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A B S T R A C T

Combining Non-Invasive Brain Stimulation (NIBS) techniques with the recording of brain electrophysiological 
activity is an increasingly widespread approach in neuroscience. Particularly successful has been the simulta
neous combination of Transcranial Magnetic Stimulation (TMS) and Electroencephalography (EEG). Unfortu
nately, the strong magnetic pulse required to effectively interact with brain activity inevitably induces artifacts in 
the concurrent EEG acquisition. Therefore, a careful but aggressive pre-processing is required to efficiently 
remove artifacts. Unfortunately, as already reported in the literature, different preprocessing approaches can 
introduce variability in the results. Here we aim at characterizing the three main TMS-EEG preprocessing 
pipelines currently available, namely ARTIST (Wu et al., 2018), TESA (Rogasch et al., 2017) and SOUND/SSP-SIR 
(Mutanen et al., 2018, 2016), providing an insight to researchers who need to choose between different ap
proaches. Differently from previous works, we tested the pipelines using a synthetic TMS-EEG signal with a 
known ground-truth (the artifacts-free to-be-reconstructed signal). In this way, it was possible to assess the 
reliability of each pipeline precisely and quantitatively, providing a more robust reference for future research. In 
summary, we found that all pipelines performed well, but with differences in terms of the spatio-temporal 
precision of the ground-truth reconstruction. Crucially, the three pipelines impacted differently on the inter- 
trial variability, with ARTIST introducing inter-trial variability not already intrinsic to the ground-truth signal.

1. Introduction

Variability in the results of Non-Invasive Brain Stimulation (NIBS) 
experiments has been largely discussed in previous literature (e.g., 
Lopèz-Alonso et al., 2014; Ziemann and Siebner, 2015; Guerra et al., 
2020). Inconsistency of the results has been ascribed to inter- and 
intra-individual factors. Regarding the former, one of the main elements 
contributing to inter-subject variability has been recognized in the in
dividual structural and functional properties of the brain, which affect 
particularly the results of TMS-EEG studies. In this regard, classic met
rics investigated in TMS-EEG studies, like TMS-evoked potentials (TEPs) 
amplitude and latency, have been found to depend on the individual 

structural properties of the brain investigated with Diffusion Tensor 
Imaging (DTI) techniques (e.g., Esposito et al., 2022; Bortoletto et al., 
2021). One further source of variability has been ascribed to fluctuating 
brain-state dynamics, which have been found to modulate the impact of 
TMS on both electrophysiological and behavioral metrics. For example, 
it has been reported that both TEP amplitudes elicited by single-pulse 
TMS (spTMS) and the modulatory effects of repetitive TMS (rTMS) on 
TEP amplitudes depend on the cortical excitability state at the moment 
of stimulation (e.g., Zrenner et al., 2018; Baur et al., 2020; Desideri 
et al., 2019; Stefanou et al., 2019). Therefore, the aforementioned intra- 
and inter-subject variability factors should be controlled in order to 
reduce mixed results across studies.
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Different techniques have been suggested in order to reduce inter- 
and intra-subject variability already at the TMS-EEG recording stage. 
For example, Casarotto et al. (2022) developed a toolbox for the 
real-time monitoring of the quality of recorded TEPs and consistency of 
artifactual components. On the other hand, other techniques can be 
used, such as complementing TMS-EEG recording with structural neu
ronavigation, as suggested by Lioumis and Rosanova (2022).

However, there is another residual remarkable source of variability 
not depending on intra- and inter-subject differences, which is due to the 
different preprocessing pipelines employed to clean TMS-EEG data from 
artifacts. As a matter of fact, TMS introduces both cortical responses as 
well as electromagnetic and physiological artifacts in EEG traces. The 
TMS pulse interacts electromagnetically with the conductive EEG elec
trodes and wires, exploiting their inductive and capacitive effects, and 
physiologically with the neuro-muscular system of the scalp. By mag
netic induction, the magnetic field induces currents resulting in arte
factual potentials with an amplitude that may saturate the amplifier’s 
electronics. The strength of the magnetic gradient couples with the tiny 
electrical capacity of the interface between the electrodes and the skin, 
resulting in large ripples and decay artifacts in the recordings. The 
magnetic gradient interacts also with the scalp muscles, generating 
muscular artifacts. All this artifactual activity masks the genuine EEG 
response stemming from the neural processes. Therefore, it is impossible 
to look at genuine TMS-evoked activity (e.g., TEPs) without an accurate 
but aggressive preprocessing (Ilmoniemi and Kicić, 2010; Rogasch et al., 
2014). For this reason, different preprocessing pipelines have been 
developed over the years in order to deal with artifacts introduced by 
TMS in the EEG signal. The most popular ones are based on Independent 
component analysis (ICA) and manual identification of artifacts as in 
TESA (Rogasch et al., 2017). Alternative proposed approaches include a 
fully automated ICA-based preprocessing pipeline (ARTIST, Wu et al., 
2018), and a non-ICA based pipeline employing SOUND (Source-Esti
mate-Utilizing Noise-Discarding algorithm) and SSP–SIR (Signal-Space 
Projection–Source-Informed Reconstruction) (Mutanen et al., 2018, 
2016) for TMS-related artifact correction.

Recent works have attempted at defining the impact of the pre
processing pipeline choice on the reconstructed TMS-EEG signal, and, in 
particular, on its variability. For example, Bertazzoli and colleagues 
(2021) have tested the impact of four different published pipelines (i.e., 
ARTIST, TESA, SOUND/SSP-SIR and TMSEEG) applied on the same 
TMS-EEG dataset. The results showed that the obtained preprocessed 
TEPs were significantly impacted by the chosen pipeline. Specifically, 
amplitude of TEPs and Global Mean Field Power (GMFP) varied across 
pipelines, and potential topographies over the scalp, mainly in the early 
responses, showed variable correlations ranging between poor and 
substantial. Moreover, the test-retest reliability of TEPs obtained in two 
separate sessions extensively varied across pipelines. These findings are 
supported by one further study applying a similar approach, high
lighting how even small changes in the same cleaning pipeline can lead 
to different results in the reconstructed TMS-evoked activity, both in 
terms of amplitude and spatial topography (Rogasch et al., 2022). Taken 
together, these studies demonstrated that the methods used to clean the 
data highly influences the resulting TMS-EEG signal. However, they did 
not establish directly how accurate each pipeline is, i.e., how effectively 
the pipeline removes the unwanted artifacts while preserving the 
cortical responses evoked by the electromagnetic field. This is because 
they cross-compared the results of each pipeline in terms of TEPs and 
GMFP, without knowing a-priori the real signal that has to be recovered 
out of TMS induced artifacts.

More recently, some works addressed the efficacy of different 
methods in removing TMS-related artifacts by superimposing simulated 
TMS artifacts to a known ground-truth EEG signal. For example, Atti 
et al. (2024) tested the success of Independent Component Analysis 
(ICA) in removing various simulated TMS-EEG artifacts, while Mutanen 
et al. ((2024) compared ICA and SSP-SIR in removing muscle artifacts 
induced by the TMS pulse. The latter study reported that SSP-SIR 

performs better for cleaning artefacts when there is a substantial dif
ference between the topography of the artefact and the topography of 
the signal of interest. Moreover, both studies highlighted that ICA-based 
cleaning is prone to error if the variability of an artefact is small. While 
these works have the advantage of introducing, at least partially, an 
a-priori known ground-truth signal, they focused on specific artifacts or 
analysis steps without considering the impact of the cleaning pipeline as 
a whole, which is what is commonly applied on TMS-EEG data.

All these considerations and results suggest, in principle, that each 
TMS-EEG experiment should be carefully designed, from data acquisi
tion to preprocessing, according to the specific experimental hypothesis. 
While standardized pipelines are essential for ensuring consistency and 
reliability in TMS-EEG preprocessing, it is equally crucial to establish 
robust procedures for data acquisition that minimize experimenter de
pendency and ensure the recorded activity accurately reflects brain 
stimulation rather than artefacts. However, considering the research 
context and clinical practice, the aim of the published and standardized 
pipelines is usually to provide a reasonable standard approach including 
several preprocessing steps, each one differently influencing the others. 
For this reason, here we tested the performance of three TMS-EEG 
cleaning pipelines (ARTIST, TESA, SOUND/SSP-SIR) that well repre
sent the state-of-the-art of preprocessing procedures, by combining the 
advantages of previous approaches. We did this by 1) using realistic 
TMS-EEG artifacts superimposed to a real ground-truth EEG signal and 
2) testing the pipelines as a whole. In particular, to obtain a quantitative 
assessment of the level to which different preprocessing approaches 
affect TMS-EEG data, we compared the accuracy of each pipeline in 
cleaning the EEG signal from TMS-induced artifacts. To do this, we used 
a real sensory evoked potentials’ EEG signal as ground-truth (therefore a 
known signal not containing any TMS artifacts), on which we super
imposed typical and realistic TMS artifactual activity, extracted by 
means of ICA, from a real TMS-EEG dataset. Based on this approach, the 
original signal masked by the TMS artifacts is perfectly known. Hence, 
the reliability of the different pipelines in recovering the “ground-truth” 
can be optimally assessed using different metrics.

The primary goal of this study is to characterize the preprocessing 
accuracy of the ARTIST, TESA and SOUND/SSPIR pipelines in cleaning 
TMS artifacts from the EEG signal. We aim at understanding which is the 
overall best performing pipeline, but also at identifying in depth the 
most critical points raised by their use. This will provide valuable in
formation for researchers performing TMS-EEG experiments, providing 
them also with additional information about how well the tested pipe
lines fit their data or, on the contrary, if the development of custom 
preprocessing code is needed.

We think that our work is a step towards defining a “gold standard” 
in cleaning contaminated TMS-EEG data, which is essential both in basic 
and clinical research. In basic research, this is a prerequisite for facili
tating more comparable results across studies and research groups. In 
clinical research, where TMS-EEG has been increasingly applied to 
investigate the neurophysiological bases of psychiatric and neurological 
disorders, it is crucial for biomarker development by ensuring repro
ducible measures across centers (Julkunen et al., 2022; Tremblay et al., 
2019).

2. Methods

We generated a test EEG signal for the evaluation of the three pre
processing pipelines (henceforth denoted as “test signal”). We super
imposed an “artifactual signal”, from a real TMS-EEG experiment with 
stimulation over the primary motor cortex (M1), to a “ground-truth” 
signal from one subject belonging to a dataset with peripheral stimula
tion generating sensory-evoked potentials (SEPs) in the EEG signals 
(Zazio et al., 2019). The test EEG signal has been then preprocessed 
separately using the three pipelines under evaluation: ARTIST, TESA 
and SOUND. After the complete preprocessing procedures, each of the 
three resulting cleaned EEG signals was compared with the ground-truth 
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one, in order to assess which preprocessing pipeline can better retrieve 
the ground-truth EEG data (see Fig. 1 for the methodological workflow). 
All the analyses were run using EEGLAB (Delorme and Makeig, 2004), 
FieldTrip (Oostenveld et al., 2011; version: 2022/02/06) and custom 
Python and MATLAB code (The Mathworks, Natick, MA, USA).

2.1. SEPs (ground-truth signal)

The rationale behind choosing the SEP signal as ground-truth data 
lies in the fact that SEPs reflect activations of neural structures along the 
somatosensory pathways, close to where the M1 TMS artefacts are 
mostly expected. We used EEG data (31 channels: Fp1, Fp2, C1, C2, CP3, 
F3, Fz, F4, CP4, FC5, FC1, FC2, FC6, T7, C3, Cz, C4, T8, CP5, CP1, CP2, 
CP6, P7, P3, Pz, P4, P8, PO7, PO8, O1, O2; 10–05 layout of the Inter
national EEG system; 5000 Hz sampling rate) from one subject 
belonging to a SEP dataset described in Zazio et al. (2019). This study 
was performed in accordance with the ethical standards of the Decla
ration of Helsinki and approved by the Ethics Committee of the IRCCS 
Instituto Centro San Giovanni di Dio Fatebenefratelli (Brescia, 
19/2016). SEPs were assessed by means of 500 trials of electrical 
stimulation of the median nerve at the wrist of the left hand at 200% of 
individual perceptual threshold; stimulation frequency was set at 3.3 Hz. 
SEP data were epoched between − 100 and 200 ms around stimulation. 
For further details about data collection and experimental setup, please 
refer to Zazio et al. (2019).

2.2. TMS-related artifactual signal generation

The “artifactual signal” was extracted from a real TMS-EEG dataset, 
with TMS over the left M1. Recruitment and experiments were con
ducted at the University of Tübingen, Germany, at the Department of 
Neurology and Stroke, and the Hertie Institute for Clinical Brain 
Research. All procedures were in accordance with the Declaration of 
Helsinki approved by the local ethics committee at the medical faculty of 
the University of Tübingen (810/2021BO2). All participants provided 
written informed consent to the experiment. Experiments were per
formed in accordance with the safety guidelines (Rossi et al., 2021). 
Participants were seated on a comfortable chair for the whole duration 
of the TMS-EEG experiment. 130-channels Ag/AgCl sintered ring elec
trode cap (EasyCap GmbH, Germany) was used for EEG recording. 
Electrodes were prepared by mild skin abrasion and filled by a 
conductive gel (Electrode Cream, GE Medical Systems, USA) until the 
desired impedance (< 5 kΩ) was attained. EEG and EMG were recorded 

simultaneously with a 24-bit biosignal amplifier (NeurOne Tesla with 
Digital Out Option, Bittium Biosignals Ltd., Finland) at a sampling rate 
of 5 kHz. Biphasic TMS pulses were delivered by a stimulator (MagPro 
R30, MagVenture, Denmark) connected to a 75 mm coil (MCF-B65, 
MagVenture, Denmark). The motor hotspot was identified as the coil 
position and orientation resulting in highest and most consistent motor 
evoked potential amplitudes in the contralateral first dorsal interosseus 
muscle (recorded by surface electrodes in a bipolar belly-tendon 
montage) and resting motor threshold was defined as the lowest stim
ulation intensity eliciting peak-to-peak motor evoked potential of ≥50 
µV in at least 5 out of 10 trials (Rossini et al., 2015). Each participant 
received 800 TMS pulses at 115% of resting motor threshold with an 
interstimulus interval of 2.5 s ± 0.1 s jitter.

We selected 4 healthy participants from this TMS-EEG study in order 
to extract a realistic artifactual signal, by means of an ICA approach. It 
has to be noticed that the EEG signal after the onset of TMS contains not 
only the artifactual EEG signal, but also the genuine brain potentials 
elicited by the stimulation: the TEPs. One of the goals of the pre
processing pipelines for TMS-EEG data is indeed to remove the artifacts 
induced by the pulse, while keeping the activity including the TEPs as 
intact as possible. For this reason, when extracting a “realistic artifactual 
signal” to be superimposed to the SEP ground-truth signal, we decided to 
use the data from 4 healthy participants rather than just one single 
subject. We did this because we can safely assume that the inter-subject 
variability in latency and signal shape of the TEPs across subjects is in 
general greater than the one of most of the TMS-induced artifacts (e.g., 
pulse and decay artifacts). For this reason, the ICA algorithm will be 
more efficient in separating the artifactual components from the TEPs 
when fed with data from different subjects. Moreover, when artifactual 
subject-dependent variability is expected, as for example for the 
muscular artifact component, using more than a single subject will result 
in a more generalized artifactual component.

In order to extract the TMS-related artifactual signal, we first 
epoched each of the 4 subjects’ datasets between − 100 and 200 ms 
around the TMS pulse. Bad trials were visually identified and discarded 
from each subject’s data, resulting in 748, 725, 397 and 544 good trials, 
respectively, for the 4 subjects (total number of trials = 2414). Bad 
channels, for each subject, were also identified, removed and interpo
lated. Then, the artefact around the TMS pulse was cut out (- 2 to 5 ms 
around the pulse); this step is considered as necessary, since 1) removing 
the time around the artefact is a standard procedure across all pre
processing pipelines; 2) keeping the most relevant part of the pulse 
artifact would lead the ICA algorithm to be completely dominated by its 

Fig. 1. Methodological workflow. A) The ground-truth clean signal from the SEP data; B) Artifactual signal generated from the 6 ICA components extracted from the 
TMS-EEG dataset and identified as artifactual; C) The superposition of the ground-truth signal and artifactual signal generates the test signal. The test signal was then 
preprocessed, separately, with the three preprocessing pipelines (ARTIST, TESA, SOUND) and each resulting cleaned EEG signal compared with the ground-truth 
signal to determine the most reliable pipeline.
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very large amplitude (Hyvärinen et al., 2001). The TMS-EEG recordings 
of the 4 subjects were then concatenated and fed into a FASTICA algo
rithm (number of components: 30; epsilon: 1e-9; hyperbolic arc-tangent 
nonlinearity). ICA components extracted through FASTICA were visu
ally inspected and six of them identified as “artifactual only”, meaning 
they were carrying either only TMS-related artifactual signal or ocular 
artifacts (see Suppl. Fig. 1, for the components’ waveforms and topog
raphies). By projecting these six artifactual components back into sensor 
space, we obtained a full (130-channels; 2414 trials) EEG artifactual 
signal. Afterwards, only the 31 channels also present in the ground-truth 
signal were kept from the artifactual signal and only 500 epochs (same 
number of epochs present in the SEP signal) were randomly selected. At 
the end of this process, the artifactual signal (Fig. 1B) contains only 
TMS-related artifactual and ocular components and can be super
imposed to the ground-truth signal for the generation of the “test-sig
nal”, as described in the next section.

2.3. Test-signal generation

Before combining the ground-truth signal with the artifactual signal 
to obtain our final “test-signal”, we had to implement an aligning signal 
procedure in order to make 1) the SEP data comparable in amplitude 
with standard TEPs and 2) the ground-truth and the artifactual signals 
more homogeneous.

Therefore, the following adjustments were implemented on the 
ground-truth signal: first, the noise introduced by the median nerve 
stimulation between − 1 and 3 ms around stimulation was removed and 
interpolated. Afterwards, a high-pass filter (0.1 Hz) was applied only for 
running FASTICA in order to discard ocular components from the 
ground-truth data. This was done because the ground-truth data would 
have to be later compared with the three preprocessed signals (ARTIST, 
TESA and SOUND) from which ocular components would have been 
discarded by preprocessing. However, as described in Section 2.2, one of 
the artifactual components extracted from the TMS-EEG data and 
superimposed with the clean signal already carries ocular movements. 
Keeping ocular artifacts from both the TMS-EEG and SEP dataset could 
have resulted in confounding the preprocessing pipelines. In this way, 
the goodness of the three tested preprocessing pipelines could be 
robustly tested not only in terms of how well each of it deals with TMS- 
related artifacts removal, but also with the removal of a realistic ocular- 
related signal. Furthermore, the SEPs in the ground-truth signal had 
been evoked over the right hemisphere via stimulation of the left hand 
and, hence, ground-truth data were flipped between hemispheres in 
order to have the SEP activity on in the same hemisphere as the TMS- 
related artifactual signal extracted from the dataset involving TMS 
over the left M1. Moreover, the comparison between the baseline ac
tivity of the ground-truth signal and the artifactual signal extracted from 
the TMS-EEG data revealed an offset between the two signals. For this 
reason, before overlapping the ground-truth signal with the artifactual 
signal, the offset was corrected with a trial-by-trial baseline correction 
implemented separately on the ground-truth and artifactual signal. This 
procedure homogenized the two signals. Finally, given that SEP de
flections usually have a lower amplitude compared to TEPs, in order to 
make our ground-truth signal comparable with classic TMS evoked ac
tivity, SEPs amplitude was rescaled by multiplying it by a factor 2.

At this point, the ground-truth signal could be overlapped with the 
artifactual signal, generating the final test-signal for preprocessing with 
the three pipelines as described in the next section.

2.4. Preprocessing pipelines applied to test-signal

2.4.1. ARTIST
The fully automated ARTIST pipeline, in principle, has the advantage 

to reduce individual variability due to the choices of the user by 
automatizing all preprocessing steps. For the preprocessing of the test 
signal, ARTIST discarded two bad channels (T7 and T8). Furthermore, it 

discarded 72 out of 500 trials as bad. Regarding the first round of ICA, 
which ARTIST uses to eliminate the TMS-related decay artifactual 
component, ARTIST found one component carrying this artifact, there
fore eliminating one artifactual component in the first ICA round. In the 
second round of ICA, which aims at eliminating all other artifactual 
components except for the decay one, ARTIST discarded 7 artifactual 
components out of 25 total components extracted from the signal. A 
summary of bad channels, trials and components removed by the 
pipeline can be found in Table 1.

2.4.2. TESA
The TESA semi-automated pipeline marked 3 channels for rejection. 

Furthermore, TESA marked 16 trials as artifactual epochs. As for the first 
ICA round, aimed solely at discarding component carrying TMS-related 
muscular artefact, TESA discarded 1 out of 28 components. The second 
ICA round found 1 bad component related to ocular artifacts and 7 other 
bad components related to electrodes noise out of 27 components, for a 
total of 8 bad components discarded from the signal in the second ICA 
round. A summary of bad channels, trials and components removed by 
the pipeline can be found in Table 1.

2.4.3. SOUND/SSP-SIR
The SOUND/SSP-SIR is not an automated pipeline as it requires the 

user to mark bad channels (if the user chooses not to delegate this step 
completely to SOUND), bad trials, the ocular artifactual components 
extracted from the only round of ICA present in this pipeline and the 
independent components extracted with SSP-SIR carrying TMS-related 
muscle artefacts. In this application of the SOUND cleaning pipeline, 
no channels were marked for rejection by the user. Furthermore, 39 
trials were marked as bad. Regarding the ICA round for identification of 
components carrying ocular artifacts, 2 out of 30 components were 
marked as ocular artifacts. Finally, the first 2 independent components 
identified by SSP-SIR were marked for rejection for carrying muscle- 
related artifacts. A summary of bad channels, trials and components 
removed by the pipeline can be found in Table 1.

2.5. Preprocessing quality evaluation

In order to evaluate the reconstruction quality of each preprocessing 
pipeline, we investigated 1) if the ground-truth and reconstructed signal 
statistically differ; 2) how the preprocessing impacts on the inter-trial 
variability; 3) to which extent the ground-truth and reconstructed 
signal linearly depend on each other.

We mainly focused our analysis on a list of channels of interests (P3, 
CP3, CP5, CP1, C3), where the most prominent effect of both the SEP 
and the TMS artifact is expected (Zrenner et al., 2022), and on three 
time-windows of interests (TOIs), defined on the basis of the key de
flections observed in the ground-truth data (TOI 1: 22 – 42 ms; TOI 2: 52 
– 82 ms; TOI 3: 100 - 150 ms). However, also results for the whole 
time-window of interest (5 – 200 ms) and for all channels are reported 
and discussed. All the subsequent analyses were performed using custom 
Python code, based on NumPy (Harris et al., 2020; version: 1.26.4) and 
SciPy (Virtanen et al., 2020; version: 1.14.0) and custom MATLAB code, 
partially based on FieldTrip (Oostenveld et al., 2011; version: 
2022/02/06).

Before any subsequent analyses, both ground-truth and preprocessed 

Table 1 
Summary of trials, channels and components marked as bad and rejected by each 
preprocessing pipeline.

ARTIST TESA SOUND/SSP-SIR

Bad channels FC5, T7, T8 FP2, FC6, C4 FC6, C4
Number of bad trials 29 16 30
Number of bad components 1st Round: 1 

2nd Round: 7
1st Round: 8 
2nd Round: 1

Only Round: 4
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EEG data were re-referenced to Cz and baseline corrected (baseline 
period from − 100 to − 15 ms). The three pipelines use the common 
average for re-referencing, even if at different steps (see Fig. 2). Thus, we 
further chose the central electrode Cz for a final homogeneous re- 
referencing, given also that a common average might potentially mask 
global effects.

We computed, for each pipeline and its own ground-truth, the mean 
across trials 1) separately for each channel, 2) pooling together the 
channels of interest (P3, CP3, CP5, CP1, C3) and 3) pooling together all 
channels. On each of these signals, we performed a non-parametric 
statistical comparison with the null-hypothesis of no differences be
tween the reconstructed and original signal. We used a cluster-based 
permutation test (Maris and Oostenveld, 2007), exploiting only the 
time dimension as cluster forming feature for multiple comparison 
correction, because the low number of channels and their 
non-homogeneous distance does not allow for a robust spatial clus
tering. The test parameters were the following: 5000 permutations; 
cluster forming threshold = 0.05; cluster significance threshold = 0.05; 
two-tailed test with Bonferroni correction; time of interest = 5 – 200 ms. 
In addition to the signal averages, also the global mean field power, as in 
Esser et al. (2006), was computed for all preprocessed and ground-truth 
signals.

We evaluated the influence of the pipeline on inter-trial variability 
by defining, for each channel and computed averages, the following 
ratio: 

Δ(t) =
∑R

i [yi(t) − y(t)]2
∑R

i [xi(t) − x(t)]2 

where xi(t) and yi(t) denote the time series of the trial i of the ground- 
truth and preprocessed data, respectively, and x and y the correspon
dent averages across trials. The summation extends over all trials R. It 
can be noticed how this quantity corresponds to the ratio of the signal 
variance across trials, a widely used measure of inter-trial variability. 
We further averaged Δ(t) over time, using both the whole time-window 
of interest and each TOI. We expect Δ(t) ≤ 1 if the preprocessing does 
not change, or reduce, the inter-trial variability. On the contrary, values 
of Δ(t) > 1 will indicate that the pipeline increased the original inter- 
trial variability.

Furthermore, to assess how much the linear dependence between the 
reference signal and the reconstructed one is preserved, we computed 
the temporal Pearson’s correlation coefficient, for each channel and for 
the data averaged over selected and all channels, as follows: 

ρc =

∑N
i
(
xc,i − xc

)(
yc,i − yc

)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i
(
xc,i − xc

)2
√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑N
i

(
yc,i − yc

)2
√

Here xc,i and yc,i refers to signal at time i of the selected channel, or 
average, c for the ground-truth and preprocessed data, respectively, with 
correspondent averages over time xc and yc. The summation extends 
over all time points in the time of interest, namely N. It is worth to 
mention that the Pearson’s correlation coefficient ρc is a measure of the 
linear dependence between two signals not influenced by constant 
scaling or offsets. Thus, large values of ρc would indicate that the shape 
of the original signal is well preserved in the reconstruction, even if 
scaling by a constant value or an offset are introduced.

Finally, for each TOI, we computed a Pearson’s spatial correlation 
over time as follows: 

σ(t) =
∑C

c [xc(t) − x(t)][yc(t) − y(t)]
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑C

c [xc(t) − x(t)]2
√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑C
c [yc(t) − y(t)]2

√

where here xc(t) and yc(t) denote the time series of the channel c at the 
time t of the ground-truth and preprocessed data averaged across trials, 
respectively, and x(t) and y(t) denote the data further averaged across all 
channels C. The spatial correlation was then averaged over the whole 
time window of interest and for each TOI. The resulting values indicate 
how much the topographic structure is preserved by the preprocessing, 
apart from constant scaling or offsets.

3. Results

In Fig. 3, the EEG preprocessed and ground-truth signal averaged 
across all channels (panel A) and selected channels (panel C) are shown 
for the three pipelines. Moreover, panel B) shows the GMFP for the three 
preprocessed signals plotted against the correspondent GMFP of the 

Fig. 2. Steps order in each preprocessing pipeline. Common parameters across pipelines are reported.
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ground-truth.
Even if differences can be visually observed in how the reconstructed 

signal follows the ground-truth, the statistical permutation test gave no 
significantly different time clusters, for all the pipelines and in both 

averaging modes. The high temporal correlations for the whole time- 
window, shown in insets D) and E) of Fig. 3 and reported in Table 2, 
confirm this result. From all values of ρ, further reported in Table 2, we 
can appreciate how the linear dependence between original and 

Fig. 3. Summary of pipeline quality evaluation results. The figure is conceptually organized in rows and columns. The first row refers to spatial information, while 
the last three rows refer to temporal information of all channels, global mean field power and selected channels, respectively. Columns refer to inter trial variability 
ratio (first column), average EEG activity (central column), Pearson’s correlations (last column). Moreover, plot content is encoded in colors for each pipeline (red: 
ARTIST, green: TESA, blue: SOUND). EEG activity after preprocessing (colored solid lines) averaged over all channels (A) and channels of interests (C), is shown; 
channels of interests are P3, CP3, CP5, CP1, C3. Thick lines show single channel activity, while black dashed line show ground-truth activity. Gray shaded areas 
indicate time windows of interests (TOIs). B) GMFP computed from preprocessed (solid colored line) and original (dashed black line) data. Temporal correlations ρ 
between reconstructed and original signal, averaged across TOIs and all (D) or selected (E) channels. Bars indicate 95 % confidence intervals. F) and G) show the ratio 
of inter-trial variability Δ, averaged across TOIs and all or selected channels, respectively. In I) topographic maps of activity averaged on each TOI is shown, for the 
ground-truth (top row) and for the preprocessed data (bottom row). Channels of interests are highlighted with black dots. The correspondent spatial correlations σ, 
for each TOI and pipeline, are shown in H), with 95 % confidence intervals.

Table 2 
Values of temporal Pearson’s correlation coefficients ρ between the ground-truth and the preprocessed signal for the three pipelines and time windows of interest 
(TOIs), considering data averaged across all channels and channels of interest (P3, CP3, CP5, CP1, C3.). In brackets bootstrap confidence intervals at 95 % level.

Temporal correlation ρ

All time TOI 1 TOI 2 TOI 3

All channels ARTIST 0.9856 [0.9827, 0.9881] 0.9666 [0.9244, 0.9834] 0.9424 [0.8697, 0.9756] − 0.4009 [− 0.5767, − 0.2059]
TESA 0.9796 [0.9712, 0.9848] 0.9950 [0.9886, 0.9978] 0.9676 [0.9276, 0.9843] 0.4186 [0.2122, 0.5708]
SOUND 0.9208 [0.8999, 0.9371] 0.9489 [0.8891, 0.9756] 0.9830 [0.9709, 0.9892] − 0.5099 [− 0.7037, − 0.1693]

Selected channels ARTIST 0.9969 [0.9957, 0.9977] 0.9175 [0.7921, 0.9807] 0.9705 [0.9488, 0.9864] 0.9965 [0.9938, 0.9979]
TESA 0.9982 [0.9978, 0.9985] 0.9921 [0.9775, 0.9977] 0.9882 [0.9781, 0.9938] 0.9914 [0.9855, 0.9949]
SOUND 0.9985 [0.9977, 0.9990] 0.9963 [0.9874, 0.9992] 0.9978 [0.9962, 0.9985] 0.9968 [0.9949, 0.9980]
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reconstructed signal is high for all the pipelines and TOIs, where all 
temporal correlations are >0.9, except for the third TOI, in the case of 
the average of all channels, where temporal correlations are < 0.5 and in 
some cases even negative.

Insets F) and G) in Fig. 3 show the values of inter-trial variability 
ratio Δ for the time of interests and for the three pipelines. All Δ values 
are also reported in Table 3. From these data it can be appreciated how 
the SOUND preprocessing always reduces the inter-trial variability of 
the considered sample, while ARTIST increases it. The TESA pipeline 
application, instead, does not affect much the inter-trial variability.

Finally, topographic maps of activity for each TOI and for the 
reconstructed and original signal are shown in Fig. 3 (panel I), together 
with the correspondent values of spatial correlations (Fig. 3, panel H). 
Values of spatial correlations σ are further listed in Table 4, together 
with the 95 % confidence intervals. All the pipelines maintain quite well 
the spatial structure, in term of Pearson’s correlations, in all TOIs except 
for the third one, where σ values are close to or below 0.5 for all the 
three pipelines.

Results and statistical comparisons between ground-truth and 
reconstructed signal, computed at the single channel level, are further 
reported in Supplementary Fig 2.

The topographic plots of inter-trial variability ratio, for each pipeline 
and TOI, are shown in Fig. 4. It can be appreciated clearly that, while 
ARTIST systematically increases Δ on all channels, SOUND decreases it, 
and TESA keeps it quite stable, except for channel C1 where Δ = 2.15. 
Insets in B) report the Δ averaged across channels and TOIs of interests, 
which confirm the same trend.

The topographic plots of temporal correlations, for each pipeline and 
TOI, are further shown in Fig. 5. For the sake of clarity, colormaps are 
low cut at ρ ≤ 0. It can be noticed how all pipelines linearly correlate 
well with the original signal for all TOIs in the channels of interest (see 
Table 2 for values). This can be appreciated also in inset B), where the 
Pearson’s temporal correlation is reported as averaged on the channels 
of interest. However, topographies also show how, for channels and 
TOIs far from the spatio-temporal point of stimulation, that the linear 
correlations between original and reconstructed signals decline.

4. Discussion

In this work we compared the accuracy of three representative 
pipelines for preprocessing of TMS-EEG datasets, namely ARTIST (Wu 
et al., 2018), TESA (Rogasch et al., 2017) and SOUND/SSP-SIR 
(Mutanen et al., 2018, 2016). Crucially and differently from previous 
works (e.g., Bertazzoli et al., 2021; Rogasch et al. 2022; Mutanen et al., 
2022; Atti et al., 2024, 2024), we used a ground-truth-recovery approach, 
in which we synthesized a to-be-cleaned dataset starting from real EEG 
data and realistic TMS-EEG artifacts. Knowing exactly the signal to be 
recovered, we were able to feed the synthetic data to the pipelines and 
assess, both qualitatively and quantitatively, the degree of reliability in 
extracting the ground-truth EEG signal out of TMS induced artifacts. 
Moreover, we did that by considering the pipeline as a whole, as in a real 
experimental analysis, thus addressing the effects of the order and 

combination of the preprocessing steps all at once.
In general, all the pipelines demonstrated good performance in 

retrieving the ground-truth signal, as indicated by the absence of sig
nificant differences between each preprocessed and ground-truth signal 
as revealed by the permutation cluster statistics, on both all channels 
and selected channel averages. This result is confirmed by the high 
temporal correlation values observed across the entire time window of 
interest (5 – 200 ms post-TMS) on all channels and on channels of in
terests (See Fig. 3D-E, Fig. 5 and Table 2). All the preprocessing pipelines 
maintain robust linear correlation with their ground-truth, supporting 
their overall efficacy.

We also examined three distinct time windows of interest (TOIs), 
selected on the main deflections in the ground-truth data and a subset of 
channels expected to carry most of both the artifactual and signal of 
interest (‘P3’, ‘CP3’, ‘CP5’, ‘CP1’, and ‘C3’). These analyses allowed to 
characterize the pipelines performance more in detail and revealed some 
crucial differences.

As it can be appreciated from temporal correlations in the different 
TOIs reported in Fig. 3D-E and Fig. 5, preprocessing robustness is high 
mostly for time points closest in time to stimulation (TOI 1). This holds 
true especially for TESA and SOUND/SSP-SIR, while ARTIST pre
processed signal shows slightly larger confidence intervals already in 
TOI 1 for the channels of interest, pointing to a less precise linear cor
relation. Nevertheless, all three preprocessed signals show high corre
lation values in all TOIs and particularly around the channels with the 
strongest effect of interest (see Fig. 5). Finally, the same trend can be 
observed in spatial correlations (Fig. 3H) where values of σ dramatically 
decrease for all pipelines in the third TOI. This temporal and spatial 
congruence indicates that the preprocessing is in general particularly 
effective at preserving the neural effects close to the stimulation hot
spot/time, which potentially carry the strongest TMS-evoked neural 
signal. On the contrary, researchers have to be particularly careful in 
interpreting preprocessed data far away from the site/time of stimula
tion, since results might strongly depend on the chosen pipeline.

As regards this preserved temporal congruence in early components, 
it has to be considered that, in our characterization analysis, we cut data 
and interpolated around the stimulus between − 1 and 5 ms. In most 
studies, the TMS artifact is cut and interpolated for a longer period of 
time i.e., 5 to 15 ms across studies, even though the TMS artifact can be 
less than 5–6 ms with appropriate amplifier settings (Pavon et al., 2023; 
Veniero et al. 2009; Freche et al. 2018). This difference turns out in favor 
to the fitness of our procedure because it allows to evaluate the pipelines 
more effectively in correspondence of early components (5–70 ms). 
Assessing pipeline reliability on these early deflections is very impor
tant, since they are considered genuine responses of the brain 
(Belardinelli et al., 2019; Gordon et al., 2021) and believed to reflect fast 
activations from areas connected with the motor cortex (Bortoletto 
et al., 2021; Zazio et al., 2022). In particular, it can be noticed that 
SOUND/SSP-SIR and TESA performed slightly better than ARTIST in the 
accuracy of the signal reconstruction for the deflection investigated in 
TOI 1, especially when only channels of interests are considered. This 
evoked potential mostly resembles the TMS-related N45 deflection. In 

Table 3 
Values of inter-trial variability ratio Δ for the pipelines and time windows of 
interest (TOIs), considering data averaged across all channels and channels of 
interest (P3, CP3, CP5, CP1, C).

Inter-trial variability ratio Δ

All time TOI 1 TOI 2 TOI 3

All channels ARTIST 1,04 0,96 1,07 1,09
TESA 0,83 0,86 0,85 0,8
SOUND 0,67 0,44 0,71 0,75

Selected channels ARTIST 1,21 1,14 1,2 1,26
TESA 0,9 0,92 0,95 0,9
SOUND 0,67 0,62 0,66 0,68

Table 4 
Values of spatial Pearson’s correlation coefficients σ between the ground-truth 
and the preprocessed signal of each pipeline averaged across each time win
dow of interest (TOI). In brackets bootstrap confidence intervals at 95 % level.

Spatial correlation σ

All time TOI 1 TOI 2 TOI 3

ARTIST 0.65 [0.41, 
0.81]

0.85 [0.75, 
0.92]

0.87 [0.72, 
0.93]

0.40 [0.09, 
0.64]

TESA 0.66 [0.47, 
0.81]

0.87 [0.76, 
0.93]

0.90 [0.82, 
0.95]

0.52 [0.19, 
0.74]

SOUND 0.51 [0.28, 
0.69]

0.89 [0.80, 
0.94]

0.79 [0.62, 
0.88]

0.38 [0.09, 
0.63]
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the last few years, this TEP has been demonstrated to be a metric of the 
Excitation/Inhibition balance in TMS-EEG experiments. In fact, positive 
allosteric modulators at the GABAAR like diazepam and alprazolam 
increase the N45 (Premoli et al., 2014; Gordon et al., 2023). Consis
tently, the NMDAR antagonist dextromethorphan also increases the N45 
(Belardinelli et al., 2021). Furthermore, Darmani et al. (2016) found 
that the selective α5-GABAAR antagonist S44819 decreases the ampli
tude of the N45. Taken together, current evidence suggests that N45 
could be a potential biomarker of the Excitation-Inhibition balance in 
TMS-EEG experiments. Therefore, it is crucial to reliably access its 
variations in amplitude in a precise and robust fashion and, thus, to 
characterize the reliability of the different TMS-EEG preprocessing 
pipelines in this time window of interest.

One further key point in the preprocessing quality evaluation is 
represented by the effect of the pipeline on the inter-trial variability. 
This analysis was carried out with the assumption that a preprocessing 
pipeline should never increase the inter-trial variability already intrinsic 
to the original signal. However, as it can be appreciated from Fig. 4 and 
Table 3, this is not always the case. We found ARTIST always increasing 
the original inter-trial variability of the ground-truth (Δ ≥ 1); crucially, 
this increase is even more pronounced when considering the channels 
closest to the stimulation site (see Table 3). Differently, TESA keeps 
inter-trial variability quite stable with respect to its ground-truth (Δ 
mostly close to 1), while SOUND/SSP-SIR even reduces it (Δ < 1). In a 
nutshell, while TESA and SOUND/SSP-SIR do not introduce variability 
not already contained in the original ground-truth data, the ARTIST 
pipeline does. This spurious extra-variability introduced by ARTIST in 

the preprocessed signal is a crucial information for researchers inter
ested in comparing experimental conditions from TMS-EEG dataset 
preprocessed with ARTIST. In fact, an increase in inter-trial variability 
might strongly impact especially the very common situation in which 
EEG data of different experimental conditions are compared by 
employing permutation-based statistics. In this case, the greater vari
ability will have an impact on the statistical empirical distribution as 
computed by permutation, potentially masking genuine neural effects.

In interpreting these results, some limitations of our study have to be 
pointed out, especially about how the generation of the synthetic test 
signal might interfere with the performance evaluation of the pipelines, 
given their specific approaches for artifacts and noise identification and 
removal. As a matter of fact, we isolated TMS-EEG artifacts by means of 
an ICA decomposition, choosing this approach as the best possible 
compromise between time and accuracy for extracting realistic artifac
tual components. Indeed, it must be pointed out that a more precise but 
realistic generation of the synthetic signal is in principle possible by 
exploiting the physics of the involved processes. EEG clean ground-truth 
signal can be generated using an accurate forward model computed from 
high resolution magnetic resonance anatomical scans and simulating 
physiologically realistic EEG activity at sensor level (Neymotin et al., 
2020). On the other hand, in principle, TMS-induced artifacts can be 
generated by considering the capacitive and inductive effects of elec
trodes and using a previously obtained forward model to re-create 
“tissue effects” on the neuromuscular sector. However, this would 
require a huge effort in exploiting the correct biophysical modeling that 
is out of the scope of the current work, but might be the topic of further 

Fig. 4. A) Topographic plots of inter-trial variability ratio Δ for each pipeline and time window of interest (TOI). All topoplots are set on the same color scale for 
comparison. B) Inter-trial variability ratio averaged across qqqqqchannels of interest (P3, CP3, CP5, CP1, C) for each TOI and for the whole time. Results for each 
pipeline are encoded in color (red: ARTIST, green: TESA, blue: SOUND).
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investigations.
In this context, it has to be considered that both ARTIST and TESA 

use the same ICA decomposition approach to remove TMS and other 
noise artifacts. On the contrary, SOUND/SSP-SIR is based on a mixture 
of recursive Inverse Modeling (SOUND) and Signal Source Projection 
(SSP). ICA algorithms (Hyvärinen et al., 2001), rely on creating a 
multivariate histogram (or distribution) of the channel data after 
collapsing the time dimension, and apply transformations to the multi
variate channel dataset in order to find a “statistically independent” 
representation of the data. Statistical independence is then achieved by 
finding a transformation under which the multivariate histogram of 
transformed channels, namely the components, resemble as less as 
possible a product of normal distributions. In this sense, a single 
component histogram has already been transformed to be approx
imatively a maximally non-normal distribution and, in principle, this 
might favor ICA-based approaches like ARTIST and TESA. Despite this 
limitation introducing a potential negative bias for SOUND/SSP-SIR, 
this pipeline performed qualitatively and quantitatively very well, 
especially close to the site of stimulation and in the early components 
which are usually the most affected by the TMS-induced artifacts.

The different ways the pipelines deal with noise removal could also 
explain the differences found in the inter-trial variability ratio. As a 
matter of fact, ICA has been employed also for cleaning the ground-truth 
data, while SOUND/SSP-SIR exploits the power of methods based on 
Signal Source Projection and recursive Inverse Modeling. Therefore, the 
reduction in inter-trial variability for SOUND/SSP-SIR preprocessing 

could be ascribed to its different way of dealing with noise components, 
potentially cleaning noise still present in the ground-truth that was not 
further separated by standard ICA. While results obtained with TESA 
are, in principle, the expected ones, ARTIST, even if based on the same 
ICA decomposition approach, widely introduces variability that was not 
already intrinsic to the original signal, an adverse effect that must be 
taken into account, especially when efforts have been put to minimize 
variability at the recording stage, using different techniques, as 
mentioned in the Introduction.

A further limitation of our approach is that our pipelines did not 
process auditory artifacts due to the TMS click since the auditory 
component was already effectively masked in the original TMS-EEG 
dataset. However, given recently developed effective methods that 
mask this artifact at its origin (Russo et al., 2022), this should not be 
considered a major concern anymore. In fact, none of the here evaluated 
pipelines provides any specific correction for auditory artifacts. More
over, our characterization design is optimal in evaluating pipeline per
formance for TMS-EEG of the primary motor cortex, as our ground-truth 
signal is located in that region.

Finally, we have to consider as a limitation that the way we generate 
the test signal, by linear superposition of ICA extracted noise compo
nents on a clean ground truth, might have led to a signal with a less 
complex noise structure than a real TMS-EEG dataset. As mentioned 
before, the synthesis of a more realistic TMS-EEG test dataset would 
require an extensive modeling work that is out of the scope of the pre
sent work. However, we think our results are valid and generalizable, 

Fig. 5. A) Topographic plots of temporal correlations ρ for each pipeline and time window of interest (TOI). All topoplots are set on the same color scale for 
comparison, where all values of ρ ≤ 0 are encoded in dark blue, for clarity. B) temporal Pearson’s correlation averaged across channels of interest (P3, CP3, CP5, CP1, 
C) for each TOI and for the whole time. Bars indicates 95 % confidence intervals. Results for each pipeline are encoded in color (red: ARTIST, green: TESA, 
blue: SOUND).
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since in principle this limitation should have fostered the performance of 
ICA-based pipelines as ARTIST. But this was not the case as the ICA- 
based pipelines behaved worst. Conversely, ARTIST inter-performs, 
especially for what regards inter-trial variability.

To conclude, as far as it has been characterized in this work, all the 
preprocessing pipelines can be considered robust in reconstructing the 
original signal in the spatio-temporal proximity of the stimulation site, 
even if TESA and SOUND/SSP-SIR show slightly less variability than 
ARTIST in early components. On the other hand, for all the pipelines, 
results far from the time and site of stimulation have to be interpreted 
with caution. Crucially, the most significant result emerged from the 
analyses on the inter-trial variability, which clearly shows that TESA and 
SOUND/SSP-SIR must be preferred to ARTIST especially when the pre
processed data will be used in a scenario of permutation testing, given 
that the greater inter-trial variability introduced by ARTIST would 
potentially end up masking differences between experimental condi
tions. We think that the information provided in this paper can be 
valuable for researchers both in basic research and clinical settings. 
Moreover, we think our results establish a further step in the crucial task 
of defining a “gold standard” for TMS-EEG experiments.
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