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A B S T R A C T   

Brake wear is known as the primary source of traffic-related non-exhaust particle generation. Its generation rate 
is influenced by parameters at different levels: subsystem (type of brakes, pads, materials, etc.), system (vehicles’ 
dynamics, driving style etc.) and suprasystem (road geometries, traffic parameters, etc.). At the subsystem level, 
we proposed a neural network brake emission modeling, trained and validated through emission data collected 
from a reduced-scale dynamometer. At the system level, a model of a car dynamics was developed to calculate 
the wheels’ brake torques and angular velocities. At the suprasystem level, the traffic behavior in a sensitive 
urban area was characterized experimentally and simulated in a traffic microsimulation software. The vehicle 
traffic-based records were used to calculate the vehicle dynamic quantities, converted into brake emission 
through the neural network. To examine the overall traffic impacts on brake emission, the total particle number 
(PN) and total particle mass were estimated regarding the route choice in the sensitive area and in the whole 
transportation network. The findings of this study showed significant generation rate of brake emissions (in terms 
of mass and number) around congested areas (in the order of 10e9 #/s). The brake emission estimation in a real 
area provides fundamental information to the decision-makers to better insight into the rate of non-exhaust 
emissions generation.   

1. Introduction 

Particulate matter (PM) is known to be one of the most problematic 
pollutants worldwide, threatening millions of lives and air quality. The 
transportation sector, including light/heavy-duty cars, trains, and air-
planes, is considered as one of the important sources of particulate 
matter and has caused significant environmental problems in recent 
decades (Hula et al., 2021; Moradi, 2021; Timmers and Achten, 2016). 
The negative impacts of traffic-related PM particles on human health 
have extensively been emphasized in epidemiological and toxicological 
studies (De Kok et al., 2005; Gustafsson et al., 2008; Mantecca et al., 
2010; Mukherjee and Agrawal, 2017; Sabbir Ahmed et al., 2018). All 
these health problems are directly linked to the size of these particles 
and the challenges they can develop for human health. Fine (PM2.5, less 
than 2.5 μm in diameter) and ultrafine (UFP, less than 0.1 μm in 
diameter) PM particles can easily deposit in the lungs and eventually, 

penetrate to the human’s bloodstream causing untreatable cardiovas-
cular diseases (Sabbir Ahmed et al., 2018). Therefore, an immediate 
response is needed to reduce the adverse impacts of such emissions on 
air pollution. Given the importance of this issue, decision-makers have 
introduced new and restrictive regulations to not only control but also 
reduce the rate of traffic-related PM particles, especially in high con-
gested cities. In Europe, dissuasive attempts against PM particles have 
been made for more than a century, where PM emissions were respon-
sible for 406 thousand premature deaths in 2010 (EC, 2013; Wang et al., 
2016). In the United States, regarding the Environmental Protection 
Agency (EPA) regulations, the amount of PM produced by passenger cars 
must be reduced by 30% from 2017 to 2025 (Kuklinska et al., 2015). 

Vehicle-originated PM emissions are classified into two categories 
depending on the source nature: First, exhaust PM emissions, which are 
generated in the vehicle engine due to non-ideal fuel combustion. Sec-
ond, non-exhaust PM emissions, which consist of particles originating 
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from the braking system, tires, clutch, and road dust resuspension. 
Although the negative effects of exhaust PMs were more regarded in the 
literature, it is crucial not to overlook the detrimental impacts of non- 
exhaust PMs. Exhaust-origin PM particles contribute as much and 
mostly less than non-exhaust PMs to the PM concentrations in urban 
areas (Amato et al., 2014). Ketzel et al. reported that approximately 
50–85 percent of total traffic-related PM10 particles in European coun-
tries stems from non-exhaust sources depending on the region (Ketzel 
et al., 2005). 

Brake emission, mainly generated by the braking system (disc and 
pads), holds one of the highest contributions in non-exhaust PM particles 
(Singh et al., 2020). It has been reported that up to 55% of total 
non-exhaust traffic PM10 emissions are due to brake wear (Grigoratos 
and Giorgio, 2014). The contribution may become more critical in 
populated cities, where huge numbers of commuters daily use private or 
public transportation fleets, making the road significantly more con-
gested, in turn, emitting more brake emissions into the air (Kutlimuratov 
et al., 2021). Restrictive rules are being regulated to reduce the amount 
of brake wear in developed countries. For instance, the European Union 
will regulate brake particle emissions from vehicles up to 3.5 t with 
EURO7 (PM10 limit value of 7 mg/km/vehicle starting 2025 down to 3 
mg/km/vehicle in 2035) (EC, 2023). However, numerous previous 
studies have reported various contributions of brake wear to ambient 
PM10 concentrations from negligible up to 4 μg/m3 (Grigoratos and 
Martini, 2015). Conversely, these proportions are higher in traffic con-
gested spots (Ketzel et al., 2005). In the first view, this level of brake 
wear contribution may be considered as trivial regarding its two-bit 
mass. However, its massive bioreactivity resulting severe health con-
cerns, especially in congested areas, could be the primary reason for 
scientists to extensively take brake wear investigations into account. 

Generally, the rate of brake wear generation can be investigated at 
three levels: First, subsystem level, which deals with the behavior of the 
braking system components in wear production. Second, system level, 
which is related to the investigation of wear released by a real car, and 
third, environmental level that mainly focuses on on-road measure-
ments (Rahimi et al., 2021). Regarding the complexity of monitoring the 
behavior of wear particles at the system level, the majority of in-
vestigations in the literature have been carried out at the subsystem 
level. Using a simulation-based model like Finite Element Analysis (FEA) 
is one of the well-known approaches to simulating the brake wear 
behavior at the subsystem level (Han et al., 2017; Riva et al., 2019; 
Wahlström et al., 2009). Also, implementing tribological tests on 
dynamometer machines, a well-known machine for simulating vehicle 
braking systems in the laboratory environment, has remarkably been 
regarded in previous studies (Agudelo et al., 2018; Mathissen et al., 
2019; Rahimi et al., 2021; Sanders et al., 2002). Regarding the wide-
spread use of dynamometers braking system simulators, a global tech-
nical regulation for measuring brake wear particle emissions on a brake 
dynamometer was published recently (10/2022) to allow comparing 
brake emissions in a standardized way (UNECE, 2022). 

Although previous models showed reasonably reliable results, the 
broad influential impacts of the real vehicle characteristics on the rate of 
emitted particles while driving in a real transportation network have 
been neglected. An alternative for simulation of real driving behaviors 
can be the implementation of driving simulators. However, they not 
only impose high costs but also are not capable of integrating with the 
other platforms like subsystem tribological tests at different levels. 
Traffic microsimulation models have been introduced as a reliable and 
efficient tool playing a crucial role in simulating every traffic-related 
element at the system level (i.e. the vehicle) and suprasystem level (i. 
e. the traffic) (Alvanchi et al., 2019; Karabag et al., 2020; Kutlimuratov 
et al., 2021). 

Numerous studies in the literature have used traffic microsimulation 
models to estimate exhaust emissions. Nevertheless, none of them has 
tried investigating the possibility of non-exhaust emission estimation 
using traffic simulation-based models. In contrast to exhaust emissions, 

non-exhaust emission estimation cannot be done without considering 
the effects of vehicle dynamics on the rate of brake wear generation. 
These impacts are not negligible because vehicle design features like 
mass, length, height, and distance of front and rear axles can signifi-
cantly influence brake wear release rate during vehicle activities. Ki-
nematic parameters like speed and deceleration are also included in this 
issue. Electric and hybrid vehicles, which recharge batteries during 
deceleration, reduce the use of brakes (which remain only for emergency 
brakes) and, hence, can significantly reduce wear particles emissions 
(Bondorf et al., 2023). Once the vehicle behavior in the traffic envi-
ronment is determined by means of the microsimulation, considering 
the vehicle dynamics at the system level makes the estimations much 
closer to reality. 

To make the brake wear estimations more accurate, an alternative 
can be the integration of different investigation levels. Nevertheless, due 
to the complexity of such models and the inaccessibility of necessary 
tools, no significant effort has been put into developing these models in 
emission estimation so far. As a result, the generalizability of previous 
studies’ conclusions is questionable when limiting their investigations to 
a particular level. Second, the drawbacks of dependence on lab tests to 
simulate real driving conditions are previously shown as they are mostly 
crippled in considering substantial elements (Moradi and 
Miranda-Moreno, 2020). These elements may include road geometry, 
traffic conditions, and driving styles. Third, analyzing and understand-
ing the non-linear dependencies corresponding to brake wear generation 
needs complex AI (Artificial Intelligence)-based models, which tradi-
tional statistical modeling techniques cannot answer. 

In response to previous studies’ limitations and to obtain more reli-
able brake wear estimation results, this study aims to predict the braking 
system emissions by implementing a downstream approach (Rahimi, 
2023). This novel approach starts from the suprasystem level (micro-
scopic traffic simulation models) and then, focuses on the system level 
(vehicle dynamics) where the subsystem level (braking system) is 
modeled. The brake emission is modeled with a neural network properly 
trained and validated on emission data collected by the experimental 
tribological tests on reduced-scale dynamometer machine (hereafter 
“minidyno”). In the following sections, first, the proposed method will 
be discussed in detail. Then, the tribological tests in the subsystem level 
and related artificial neural network (ANN) model will be presented. 
Next, we will penetrate the suprasystem level by proposing ground-truth 
measurements in a case study and introduce the related traffic micro-
simulation. The vehicle dynamics model is used as an interface between 
the aforementioned levels, to convert the single vehicle in-traffic 
behavior into the relevant functional quantities of the braking system. 
The last part of the paper will present the brake emission estimation 
results of all agents with different route decisions in the case study. 
Lastly, all the findings will be discussed and concluded. 

2. Proposed method 

The method proposed in this research consists of combining three 
phases of brake wear investigation: suprasystem, system and subsystem 
levels. At the subsystem level, first, more than one thousand tribological 
tests are conducted using the minidyno machine. These tests are carried 
out considering speed, torque, pressure, and other functional parameters 
to measure the amount of airborne brake wear particles generated for 
every brake operation and serve for training a neural network emission 
model. Second, the most useful variables (initial speeds, final speeds, 
and brake torques) are selected as independent variables to predict the 
brake emissions using the approximant artificial neural network model. 
At the suprasystem level, first, real traffic data were collected in a high- 
congested area in Trento (Italy) in peak hours to identify field specifi-
cations. For instance, traffic-related data such as input volume, route 
choices, pedestrian volumes, modal splits, number of parking lots, traffic 
light green and red timings are identified. Non-traffic data are also ac-
quired, such as road geometry, field scope, land use, and weather 
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conditions. In the next step, all the obtained data are inserted into the 
traffic microsimulation software for monitoring the vehicles’ trajec-
tories and finding the route choice decisions. To ensure the accuracy of 
data collection, every single traffic element is modeled in the traffic 

microsimulation software, and the movements of the network’s agents 
are recorded every 0.05 s. Vehicle records of a dominant sport utility 
vehicle (SUV) family cars, including vehicle coordination, speed, ac-
celeration, number, length, height, mass, width, and positions in the 
networks, are accurately extracted from the microsimulation model. 

A custom vehicle longitudinal dynamics model is developed, in order 
to provide its inverse dynamic, i.e. convert its kinematic behavior into 
the brake activation quantities. Real vehicle information, such as wheels 
radius, drag coefficient, center of mass height, wheel moment of inertia, 
coefficient of friction and other related information released by the 
vehicle manufacturer and published material are collected. The vehicle 
inverse dynamics model calculates the vehicle’s front/rear wheels’ 
brake torques and angular velocities starting from the vehicle speed 
time-series previously obtained by the traffic microsimulation model. 
Next, selected vehicle data (brake torques, initial and final speeds for 
every brake event) obtained by the combination of the microsimulation 
and vehicle inverse dynamics models are fed to the subsystem level ANN 
(Artificial Neural Network)-based model to estimate the brake emission 
in every event. In the final step, the obtained results are comprehen-
sively analyzed in the frame of the traffic environment and concluded. 
The findings of this research open an innovative and efficacious way for 
traffic engineers and environmental scientists to study the real brake 
emissions besides exhaust emissions in various traffic conditions. This 
study can also be beneficial for the decision-makers to predict and 
control the amount of brake emission released by either motor vehicles 
or electric cars day-to-day in order to reduce air pollution and improve 
the air quality in urban areas. Fig. 1 summarizes the steps of the pro-
posed method. 

Fig. 1. Different steps of the proposed method.  

Table 1 
Targeted vehicle information.  

Parameter Value Parameter Value 

Drag coefficient 0.36 Vehicle Mass 2060 Kg 
Nominal radius of 

the front wheel 
0.37 m Height of the center of 

mass 
0.712 m 

Radial stiffness of 
the front tire 

218000 N/m Height of the direction 
of application of the 
aerodynamic drag 

1.2 m 

Nominal radius of 
the rear wheel 

0.37 m Distance between front 
axle and center of mass 

1.5219 m 

Radial stiffness of 
the rear tire 

218000 N/m Distance between rear 
axle and center of mass 

1.3381 m 

Front tire 
longitudinal 
stiffness 

30.6217 N/slip unit Front wheel moment of 
inertia 

1.65 Kg.m2 

Rear tire 
longitudinal 
stiffness 

30.6217 N/slip unit Rear wheel moment of 
inertia 

1.65 Kg.m2 

Front tire 
coefficient of 
rolling 
resistance 

0.0124 Braking torque front/ 
rear axles distribution 

52% 

Rear tire 
coefficient of 
rolling 
resistance 

0.0124 Friction coefficient 
between brake pads 

0.35 

Average fuel mass 70 kg Average payload mass 366 kg  
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3. Materials and models specifications 

In this research, the main contribution consists of a combination of 
models and materials at suprasystem, system and subsystem levels. The 
research team used reduced-scale dynamometer to measure the vehicle 
brake emitted particles at the subsystem level in a set of conditions 
reproducing typical brake use. Also, PTV-VISSIM traffic microsimulation 
software and the longitudinal vehicle dynamics model were imple-
mented at the suprasystem and system level, respectively. 

3.1. Targeted vehicle 

Vehicle design characteristics can show remarkable impacts on the 
generation rate of air pollutant emissions. To approach reality, this in-
formation is essential to use as necessary inputs in microsimulation 
software and longitudinal vehicle dynamics model. In the present study, 
the authors targeted and investigated a very common SUV family car to 
estimate brake emission. Table 1 includes all the targeted vehicle in-
formation used in this study. 

3.2. Subsystem level 

3.2.1. Minidyno 
Besides all merits of using full-scale dynamometers, reduced-scale 

dynamometers, also known as small-scale dynamometers and mini-
dynos, were widely regarded in previous studies (Rahimi et al., 2021). In 
2001, Sanders et al. investigated the frictional characteristics of lining 
materials using a reduced-scale dynamometer (Sanders et al., 2001). 
Candeo et al. investigated contact friction and airborne brake wear 
during a bedding stage for Cu-free brake pads using the LINK minidyno 
machine model 1200 (Candeo et al., 2021a,b). The same dynamometer 
machine was also used to build brake performance maps in various 
scorching conditions of brake pads (Candeo et al., 2021a,b; Varriale 
et al., 2022). According to previous studies, minidynos can present 
acceptable and reliable results for the investigation of the braking sys-
tem (Alnaqi et al., 2015). 

In the present study, the research team used the LINK minidyno 
model 1200 for the tribological tests. This minidyno consists of 
confining chamber containing a piston and a reduced-scale brake system 
(two rectangular pads and a disc). The machine can work with plenty of 
hardware and devices that must be installed to shape an integrated 
system. Fig. 2 shows the scheme of the system with all its components. 

As shown in Fig. 2, a fan providing an airflow rate of 0.74 m3/min 
was used on the left side of system. A high-efficiency particulate air filter 
called HEPA subsequently filtered the generated airflow. A sealed 
chamber confined the braking system providing an ambiance to convey 
almost all the generated particles to a designated outlet. Inside the outlet 
large-diameter pipe, sampling probes, and a diluter were installed to 

Fig. 2. Scheme of the minidyno experimental setup.  

Fig. 3. Minidyno main components; a: Brake pads, b: Brake disc.  
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help the TSI Optical Particle Sizer (OPS) collect the emissions’ data. OPS 
device can only count particle sizes from 0.3 to 10 μm (in 16 size 
channels). This captures most of the particles that contributes to the 
PM10 and PM2.5, but no nano-sized particles can be registered. The 
particles with sizes below 0.3 μm contributes most to the numbers of 
particles generated, at least at higher temperatures. 

The brake pads, which were one of the most common commercial 
low-metallic pads in the market, were cut into rectangular-shaped 
samples with a geometry size of 12 mm × 30 mm. A conventional 
pearlitic cast-iron brake disc with the diameter, thickness, effective 
radius, and hardness of 120 mm, 6 mm, 50 mm, and 235 HV10, 
respectively, was also used to simulate the movements of the vehicle’s 
brake rotor. Fig. 3 shows the brake pads and disc used for the experi-
ments implemented by minidyno. 

To build an ANN brake emission model, the research team defined 
and configured more than one thousand scenarios for minidyno tests, 
which boosted the accuracy of the data training. The tribological tests 
were designed based on the randomization of initial vehicles’ speed (60- 
30 km/h), speed variation (velocity drops) (40-10 km/h), and deceler-
ation (0.9–3.9 m/s2). Also, a threshold temperature (100 ◦C) was set for 
the machine as the starting time of the braking events (details can be 
found in Section 4.1). Tribological parameters such as rotor speed, 
contact temperature, contact pressure, and deceleration were among the 
recorded parameters. Fig. 4 demonstrates the number of emissions 
generated in a brake event per second as measured by OPS device. 

3.2.2. Data preparation 
In addition to the emission generation during brake duration, it was 

found that the emission would continue to be released even after brake 
operation. This critical phenomenon may be produced by several fac-
tors, like intrinsic dynamics of the particle release mechanism, possible 
presence of dead air regions with following increase of residence time, 
etc. To address this issue, by using OPS device, all brake wear was 
collected for considerably longer periods compared to the brake dura-
tion but not exceeding the cycle length of the brake operation. 

In minidyno dataset, all tests with a cycle length more than 20 s were 
removed from the data set (20 tests out of 1000 tests were dropped) in 
order to prepare the data needed for the synchronization. Data visuali-
zation showed that the majority of brakes were operated in less than 8 s. 
After plotting the whole cycle length of different braking events, it was 

found that an emission background noise is present, which could be 
identified analyzing the measured signal before and after the braking 
period. This makes the identification of braking events complicated and 
challenging for emission collection. The persistence of emission signal 
after the brake event and the presence of the emission background noise 
may be produced by the dynamics of particles’ transfer from the mini-
dyno chamber to the OPS detection probe. In order to synchronize the 
data obtained from OPS and minidyno, a novel approach was proposed. 
The main purpose of the proposed approach is to count the particles 
generated by the brake as realistically as possible. First, all the noises in 
the whole braking events were accurately detected and analyzed. The 
points with minimum number of brake emitted particles were selected 
as an estimate of the background noise and their standard deviation was 
calculated. A threshold equal to the background noise plus a standard 
deviation was set to select significative emission levels, i.e. not 
compatible with the instrument noise. Given a brake event, all the 
sampled points above the threshold were collected to obtain the overall 
emission produced, including the emission tail which follows the 
detachment of the pads from the disc. 

3.2.3. Artificial neural network (ANN) emission model 
ANN is an effective well-known AI-based tool that has penetrated 

many sciences due to its adaptivity attributes. Regarding the ability to 
model time-series data, these models not only are an excellent alterna-
tive to statistical models, but can also show more accurate and defen-
sible results in investigating emission models (Moradi and 
Miranda-Moreno, 2020; Tuan Hoang et al., 2021). The training of a 
neural network is generally conducted by passing the data through the 
determined layers to predict the outputs and compare them with the 
target observations. In addition, neural networks can also have 
multi-layered architecture, helping them increase the chance of suc-
cessfully modeling unknown phenomena (Moradi and Miranda-Moreno, 
2020). 

Previous studies widely investigated the efficiency of ANN algo-
rithms in brake wear prediction. In 2010, Aleksendric developed a 
neural model to predict brake wears based on friction materials, sliding 
speed, temperature, and applied load using full-scale dynamometer data 
(Aleksendrić, 2010). Moreover, Hassan & Mohammad conducted an 
ANN model to estimate the wear rate and temperature of disc and pads 
based on pin-on-disc data (Hassan and Mohammed, 2016). In recent 

Fig. 4. An example of the emission generation in a brake event collected by OPS device in minidyno tests.  
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years, the performance of neural models in tribology has been promoted 
by (Argatov and Chai, 2019). Argatov and Chai introduced an 
ANN-supported regression model developed based on the Arch-
ard–Kragelsky model to estimate wear rate. Their model could present 
much lower degrees of freedom than standard ANN brake wear models. 
Furthermore, Vasilijevic et al. investigated the potential of the ANN 
model in PM10 and PM2.5 particle prediction emitted by the braking 
system (Vasiljević et al., 2022). All these studies aimed to prove the 
possibility of using ANN models to estimate the emission rates of the 
vehicle braking system, and their findings confirmed the high ability of 
such AI-based models in brake wear prediction. 

In the present study, the research team developed a neural network 
model based on the data obtained by minidyno. After the integration of 
the signal in the time domain, the correlation between all tribological 
parameters and the amount of brake wear emitted was first evaluated. 
The square of the initial speed, in which the brake operation starts, and 
square of the final speed, in which the brake operation terminates, were 
found to be the most correlated parameters with brake wear emissions. 
Moreover, braking torque was also chosen regarding its correlation with 
brake emission generation and its influential impacts on vehicle dy-
namics. Aggregately, three main features were selected to feed the ANN 
model as a training dataset, including the square of the initial speed, the 
square of the final speed, and brake torque. The overall emission pro-
duced by a brake event is therefore assumed to be a function of these 
three independent quantities. 

3.2.3.1. Network architecture. The first aspect that was considered in 
the design of the network was the choice of the input variables. We were 
guided by physical considerations: the amount of wear depends on the 
dissipated energy and on the severity of the brake event. Hence, we 
chose the squared initial and final velocities as the first two inputs (the 
difference being proportional to the dissipated energy) and the braking 
toque as a third input (higher braking torques, for the same dissipated 
energy, are likely to be more severe events). This pondered choice of the 
independent variables –by providing inputs that correlate with output 
emissions in a way as straightforward as possible– alleviates the learning 
burden of the network-to-be (which in turn results in higher sample 
efficiency, less trainable parameters, and less overfitting issues). 

Hence, the neural network approximates the following function: 

o= f
(
(vi/v0)2,

(
vf
/

v0
)2
, τ / τ0

)

where vi and vf are the initial and final velocities, v0 = 50 km/h is a 
convenient normalization factor (so that the input to the network is close 
a unity), τ is the braking torque and τ0 = 1000 Nm is the corresponding 
torque scaling factor. 

We trained three different networks to predict the PM1, PM2.5 and 
PM10 emissions by binning the corresponding minidyno channels. The 
output o of the network was chosen as the estimated total surface area of 
the particles in a PM bin. The training data ̂o for this signal were derived 
from the raw measured data by computing the surface area of each 
minidyno channel: 

ôbin =
∑

i∈binchannels
niπ(di)2  

where ni is the number of particles in the i-th channel and di is the 
(mean) diameter of the particles in each channel. The summation is 
extended to all the channels of a PM bin. 

We preferred developing a neural model that predicts the total sur-
face area of the particles because this quantity is better correlated with 
the dissipated energy (this is again a physics-informed choice analogous 
to those above for the input). Once the total surface area is predicted, the 
particle number is obtained by dividing the total by the mean area of one 
particle of the bin. The volume (and mass) was obtained in a similar 
way. The alternative would have been training two different networks 
per bin: one predicting the particle number and another the particle 
volume. 

The network architecture (Fig. 5) is that of a single layer perceptron. 
The input layer collects the three input signals and is fully connected to a 
hidden layer with 20 neurons, followed by Tanh activation function and 
fully connected to the single neuron output layer. 

The size of the input layer has been chosen with few trials as a 
tradeoff between network descriptive capacity and risk of overfitting. 
With 20 neurons, the total number of parameters is 101 which is 
conveniently smaller than the total number of training examples (1070). 

3.2.3.2. Network supervised training. The 1070 examples from the 
minidyno dataset were randomly divided into 75% for training exam-
ples (i.e. those used for stochastic gradient descent) and 25% as vali-
dation set (i.e., those used to monitor that no overfitting happens). The 
training process was carried out in Wolfram Mathematica with the 
ADAM optimizer and a batch size of 64. The monitoring of the training 
and validation loss functions confirmed that no overfitting happened. 

Fig. 5. Proposed ANN model architecture.  
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The training was stopped after reaching a loss function plateau. 

3.2.3.3. Network performance. The validation set was re-used as test set 
(because there was no overfitting, we did not save a separate test set). 
The coefficient of correlation (R2) evaluated on the validation set was 
0.88, 0.76 and 0.36, respectively for PM1, PM2.5 and PM10. The per-
formance apparently worsens with greater particles, because larger 
particles are fewer and the noise in particle count mentioned above is 
relatively larger. 

3.2.3.4. Residual analysis. The residuals (network predictions minus 
ground-truth) in the validation set were studied finding that they were 
approximately iid (independent and identically distributed). This means 
that the difference between network prediction and observed values is 
an independent random noise. The network predicts the most likely 
value (i.e. the mathematical expectation of the emissions). However, 
since the variance of such noise is larger than the mean (for the PM10 
case), hence the network for PM10 has a low (R2). Nonetheless, this does 
not mean that the network is useless: in fact, the network predicts the 
most likely emission regardless of fluctuations that may be observed 
case by case. For a large batch of events, the random noise averages out 
and the network prediction of total batch emissions gets close to the total 
real emissions. 

Indeed, we have evaluated the total emissions on random batches of 
100 brake events and compared with the total of the network estimated 
emissions. The results are shown in Fig. 6 for PM10 and show that when 
batches of 100 events are considered, the total estimated emission by the 
network is very close to the total observed emission. Hence, even with 
low (R2), the network is useable for prediting the average or long-term 
emissions. 

3.3. System level 

3.3.1. Vehicle system dynamics model 
Vehicle dynamics, which is the study of vehicle motion as produced 

by the relevant applied actions (forces and torques), is essential to model 
the vehicle’s real behavior at the system level (Rajamani, 2011). In 
normal driving conditions, the effect of the braking action involves only 
the longitudinal dynamics, where the translation of the vehicle sus-
pended mass and the front and rear axles rotational dynamics are 
entangled. Road slope, vehicle mass and its distribution, ground coef-
ficient of friction, brake type, radial and nominal stiffnesses of tires and 
other design quantities are among some parameters influencing the 
vehicle dynamics remarkably. In fact, these critical factors have a direct 
impact on the axles dynamics and the corresponding rate of emission 
generated by the braking system. Regardless of traffic parameters, the 
rate of particle generation from the braking system may vary for the 
front and rear axle of the vehicle. Following this approach, it is possible 
to analyze the traffic-related brake emissions at the resolution of the 
single vehicle across the transportation network, identifying relevant 
parameters (at system and suprasystem level) affecting the single vehicle 
and also the traffic overall emissions, respectively. 

In the literature, the studies in which the vehicle dynamics were 
integrated with a traffic microsimulation model are considerably scarce. 
In 2018, So et al. integrated the vehicle dynamics with the VISSIM 
vehicle trajectories to find the exhaust emissions (So et al., 2018). In 
such a research, the authors inserted the VISSIM outputs into the vehicle 
dynamics model provided by the CarSim simulation package to use in 
Passenger Car and Heavy Duty Emission Model (PHEM) (Hausberger 
et al., 2009) to assess the emissions. This research showed that consid-
ering the integration of vehicle dynamics and traffic microsimulation 
models in emission estimation leads to more reliable results compared to 
the microsimulation-only approach. In addition, to model the behavior 
of autonomous and connected vehicles more realistic, Pariota et al. also 
implemented vehicle dynamics models besides the traffic micro-
simulation model simulated in SUMO regardless of vehicle emissions 
(Pariota et al., 2020). Their results also confirmed the reliability, func-
tionality and added value of using vehicle dynamic model. 

In the present study, since VISSIM cannot simulate the vehicle dy-
namics and predict the real condition of brake wear generation, a 

Fig. 6. Total emissions on batches of brake events.  

Fig. 7. Sketch of longitudinal dynamics forces on a vehicle.  
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customized vehicle longitudinal dynamic model was developed in 
Wolfram Mathematica programming language. The model was devel-
oped by writing the symbolic equations of motion of the longitudinal 
dynamics of the vehicle and the wheels, subjected to the traction and 
resistance forces, as shown in Fig. 7. The Appendix consists of details on 
the model. The model was fed by the VISSIM outputs, i.e., individual 
trajectories and the design information of the targeted vehicle. The main 
concept of making this model is to calculate the vehicle’s front and rear 
brake torques and angular velocities based on the given inputs. These 
outputs, together with the VISSIM outputs, are then inserted into the 
ANN model, previously obtained by the minidyno data, to estimate the 
brake emission in the case study. 

3.4. Suprasystem level 

3.4.1. Case specifications 
To estimate the brake wear in high-congested areas, the city center or 

regions near the central railway station can be a reasonable choice, 
where thousands of residents commute daily. The case study here 
investigated deals with Trento, a city on the Adige River in Trentino-Alto 
Adige, located in the north of Italy. A well-known castle named Buon-
consiglio, located in the near city center of, was found as an appropriate 
location for traffic data collection. Buonconsiglio Castle is one of the 
city’s eye-catching and stunning tourist areas, attracting thousands of 
tourists, commuters, citizens, and visitors annually, making its sur-
rounding roads significantly congested in rush hours. Fig. 8 presents the 
case located on the map. 

Fig. 8. Buonconsiglio Castle Area: Location of the studied case.  

Fig. 9. Details of data collection in the field.  
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Fig. 10. Route definitions.  

Fig. 11. The temperatures in the beginning of the brake events.  

Table 2 
Total number of unique targeted vehicles at each route per iteration.   

Route A Route B Route C Route D Route E Route F 

Iteration 1 90 36 68 21 19 9 
Iteration 2 80 31 38 21 25 7 
Iteration 3 79 35 56 12 23 12 
Iteration 4 71 37 67 25 19 9 
Iteration 5 80 39 58 23 32 6 
Iteration 6 85 39 55 18 22 10 
Iteration 7 66 29 51 22 18 4 
Iteration 8 78 44 68 19 24 7 
Iteration 9 86 29 55 20 20 6 
Iteration 10 81 33 65 22 17 9 
Average 79.6 35.2 58.1 20.3 21.9 7.9 
STD 7.01 4.83 9.43 3.53 4.43 2.33  

Table 3 
Total number of brake events at each route per iteration.   

Route A Route B Route C Route D Route E Route F 

Iteration 1 117 37 83 27 19 9 
Iteration 2 99 32 52 26 25 7 
Iteration 3 101 37 67 17 23 12 
Iteration 4 92 37 85 33 19 9 
Iteration 5 99 42 65 34 32 6 
Iteration 6 109 39 70 22 22 10 
Iteration 7 83 29 62 36 18 4 
Iteration 8 96 45 76 26 25 7 
Iteration 9 104 29 66 29 20 6 
Iteration 10 97 33 84 29 17 9 
Average 99.7 36 71 27.9 22 7.9 
STD 9.23 5.29 10.82 5.70 4.50 2.33  
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The castle’s main entrance is located in a two-way street named “Via 
Bernardo Clesio”, which ends at the Trento central railway station (500 
m distance). The main traffic movements around the castle are being 
handled by a high-demanded four-legged signalized intersection. This 
intersection is located roughly close to the Castle main entrance and 
central railway station, which has been shaped by the cross of two 
highly-congested roads named Piazza Raffaello Sanzio and via Ales-
sandro Manzoni (Via Torre Verde). Due to its strategic location, the 
intersection acts as the primary hub of the traffic division in the trans-
portation network, connecting many city regions to the railway pas-
senger terminal. Besides, numerous businesses, including minimarkets, 
restaurants, ice-cream stores (Gelateria), and a busy and popular store 
(Tabacchi shop), are located around the castle, worsening the traffic 
congestion in the surrounding area. 

Although Trento city confronts a reasonable precipitation rate every 
year, air pollution is a dominant issue, especially in populated areas. 
However, these airborne pollutants can be originated from either 
exhaust or non-exhaust sources, which is still unknown. To address a 
solution for this problem, this research aims to estimate non-exhaust 
emissions focusing on brake wear generated by the dominant SUV 

family cars in the castle’s surrounding area. 

3.4.2. Field data collection 
The research team directly employed several Full-HD cameras to 

capture the movements of all agents in the network. The evening peak 
hour (5–6 p.m.) on a sunny day was chosen for implementing the data 
collection process as the highest rate of commuters could be observed in 
this period. The video recordings were accurately analyzed, and the 
route choices were determined. Traffic and non-traffic parameters, 
which were essential for the simulation in microlevel, were also 
extracted from the recordings. These parameters included vehicles input 
volume, modal splits, desired speeds, signal timings, number of pedes-
trians at each side, number of parking lots, number of lanes for each 
road, roads geometry, intersection characteristics, and agents conflict 
areas. Fig. 9 shows the data collection in the case field in detail. In this 
figure, all units are in “per hour” except the traffic lights, which have the 
“second” unit. In contrast to the other roads, the right turn movement of 
Via Torre Verde was found protected with different green and red 
timings. 

Fig. 12. An example of a vehicle trajectory with the number of brakes, initial and final speeds, and emitted emissions.  

Table 4 
Total number of brake particles at each route for 10 repetitions.   

Route A Route B Route C Route D Route E Route F 

PM1 (#) Mean 2.28 E+10 9.76 E+09 1.32 E+10 3.86 E+09 4.40 E+09 1.91 E+09 
STD 1.73 E+09 1.19 E+09 2.34 E+09 8.97 E+08 1.10 E+09 6.63 E+08 

PM1 (#/km) Mean 1.07 E+09 1.08 E+09 9.04 E+08 7.43 E+08 1.10 E+09 1.61 E+09 
STD 8.11 E+07 1.31 E+08 1.61 E+08 1.73 E+08 2.76 E+08 5.60 E+08 

PM2.5 (#) Mean 1.85 E+09 7.56 E+08 1.04 E+09 3.05 E+08 3.38 E+08 1.57 E+08 
STD 1.33 E+08 9.11 E+07 1.84 E+08 6.99 E+07 8.23 E+07 5.66 E+07 

PM2.5 (#/km) Mean 8.65 E+07 8.35 E+07 7.16 E+07 5.86 E+07 8.48 E+07 1.33 E+08 
STD 6.23 E+06 1.01 E+07 1.26 E+07 1.35 E+07 2.06 E+07 4.77 E+07 

PM10 (#) Mean 1.56 E+08 5.87 E+07 9.39 E+07 2.90 E+07 2.97 E+07 1.25 E+07 
STD 1.04 E+07 6.99 E+06 1.62 E+07 6.41 E+06 6.50 E+06 4.10 E+06 

PM10 (#/km) Mean 7.30 E+06 6.49 E+06 6.44 E+06 5.58 E+06 7.45 E+06 1.05 E+07 
STD 4.86 E+05 7.72 E+05 1.11 E+06 1.23 E+06 1.63 E+06 3.46 E+06  
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3.4.3. Traffic microsimulation 
In the last decade, traffic microsimulation models have been widely 

used to develop vehicle movement and activity data to predict the 
exhaust emissions in urban areas as vehicle-based environmental issues 
are becoming more severe daily. Traffic microsimulation software is a 
versatile tool providing a systematic approach to depicting individual 
records. PTV-VISSIM, developed by PTV-Group, is a well-known and 
reliable microsimulation package that can provide the agents’ driving 
conditions based on the user attributes. Previous studies introduced 
VISSIM as an authentic software for monitoring individuals’ traffic pa-
rameters like speed, acceleration, travel time, and delay based on 
vehicle trajectories (Y. Chen et al., 2021; Hirschmann et al., 2010). Jie 
et al. also confirmed the accuracy of speed and acceleration distributions 
provided by VISSIM using a local Sensitivity Analysis method (Jie et al., 
2013; Song et al., 2020). 

VISSIM is capable of estimating exhaust emissions in the nodes 
defined by the user throughout the network. However, currently, there 
is no evidence of using traffic microsimulation models to predict non- 
exhaust emissions. Some studies implemented the default emission 
model previously embedded in VISSIM to estimate exhaust emissions in 
different traffic conditions. The emission data used in the VISSIM default 
exhaust emission model was provided by the Oak Ridge National Lab-
oratory of the U.S. Department of Energy, as well as the standard for-
mulas extracted from TRANSYT 7-F, a program for optimizing signal 
times (PTV Group, 2022). Alvanchi et al. used the VISSIM default 
emission model to calculate exhaust emissions throughout the con-
struction period of a grade separation located near sensitive locations 
(Alvanchi et al., 2019, 2020). The performance of the VISSIM default 
emission model was also evaluated in a port city surrounded by several 
freeways to investigate the impacts of heavy goods vehicles on air 
pollution (Rahimi et al., 2022; Ziemska, 2021). Although the default 
emission model can be used to evaluate the emission in nodes, it is un-
able to provide the emissions generated by agents in time-series. On the 
other hand, some previous studies have focused on using vehicle 
second-by-second records provided by VISSIM. These records were used 
as inputs for feeding other pre-determined exhaust emission models, 
such as emission models associated with agents’ speed profiles (Salamati 
et al., 2015), Environmental Protection Agency’s MOVES (Motor 
Vehicle Emission Simulator) emission model (Abou-Senna et al., 2013; 
Abou-Senna and Radwan, 2013; Gu et al., 2018; Karabag et al., 2020), 

Passenger car and Heavy-duty Emission Mode (PHEM) (Hirschmann 
et al., 2010; Kraschl-Hirschmann et al., 2011), and Comprehensive 
Modal Emission Model (CMEM) (K. Chen and Yu, 2007; Noland and 
Quddus, 2006; Stevanovic et al., 2009). 

Although all these previous studies have focused on estimating 
exhaust emissions using traffic microsimulation, no previous work can 
be found in the literature in which non-exhaust emissions were esti-
mated based on traffic simulation-based approaches. The reason may be 
related to the challenges of synchronization between suprasystem, sys-
tem and subsystem levels. The brake wear behaviors can be investigated 
at the subsystem level, while traffic microsimulation models can record 
the vehicle movements at the suprasystem level. Basically, this syn-
chronization cannot be done unless an interdisciplinary approach is 
employed. The approach can connect various sciences, i.e., trans-
portation engineering, mechatronics and mechanical engineering, 
environmental impact assessment, and computer science. The present 
research aims to estimate brake emission generated by the dominant 
vehicles while braking operation in urban area by implementing traffic 
microsimulation models, vehicle system dynamics, tribological tests, 
and ML-based ANN algorithms. 

3.4.3.1. Simulation parameters. Some traffic network information is 
essential for the VISSIM to make the simulation model. This information 
includes vehicle and pedestrian volumes, vehicle types (Light-vehicle 
(LV) and Heavy-vehicle (HV)), signal configurations, timings, and roads 
geometry. However, other elements may also be provided based on the 
project’s needs. For the simulation model, firstly, the design information 
of the targeted vehicle was embedded in the software to ensure 
considering the ground-truth data. The hourly number of pedestrians 
was also applied to the simulation model collected in the field survey 
regardless of their gender. Also, exclusive sidewalks and signalized 
crosswalks were designed for all the pedestrians in the network to avoid 
interfering vehicle movements. Based on the observations in the field, all 
pedestrian signals were configured as protected signal timings for all 
signalized crosswalks. 

In VISSIM, the simulated model releases the input vehicles stochas-
tically in the network, originating from Wiedemann’s car-following 
model (PTV Group, 2022). To meet the statistical analysis needs, the 
1-h simulation model was run ten times with the resolution of 20 
time-steps per simulation second (a record at each 0.05 s) with 42 
random seeds. Therefore, the simulation model conducted more than 26 
million records in total. 

To use the individuals’ records in the vehicle dynamics and ANN 
model, all the necessary activity information at each timestamp was 
extracted from the simulation results. This information includes agents’ 
speed, acceleration, coordination, type, model, number, height, length, 
width, lane state, position, and driving state in the network. Then, the 
average emission among ten simulation iterations of each defined route 
was calculated, and lastly, the results were reported and concluded. 

3.4.4. Data preparation 
Within 26 million total records, first, the records of all targeted ve-

hicles were extracted from the VISSIM output for all simulation runs. On 
average, almost 650,000 records of targeted vehicles were observed at 
each simulation run, which was approximately 7 million records in all 
ten simulation repetitions. Based on the vehicles’ trajectories, six sepa-
rate routes were defined in the network consisting of all the motorway 
roads around the castle. Fig. 10 shows the defined routes in detail. 

For each repetition, the individuals’ driving behaviors were scruti-
nized after finding the trajectories of the vehicles. Behaviors consisted of 
the driving state, number of brakes, brake durations, speed, and decel-
eration (i.e. intensity) during brake event operated in the vehicle tra-
jectory. All this brake-related information was then fed into the vehicle 
dynamics model to calculate the front and rear braking torques. After 
finding the average of the front and rear torques for each braking event, 

Table 5 
Total mass of brake particles at each route for 10 repetitions.    

Route 
A 

Route 
B 

Route 
C 

Route 
D 

Route 
E 

Route 
F 

PM1 
(mg) 

Mean 1.00 
E+00 

4.29E- 
01 

5.80E- 
01 

1.70E- 
01 

1.94E- 
01 

8.42E- 
02 

STD 7.62E- 
02 

5.23E- 
02 

1.03E- 
01 

3.95E- 
02 

4.84E- 
02 

2.92E- 
02 

PM1 
(mg/ 
km) 

Mean 4.71E- 
02 

4.75E- 
02 

3.98E- 
02 

3.27E- 
02 

4.86E- 
02 

7.11E- 
02 

STD 3.57E- 
03 

5.78E- 
03 

7.07E- 
03 

7.59E- 
03 

1.22E- 
02 

2.46E- 
02 

PM2.5 
(mg) 

Mean 1.92 
E+00 

7.87E- 
01 

1.09 
E+00 

3.17E- 
01 

3.52E- 
01 

1.64E- 
01 

STD 1.38E- 
01 

9.49E- 
02 

1.92E- 
01 

7.28E- 
02 

8.57E- 
02 

5.89E- 
02 

PM2.5 
(mg/ 
km) 

Mean 9.01E- 
02 

8.70E- 
02 

7.45E- 
02 

6.10E- 
02 

8.83E- 
02 

1.38E- 
01 

STD 6.49E- 
03 

1.05E- 
02 

1.32E- 
02 

1.40E- 
02 

2.15E- 
02 

4.97E- 
02 

PM10 
(mg) 

Mean 2.06 
E+00 

7.77E- 
01 

1.24 
E+00 

3.84E- 
01 

3.93E- 
01 

1.65E- 
01 

STD 1.37E- 
01 

9.25E- 
02 

2.14E- 
01 

8.48E- 
02 

8.61E- 
02 

5.42E- 
02 

PM10 
(mg/ 
km) 

Mean 9.66E- 
02 

8.59E- 
02 

8.52E- 
02 

7.38E- 
02 

9.85E- 
02 

1.39E- 
01 

STD 6.44E- 
03 

1.02E- 
02 

1.47E- 
02 

1.63E- 
02 

2.16E- 
02 

4.57E- 
02  
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the initial and final speeds of every brake of each targeted vehicle were 
added to the average torques to shape the main data frame. Next, the 
data frame was inserted into the ANN model to estimate the emission 
produced by every brake event. The total emissions generated by each 
vehicle in a particular route were calculated by summating the obtained 
number of particles for all brake events per vehicle. 

4. Results and discussion 

4.1. Brake temperature configurations 

The braking system struggles with the varying temperatures of the 
brake pads and discs during braking. The friction between the disc and 

the pads increases the braking temperature considerably. However, once 
the braking process is complete, the temperature begins to drop due to 
air circulation. At the beginning of the braking process, the minidyno 
machine must be warmed up and several run-in braking cycles are 
performed to create the steady state conditions for the tests, which in 
turn ensure the steady state working temperature of the braking system. 
The braking parameters were chosen to prevent disc temperature from 
exceeding approx. 150 ◦C. This temperature is the maximum disc tem-
perature generally admitted in the WLTP brake cycle (Mathissen et al., 
2018). This temperature represents the typical transition temperature 
for brake materials. Above this temperature, the PN number can change 
by orders of magnitude due to the sharp increase in the ultrafine fraction 
(Alemani et al., 2016). For this purpose, a threshold temperature 

Fig. 13. Kernel Density estimation of PN brake emissions for each route.  
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(100 ◦C) was set for the machine as the starting time of the braking 
events, at which the next braking event should start among more than 
1000 tests. The temperature of 100 ◦C was chosen to avoid exceeding the 
transition temperature and allow a reasonable duration of the test, since 
the cooling of the system decreases with temperature. In addition, the 
temperatures below 100 ◦C was not considered in the study because it 
did not expose influential impacts, as shown in a recent study (Men 
et al., 2022). Fig. 11 shows the temperatures at the beginning of the 
braking operations and their relative frequency during all braking 
operations. 

4.2. Total number of unique targeted vehicles 

Every targeted vehicle may experience different driving conditions 

during its trip, causing the implementation of numerous brake events. In 
the case of red light signal observation, drivers may use either contin-
uous or intermittent brake operation, which increases the braking sys-
tem temperature releasing the brake particles. To estimate the produced 
emissions at each determined route, first, the total number of unique 
targeted vehicles were calculated, which is presented in Table 2. 

4.3. Total number of brake events 

In the case study, all the moving information of targeted vehicles was 
extracted from the whole microsimulation dataset. Having a congested 
signalized intersection in front of the castle with pretimed timing con-
figurations remarkably affected the number of brake events in the 
network. Brake events were different in terms of duration, initial speed, 

Fig. 14. Kernel Density estimation of brake particle mass for each route.  
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final speed, and deceleration. In the proposed method, all incomplete 
brake events throughout the whole individuals’ trajectories were drop-
ped from the total brakes. Furthermore, the brake events with intangible 
velocity drops (ΔV < 5 km /h) were also neglected. The total number of 
accepted brake events at each route is presented in Table 3. 

An example of the velocity time history of a vehicle in the simulation 
model is presented in Fig. 12. 

The uncertainties of the ANN model’s predictions are determined by 
the emission measurement uncertainty used to train it and by the 
network accuracy, where the former constitutes the dominant contri-
bution. Typical values of the prediction uncertainty are on the order of 
106 particles/brake, resulting negligible with respect to the standard 
deviations of the overall emission obtained by repeating the traffic 
simulation (on the order of 108 particles). The repetition of the traffic 
simulation is therefore assumed as the main source of dispersion of the 
emission estimations. 

4.4. Total number and mass of generated brake wear particles at each 
route 

The proposed method was successfully conducted in the case study, 
and the particle number and the particle mass generated by the targeted 
vehicles in the transportation network was calculated. Table 4 and 
Table 5 represent the total particle number and total particle mass, in 
terms of their sizes, achieved in 10 simulation repetitions at each defined 
route, respectively. These tables include the mean and standard devia-
tion of the obtained results regarding the particles’ diameters (PM1, 
PM2.5, and PM10). All these results were calculated based on the number 
of brake events and brake duration that each targeted vehicle experi-
enced through its journey. 

As shown in Tables 4 and 5, the targeted vehicles commuting on 

Route A totally generated the highest PNs and particles’ mass in all PM 
categories. As expected, compared to the other PM classes, PM1 
contributed the highest proportion of PN and mass generation with an 
average of 2.28 E+10 number of particles and 1.00 E-03 g of mass in the 
peak hour, respectively. However, considering the length of each route, 
the vehicles in Route F generated the highest proportion of brake 
emissions per 1 km travel distance regarding the extensive numbers of 
brake events per vehicle in this route. 

To better understanding of the density distribution among the iter-
ations route-by-route, the Kernel Density Estimator (KDE) was employed 
on the overall PN and particle mass. Fig. 13 represents the Kernel 
Density estimation of brake wear emissions (in terms of PN and particle 
mass regardless of the particle size) for each route over histograms of 
results to determine the distribution shape better and have a continuous 
distribution view. 

As shown in Figs. 13 and 14, the concentrations of results in Routes 
A, C, and E are reasonably concentrated in the middle of intervals. This is 
related to the fair equality of means and medians over the results ob-
tained for each route. However, Route D showed a right-skewed density 
curve meaning that the median is greater than the mean. Moreover, all 
the KDE distributions, except Route F, only had one peak, which can be 
described as unimodal distributions. To compare the medians and 
distributional characteristics of each route, box plots were drawn in 
Fig. 15. 

As shown in Fig. 15, Route A demonstrated the highest total number 
of emitted brake particles regardless of the routes’ length. Moreover, the 
box plots of all routes except Route A and C are relatively condensed, 
meaning that the results in these routes vary less (are more consistent). 
Nevertheless, Route C shows a much larger width of the box plot making 
the median to be off by quite a bit. Thus, Route B, D, E, and F with a more 
consistent total number of brake wear particles should make predictions 
more dependable than the more variable Route A and C results. The 
vehicles in the Routes D and E, which originated from Alessandro 
Manzoni (Via Torre Verde) road, have kind of equal medians repre-
senting a relatively equal number of emitted brake wear particles. 

4.5. Total number and mass of generated brake wear particles in the 
whole network 

Aggregation of brake wear particles emitted by the targeted vehicles 
in all routes can significantly influence the air quality in the whole 
transportation network. Fig. 16 illustrates the total PN and particle mass 
generated by all the targeted vehicles existing in the network. 

In Fig. 16, the x-axis represents the total particle number (#) and 
particle mass (gram), and the y-axis shows the relative frequency. The 
total number of brake wear emissions for the 6.44 E+10 interval occurs 
four times out of 10 iterations. Thus, it has a relative frequency of 40% in 
the whole emission results. While the total emissions for the 5.76 E+10 
and 6.17 E+10 intervals demonstrated the minimum frequency among 
all repetitions. Furthermore, the total brake wear mass for the 0.0128gr 
interval occurs five times out of 10 iterations. Thus, it has a relative 
frequency of 50% in the whole mass results. 

5. Conclusion 

This study presents a novel approach for estimating generated brake 
wear in urban areas. Previous studies have widely used traffic micro-
simulation models for exhaust emission prediction. However, no previ-
ous research has regarded the implementation of these models in non- 
exhaust emission estimation. The present research’s primary goal is to 
fill this gap in the literature by proposing an innovative simulation- 
based approach using a vehicle dynamics model and machine learning 
algorithms. For this purpose, the number of particles and their masses 
generated by the braking system of targeted vehicles in different urban 
routes in a real case study were estimated. To gain this goal, a combi-
nation of suprasystem, system and subsystem investigation levels was 

Fig. 15. Box plot of the total brake emissions per route in terms of PN and mass 
based on the KDE distributions. 
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implemented. The brake wear estimation in a real area can provide 
supplementary information to the environmental decision-makers to 
earn better insight into the rate of non-exhaust emissions generation 
besides the exhaust emissions. The proposed method was successfully 
applied to the case study of a transportation network surrounding a well- 
known castle in Trento, Italy, using a traffic simulation package avail-
able in the market, a vehicle dynamics model, a reduced-scale dyna-
mometer, and a neural network model. 

To calculate number of emitted brake wear and the particle mass, an 
SUV family car was chosen as the targeted vehicle, and different avail-
able vehicle route decisions were defined based on the field survey. 
Results achieved in the case study represented the existing deviations in 
the generation of total brake PNs and masses in terms of route decisions 
and simulation repetitions. The total brake PN and mass in the whole 
transportation network also demonstrated fairly smooth differences in 
terms of iterations. The results showed that the routes and trajectories 

chosen by agents can have remarkable differences in the number of 
particles they produce (on the order of billions of particles) and brake 
particle mass in the travel distance. These route decisions can affect the 
number of braking events, especially in metropolitan areas where there 
are many commuters and the number of signalized intersections is 
relatively high. 

Considering both subsystem level, in which the brake wear particles 
are investigated regarding the tribological behaviors, and system/ 
suprasystem levels, in which vehicles’ activities can be simulated at the 
microscopic level, to calculate the number of generated brake wear and 
their mass in urban areas is proposed for the first time in this research. 
For future work, the authors recommend the use of a fate/dispersion 
model for brake particle assessment. Additionally, the brake emission 
modelling (PM estimations) can be improved by using data from an 
actual full-scale dynamometer setup that complies with current global 
technical regulation (GTR) on brake wear particle emission 

Fig. 16. Total PN and particle mass in the whole transportation network.  
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measurements. Moreover, evaluating the whole particle range including 
ultrafine particles and considering brake temperatures can further 
develop the brake emission model proposed in this research. Similar 
brake emission estimation is also recommended for other types of con-
gested locations such as stop-sign intersections, semi-actuated and 
actuated signalized intersections, and bus terminals. By following the 
proposed method for such congested areas, where a remarkable number 
of brake events may happen, the environmental engineers and decision- 
makers can prevent the adverse impacts of brake wear particles on the 
susceptible groups of commuters, tourists, residents, and citizens living 
or commuting around the location. 

It is worth mentioning that the conclusions are made based on our 
observations made by tribological tests and the results obtained by 
traffic microsimulation in our case study. For further investigation in 
future works, we are enthusiastic about exploring the results of our 
proposed method in other cases with totally different traffic behaviors 
and various geometries (different curvature and inclination), even in 
different weather conditions. 
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Appendix. Vehicle Longitudinal Dynamics Model 

The vehicle longitudinal dynamic model here described assumes that no limit conditions are reached by the tyres, making it possible to adopt linear 
models for the tyres’ forces and torques. 

Referring to Fig. 7, we write the Newton’s equation of the vehicle projected along the longitudinal direction of the vehicle (x): 

m ẍ=Fxf + Fxr − Rxf − Rxr − Faero − mgsin(ϑ) (Eq. 1)  

where:  

• m→ vehicle mass  
• ẍ→ vehicle acceleration  
• Faero→ aerodynamic drag force 
•Fxf → longitudinal force of front tire 
•Fxr→ longitudinal force of rear tire 
•Rxf → front tires rolling resistance force 
•Rxr→ rear tires rolling resistance force 
•g→ gravity acceleration  

• ϑ→ road slope 

The resistances are estimated as follows: 

Rxf = f Fzf (Eq. 2)  

Rxr = f Fzr (Eq. 3)  

Faero =
1
2 ρ CwA ẋ2 (Eq. 4)  

where:  

• f→ rolling resistance coefficient  
• Fzf → normal force on front tire  
• Fzr→ normal force on rear tire 
•ρ→ air mass density 
•Cw→ aerodynamic drag coefficient 
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•A→ vehicle frontal area  
• ẋ→ vehicle speed 

Projecting the Euler’s equation in the moving frame, we can calculate the normal forces on the front and rear tyres assuming that the vehicle pitch 
acceleration is negligible: 

Fzf =
1

lf + lr
(−Faerohaero −m ẍ h−mghsin(ϑ)+mglr cos(ϑ)) (Eq. 5)  

Fzr =
1

lf + lr

(
Faerohaero +m ẍ h+mghsin(ϑ)+mglf cos(ϑ)

)
(Eq. 6)  

where: 

•lf → longitudinal distance between front axle and center of mass 
•lr→ longitudinal distance between rear axle and center of mass 
•haero→ height of aerodynamic drag force 
•h→ center of mass height 

The tyre longitudinal forces are assumed to be proportional to the longitudinal slip and the normal forces: 

Fxf =Kf σf (Eq. 7)  

Fxr =Krσr (Eq. 8)  

where: 

•Kf → front tire longitudinal stiffness [N/slip unit]  
• Kr→ rear tire longitudinal stiffness [N/slip unit] 
•σf → front longitudinal slip ratio  

• σr→ rear longitudinal slip ratio 

Where the front and rear slip ratios are defined as follows: 

σf =
ref ωf − ẋ

ẋ (Eq. 9)  

σr =
rerωr − ẋ

ẋ (Eq. 10)  

where: 

•ωf → front wheel angular velocity 
•ωr→ rear wheel angular velocity 
•ref → front wheel effective radius  

• rer→ rear wheel effective radius 

The effective radius are: 

ref = r0 −
Fzf

kt
(Eq. 11)  

rer = r0 −
Fzr

kt
(Eq. 12)  

where: 

•r0→ undeformed tire radius  
• kt→ vertical tire stiffness 

The wheels’ dynamics is described by the two Euler equations: 

Jf ω̇f =−Fxf ref − Tf − Trf (Eq. 13)  

Jrω̇r =−Fxrrer − Tr − Trr (Eq. 14)  

where: 
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• ω̇f → front wheel angular acceleration 
•ω̇r→ rear wheel angular acceleration  

• Jf → front wheel inertia 
•Jr→ rear wheel inertia 
•Tf → front braking torque  

• Tr→ rear braking torque 
•Trf → front wheel resistance torque  

• Trr→ rear wheel resistance torque 

We assume hereinafter that the braking system is tuned to provide a pre-defined front/rear braking torque partition: 

Tf = kbT (Eq. 15)  

Tr =(1 − kb)T (Eq. 16)  

where:  

• kb→ brake distribution coefficient 

The resistance torques are given by: 

Trf = fref Fzf (Eq. 17)  

Trr = frerFzr (Eq. 18) 

The inverse dynamics model is found by means of the following steps. The tyres’ slip equations (9) and (10) are solved for the angular velocities, 
which are substituted into the wheels’ Euler equations together with the tyres’ normal and longitudinal forces. The two equations are then solved for 
the tyres’ slip, which result functions of the vehicle acceleration. The calculated forces are substituted into the Newton’s equation, which is solved for 
the total braking torque T, yielding Tf and Tr as functions of the vehicle acceleration. The wheels’ angular velocities are calculated by means of the 
tyres’ slip and vehicle velocity, according to equations (9) and (10). The final set of four equations (two torques and two angular velocities) constitute 
and inverse dynamics algebraic model: given the vehicle motion (acceleration time history) it provides the relevant quantities. 
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