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Abstract

A classical result of Noncommutative Algebra due to I. Niven, N. Jacobson
and R. Baer asserts that an associative noncommutative division ring D has finite
dimension over its center R and is algebraically closed (that is, every nonconstant
polynomial in one indeterminate with left, or right, coefficients in D has a root
in D) if and only if R is a real closed field and D is isomorphic to the ring
of quaternions over R. In this paper, we extend this classification result to the
nonassociative alternative case: the preceding assertion remains valid by replacing
the quaternions with the octonions. As a consequence, we infer that a field k of
characteristic 6= 2 is real closed if and only if the ring of octonions over k is an
algebraically closed division ring.

1 Introduction and main theorems

The algebraically closed associative noncommutative division rings of finite vector di-
mension over their centers were classified in 1941 by I. Niven, N. Jacobson and R.
Baer (see the Introduction of [7]): up to isomorphism, they are the rings of quater-
nions over real closed fields. In this paper, we extend this result to the nonassociative
alternative case. We prove that, up to isomorphism, the algebraically closed nonasso-
ciative alternative division rings of finite vector dimension over their centers are the
rings of octonions over real closed fields. It is somewhat mysterious why, until now,
such a natural extension was never treated in the literature. In fact, the tools needed
to prove the mentioned extension can be considered classic. We use Baer’s argument
contained in [7, p. 660] (see [6, p. 270] also), together with the strong version of
the Zorn classification theorem due to R. H. Bruck and E. Kleinfeld (see [3]), to show
that, if a nonassociative alternative division ring D has finite dimension over its cen-
ter R and is algebraically closed, then R is a real closed field and D is isomorphic to
the ring of octonions over R. In order to prove the converse, we adapt, to the case
of octonions over a real closed field R, a division technique concerning the minimal
polynomial of an octonion over R (see [1, Section II], [9, Section 3] and [7, p. 655]).
The proof we obtain by such a division technique is simple, direct and works in the
associative noncommutative case as well.

By the term “ring”, we mean a nonempty set D equipped with two binary oper-
ations, called addition D × D 3 (a, b) 7−→ a + b ∈ D and multiplication D × D 3
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(a, b) 7−→ ab ∈ D, given in such a way that D is an abelian group with respect to addi-
tion and, for each a, b, c ∈ D, (a+b)c = ac+bc and a(b+c) = ab+ac. We assume that
D has the multiplicative identity  and  is different from the null element . Recall
that such a ring is said to be commutative if ab = ba for each a, b ∈ D and associative
if (ab)c = a(bc) for each a, b, c ∈ D. We say that D is noncommutative if it is not
commutative. Likewise, we say that D is nonassociative if it is not associative. The
ring D is called alternative if, for each a, b ∈ D, (aa)b = a(ab) and b(aa) = (ba)a. A
subring of D is a subset of D, which turns out to be a ring with the operations induced
by D. A theorem of E. Artin ([8, p. 29]) asserts that the subring generated by any pair
of elements of an alternative ring is associative. The ring D is called division ring if,
for each a, b ∈ D with a 6= , there exist, and are unique, c, d ∈ D (possibly equal) such
that ac = b and da = b. The center R of the ring D is defined as the set of all elements
c of D such that (ab)c = a(bc) = (ca)b (and hence ac = ca) for each a, b ∈ D. Observe
that R is an associative commutative subring of D. If D is a division ring, then its
center R is a field. In this case, we define the central dimension of D as the dimension
of D, viewed as a vector space over R. We say that the ring D is algebraically closed
if, for each positive integer n and for each (n + 1)–uple (a0, a1, . . . , an) of elements of
D with an 6= , both polynomials

∑n
j=0 ajX

j and
∑n

j=0 Xjaj have a root in D; that
is, there exist α, β ∈ D (possibly equal) such that:

anαn + an−1α
n−1 + . . . + a1α + a0 =  = βnan + βn−1an−1 + . . . + βa1 + a0.

Likewise, we say that A is centrally algebraically closed if the same is true when all the
coefficients ai are choosen in the center of D.

Given a field k of characteristic 6= 2, we denote by Hk the ring of quaternions over k
and by Ok the ring of octonions over k. We refer the reader to [8, 4] and [9, Section 2]
for the construction (via the Cayley–Dickson process) and the main properties of these
rings. It is worth recalling that Hk is an associative noncommutative ring with center
k and central dimension 4, and Ok is a nonassociative alternative ring with center k
and central dimension 8. The field k is said to be real if it admits a total ordering
compatible with its ring operations. This is equivalent to say that, if a finite sum∑n

i=1 x2
i of squares of k is null, then each xi is null. The latter property implies that,

if k is real, then it has characteristic 0 and both Hk and Ok are division rings. Finally,
we recall that a field is said to be real closed if it is real and it has no proper real
algebraic extensions. We refer the reader to Chapter 1 of [2] for the basic properties
of these fields.

Our main result is as follows (see also Remark 2.2 at the end of the paper).

Theorem 1.1 Let D be a nonassociative alternative division ring. The following as-
sertions are equivalent:

(1) D has finite central dimension and is algebraically closed.

(2) D has finite central dimension and is centrally algebraically closed.

(3) The center R of D is a real closed field and D is isomorphic to OR.

In particular, we infer:

Theorem 1.2 Up to isomorphism, the algebraically closed alternative division rings of
finite central dimension are either the algebraically closed fields or the rings of quater-
nions over real closed fields or the rings of octonions over real closed fields.
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Another immediate consequence of Theorem 1.1 is the following characterization of
real closed fields: the new equivalence is (1) ⇐⇒ (4).

Corollary 1.3 Let k be a field of characteristic 6= 2. The following assertions are
equivalent:

(1) k is real closed.

(2) k[
√
− ] = k[X]/(X2 + ) is algebraically closed.

(3) Hk is an algebraically closed division ring.

(4) Ok is an algebraically closed division ring.

The reader observes that Corollary 1.3 remains valid by replacing “algebraically closed”
with “centrally algebraically closed” in points (3) and (4).

2 Proofs

Let R be a real closed field. Indicate by OR[X] the ring of all polynomials with
left coefficients belonging to OR and by R[X] the subring of OR[X] consisting of all
polynomials with (left) coefficients in R. Recall that the addition in OR[X] is the
usual one. On the contrary, the multiplication “∗” is defined as follows. Let P (X) =∑n

j=0 ajX
j and Q(X) =

∑m
k=0 bkXk be polynomials in OR[X], and, for each ` ∈

{0, 1, . . . , n + m}, let An,m(`) be the set of pairs (j, k) ∈ {0, 1, . . . , n} × {0, 1, . . . ,m}
such that j + k = `. We have:

(P ∗Q)(X) :=
∑n+m

`=0

( ∑
(j,k)∈An,m(`) ajbk

)
X`.

If Q ∈ R[X], then we denote P ∗ Q also by PQ. In fact, in this case, (P ∗ Q)(β) =
P (β)Q(β) for each β ∈ OR. If either P ∈ R[X] or Q ∈ R[X], then P ∗ Q is equal to
Q ∗ P . Let e0 := , e1 := i, e2 := j, e3 := e1e2, e4 := k, e5 := e1e4, e6 := e2e4 and
e7 := e3e4 be the elements of the usual basis of OR, viewed as a vector space over R.
Let α =

∑7
j=0 αjej ∈ OR with α0, α1, . . . , α7 ∈ R. Define: ᾱ := α0e0 −

∑7
j=1 αjej ,

P̄ ∈ OR[X] by P̄ (X) :=
∑n

j=0 ājX
j , N(P ) ∈ R[X] by N(P ) := P ∗ P̄ = P̄ ∗ P ,

tα := α + ᾱ = 2α0 ∈ R, nα := αᾱ = ᾱα =
∑7

j=0 α2
j ∈ R and ∆α(X) := N(X − α) =

X2 − tαX + nα ∈ R[X]. It is well–known that the conjugacy class Sα of α is ugual to
the set {β ∈ OR | tβ = tα, nβ = nα}, which coincides with the zero set of ∆α (see [9]).

We need the following technical lemma.

Lemma 2.1 Let P (X) =
∑n

j=0 ajX
j be a polynomial in OR[X] and let α ∈ OR. The

following statements hold.

(1) If α ∈ R, then N(P )(α) = nP (α).

(2) Suppose α 6∈ R. Then there exist a, b ∈ OR such that

P (β) = aβ + b and N(P )(β) = (āb + b̄a + natα)β + nb − nanα

for each β ∈ Sα.
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Proof. (1) Let α ∈ R. Since α belongs to the center R of OR, we infer that ᾱ = α and

nP (α) = P (α)P (α) =
( ∑n

j=0 ajα
j
)( ∑n

k=0 ākαk
)

=

=
∑2n

`=0

( ∑
(j,k)∈An,n(`) aj āk

)
α` = N(P )(α).

(2) Let us prove by induction on the degree n of P (the degree of the null polynomial
is considered to be equal to 0) that there exist a, b ∈ OR and H ∈ OR[X] such that
P (X) = H(X)∆α(X) + aX + b. If n ∈ {0, 1}, then the assertion is evident. Suppose
n ≥ 2. Define the polynomial Z ∈ OR[X] by Z(X) := (antα)Xn−1 − (annα)Xn−2 +∑n−1

j=0 ajX
j . It holds: P (X) = (anXn−2)(∆α(X) + tαX − nα) +

∑n−1
j=0 ajX

j =
(anXn−2)∆α(X) + Z(X). Since the degree of Z is ≤ n − 1, by induction, there
exist a, b ∈ OR and K ∈ OR[X] such that Z(X) = K(X)∆α(X) + aX + b and hence
P (X) = (anXn−2 + K(X))∆α(X) + aX + b as desired. In this way, we can write:
P (X) = H(X)∆α(X) + aX + b for some a, b ∈ OR and H ∈ OR[X]. It follows imme-
diately that P (β) = aβ + b for each β ∈ Sα. Moreover, for a suitable polynomial Y in
OR[X], we have that

N(P )(X) =
(
H̄(X)∆α(X) + āX + b̄

)
∗

(
H(X)∆α(X) + aX + b

)
=

= Y (X)∆α(X) + (āX + b̄) ∗ (aX + b) =
= Y (X)∆α(X) + naX2 + (āb + b̄a)X + nb =
= Y (X)∆α(X) + na(∆α(X) + tαX − nα) + (āb + b̄a)X + nb =
=

(
Y (X) + na

)
∆α(X) +

(
āb + b̄a + natα

)
X + nb − nanα

and hence N(P )(β) =
(
āb + b̄a + natα

)
β + nb − nanα for each β ∈ Sα. 2

Proof of Theorem 1.1. (1) =⇒ (2) This implication is evident.
(2) =⇒ (3) The original argument of R. Baer applies in this context (see [6, p. 270]

and [7, pp. 660–661]). It gives that R is a real closed field. In particular, the cha-
racteristic of R (and hence of D) is zero. By Theorem A of [3], D is isomorphic to OR.

(3) =⇒ (1) Let P be a nonconstant polynomial in OR[X]. Consider the simple
algebraic extension C := R(e1) of R, viewed as a subset of OR. It is well–known that
C is the algebraic closure of R (see Theorem 1.2.2 of [2]). In this way, there exists α ∈ C
such that N(P )(α) = . If α ∈ R, then Lemma 2.1(1) implies that nP (α) = . Since R
is a real field, it follows that P (α) = . Suppose α 6∈ R. By Lemma 2.1(2), there exist
a, b ∈ OR with P (β) = aβ + b for each β ∈ Sα and (āb + b̄a + natα)α + nb − nanα =
N(P )(α) = . On the other hand, āb + b̄a + natα and nb − nanα belong to R so we
infer that

āb + b̄a + natα =  = nb − nanα. (1)

If a = , then nb = . It follows that b =  and P (β) =  for each β ∈ Sα. Suppose
a 6= . Define β := −a−1b. Observe that nanβ = na((na)−1nb) = nb and −natβ =
na(a−1b + b̄ā−1) = (naa−1)b + b̄(ā−1na) = āb + b̄a. Equations (1) imply that nβ = nα

and tβ = tα; that is, β ∈ Sα. We infer that P (β) = aβ + b = . We have just proved
that any nonconstant polynomial in one indeterminate with left coefficients in OR has
a root in OR. It remains to show that the same is true replacing “left” with “right”.
This is very simple. Let Q(X) :=

∑d
j=0 Xjcj be a nonconstant polynomial with right

coefficients in OR and let α ∈ OR be a root of the polynomial Q(X) :=
∑d

j=0 c̄jX
j .

Then ᾱ is a root of Q: Q(ᾱ) = Q(α) = . 2
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Remark 2.2 Replacing “nonassociative alternative” with “associative noncommuta-
tive” and “OR” with “HR” in the statement of Theorem 1.1, we obtain exactly the
statement of the main result of [7]. A simplification of the original proof of that main
result was given in [6]. More precisely, Theorem 16.15 of [6] contains Baer’s argu-
ment we used above to show implication (2) =⇒ (3). In Theorem 16.14 of the same
book, it is proved that, given a real closed field R, the ring HR is algebraically closed.
This proof fails in the nonassociative case. In fact, it uses the following result (see
[6, Proposition 16.3]): “Let g, h ∈ HR[X] and let x ∈ HR such that a := h(x) 6= .
Then (g ∗h)(x) = g(axa−1) ·a”. However, if g is the constant polynomial e1 in OR[X],
h ∈ OR[X] is defined by h(X) := e2X − e4 and x := e6, then a := h(x) = −2e4 and
(g∗h)(x) =  6= −2e5 = g(axa−1) ·a. For further results regarding this “nonassociative
phenomenon”, we refer the reader to Section 3 of [5].
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