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Abstract

A classical result of Noncommutative Algebra due to I. Niven, N. Jacobson
and R. Baer asserts that an associative noncommutative division ring D has finite
dimension over its center R and is algebraically closed (that is, every nonconstant
polynomial in one indeterminate with left, or right, coefficients in D has a root
in D) if and only if R is a real closed field and D is isomorphic to the ring
of quaternions over R. In this paper, we extend this classification result to the
nonassociative alternative case: the preceding assertion remains valid by replacing
the quaternions with the octonions. As a consequence, we infer that a field & of
characteristic # 2 is real closed if and only if the ring of octonions over k is an
algebraically closed division ring.

1 Introduction and main theorems

The algebraically closed associative noncommutative division rings of finite vector di-
mension over their centers were classified in 1941 by I. Niven, N. Jacobson and R.
Baer (see the Introduction of [7]): up to isomorphism, they are the rings of quater-
nions over real closed fields. In this paper, we extend this result to the nonassociative
alternative case. We prove that, up to isomorphism, the algebraically closed nonasso-
ciative alternative division rings of finite vector dimension over their centers are the
rings of octonions over real closed fields. It is somewhat mysterious why, until now,
such a natural extension was never treated in the literature. In fact, the tools needed
to prove the mentioned extension can be considered classic. We use Baer’s argument
contained in [7, p. 660] (see [6, p. 270] also), together with the strong version of
the Zorn classification theorem due to R. H. Bruck and E. Kleinfeld (see [3]), to show
that, if a nonassociative alternative division ring D has finite dimension over its cen-
ter R and is algebraically closed, then R is a real closed field and D is isomorphic to
the ring of octonions over R. In order to prove the converse, we adapt, to the case
of octonions over a real closed field R, a division technique concerning the minimal
polynomial of an octonion over R (see [1, Section II], [9, Section 3] and [7, p. 655]).
The proof we obtain by such a division technique is simple, direct and works in the
associative noncommutative case as well.

By the term “ring”, we mean a nonempty set D equipped with two binary oper-
ations, called addition D x D 3 (a,b) — a + b € D and multiplication D x D >
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(a,b) — ab € D, given in such a way that D is an abelian group with respect to addi-
tion and, for each a,b,c € D, (a+b)c = ac+bc and a(b+c¢) = ab+ac. We assume that
D has the multiplicative identity 1 and 1 is different from the null element o. Recall
that such a ring is said to be commutative if ab = ba for each a,b € D and associative
if (ab)e = a(bc) for each a,b,c € D. We say that D is noncommutative if it is not
commutative. Likewise, we say that D is nonassociative if it is not associative. The
ring D is called alternative if, for each a,b € D, (aa)b = a(ab) and b(aa) = (ba)a. A
subring of D is a subset of D, which turns out to be a ring with the operations induced
by D. A theorem of E. Artin ([8, p. 29]) asserts that the subring generated by any pair
of elements of an alternative ring is associative. The ring D is called division ring if,
for each a,b € D with a # o, there exist, and are unique, ¢,d € D (possibly equal) such
that ac = b and da = b. The center R of the ring D is defined as the set of all elements
¢ of D such that (ab)e = a(be) = (ca)b (and hence ac = ca) for each a,b € D. Observe
that R is an associative commutative subring of D. If D is a division ring, then its
center R is a field. In this case, we define the central dimension of D as the dimension
of D, viewed as a vector space over R. We say that the ring D is algebraically closed
if, for each positive integer n and for each (n + 1)-uple (ag, a1, ...,a,) of elements of
D with a,, # o, both polynomials 37 _;a; X7 and >-7_j X7a; have a root in D; that
is, there exist a, 8 € D (possibly equal) such that:

" + ap 10" P+t ara+ag=0=F"a,+ 0" tan_1+ ...+ Bar + ao.

Likewise, we say that A is centrally algebraically closed if the same is true when all the
coefficients a; are choosen in the center of D.

Given a field k of characteristic # 2, we denote by Hy, the ring of quaternions over k
and by Oy, the ring of octonions over k. We refer the reader to [8, 4] and [9, Section 2]
for the construction (via the Cayley—Dickson process) and the main properties of these
rings. It is worth recalling that Hj, is an associative noncommutative ring with center
k and central dimension 4, and Oy is a nonassociative alternative ring with center k
and central dimension 8. The field k is said to be real if it admits a total ordering
compatible with its ring operations. This is equivalent to say that, if a finite sum
S, @7 of squares of k is null, then each z; is null. The latter property implies that,
if k is real, then it has characteristic 0 and both Hj and Oy are division rings. Finally,
we recall that a field is said to be real closed if it is real and it has no proper real
algebraic extensions. We refer the reader to Chapter 1 of [2] for the basic properties
of these fields.

Our main result is as follows (see also Remark 2.2 at the end of the paper).

Theorem 1.1 Let D be a nonassociative alternative division ring. The following as-
sertions are equivalent:

(1) D has finite central dimension and is algebraically closed.
(2) D has finite central dimension and is centrally algebraically closed.

(3) The center R of D is a real closed field and D is isomorphic to Qp.
In particular, we infer:

Theorem 1.2 Up to isomorphism, the algebraically closed alternative division rings of
finite central dimension are either the algebraically closed fields or the rings of quater-
nions over real closed fields or the rings of octonions over real closed fields.



Another immediate consequence of Theorem 1.1 is the following characterization of
real closed fields: the new equivalence is (1) <= (4).

Corollary 1.3 Let k be a field of characteristic # 2. The following assertions are
equivalent:

1) k is real closed.

)
2) k[v/—1] = k[X]/(X? + 1) is algebraically closed.
3)
)

Hy is an algebraically closed division ring.

(
(
(
(4

Oy, is an algebraically closed division ring.

The reader observes that Corollary 1.3 remains valid by replacing “algebraically closed”
with “centrally algebraically closed” in points (3) and (4).

2 Proofs

Let R be a real closed field. Indicate by Qg[X] the ring of all polynomials with
left coefficients belonging to O and by R[X] the subring of Og[X] consisting of all
polynomials with (left) coefficients in R. Recall that the addition in Ogr[X] is the
usual one. On the contrary, the multiplication “x” is defined as follows. Let P(X) =
Sipa; X7 and Q(X) = 77" by X" be polynomials in Og[X], and, for each £ €
{0,1,...,n+m}, let A, ., (¢) be the set of pairs (j,k) € {0,1,...,n} x {0,1,...,m}
such that j + k = ¢. We have:

(P*Q)(X) i= 000" (i ayenn o aibe) X*.

If @ € R[X], then we denote P x @ also by PQ. In fact, in this case, (P * Q)(8) =
P(B)Q(B) for each 5 € Op. If either P € R[X] or Q € R[X], then P x Q is equal to

Q*P. Let eg := 1, €1 := 1, ea := j, e3 := e1es, €4 := k, e5 := e1eq, €5 := eseq4 and

e7 := eze4 be the elements of the usual basis of Qg, viewed as a vector space over R.
7 . _ 7

Let o = ijo aje; € Op with ap,a1,...,a7 € R. Define: & := ageg — ijl aje;,

P € Og[X] by P(X) = Z?:()dej, N(P) € R[X] by N(P) := Px P = Px P,
ta i =a+a=20 € R, ng :=0a =00 = 2]7-:004]2- €Rand Ap(X):=NX —a)=
X? —t, X +no € R[X]. It is well-known that the conjugacy class S, of « is ugual to

the set {8 € Ogr |tg = ta, N3 = Na}, which coincides with the zero set of A, (see [9]).
We need the following technical lemma.

Lemma 2.1 Let P(X) =37 a; X7 be a polynomial in Or[X] and let « € Q. The
following statements hold.

(1) If a € R, then N(P)(a) = np(qa)-
(2) Suppose a ¢ R. Then there exist a,b € Or such that
P(B)=aB+b and N(P)(B) = (ab+ ba+ nats)B + np — nana

for each B €S,.



Proof. (1) Let a € R. Since « belongs to the center R of Og, we infer that @ = o and

npla) = P(a)m = (Z;‘l:o ajaj) ( EZ:O akak) =
= T (Xmean . Gar)a’ = N(P)(@).

(2) Let us prove by induction on the degree n of P (the degree of the null polynomial
is considered to be equal to 0) that there exist a,b € O and H € Og[X] such that
P(X)=H(X)Au(X)+aX +0b. If n € {0,1}, then the assertion is evident. Suppose
n > 2. Define the polynomial Z € Qg[X] by Z(X) := (anta) X" — (anna) X" ? +
S0 a; X7 It holds: P(X) = (4 X" 2)(Aa(X) + taX — na) + 3070 a; X7 =
(an X" 2)A4(X) + Z(X). Since the degree of Z is < n — 1, by induction, there
exist a,b € O and K € Og[X] such that Z(X) = K(X)A,(X) + aX + b and hence
P(X) = (a, X" 2 + K(X))Au(X) + aX + b as desired. In this way, we can write:
P(X)=H(X)Auy(X) +aX + b for some a,b € O and H € Og[X]. It follows imme-
diately that P(8) = af + b for each 8 € S,. Moreover, for a suitable polynomial ¥ in
ORg[X], we have that

N(P)(X)

I
A
lsls s
> B b
A/Q\/-\
>

= (Y(X)+na
and hence N(P)(8) = (db + ba + nata)ﬂ +ny — Ngne for each S €S,. O

Proof of Theorem 1.1. (1) = (2) This implication is evident.

(2) = (3) The original argument of R. Baer applies in this context (see [6, p. 270]
and [7, pp. 660-661]). It gives that R is a real closed field. In particular, the cha-
racteristic of R (and hence of D) is zero. By Theorem A of [3], D is isomorphic to Qp.

(3) = (1) Let P be a nonconstant polynomial in QOg[X]. Consider the simple
algebraic extension C' := R(e;) of R, viewed as a subset of Og. It is well-known that
C is the algebraic closure of R (see Theorem 1.2.2 of [2]). In this way, there exists o € C
such that N(P)(a) = o. If & € R, then Lemma 2.1(1) implies that np,) = o. Since R
is a real field, it follows that P(a) = 0. Suppose a € R. By Lemma 2.1(2), there exist
a,b € Op with P(8) = a3+ b for each 3 € S, and (@b + ba + nata ) +np — Negng =
N(P)(a) = 0. On the other hand, @b + ba + n4t, and ny — nan, belong to R so we
infer that

ab + ba + ngta = 0 = Np — NgNa. (1)

If a = o, then ny = o. It follows that b = 0 and P(3) = o for each 8 € S,. Suppose
a # 0. Define 8 := —a~'b. Observe that nang = n4((na)"'np) = ny and —ngts =
na(a™tb+ba"t) = (nga=t)b+b(@ n,) = ab+ ba. Equations (1) imply that ng = n,
and tg = t,; that is, 8 € S,. We infer that P(8) = a8 + b = 0. We have just proved
that any nonconstant polynomial in one indeterminate with left coefficients in Qg has
a root in Og. It remains to show that the same is true replacing “left” with “right”.
This is very simple. Let Q(X) := E;‘l:o XJ¢; be a nonconstant polynomial with right
coefficients in O and let @ € Or be a root of the polynomial Q(X) := Z?:o ¢ X,
Then & is a root of Q: Q(a) = Q(«) =o0. O




Remark 2.2 Replacing “nonassociative alternative” with “associative noncommuta-
tive” and “Ogr” with “Hg” in the statement of Theorem 1.1, we obtain exactly the
statement of the main result of [7]. A simplification of the original proof of that main
result was given in [6]. More precisely, Theorem 16.15 of [6] contains Baer’s argu-
ment we used above to show implication (2) = (3). In Theorem 16.14 of the same
book, it is proved that, given a real closed field R, the ring Hp is algebraically closed.
This proof fails in the nonassociative case. In fact, it uses the following result (see
[6, Proposition 16.3]): “Let g,h € Hg[X] and let x € Hg such that a := h(z) # o.
Then (g*h)(z) = g(aza=?')-a”. However, if g is the constant polynomial e; in Og[X],
h € Og[X] is defined by h(X) := eaX — e4 and x := eg, then a := h(z) = —2e4 and
(gxh)(z) = 0 # —2e5 = g(axa=!)-a. For further results regarding this “nonassociative
phenomenon”, we refer the reader to Section 3 of [5].
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