinical practice than the standard 
design. If compared with standard N-of-1 trials, pragmatic designs such as SPOTs, 
type-2 N-of-1 studies, and other alternations to the single-patient designs involve 
methodological choices such as the use of a non-randomized assignment procedure 
and pragmatic outcome measures as well as the possibility of resigning from blind-
ing and washout periods. Although such designs might be more susceptible to biases 
than the standard one, they would outperform both informal trials of therapy with 
the trial-and-error approach and decisions based on population-wide averages.

Although more pragmatic alternations to the N-of-1 design would bring about 
substantial benefits in terms of both simplicity and feasibility — maximizing the 
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overall value of N-of-1 trials — we need to point out a few limitations. First, 
like any type of single-patient trials, pragmatic N-of-1 trials have a specific area 
of application: they can only be used to inform therapeutic decisions regarding 
patients suffering from a stable, chronic condition and treatments that tend to 
alleviate the symptoms but do not cure them (see Nikles & Mitchell, 2015, pp. 
51 et seq.). Second, N-of-1 trials designed pragmatically should not, due to their 
epistemic shortcomings compared to the standard N-of-1 trials, be understood as 
a method to gather evidence for new treatments, but rather to inform therapeutic 
decisions concerned with a single patient when two or more alternative thera-
pies have been approved by a drug agency. However, standard N-of-1 studies have 
been applied in the field of precision oncology to develop fine-tuned treatments 
(Gouda et al., 2023) and supported as a cost-effective strategy for drug develop-
ment in other fields (Mirza et al., 2017). Pragmatic N-of-1 trials will prove useful 
in deciding about treatments whose mechanism of action is poorly understood, 
including details about individual-level G × T × E. This design can also be applied 
to studying harms in cases when two or more alternative therapies are effective 
but cause negative side effects — for instance, Herrett et al. (2021) conducted a 
series of N-of-1 trials to assess the relationship between muscle symptoms and 
the use of different types of statins.

In other words, the type of evidence that pragmatic N-of-1 trials would help 
gather is about a single patient’s response to treatment. It should be noted, how-
ever, that this evidence could in principle have a ‘second use’ to inform a new 
hypothesis on G × T × E to be further assessed. For instance, if a patient suffering 
from asthma reacts positively to ICS and not to montelukast, data can be col-
lected about the patient’s systematic environmental exposures to allergens or air 
pollutants. This way, pragmatic trials have the potential to provide evidence on 
relevant therapy-environment interactions and advise further, more systematic 
investigation of such interactions. Furthermore, evidence stemming from N-of-1 
trials testing the same compounds might also be useful for patients not partici-
pating in them when amalgamated in aggregate N-of-1 trials. Further research 
is needed to assess the impact of changes in N-of-1 designs on the reliability of 
such amalgamated treatment effect estimates.
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