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Abstract
In this work we propose a new family of high order accurate semi-discrete discontinuous
Galerkin (DG) finite element schemes for the thermodynamically compatible discretization
of overdetermined first order hyperbolic systems. In particular, we consider a first order
hyperbolic model of turbulent shallow water flows, as well as the unified first order hyper-
bolic Godunov–Peshkov–Romenski (GPR) model of continuum mechanics, which is able to
describe at the same time viscous fluids and nonlinear elastic solids at large deformations.
Both PDE systems treated in this paper belong to the class of hyperbolic and thermody-
namically compatible systems, since both satisfy an entropy inequality and the total energy
conservation can be obtained as a direct consequence of all other governing equations via
suitable linear combination with the corresponding thermodynamic dual variables. In this
paper, we mimic this process for the first time also at the semi-discrete level at the aid of
high order discontinuous Galerkin finite element schemes. For the GPR model we directly
discretize the entropy inequality and obtain total energy conservation as a consequence of
a suitable discretization of all other evolution equations. For turbulent shallow water flows
we directly discretize the nonconservative evolution equations related to the Reynolds stress
tensor and obtain total energy conservation again as a result of the thermodynamically com-
patible discretization. As a consequence, for continuum mechanics the new DG schemes
satisfy a cell entropy inequality directly by construction and thanks to the discrete thermody-
namic compatibility they are provably nonlinearly stable in the energy norm for both systems
under consideration.
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1 Introduction

Hyperbolic systemsfind awide range of applications in science and engineering, like theEuler
equations of compressible gasdynamics in aerospace engineering, the magnetohydrodynam-
ics (MHD) equations in plasma and astrophysics, the Maxwell equations in computational
electromagnetism, the equations of nonlinear hyperelasticity which describe the dynamics
of nonlinear elasto-plastic solids under large deformations, or the shallow water equations in
geophysics and environmental engineering. A common aspect of these equations is that they
can all be written under the form of a symmetrizable and thermodynamically compatible
hyperbolic (SHTC) system.

In his groundbreaking work An interesting class of quasilinear systems, Godunov dis-
covered the link between symmetric hyperbolicity in the sense of Friedrichs [44] and
thermodynamic compatibility, see [52]. The idea of Godunov was rediscovered indepen-
dently 10 years later by Friedrichs and Lax [45]. Relevant contributions to the field can also
be found in the works of Boillat [13] and Ruggeri [88]. In a series of subsequent papers
Godunov and Romenski and collaborators were able to show that the class of SHTC systems
covers a ratherwide range of knownmathematicalmodels, includingmagnetohydrodynamics
[53], nonlinear hyperelasticity [54], compressible multi-phase flows [84, 86] and also fluid
and solid mechanics in special and general relativity, see [56, 85]. More complex continuum
mechanics with torsion was included in the class of SHTC systems in [78] and very recently
a link between the class of SHTC systems and Hamiltonian mechanics was discovered, see
[76]. For a general presentation of the SHTC framework the reader is referred to [83] and
[55]. All SHTC systems can be derived from an underlying variational principle and the total
energy potential appearing in the Lagrangian has therefore a privileged role in the SHTC
framework. This special role of the total energy potential is also justified by the connection
with Hamiltonian mechanics. A common point of view adopted in the framework of most
SHTC systems is therefore that the entropy density is seen as a primary evolution variable,
while the conservation law for the total energy density is seen as the consequence, since total
energy conservation can be obtained as an extra conservation law after a suitable linear com-
bination of all the other evolution equations with the so-called thermodynamic dual variables
or main field variables [88], which are the partial derivatives of the total energy density with
respect to the conservative variables.

Since the seminal work of Tadmor [92] on entropy compatible schemes, many schemes
have been developed in order to obtain thermodynamic compatibility on the discrete level
according to the ideas of Friedrichs and Lax [45], i.e. discretizing the energy conservation
law directly and obtaining the entropy inequality as a consequence of the other equations.
For recent works on high order entropy-compatible finite volume and discontinuous Galerkin
finite element schemes for systems of conservation laws the reader is referred to [27, 28, 30,
38, 43, 46, 48, 60, 70, 81, 82, 87, 89] and references therein. Entropy-compatible schemes
for non-conservative hyperbolic equations were introduced, for example, in [2, 42]. Most of
the above-mentioned schemes rely on the framework introduced by Tadmor in [92], while
a completely different and very simple and general framework for the construction of com-
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patible numerical schemes that satisfy extra conservation laws at the discrete level was very
recently forwarded in [1, 2, 4–6]. For the sake of completeness, we also would like tomention
recent developments in the context of thermodynamically compatible schemes forLagrangian
hydrodynamics, see [8, 25, 72].

Up to now, there are only very few numerical schemes which try to construct a dual
algorithm to the framework of Tadmor and in line with the philosophy of SHTC systems,
namely numerical schemes that discretize the entropy inequality directly and which obtain
the total energy equation as a natural consequence of the thermodynamically compatible
discretization of all other equations. First attempts have been documented recently in [3, 20–
22], where thermodynamically compatible finite volume schemeswere introduced that obtain
the total energy conservation as a consequence of all the other equations, thus creating the
missing dual algorithms to the entropy-compatible schemes ofTadmor. For the construction of
a thermodynamically compatible flux for the underlying Euler and shallow water subsystems
our method makes use of the Godunov parametrization in terms of a generating potential.

It is the aim of the present paper to extend the above mentioned thermodynamically
compatiblefinite volume schemes to the discontinuousGalerkinfinite element framework, i.e.
wewant to construct new thermodynamically compatible DG schemes that directly discretize
the entropy inequality and which obtain discrete total energy conservation as a consequence.
Therefore, our newDG schemes will satisfy a cell entropy inequality by construction and can
be proven to be nonlinearly stable in the energy norm. We want to stress that is is not the aim
of this paper to develop better numerical schemes compared to existing ones, which directly
discretize the total energy conservation equation and which obtain the entropy inequality as
a consequence. In this paper, instead, we want to promote a radically new concept in the
field of entropy-compatible DG schemes. For an introduction to high order DG schemes, the
reader is referred to the seminal papers of Cockburn and Shu [32–37], while the first proof of
nonlinear L2 stability and verification of a discrete cell entropy inequality for DG schemes
was presented for nonlinear scalar conservation laws in [63].

We also would like to clearly point out the two main limitations of the DG method
presented in this paper: first, all mathematical proofs rely on the assumption of an exact
calculation of all integrals, as in [63]. While at least in principle arbitrary accuracy can be
achieved via suitable adaptive numerical quadrature, this assumption is rather restrictive for
practical purposes. In the actual implementation we have always used N +1 Gauss-Legendre
quadrature points to approximate the integrals for DG schemes of polynomial approximation
degree N . Future workwill include a generalization of theHTCDG schemes presented in this
paper to account also for numerical quadrature errors. Second, we have not yet developed
suitable thermodynamically compatible limiters, but we rather rely on a simple artificial
viscosity approach to stabilize our scheme in the presence of shock waves or steep gradients.
Future research concerning the two previous points will be needed, but is out of scope of the
present work.

The rest of this article is organized as follows. In Sect. 2 we present the two governing
PDE systems that are discretized in this paper, namely the unified first order hyperbolic
GPR model of continuum mechanics [22, 40, 77, 83] and the first order hyperbolic model of
unsteady turbulent shallow water flows introduced and studied by Gavrilyuk et al. in [49, 50,
62]. In Sect. 3 we first present the new semi-discrete DG schemes in one space dimension,
for pedagogical reasons and to facilitate the reading, and subsequently we extend it also
to multiple space dimensions. A set of numerical results obtained with the new HTC DG
schemes is presented for both governing PDE systems in Sect. 4. The paper is rounded-off
by some concluding remarks and an outlook to future work in Sect. 5.

123



   56 Page 4 of 40 Journal of Scientific Computing            (2022) 93:56 

2 Governing Equations

2.1 Godunov–Peshkov–Romenski (GPR) Model of ContinuumMechanics

We consider the following first order hyperbolic model of continuum mechanics regularized
with vanishing viscosity terms and which goes back to the work of Godunov [52], Godunov
and Romenski [54, 55, 83] and Peshkov and Romenski, see [40, 77]:

∂ρ

∂t
+ ∂(ρvk)

∂xk
− ∂

∂xm

(
ε

∂ρ

∂xm

)
= 0, (1a)

∂ρvi

∂t
+ ∂ (ρvivk + p δik + σik + ωik)

∂xk
− ∂

∂xm

(
ε
∂ρvi

∂xm

)
= 0, (1b)

∂ρS

∂t
+ ∂ (ρSvk +βk)

∂xk
− ∂

∂xm

(
ε
∂ρS

∂xm

)
= 	+ αikαik

θ1(τ1)T
+ βiβi

θ2(τ2)T
≥ 0, (1c)

∂Aik

∂t
+ ∂(Aimvm)

∂xk
+ vm

(
∂Aik

∂xm
− ∂Aim

∂xk

)
− ∂

∂xm

(
ε
∂Aik

∂xm

)
= − αik

θ1(τ1)
, (1d)

∂ Jk
∂t

+ ∂ (Jmvm + T )

∂xk
+ vm

(
∂ Jk
∂xm

− ∂ Jm
∂xk

)
− ∂

∂xm

(
ε

∂ Jk
∂xm

)
= − βk

θ2(τ2)
, (1e)

∂E

∂t
+ ∂ (vk (E1+E2+E3 + E4) + vi (p δik+σik + ωik)+hk)

∂xk
− ∂

∂xm

(
ε

∂E

∂xm

)
= 0. (1f)

In the overdetermined system above q = {qi } = (ρ, ρvi , ρS, Aik, Jk)T denotes the state
vector, the total energy potential is E = ρE = E1 + E2 +E3 + E4 with Ei = ρEi , ε > 0 is
a vanishing viscosity and the nonnegative entropy production term due to the viscous terms
is given by

	 = ε

T
∂xm qi ∂2qi q j

E ∂xm q j ≥ 0. (2)

The positivity of this term comes from ε > 0 and since we assume a positive temperature
T > 0 and that the Hessian of the total energy potential is at least positive semi-definite,
Hi j := ∂2qi q j

E ≥ 0. Throughout this paper, we use the notations ∂p = ∂/∂ p and ∂2pq =
∂2/(∂ p∂q) for the first and second partial derivatives w.r.t. generic coordinates or quantities
p and q , which may also be vectors or components of a vector. Furthermore, we make use of
theEinstein summation convention over repeated indices. Last but not least, in someoccasions
we also use bold face symbols in order to denote vectors and matrices, e.g. q = {qi } and
A = {Aik}, and so on. In the above model the four contributions to the total energy density
are

E1 = ργ

γ − 1
eS/cv , E2 = 1

2
ρvivi , E3 = 1

4
ρc2s G̊i j G̊i j , E4 = 1

2
c2hρ Ji Ji , (3)

with the components of the metric tensorG and its trace-free part G̊ given by Gik = A ji A jk

and G̊ik = Gik − 1
3 Gmmδik . The total energy density associated with the Euler subsystem

is E12 = E1 + E2. The vector of thermodynamic dual variables reads p = ∂qE = {pi } =
(r , vi , T , αik, βk)

T with

r = ∂ρE, vi = ∂ρviE, T = ∂ρSE, αik = ∂AikE, βk = ∂JkE. (4)
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The pressure is defined as p = ρ ∂ρE+ρvi ∂ρviE+ρS ∂ρSE−E = ρ2∂ρE, the stress tensors
due to shear stress and thermal stress are, respectively,

σik = A ji∂A jkE = A jiα jk = ρc2s Gi j G̊ jk, ωik = Ji∂JkE = Jiβk = ρc2h Ji Jk, (5)

while the heat flux vector is given by

hk = ∂ρSE ∂JkE = Tβk = ρc2hT Jk . (6)

The total energy flux Fk can be decomposed into a contribution from the Euler subsystem
(black terms) and the remaining terms (red terms) as Fk =F12

k +F34
k , with

F12
k = vk (E1 + E2) + viδik p,

F34
k = vk (E3 + E4) + vi (σik + ωik) + hk . (7)

Note that for our convenience, we use the opposite sign in the definition of the stress tensor
compared to the generally accepted notation. Furthermore, θ1(τ1) > 0 and θ2(τ2) > 0 are
two algebraic functions of the state vector q and the positive relaxation times τ1 > 0 and
τ2 > 0:

θ1 = 1

3
ρz1τ1 c

2
s |A|− 5

3 , θ2 = ρz2τ2 c
2
h, z1 = ρ0

ρ
, z2 = ρ0T0

ρ T
, (8)

with ρ0 and T0 being some reference density and temperature. It is easy to check that (1f) is
a consequence of (1a)–(1e), i.e.

(1 f ) = r · (1a) + vi · (1b) + T · (1c) + αik · (1d) + βk · (1e). (9)

In [40] a formal asymptotic analysis of the model (1a)–(1f) was carried out, revealing that in
the stiff limit the stress tensor σik and the heat flux hk tend to

σik = −1

6
ρ0c

2
s τ1

(
∂kvi + ∂ivk − 2

3
(∂mvm) δik

)
, hk = −ρ0T0c

2
hτ2∂kT , (10)

i.e. when the relaxation times τ1, τ2 → 0, the Navier–Stokes–Fourier equations are retrieved,
with effective shear viscosity μ = 1

6ρ0c
2
s τ1 and heat conductivity κ = ρ0T0c2hτ2.

2.2 Turbulent ShallowWater Flows (TSW)

The secondmodel considered is the following overdetermined hyperbolicmodel for turbulent
shear shallow water flows (TSW) in multiple space dimensions, which has been recently
proposed by Gavrilyuk and Ivanova et al. in [50] and which was also applied and studied in
[12, 29, 62]. In this paper, we employ the reformulation proposed in [21] in terms of a new
evolution variable Q that allows to rewrite the Reynolds stress tensor P as P = QQT . Note
that the original Reynolds stress tensor P is symmetric and positive definite, while Q is not
symmetric. There are three reasons for such a decomposition: first, the interesting analogy
with the GPR model of continuum mechanics, where the symmetric positive definite metric
tensor G = ATA is written in terms of the non-symmetric distortion field A (the inverse
deformation gradient for purely elastic materials), see [21] and eqn. (16) below; second, there
is a purely numerical advantage, since the evolution ofQ instead ofP allows the discrete trace
of P to be naturally non-negative, while this is non-trivial for high order DG schemes when
evolving P directly, see also [21]; third, the total energy potential is a quadratic function in
terms ofQ, while it is not in terms of P. The quadratic dependence onQ is important for the
construction of thermodynamically compatible schemes, as those presented in [21] and in
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this paper. For more details concerning the physical interpretation of the PDE for Q and the
various motivations why to choose this evolution variable rather than the original Reynolds
stress tensor P, see [21].

With Pik = QimQkm written in terms of the new evolution variable Q and the notation
∂m = ∂/∂xm the turbulent shallow water system can be rewritten as an overdetermined PDE
system as follows:

∂t h + ∂m(hvm)−
(

ε
∂h

∂xm

)
= 0, (11a)

∂t (hvi ) + ∂k

(
hvivk + 1

2
gh2δik + hPik

)
− ∂

∂xm

(
ε
∂hvi

∂xm

)
= 0, (11b)

∂t Qik + vm ∂m Qik + (∂mvi ) Qmk− ∂

∂xm

(
ε
∂Qik

∂xm

)
= 	ik, (11c)

∂tE + ∂i

(
(E1 + E2)vi +

(
1

2
gh2δik + hPik

)
vk

)
− ∂

∂xm

(
ε

∂E

∂xm

)
= 0, (11d)

with the evolution variables h=h(x, t), hv=hv(x, t),Q=Q(x, t), the Reynolds stress tensor
P = P(x, t), and the total energy E = hE = E1+E2+E3, that can be decomposed into three
contributions with E1 = hE1 = 1

2 gh
2, E2 = hE2 = 1

2hvivi and E3 = hE3 = 1
2hQik Qik .

Here, E12 = E1 + E2 is the total energy potential of the shallow water subsystem in (11a)–
(11b) (black terms) and E3 is the total energy associated with the new object Qik (red terms).
In what follows, we will again decompose the inviscid part of the total energy flux in (11d)
as

Fk = (E1 + E2) vk + 1

2
gh2δikvi + E3vk + vi hPik = F12

k + F34
k , (12)

with the abbreviations

F12
k = (E1 + E2) vi + 1

2
gh2vi , F34

k = E3vk + vi hPik (13)

that will be used later. Here, F12 corresponds to the energy flux related to the shallow water
subsystem (black terms) and F34 to the energy flux related to the work of the Reynolds stress
tensor (red terms). The production term, 	ik , which is needed to achieve the consistency of
(11a)–(11c) with the total energy conservation law (11d), reads

	ik = ε
Qik

h trP
∂mqi

(
∂2qi q j

E
)

∂mq j . (14)

In (14) the vector q = qi = (h, hvi , Qik) indicates the vector of primary state variables
and ∂2qi q j

E is the Hessian matrix of the total energy potential with respect to these state
variables. One can show that the Hessian matrix is positive definite for sufficiently small
turbulent kinetic energy Qi j Qi j compared to gh, namely Qi j Qi j < gh, which is a rather
mild assumption, see [21] for details. In [21] it was also shown that the energy conservation
law (11d) is a consequence of Eqs. (11a)–(11c). Concerning the entropy inequality associated
with the turbulent shallowwater equations, in [21, 62] it was shown that the following entropy
inequality is a consequence of system (11):

∂t |Q| + ∂m (vm |Q|) = ε
|Q|δkk
h trP

∂mqi
(
∂2qi q j

E
)

∂mq j ≥ 0, (15)

with δik the usual Kronecker symbol and |Q| = det(Q) denoting the determinant of Q.
However, obtaining a discrete analogue of (15) is clearly out of scope of the present paper,
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since it would require a provably compatible discretization of the Jacobi identity of the time
derivative of the determinant of a matrix.

Note that the system (11) contains non-conservative terms that do not vanish across shock
waves, see [62]. This poses many challenges from a theoretical as well as from a numerical
point of view. As already pointed out in [21, 62] the key ingredient for a successful numerical
discretization of (11) is the discrete consistency of the numerical schemewith the total energy
conservation law. In [62] this discrete consistency was imposed via a suitable wave splitting
approach that made use of total energy conservation in each sub step of the split scheme. In
[21] total energy conservation was instead achieved either via a provably thermodynamically
compatible discretization, as used in this paper, or via a suitable rescaling of Q at the end of
each time step, such as to enforce discrete energy conservation. For amore detailed discussion
on this topic, see [21]. Note that the governing PDE for Q (11c) is formally very similar to
the governing PDE for the distortion field Aik in nonlinear hyperelasticity, (1d), which after
application of the product rule reads

∂t Aik + vm∂m Aik + Aim (∂kvm) − ∂

∂xm

(
ε
∂Aik

∂xm

)
= − EAik

θ1(τ1)
. (16)

As one can easily see, the order of the matrix-product in the third term on the left hand side
of (11c) and (16) is exchanged.

2.3 The Godunov Form of Hyperbolic Systems of Conservation Laws

The Godunov form, [52], of the inviscid Euler subsystem in (1) and of the shallow water
subsystem in (11) (black terms) reads

∂t
(
∂pL

12) + ∂k
(
∂p(vk L

12)
) = 0, (17)

q = ∂pL
12, p = ∂qE

12, fk = ∂p(vk L
12), F12

k = p · fk − vk L
12. (18)

The so-called generating potential L12, which is the Legendre transform of the total energy
density related to the Euler/shallow water subsystem E12 = E1 + E2, is defined as

L12 = p · q − E12. (19)

It is easy to check that with the above parametrization of the hyperbolic system according to
Godunov, the extra conservation law for the total energy density takes the form

∂tE
12 + ∂k F

12
k = 0 (20)

with the related total energy flux F12
k .

2.4 General Formulation

Both PDE systems presented previously, i.e. the GPR model (1) and the hyperbolic model
for turbulent shallow water flows (11) can be cast into the following general form

∂tq + ∂kfk(q) + ∂khk(q) + Bk(q)∂kq − ∂m (ε∂mq) = P + S(q), (21)

with the extra conservation law for the total energy density

∂E

∂t
+ ∂k Fk − ∂m (ε∂mE) = 0. (22)
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Here, the flux tensor fk(q) is related to the terms that directly fall into the formalism of
Godunov (black terms), the flux tensor hk(q) and the nonconservative product Bk(q)∂kq
include the terms that are not directly contained in the Godunov formalism (red terms),
the dissipation is ∂m (ε∂mq) with the associated entropy production P (blue terms) and the
relaxation source terms are denoted by S(q) (green terms). In the extra conservation law (22)
the total energy flux is denoted by Fk = Fk(q).

Since p = ∂qE and therefore p · ∂tq = ∂tE, for thermodynamic compatibility of the full
system (21) with (22) the following identity must hold:

p · (∂kfk(q) + ∂khk(q)) + p · Bk(q)∂kq = ∂k Fk . (23)

The above condition can be divided into two separate equalities,

p · ∂kfk(q) = ∂k F
12
k , (24)

p · ∂khk(q) + p · Bk(q)∂kq = ∂k F
34
k , (25)

which mean compatibility of the flux terms and of the non-conservative products with the
corresponding contribution to the total energy flux. Moreover, we also have

p · P + p · ∂m (ε∂mq) = ∂m (ε∂mE) , (26)

i.e. compatibility of the dissipation terms with the production term and

p · S(q) = 0, (27)

is required in order to have compatibility of the algebraic source terms.

3 Numerical Method

3.1 Review of Thermodynamically Compatible Finite Volume Schemes

In this section we first briefly recall the new class of thermodynamically compatible HTC
finite volume schemes forwarded in [21, 22] for the GPRmodel and for the hyperbolic model
of turbulent shallow water flows and in [20] for the MHD equations. All these schemes
obtain the total energy conservation law as a consequence of all other equations. Recalling
these schemes here is useful since their thermodynamically compatible numerical flux and
the appropriate discretization of the fluctuations will be also the basis of the high order
DG schemes proposed in this paper. Given a spatial control volume denoted by �� with
circumcenter x�, and denoting one of its neighbors by �r and the common edge by ∂��r ,
n�r = (n�r

1 , n�r
2 )T being the outward pointing unit normal vector to the face ∂��r , with

nr� = −n�r , and denoting by N� the set of neighbors of cell ��, then the thermodynamically
compatible finite volume schemes [20–22] read as follows:

∂q�

∂t
= − 1∣∣��

∣∣
∑
r∈N�

∣∣∣∂��r
∣∣∣ (F (

q�,qr
)

· n�r + R
(
q�,qr

)
· n�r

+ G
(
q�,qr

)
· n�r + P

(
q�,qr

))
+ S(q�). (28)

The thermodynamically compatible numerical flux in normal direction F
(
q�,qr

) · n�r is
based on a discrete Godunov formalism, making use of the generating potential L12 and
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a path integral along a straight line segment path in the main field (thermodynamic dual)
variables, which leads to the so-called p-scheme proposed in [21],

F�r = F
(
q�,qr

)
· n�r =

1∫
s=0

fk
(
�(p�,pr, s)

)
· n�r

k ds, (29)

with the path given by

�(p�,pr, s) = p� + s
(
pr − p�

)
. (30)

The path integral is calculated numerically at the aid of a Gauss-Legendre quadrature of
sufficient accuracy. It is easy to check, see [20–22], that with the Godunov parametrization
of the physical flux fk = ∂p(vk L12) in terms of the generating potential L12 = p · q − E12

the numerical flux (29) satisfies the compatibility property

F�r ·
(
pr − p�

)
=

((
vk L

12)r − (
vk L

12)�
)
n�r
k (31)

and since F12
k = p · fk − (vk L12), after subtracting

(
pr · f rk − p� · f�k

)
n�r
k from both sides of

the above equation, we obtain the property

p� ·
(
F�r − f�k n

�r
k

)
+ pr ·

(
f rk n

�r
k − F�r

)
=

(
F12,r
k − F12,�

k

)
n�r
k (32)

in terms of the fluctuations F�r − f�k n
�r
k and f rk n

�r
k − F�r related to the numerical flux in

normal direction. Moreover, the flux containing the numerical viscosity reads

G
(
q�,qr

)
= ε�r q

r − q�

δ�r
= ε�r �q�r

δ�r
, δ�r =

∥∥∥xr − x�
∥∥∥ = �xn�r

1 + �yn�r
2 , (33)

with an associate non-negative entropy production term that will be specified later. If present
in the mathematical model, the algebraic source term must obey a pointwise compatibility
condition as follows

p� · S
(
q�

)
= 0, (34)

while the fluctuations related to the remaining part of the energy potential (red terms) satisfy

p� · R
(
q�,qr

)
· n�r + pr · R

(
qr,q�

)
· nr� =

(
F34,r
k − F34,�

k

)
n�r
k (35)

with nr� = −n�r . The discrete fluctuation terms, R
(
q�,qr

) · n�r , are specific for each
model and are detailed below. In this paper we use the terminology fluctuation for both,
flux differences, as well as for the jump terms that arise at the element boundaries due to
the non-conservative terms in the PDE system (21), see [27, 75]. The fluctuations are also
related to the wave propagation form of the scheme, see [68, 69].

GPRmodel. Following [22], the thermodynamically compatible discretization of the fluc-
tuations R

(
q�,qr

) · n�r for the GPR model (1) reads:

R
(
q�,qr

)
·n�r =

⎛
⎜⎜⎜⎜⎜⎜⎝

0(
σ�r
ik − σ�

ik

) · n�r
k + (

ω�r
ik − ω�

ik

) · n�r
k

1
2

(
βr
k − β�

k

) · n�r
k

1
2 A

�r
im

(
vrm − v�

m

)
n�r
k + 1

2 ũ
�r
A

(
Ar
ik − A�

ik

)
1
2 J

�r
m

(
vrm − v�

m

)
n�r
k + 1

2 ũ
�r
J

(
J rk − J �

k

)+ 1
2

(
T r − T �

)
n�r
k

⎞
⎟⎟⎟⎟⎟⎟⎠

, (36)
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where

σ�r
jk = 1

2

(
A�
i j + Ar

i j

) 1

2

(
α�
ik + αr

ik

)
, ω�r

ik = 1

2

(
J �
i + J ri

) 1

2

(
β�
k + βr

k

)
, (37)

A�r
im = 1

2

(
A�
im + Ar

im

)
, ũ�r

A = F�r
ρ

(
E r
3 − E�

3

)
1
2

(
α�
ik + αr

ik

) (
Ar
ik − A�

ik

) , (38)

J �r
i = 1

2

(
J �
i + J ri

)
, ũ�r

J = F�r
ρ

(
E r
4 − E�

4

)
1
2

(
β�
k + βr

k

) (
J rk − J �

k

) , (39)

and P
(
q�,qr

) = (
0, 0,	�r, 0, 0

)T
, is the non-negative entropy production term due to the

numerical viscosity with

	�r = 1

2
ε�r �q�r

T �
· ∂2qqẼ

�r �q�r

δ�r
≥ 0, T � =

(
ρ�

)γ−1

(γ − 1) cv

e
S�

cv . (40)

Turbulent shallow water flows. According to [21] the thermodynamically compatible
discretization of the fluctuations R

(
q�,qr

) · n�r for the turbulent shallow water model (11)
reads:

R
(
q�,qr

)
· n�r =

⎛
⎜⎝

0(
σ�r
ik − σ�

ik

) · n�r
k

1
2Q

�r
mk

(
vri − v�

i

)
n�r
m + 1

2 ũ
�r
Q

(
Qr

ik − Q�
ik

)
⎞
⎟⎠ , (41)

where

σ�r
i j = 1

2

(
Q�

jk + Qr
jk

) 1

2

(
hQ�

ik + hQr
ik

)
, (42)

Q�r
mk = 1

2

(
Q�

mk + Qr
mk

)
, ũ�r

Q = F�r
h

(
E r
3 − E�

3

)
1
2

(
hQ�

ik + hQr
ik

) (
Qr

ik − Q�
ik

) , (43)

andP
(
q�,qr

) = (
0, 0,	�r

ik

)T
, is the non-negative entropy production term due to the numer-

ical viscosity with

	�r
ik = Q�

ik
1

2
ε�r �q�r

T �
· ∂2qqẼ

�r �q�r

δ�r
≥ 0, T � = h�trP�. (44)

In both cases the Roe matrix of the Hessian ∂2qqẼ
�r must satisfy the Roe property

∂2qqẼ
�r

(
qr − q�

)
= pr − p�. (45)

It can be easily obtained via the path integral

∂2qqẼ
�r =

1∫
0

∂2qqE
(
ψ̃(s)

)
ds =:

(
∂2pp L̃

�r
)−1

, (46)

where this time a segment path in q variables is used:

ψ̃(s) = ψ̃(q�,qr, s) = q� + s
(
qr − q�

)
. (47)

Throughout this paper all path integrals are computed numerically at the aid of a Gauss-
Legendre quadrature formula of sufficient accuracy. In practice, we found that 3 quadrature
points are enough, see [22] for a detailed analysis on the influence of the accuracy of the
numerical quadrature on total energy conservation.
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3.2 Thermodynamically Compatible DG Schemes in One Space Dimension

In one space dimension, the computational domain, �, is covered by non-overlapping ele-

ments of the form�� = [x�− 1
2 , x�+ 1

2 ] and the discrete solution is expanded in terms of nodal
basis functions ϕm(x) as

qh(x, t) =
N∑

m=0

ϕm(x)q̂�
m(t), (48)

with q̂�
m(t) the time dependent degrees of freedom and N the maximum polynomial degree of

the basis functions. In this paper, we use Lagrange interpolation polynomials passing through
the Gauss-Legendre quadrature nodes. Consequently, we have the discrete main field

ph(x, t) =
N∑

m=0

ϕm(x)p̂�
m(t), p̂�

m(t) = p
(
q̂�
m(t)

)
(49)

and the discrete total energy density

Eh(x, t) =
N∑

m=0

ϕm(x)Ê�
m(t), Ê�

m(t) = E
(
q̂�
m(t)

)
. (50)

To ease notation, we will make use of the following abbreviations:

ϕ
�− 1

2
k = ϕk

(
x

�− 1
2+
)

, ϕ
�+ 1

2
k = ϕk

(
x

�+ 1
2−
)

,

∂xϕ
�− 1

2
k = ∂xϕk

(
x

�− 1
2+
)

, ∂xϕ
�+ 1

2
k = ∂xϕk

(
x

�+ 1
2−
)

.

Multiplication of (21) by a test function ϕk , integration over a cell��, substitution of (48),

integration by parts and addition of the jump terms ∂xϕ
�± 1

2
k V�± 1

2 with positive sign on the
right hand side lead to the DG scheme

x�+ 1
2∫

x�− 1
2

ϕk∂tqhdx + ϕ
�+ 1

2
k F�+ 1

2 − ϕ
�− 1

2
k F�− 1

2 −
x

�+ 1
2−∫

x
�− 1

2+

∂xϕkf1(qh)dx

+ϕ
�+ 1

2
k R

�+ 1
2− + ϕ

�− 1
2

k R
�− 1

2+ +
x

�+ 1
2−∫

x
�− 1

2+

ϕk (∂xh1(qh) + B1(qh)∂xqh) dx

= ϕ
�+ 1

2
k G�+ 1

2 − ϕ
�− 1

2
k G�− 1

2 + ∂xϕ
�+ 1

2
k V�+ 1

2 + ∂xϕ
�− 1

2
k V�− 1

2

−
x

�+ 1
2−∫

x
�− 1

2+

∂xϕkε∂xqhdx + Pk +
x�+ 1

2∫

x�− 1
2

ϕkS(qh)dx, (51)

where the different terms are defined as described below.
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According to [20–22] and as shown above for the finite volume case, the numerical flux
is obtained by a path integral following the ideas on path conservative methods presented in
[26, 75]:

F�+ 1
2 = F

(
q

�+ 1
2− ,q

�+ 1
2+
)

· n =
1∫

0

fk

(
�(p

�+ 1
2− ,p

�+ 1
2+ , s)

)
· nk ds, (52)

with n = (1, 0, 0), in 1D, and the path given by

�(p
�+ 1

2− ,p
�+ 1

2+ , s) = p
�+ 1

2− + s

(
p

�+ 1
2+ − p

�+ 1
2−
)

. (53)

The point values p
�+ 1

2± are given by the point-wise evaluation p
�+ 1

2± = p(q
�+ 1

2± ), with q
�+ 1

2±
the boundary-extrapolated values of the discrete numerical solution qh . The numerical flux,
by construction, verifies the following Roe-type property, see [20–22]:

F�+ 1
2 ·

(
p

�+ 1
2+ − p

�+ 1
2−
)

= (v1L)
�+ 1

2+ − (v1L)
�+ 1

2− . (54)

The viscous numerical flux is inspired by the work of Gassner, Lörcher and Munz [47] and
reads

G�+ 1
2 = 1

2
ε ∂2ppL̃

�+ 1
2

(
∂xp

�+ 1
2− + ∂xp

�+ 1
2+
)

+ η�+ 1
2

(
q

�+ 1
2+ − q

�+ 1
2−
)

,

η�+ 1
2 = 1

2
s
�+ 1

2
max + 2N + 1

�x
ε. (55)

We stress that in our DG scheme above the jump termsV�+ 1
2 have the opposite sign compared

to the ones derived in [47] via the usual integration by parts back and forth. This choice of the
sign is necessary in order to prove semi-discrete total energy conservation and thus nonlinear
stability in the energy norm, see the additional comments in the proof of Theorem 2. They
read

V�+ 1
2 = 1

2
ε

(
q

�+ 1
2+ − q

�+ 1
2−
)

. (56)

For the GPR model, the discrete entropy production term related to the viscous terms is
Pk = (0, 0,	GPR

k , 0, 0)T , with

	GPR
k =

x
�+ 1

2−∫

x
�− 1

2+

ϕk
ε

T
∂xqh · ∂2qqE ∂xqhdx

+ϕ
�− 1

2
k

η�− 1
2

2 T
�− 1

2+

(
q

�− 1
2+ − q

�− 1
2−
)

· ∂2qqẼ
�− 1

2

(
q

�− 1
2+ − q

�− 1
2−
)

+ϕ
�+ 1

2
k

η�+ 1
2

2 T
�+ 1

2−

(
q

�+ 1
2+ − q

�+ 1
2−
)

· ∂2qqẼ
�+ 1

2

(
q

�+ 1
2+ − q

�+ 1
2−
)

, (57)
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while for the turbulent shallow water equations we have Pk = (0, 0,�TSW
k )T ,

�TSW
k =

x
�+ 1

2−∫

x
�− 1

2+

ϕk
ε Q
htr(¶)

∂xqh · ∂2qqE ∂xqhdx

+ϕ
�− 1

2
k

η�− 1
2 Q

�− 1
2+

2 h tr(¶)
�− 1

2+

(
q

�− 1
2+ − q

�− 1
2−
)

·∂2qqẼ�− 1
2

(
q

�− 1
2+ − q

�− 1
2−
)

+ϕ
�+ 1

2
k

η�+ 1
2 Q

�+ 1
2−

2 h tr(¶)
�+ 1

2−

(
q

�+ 1
2+ − q

�+ 1
2−
)

·∂2qqẼ�+ 1
2

(
q

�+ 1
2+ − q

�+ 1
2−
)

. (58)

For both models, the fluctuations are defined according to (36) and (41), respectively, which
in one space dimension reduces to

R
�+ 1

2− = R

(
q

�+ 1
2− ,q

�+ 1
2+
)

· n, and R
�+ 1

2+ = −R

(
q

�+ 1
2+ ,q

�+ 1
2−
)

· n

with n = (1, 0, 0). They verify the discrete compatibility relation

p
�+ 1

2− · R�+ 1
2− + p

�+ 1
2+ · R�+ 1

2+ = F34
1

(
q

�+ 1
2+
)

− F34
1

(
q

�+ 1
2−
)

. (59)

3.3 Thermodynamically Compatible DG Schemes in Multiple Space Dimensions

Inmultiple space dimensions, the computational domain� is discretized via non-overlapping

elements defined as �i = [xi1−
1
2

1 , x
i1+ 1

2
1 ] × [xi2−

1
2

2 , x
i2+ 1

2
2 ]. The discrete solution for the

vector of conservative variables reads as usual

qh(x, t) =
N∑

m=1

ϕm(x)q̂im(t). (60)

As in the one-dimensional case we employ nodal basis functions, defined as the tensor prod-
ucts of the one-dimensional basis functions described in the previous section. The maximum
polynomial approximation degree per dimension is again denoted by N andN in (60) denotes
the number of degrees of freedom per element, i.e. (N + 1)d for a tensor-product basis in
d space dimensions. In multiple space dimensions, the thermodynamically compatible DG
scheme for the hyperbolic system (21), denoted by HTC DG scheme in the following, can
be derived via multiplication of (21) with a test function ϕk(x), integration by parts of the
flux terms and via the use of suitable thermodynamically compatible fluxes and fluctuations
defined later:∫

�i

ϕk∂tqdx +
∫

∂�i

ϕkF(q�
h,q

r
h) · n dS −

∫
�◦
i

∂mϕkfm(qh)dx

+
∫

∂�i

ϕkR(q�
h,q

r
h) · n dS +

∫
�◦
i

ϕk(∂mhm(qh) + Bm(qh)∂mqh)dx
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=
∫

∂�i

ϕkG(q�
h,q

r
h) · n dS +

∫
∂�i

∂mϕkV(q�
h,q

r
h) · nm dS

−
∫
�◦
i

∂mϕk(ε∂mqh)dx + Pk +
∫
�i

ϕkS(qh)dx. (61)

Here, q�
h , q

r
h are the boundary extrapolated values of the DG solution computed at the left

and right sides of the element boundary, respectively. To compute the thermodynamically
compatible numerical fluxes F(q�

h,q
r
h) · n and the fluctuations R(q�

h,q
r
h) · n we can make

use of those already introduced for the finite volume scheme (29), (36), (41), which satisfy
the compatibility relations (31) and (35). The viscous fluxes read

G
(
q�,qr

)
· n = 1

2
ε ∂2ppL̃

�r
(
∂kp� + ∂kpr

)
nk + η�r

(
qr − q�

)
,

η�r = 1

2
s�r
max + 2N + 1

δ�r
ε�r, (62)

while the viscous jump terms are given by

V
(
q�,qr

)
= 1

2
ε�r

(
qr − q�

)
. (63)

We emphasize again that the term in (61) including the jump V
(
q�,qr

)
has the opposite sign

compared to the one given in [47] in order to prove thermodynamic compatibility, see the
proof of Theorem 2. The discrete entropy production term, Pk = (0, 0,	GPR

k , 0, 0)T , for
the GPR model, is

	GPR
k =

∫
�◦
i

ϕk
ε

T
∂kqh · ∂2qqE ∂kqhdx

+
∫

∂�i

ϕk
η�r

2 T �

(
qr − q�

)
· ∂2qqẼ

�r
(
qr − q�

)
dS (64)

while for the TSW model it reads Pk = (0, 0,�TSW
k )T , with

�TSW
k =

∫
�◦
i

ϕk
ε Q
h tr¶

∂kqh · ∂2qqE ∂kqhdx

+
∫

∂�i

ϕk
η�r Q�

2 h tr¶�

(
qr − q�

)
· ∂2qqẼ

�r
(
qr − q�

)
dS. (65)

Theorem 1 (Cell entropy inequality) For the GPR model the HTC DG scheme (61) satisfies
the cell entropy inequality∫

�i

∂t (ρS)hdx +
∫

∂�i

FρS(q�
h,q

r
h) · n dS +

∫
∂�i

1

2

(
β�
m + βr

m

)
· nm dS

−
∫

∂�i

GρS(q�
h,q

r
h) · n dS ≥ 0. (66)
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Proof To obtain a cell entropy inequality for the GPR model, we employ the test function
ϕk = 1 in (61) that, together with the notation

π = αikαik

θ1(τ1)T
+ βiβi

θ2(τ2)T
≥ 0 (67)

and (64), yields∫
�i

∂tρSdx +
∫

∂�i

FρS(q�
h,q

r
h) · n dS +

∫
∂�i

RρS(q�
h,q

r
h) · n dS

+
∫
�◦
i

(∂mhm(qh) + Bm(qh)∂mqh)dx −
∫

∂�i

GρS(q�
h,q

r
h) · n dS =

∫
�i

πdx

+
∫
�◦
i

ε

T
∂kqh · ∂2qqE ∂kqhdx +

∫
∂�i

η�r

2 T �

(
qr − q�

)
· ∂2qqẼ

�r
(
qr − q�

)
dS.

Substituting (36), we get∫
�i

∂tρSdx +
∫

∂�i

FρS(q�
h,q

r
h) · n dS +

∫
∂�i

1

2

(
βr
k − β�

k

)
· nk dS

+
∫
�◦
i

∂mβmdx −
∫

∂�i

GρS(q�
h,q

r
h) · n dS =

∫
�i

πdx

+
∫
�◦
i

ε

T
∂kqh · ∂2qqE ∂kqhdx +

∫
∂�i

η�r

2 T �

(
qr − q�

)
· ∂2qqẼ

�r
(
qr − q�

)
dS.

At the aid of Gauss’ theorem and thanks to π ≥ 0 and ∂2qqE ≥ 0, we obtain the sought cell
entropy inequality:∫

�i

∂tρSdx +
∫

∂�i

FρS(q�
h,q

r
h) · n dS +

∫
∂�i

1

2

(
βr
k + β�

k

)
· nk dS

−
∫

∂�i

GρS(q�
h,q

r
h) · n dS =

∫
�i

πdx

+
∫
�◦
i

ε

T
∂kqh · ∂2qqE ∂kqhdx +

∫
∂�i

η�r

2 T �

(
qr − q�

)
· ∂2qqẼ

�r
(
qr − q�

)
dS ≥ 0.

��
Theorem 2 (Nonlinear stability in the energy norm) The HTC DG schemes (61) with (28),
(35), (62), (63) and (64) for the GPR model and with (65) for the TSW model are nonlinearly
stable in the energy norm, i.e. ∫

�

∂E

∂t
dx = 0, (68)

for vanishing boundary fluxes.
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Proof Using the Godunov parametrization of the flux fm = ∂p(vmL) with the shorthand
notation L := L12 and summing up all equations in (61) after multiplication by p̂im yields

∫
�i

ph · ∂tqhdx +
∫

∂�i

p�
h · F(q�

h,q
r
h) · n dS −

∫
�◦
i

∂mph · ∂p(vmL)dx

+
∫

∂�i

p�
h · R(q�

h,q
r
h) · n dS +

∫
�◦
i

ph · (∂mhm(qh) + Bm(qh)∂mqh)dx

=
∫

∂�i

p�
h · G(q�

h,q
r
h) · n dS +

∫
∂�i

∂mp�
h · V(q�

h,q
r
h) · nm dS

−
∫
�◦
i

∂mph · (ε∂mqh)dx + Pk · p̂ik +
∫
�i

ph ·S(qh)dx.

The compatibility condition (25) and the point-wise compatibility of the source terms, (27),
lead to ∫

�i

ph · ∂tqhdx +
∫

∂�i

p�
h · F(q�

h,q
r
h) · n dS −

∫
�◦
i

∂m(vmL)dx

+
∫

∂�i

p�
h · R(q�

h,q
r
h) · n dS +

∫
�◦
i

∂k F
34
k dx

=
∫

∂�i

p�
h · G(q�

h,q
r
h) · n dS +

∫
∂�i

∂mp�
h · V(q�

h,q
r
h) · nm dS

−
∫
�◦
i

∂mph · (ε∂mqh)dx + Pk · p̂ik .

Using (24), the notationF�r = F(q�
h,q

r
h) · n and adding and subtracting 1

2

∫
∂�i

prh ·F�rdS

and
∫
∂�i

1
2p

r
h · R(qrh,q

�
h) · (−n) dS, we obtain

∫
�i

ph · ∂tqhdx + 1

2

∫
∂�i

(
p�
h + prh

)
· F�r dS + 1

2

∫
∂�i

(
p�
h − prh

)
· F�r dS

−
∫

∂�i

(vmL)� · nmdS +
∫

∂�i

1

2

(
p�
h · R(q�

h,q
r
h) − prh · R(qrh,q

�
h)

)
· n dS

+
∫

∂�i

1

2

(
p�
h · R(q�

h,q
r
h) + prh · R(qrh,q

�
h)

)
· n dS +

∫
�◦
i

∂k F
34
k dx

=
∫

∂�i

p�
h · G(q�

h,q
r
h) · n dS +

∫
∂�i

∂mp�
h · V(q�

h,q
r
h) · nm dS

−
∫
�◦
i

∂mph · (ε∂mqh)dx + Pk · p̂ik .
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Next, we add and subtract 1
2

∫
∂�i

(vmL)r · nmdS and use the compatibility condition of the

fluctuations, (35),∫
�i

ph · ∂tqhdx + 1

2

∫
∂�i

(
p�
h + prh

)
· F�r dS + 1

2

∫
∂�i

(
p�
h − prh

)
· F�r dS

−1

2

∫
∂�i

(
(vmL)� + (vmL)r

)
· nmdS − 1

2

∫
∂�i

(
(vmL)� − (vmL)r

)
· nmdS

+1

2

∫
∂�i

(
F34,r
m − F34,�

m

)
nmdS +

∫
�◦
i

∂k F
34
k dx

+
∫

∂�i

1

2

(
p�
h · R(q�

h,q
r
h) + prh · R(qrh,q

�
h)

)
· n dS

=
∫

∂�i

p�
h · G(q�

h,q
r
h) · n dS +

∫
∂�i

∂mp�
h · V(q�

h,q
r
h) · nm dS

−
∫
�◦
i

∂mph · (ε∂mqh)dx + Pk · p̂ik .

Rearranging terms and using property (31) of the thermodynamically compatible flux, we
get ∫

�i

∂tEhdx + 1

2

∫
∂�i

[(
p�
h + prh

)
· F�r −

(
(vmL)� + (vmL)r

)
· nm

]
dS

+1

2

∫
∂�i

(
F34,r
m + F34,�

m

)
nmdS +

∫
∂�i

1

2

(
p�
h · R(q�

h,q
r
h) + prh · R(qrh,q

�
h)

)
·n dS

=
∫

∂�i

p�
h · G(q�

h,q
r
h) · n dS +

∫
∂�i

∂mp�
h · V(q�

h,q
r
h) · nm dS

−
∫
�◦
i

∂mph · (ε∂mqh)dx + Pk · p̂ik . (69)

We now address the numerical dissipation terms. By adding and subtracting 1
2

∫
∂�i

prh ·
G(q�

h,q
r
h) · n dS and 1

2

∫
∂�i

∂mprh · V(q�
h,q

r
h) · nm dS, we obtain

∫
∂�i

p�
h · G(q�

h,q
r
h) · n dS +

∫
∂�i

∂mp�
h · V(q�

h,q
r
h) · nm dS

−
∫
�◦
i

∂mph · (ε∂mqh)dx + Pk · p̂ik

=
∫

∂�i

1

2

(
p�
h + prh

)
· G(q�

h,q
r
h) · n dS +

∫
∂�i

1

2

(
p�
h − prh

)
· G(q�

h,q
r
h) · n dS
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+
∫

∂�i

1

2

(
∂mp�

h + ∂mprh
)

· V(q�
h,q

r
h) · nm dS

+
∫

∂�i

1

2

(
∂mp�

h − ∂mprh
)

· V(q�
h,q

r
h) · nm dS −

∫
�◦
i

∂mph · (ε∂mqh)dx + Pk · p̂ik

= −
∫

∂�i

1

2

(
prh − p�

h

)
·
[
1

2
ε�r ∂2pp L̃

�r
(
∂kp�

h + ∂kprh
)
nk + η�r

(
qrh − q�

h

)]
dS

+
∫

∂�i

[
1

2

(
p�
h + prh

)
· G(q�

h,q
r
h) · n + 1

4

(
∂mp�

h + ∂mprh
) · ε�r

(
qrh − q�

h

) · nm
]
dS

+
∫

∂�i

1

2

(
∂mp�

h − ∂mprh
)

· V(q�
h,q

r
h) · nm dS −

∫
�◦
i

∂mph · (ε∂mqh)dx + Pk · p̂ik

=
∫

∂�i

1

2

(
p�
h + prh

)
· G(q�

h,q
r
h) · n dS+

∫
∂�i

1

2

(
∂mp�

h − ∂mprh
)

· V(q�
h,q

r
h) · nm dS,

where the second equality follows from the definition of the dissipative terms (62)–(63)
and the last one is obtained introducing the production term and making use of the Roe
property of the Hessian ∂2pp L̃

�r . The two terms indicated by the red dashed lines cancel
only due to the particular choice of the opposite sign of the jump terms related to V in (61)
compared to the sign given in [47]. Since the main objective of this paper is the construction
of provably thermodynamically compatible DG schemes that leads to semi-discrete total
energy conservation, the sign is dictated by the present proof. Substitution of the former
relation into (69) leads to∫

�i

∂tEhdx + 1

2

∫
∂�i

[(
p�
h + prh

)
· F�r −

(
(vmL)� + (vmL)r

)
· nm

]
dS

+1

2

∫
∂�i

(
F3q4,r
m + F34,�

m

)
nmdS +

∫
∂�i

1

2

(
p�
h · R(q�

h,q
r
h) + prh · R(qrh,q

�
h)

)
· n dS

=
∫

∂�i

1

2

(
p�
h + prh

)
· G(q�

h,q
r
h) · n dS+

∫
∂�i

1

2

(
∂mp�

h − ∂mprh
)

· V(q�
h,q

r
h) · nm dS,

where the sum of the second, third and fourth terms is a consistent approximation of the total
energy flux. Integrating over the domain �, we obtain nonlinear stability in the energy norm∫

�

∂Eh

∂t
dx =

∑
�i

∫
�i

∂tEhdx = 0

since the sum of all internal fluxes cancels and the boundary fluxes vanish. ��

4 Numerical Results

In this section, we present several numerical test cases aiming at assessing the proposed semi-
discreteHTCDGschemes for both theGPRmodel and the hyperbolic turbulent shallowwater
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system. As time integrator the classical fourth order Runge-Kutta method is used for all test
problems shown below. Besides, the time step is set according to the CFL-type condition

�t = CFL

2N + 1

1
|λmax|

h + 2 ε 2N+1
h2

(70)

with h = min(�x,�y) the characteristic mesh spacing, |λmax| the maximum absolute value
of the eigenvalues in the domain and CFL < d , where d is the number of space dimensions.

4.1 GPRModel of ContinuumMechanics

In all numerical tests carried out in the fluid limit of the GPR model the relaxation time τ1
is obtained from the relation μ = 1

6ρ0c
2
s τ1 for given shear sound speed cs , reference density

ρ0 and dynamic viscosity μ. If not stated otherwise, the artificial viscosity is by default set
to ε = 0, the reference density is set to ρ0 = 1 and the specific heat at constant volume is
set to cv = 1. We furthermore set γ = 1.4 for all tests.

4.1.1 Numerical Convergence Study

The order of accuracy of the new HTC DG scheme is verified experimentally for the Euler
subsystem, i.e. for the black terms in (1) at the aid of the well-known isentropic vortex
problem, see [61]. The parameters for the GPR model are set to cs = 0, ch = 0 and the
artificial viscosity is set to ε = 0. The problem is solved until a final time of t = 0.25 in
a periodic domain � = [0, 10]2. Since the flow is isentropic, the entropy is constant and
therefore the corresponding velocity, temperature, density and pressure profiles are(

δv1
δv2

)
= ε

2π
e
1−r2
2

(
5 − y
x − 5

)
, δT = − (γ − 1)ε2

8γπ2 e1−r2 ,

δρ = (1 + δT )
1

γ−1 , δ p = (1 + δT )
γ

γ−1 (71)

with r2 = (x − 5)2 + (y − 5)2 and the vortex strength ε = 5. The above vortex is a steady
solution of the Euler equations, hence the initial condition is equal to the exact solution of the
problem also for all later times. The numerical convergence study of the HTCDG schemes is
carried out with different polynomial approximation degrees N on a sequence of successively
refined Cartesian meshes composed of Nx × Ny elements. The L2 error norms computed at
the final time are reported in Table 1, together with the numerically observed convergence
rates of the scheme for the density ρ, the momentum density ρv1 and the entropy density
ρS.

The numerical convergence rates are optimal for the density (N+1), while they are not for
the momentum density. Instead, the entropy density reaches orders between 2N and 2N +2.
The explanation for this interesting observation is the following: the present test problem is
isentropic and for ε = 0 the only mechanism that generates entropy in the HTC DG scheme
is the jump term 1

2 smax(q
+
h − q−

h ) in the numerical viscosity flux G. But since the jumps
tend to zero with order between N + 1

2 to N + 1 and the production term 	k in the entropy
inequality is quadratic in the jump, for the proposed HTC DG scheme we actually expect
twice the convergence order for the entropy density for all isentropic flows. This seems to be
indeed a very interesting feature of our new HTC DG scheme, which is directly based on the
discretization of the entropy inequality (1c) rather than on the total energy conservation law
(1f), unlike standard DG schemes.
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Table 1 Numerical convergence results in L2 norm for density ρ, momentum density ρv1 and entropy density
ρS at time t = 0.25 using the HTC DG scheme applied to the Euler subsystem, i.e. to the black terms in (1)

Nx ρ ρv1 ρS O(ρ) O(ρv1) O(ρS)

HTC DG scheme—N = 1

32 5.1862E−03 6.1079E−03 7.9565E−05

64 1.2746E−03 1.4482E−03 1.1189E−05 2.0 2.1 2.8

128 3.1726E−04 3.5727E−04 1.4877E−06 2.0 2.0 2.9

256 7.9225E−05 8.9128E−05 1.9171E−07 2.0 2.0 3.0

HTC DG scheme—N = 2

16 2.9748E−03 4.7954E−03 1.5851E−05

32 5.0541E−04 8.5266E−04 7.6401E−07 2.6 2.5 4.4

64 7.2395E−05 1.5411E−04 2.9915E−08 2.8 2.5 4.7

128 9.4557E−06 2.7237E−05 1.0430E−09 2.9 2.5 4.8

HTC DG scheme—N = 3

8 3.6066E−03 6.2320E−03 2.2915E−05

16 2.4323E−04 6.9777E−04 4.5678E−07 3.9 3.2 5.6

32 1.2749E−05 2.7087E−05 2.7042E−09 4.3 4.7 7.4

48 2.3053E−06 6.7687E−06 1.4434E−10 4.2 3.4 7.2

HTC DG scheme—N = 4

8 6.8665E−04 1.8161E−03 3.8111E−06

12 1.0909E−04 1.6207E−04 7.0578E−08 4.5 6.0 9.8

16 2.2145E−05 3.9053E−05 4.2756E−09 5.5 4.9 9.7

20 7.4774E−06 1.8647E−05 8.7831E−10 4.9 3.3 7.1

HTC DG scheme—N = 5

6 8.5762E−04 1.5182E−03 1.8647E−06

8 1.3355E−04 3.0442E−04 1.2998E−07 6.5 5.6 9.3

12 1.6464E−05 6.1433E−05 3.6875E−09 5.2 3.9 8.8

16 2.6318E−06 1.5658E−05 1.9470E−10 6.4 4.8 10.2

4.1.2 Simple Shear Motion in Solids and Fluids

Next, we simulate the time evolution of a simple isolated shear layer in one space dimension.
The computational domain is the interval � = [−0.5,+0.5] and the initial data are ρ = 1,
v1 = v3 = 0, p = 1, A = I, J = 0, v2 = −v0 for x < 0 and v2 = +v0 for x ≥ 0 with v0 =
0.1. The shear sound speed and the speed of heat waves are set to cs = ch = 1. Simulations
are carried out until a final time of t = 0.4 using an equidistant grid composed of 1024
element using the new HTC discontinuous Galerkin scheme with polynomial approximation
degree of N = 9. In the fluid limit of the model, i.e. for τ1 � 1, we set κ = μ and the
reference solution for v2 is simply given by the exact solution of the first problem of Stokes
for the incompressible Navier–Stokes equations, see e.g. [11, 15, 24, 40], and which reads

v2(x, t) = v0 erf

(
1

2

x√
νt

)
(72)

with ν = μ/ρ0. In the solid limit of the GPR model a reference solution can be obtained
by solving the system (1) on a very fine mesh of 10000 cells using a classical second order
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Fig. 1 Numerical solution at time t = 0.4 obtained with the new thermodynamically compatible HTC discon-
tinuous Galerkin finite element schemes for the GPR model applied to simple shear motion in viscous fluids
and in an ideal elastic solid using 1000 elements with polynomial approximation degree N = 9. Results for
the solid (top left) and for fluids with different viscosities: μ = 10−2 (top right), μ = 10−3 (bottom left) and
μ = 10−4 (bottom right) (Color figure online)

accurate MUSCL-Hancock type TVD finite volume scheme, see [96] for details. In all cases
we set the artificial viscosity to ε = 10−6. The numerical results obtained with the new HTC
DG scheme are shown in Fig. 1 and in all cases an excellent agreement between numerical
and reference solutions can be observed.

4.1.3 Riemann Problems

In this section, we apply the new HTC DG scheme to five Riemann problems in the domain
� = [−0.5,+0.5] with left and right initial states given in Table 2 and with initial disconti-
nuity located in xc = 0, if not stated otherwise. We consider test cases for both, the full GPR
model (1) (RP4 and RP5), as well as the Euler subsystem (RP1, RP2, RP3), i.e. just the black
terms in (1). The exact Riemann solver for the Euler equations can be found in the well-
known textbook [96]. For the full GPR model we generate a numerical reference solution
by solving (1) on a very fine mesh of 128000 control volumes using a classical second order
TVD finite volume scheme of the MUSCL-Hancock type, see [96]. For the computation of
the reference solution, we solve the total energy conservation law (1f) instead of the entropy
inequality (1c), while in the HTC DG scheme we solve the entropy inequality (1c) instead of
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Table 2 Initial states left (L) and right (R) for density ρ, velocity v = (v1, v2, 0) and pressure p for Riemann
problems RP1-RP3 (Euler subsystem) and for RP4-RP5 (full GPR model)

RP ρL PvL1 vL2 pL ρR vR1 vR2 pR

RP1 1.0 0.0 0.0 1.0 0.125 0.0 0.0 0.1

RP2 5.99924 19.5975 0.0 460.894 5.99242 − 6.19633 0.0 46.095

RP3 1.0 − 1.0 0.0 1.0 1.0 + 1.0 0.0 1.0

RP4 1.0 0.0 − 0.2 1.0 0.5 0.0 + 0.2 0.5

RP5 1.0 0.0 − 0.2 1.0 0.5 0.0 + 0.2 0.5

Fig. 2 Results of the density for Riemann problems RP1 (xc = 0) and RP2 (xc = −0.2) at times t = 0.2 and
t = 0.035, obtained using the new thermodynamically compatible HTC DG scheme with N = 9 (red dashed
line) on 1000 elements applied to the compressible Euler equations. The exact solution, see [96], is pictured
by the black solid line (Color figure online)

the energy Eq. (1f). As such, the reference solution is really obtained in a completely different
manner compared to the numerical scheme proposed in this paper. For the last two Riemann
problems, RP4 and RP5, we define the initial conditions for the distortion field A and for the
specific thermal impulse J to A = I and J = 0. Furthermore, we set cs = ch = 1. For RP4
we furthermore choose the relaxation times so that μ = λ = 10−5 and for RP5 we simply
set τ1 = τ2 = 1020. The artificial viscosity is set to ε = 10−5 in all cases. In Figs. 2, 3, 4
and 5 we compare the reference solutions with the numerical results obtained with the new
HTC DG scheme proposed in this paper. The employed mesh resolution is provided for each
test case in the corresponding figure caption and the polynomial approximation degree for
the HTC DG scheme is set to N = 9. For all Riemann problems we can observe an excellent
agreement between numerical solution and reference solution.

4.1.4 Viscous Shock Wave

Here we apply our new HTC DG scheme to a stationary viscous shock wave with a shock
Mach number Ms = 2. The Prandtl number in the fluid is set to Pr= 0.75, hence an exact
solution of the compressible Navier–Stokes equations exists, see e.g. [9, 14] and [40] for a
detailed description of the test problem and for details concerning the computation of the
exact solution. The problem is solved in the domain � = [−0.5,+0.5] and the shock wave
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Fig. 3 Results for the double rarefaction problem RP3 (xc = 0) at time t = 0.2, obtained using the new
thermodynamically compatible HTC DG scheme with N = 9 (red dashed line) on 1000 elements applied to
the compressible Euler equations. Density (left panel), velocity (central panel), specific internal energy (right
panel). The exact solution, see [96], is pictured by the black solid line (Color figure online)

Fig. 4 Numerical results at time t = 0.2 for Riemann problem RP4 (xc = 0), obtained with the new HTC
DG scheme (red solid line) on 1000 elements with N = 9, a fourth order ADER-DG scheme applied to the
vanishing viscosity limit of the viscous equations (1a)–(1c) using ε = 2 × 10−5 on 14,400 elements (dashed
blue line) and the exact solution of the compressible Euler equations (black solid line). This test corresponds
to the fluid limit of the GPR model (Color figure online)
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Fig. 5 Numerical results at time t = 0.2 for Riemann problem RP5 (xc = 0) obtained with the HTC DG
scheme (red solid line) on 1000 elements with N = 9, a fourth order ADER-DG scheme applied to the
vanishing viscosity limit of the viscous equations (1a)–(1c) using ε = 2×10−5 (dashed blue line) on 144,000
elements and the reference solution obtained with a MUSCL-Hancock scheme applied to the model with the
energy conservation law (1f) instead of the entropy inequality (1c) (black solid line) using 128000 elements.
This test corresponds to the solid limit of the GPR model (Color figure online)

is centered at x = 0. The fluid moves into the shock from the left to the right. The density,
velocity, pressure and sound speed in front of the shock are ρ0 = 1, v01 = 2, v02 = v3 = 0,
p0 = 1/γ and c0 = 1. The Reynolds number based on a unitary reference length L = 1 is
Res = ρ0 c0 Ms L μ−1. The remaining parameters of the GPRmodel are chosen as cv = 2.5,
ch = cs = 10,μ = 2×10−2 and λ = (

9 + 1
3

)
5×10−2, hence the shock Reynolds number is

Res = 100. The initial data for the distortion field and for the thermal impulse areA = 3
√

ρ I
and J = 0. The HTC DG scheme is run until a final time of t = 0.25 on 256 elements with
a polynomial approximation degree of N = 9. In Fig. 6 we provide a comparison between
the numerical solution obtained with the new thermodynamically compatible DG scheme
proposed in this paper and applied to (1) with the exact solution of the compressible Navier–
Stokes equations. For all quantities an excellent agreement between numerical and reference
solution is achieved.
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Fig. 7 Results obtained for the solid rotor problem at time t = 0.3 applying the newHTCDG scheme (N = 5)
to the GPR model in the solid limit (left) and using a classical second order MUSCL scheme (right) (Color
figure online)

4.1.5 Solid Rotor Problem

As fourth test, we study the solid rotor problem proposed in [15, 22], by solving the GPR
model in the solid limit, i.e. setting τ1 = τ2 = 1020. The computational domain is the
square � = [−1,+1]2 with transmissive boundary conditions everywhere. Initially we set
ρ = 1, p = 1, A = I, J = 0, and a velocity field given by v1 = −y/R, v2 = +x/R and
v3 = 0 within the circle ‖x‖ ≤ R of radius R = 0.2, while for r > R the medium is at
rest, i.e. v = 0. The shear sound speed and the parameter related to finite speed heat wave
propagation are set to cs = 1.0 and ch = 1.0. Simulations are run until a final time of t = 0.3
using the new HTC DG scheme with 128 × 128 elements and a polynomial approximation
degree of N = 5. The artificial viscosity is set to a constant value of ε = 5 × 10−4. The
reference solution is provided by a second order MUSCL-Hancock scheme on 512 × 512
control volumes, see [15, 22]. In Fig. 7 the numerical results obtained with the HTC DG
scheme are compared with the reference solution. We observe a very good agreement, also
with the results published previously in [15, 22].

4.1.6 Lid-Driven Cavity

We now apply our new thermodynamically compatible HTC DG scheme to the well-known
lid-driven cavity problem, see [51]. This test can be used to validate compressible flow
solvers in the low Mach number regime, see e.g. [11, 24, 94] and was already successfully
solved with the GPR model, see [15, 22, 40]. The two-dimensional computational domain is
� = [0, 1]2 and the initial condition is given by ρ = 1, v = 0, p = 102, A = I and J = 0.
The lid velocity on the upper boundary is v = (1, 0, 0), while solid no-slip walls, v = 0,
are imposed everywhere else. As model parameters we use cs = 8, ch = 2, τ2 = 10−2

and μ = 10−2, i.e. the associated Reynolds number is Re = 100, while the characteristic
Mach number of the flow based on the lid velocity is about M = 0.08. The new HTC DG
scheme is run until t = 10 using 256× 256 elements with polynomial approximation degree
N = 3 and ε = 10−3. The obtained computational results are depicted in Fig. 8, where also
a comparison with the reference solution of Ghia et al. [51] is shown and which is based on
the solution of the incompressible Navier–Stokes equations. One can observe an excellent
agreement between the numerical results obtained with the new HTC DG scheme applied
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Fig. 8 Lid-driven cavity at Reynolds number Re = 100. Results at time t = 10 using the new HTC DG
scheme (N = 3) applied to the GPR model. Contours of v1 (left) and comparison of the velocity with the
reference solution [51] on 1D cuts along the x and y axis (right) (Color figure online)

to the GPR model and the reference solution. We stress that the reference solution has been
obtained with a different numerical scheme that was applied to a different PDE system.

We would like to clarify that the lid-driven cavity generates pressure peaks in the upper
corners of the domain due to the discontinuous velocity field in the boundary conditions,
which requires limiting of high order DG schemes. This is the reason why the simulation
was carried outwith artificial viscosity, see also [22] for the same artificial viscosity parameter
used in thermodynamically compatible finite volume schemes.

4.1.7 Double Shear Layer

In this last test case concerning the GPR model, we solve the double shear layer problem of
[10]. This benchmark was also used in [11, 15, 22, 24, 40, 93, 94] to assess the behaviour of
compressible flow solvers in the weakly compressible regime, including applications to the
GPRmodel. The computational domain is� = [0, 1]2, the boundary conditions are periodic
everywhere and the test is run until a final time of t = 1.8. The initial condition reads

v1 =
{
tanh (ρ̃(y − 0.25)) , if y ≤ 0.5,
tanh (ρ̃(0.75 − y)) , if y > 0.5,

v2 = δ sin(2πx), v3 = 0,

ρ = ρ0 = 1, p = 102/γ , A = I and J = 0, with δ = 0.05 and ρ̃ = 30. The remaining
model parameters are set to ν = μ/ρ0 = 2 × 10−3, ρ0 = 1, cv = 1, cs = 8, ch = 2 and
τ2 = 4×10−3, hence the characteristic Mach number is M = 0.1. We run our new HTC DG
scheme on a mesh of 1024 × 1024 elements, using a polynomial approximation degree of
N = 3 and ε = 1 × 10−6. In Fig. 9 the temporal evolution of the distortion field component
A12 is shown. One can observe how the initial shear layers develop into several vortex
structures. A more detailed analysis of the flow has been provided in [10, 11, 15, 24, 40].
Our computational results agree very well with those obtained with the thermodynamically
compatible finite volume scheme [22] run on 4000 × 4000 control volumes.
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Fig. 9 From top to bottom: distortion field component A12 for the double shear layer at times t = 0.4,
t = 0.8, t = 1.2 and t = 1.8 obtained with the HTC DG scheme on 1024 × 1024 elements and polynomial
approximation degree N = 3 applied to the GPR model (μ = 2 × 10−3) (left column). For comparison, the
results obtained with the HTC finite volume scheme [22] on 4000 × 4000 control volumes are also shown
(right column) (Color figure online)
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4.2 Turbulent ShallowWater Flows

4.2.1 Numerical Convergence Study

In order to verify the convergence of the new HTC DG scheme for the turbulent shallow
water model experimentally we consider a manufactured solution test proposed in [21]. The
test is run on the computational domain� = [0, 2π ]2 and with periodic boundary conditions
everywhere. The solution of system (11) is defined as follows:

h(x, t) = h0, hv(x, t) =
(

sin(x) cos(y) cos(t)
− cos(x) sin(y) cos(t)

)
,

Q(x, t) = q0

(
sin(x) cos(y) cos(t) − sin(x) cos(y) cos(t)

− cos(x) sin(y) cos(t) cos(x) sin(y) cos(t)

)
(73)

with the total energy

hE(x, t) = g
h20
2

+
(

2

h0
+ h0q

2
0

) (
sin2(x) cos2(y) + cos2(x) sin2(y)

)
cos2(t). (74)

This choice of Q(x, t) yields a Reynolds stress tensor of the form

P(x, t) = 2q20

(
c21 cos

2(t) −c1c2 cos2(t)
−c1c2 cos2(t) c22 cos

2(t)

)
, (75)

with c1 = sin(x) cos(y) and c2 = sin(y) cos(x). To complete the definition of the problem
we set h0 = 1 and q0 = 0.5. Let us remark that to get the sought solution, (73)–(74), a set
of source terms must be added to the right hand side of (11). The expressions of the source
terms can be simply calculated by substitution of (73)–(74) in (11). The simulation is run
until a final time of t = 0.1 using the new HTC DG schemes proposed in this paper and
using polynomial degrees N ∈ {2, 3, 4, 5}. The artificial viscosity coefficient is set to ε = 0
inside each element, while for this test case the penalty parameter inside the Rusanov-type
flux G is set to η = smax. The errors in L2 norm obtained for h, hv1 and Q11 are reported in
Table 3. From the obtained results we can conclude that, overall, the obtained experimental
order of accuracy of the scheme is N + 1 for the water depth h, while for the other quantities
we observe N + 1 for odd and N for even polynomial approximation degrees N .

4.2.2 Riemann Problems

In this section, we address a set of three Riemann problems proposed and solved in [21] for
the turbulent shallow water model (11). An exact Riemann solver for the original model [50,
62] based on the evolution of the Reynolds stress tensor P instead of its decompositionQwas
recently forwarded in [74]. For alternative numerical schemes applied to the hyperbolic shear
shallow water model the reader is referred to [12, 21, 29, 74]. An important difficulty present
in the model (11) and also in the original model proposed in [50] is its non-conservative
formulation, with non-conservative products active across genuinely nonlinear fields. This
makes a proper numerical discretization in the presence of shock waves extremely challeng-
ing. In [21] it was shown that thermodynamic compatibility, in particular compatibility with
the total energy conservation law, is a necessary key ingredient for a correct discretization
of the equations. Thermodynamic compatibility can be either achieved via the original wave
splitting proposed in [50], or by the unsplit schemes introduced in [21], which either enforce
energy conservation by explicitly solving the energy equation and an appropriate rescaling
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Table 3 L2 errors and convergence rates for the manufactured test obtained using the ADER-DGmethod with
N ∈ {2, 3, 4, 5}
Nx = Ny L2(h) O(h) L2(hv1) O(hv1) L2(Q11) O(Q11)

HTC DG—N = 2

8 4.1025E−03 8.0357E−03 5.1943E−03

16 6.0822E−04 2.75 1.2743E−03 2.66 9.4629E−04 2.46

32 7.4739E−05 3.02 2.2311E−04 2.51 1.9211E−04 2.30

64 8.7419E−06 3.10 4.2035E−05 2.41 3.9917E−05 2.27

HTC DG—N = 3

8 7.8869E−05 1.7952E−04 7.3027E−05

16 3.5009E−06 4.49 6.1296E−06 4.87 3.1714E−06 4.53

24 7.5980E−07 3.77 1.5872E−06 3.33 6.2941E−07 3.99

32 2.2252E−07 4.27 4.0120E−07 4.78 2.0536E−07 3.89

HTC DG—N = 4

8 7.0831E−06 1.7082E−05 1.1121E−05

16 2.6366E−07 4.75 7.6711E−07 4.48 6.2037E−07 4.16

24 3.4095E−08 5.04 1.3414E−07 4.30 1.1322E−07 4.20

32 8.5620E−09 4.80 4.0219E−08 4.19 3.3899E−08 4.19

HTC DG—N = 5

4 1.2235E−05 3.6149E−05 1.1548E−05

8 8.0565E−08 7.25 2.4481E−07 7.21 1.2355E−07 6.55

12 6.5570E−09 6.19 1.6971E−08 6.58 9.1678E−09 6.41

16 1.2752E−09 5.69 2.4892E−09 6.67 1.4962E−09 6.30

The simulations were run on Cartesian meshes of Nx × Nx elements up to time t = 0.1

Table 4 Initial left and right states for the Riemann problems RP1–RP3 for the turbulent shallow water model

Test hL hR vL2 vR2 QL
11 QR

11 QL
12 QR

12 QL,R
22

RP1 0.02 0.01 0 0 0.01 0.01 0 0 10−4

RP2 0.01 0.01 +0.01 −0.01 0.02 0.02 0 0 0.02

RP3 0.01 0.01 0 0 0.1 0.1 0.2 0.1 0.1

of the objectQ, or via a thermodynamically compatible discretization that is consistent with
(11) at a discrete level, including the entropy production terms 	ik , or via a direct numerical
simulation (DNS) of the viscous equations in the vanishing viscosity limit.

In the following we solve three Riemann problems in the one-dimensional domain � =
[0, 1] with initial data given in Table 4, where also the final times are reported for each test
case. The state variables which are not explicitly indicated in Table 4 are set to zero, i.e.
v1 = 0 and Q21 = 0. All simulations are run with the thermodynamically compatible DG
scheme proposed in this paper, using 4096 elements and a polynomial approximation degree
of N = 9. The artificial viscosity is set to ε = 10−6 in RP1 and RP2 and to ε = 2 × 10−6

for RP3. The obtained computational results are shown in Figs. 10, 11 and 12, where also a
comparison with the scheme of Ivanova et al. [62] is provided, together with a comparison
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Fig. 10 Numerical solution of Riemann problem RP1 obtained with different numerical schemes at time
t = 0.5: split scheme of [50] on 250,000 elements (solid black line); vanishing viscosity limit of the viscous
system (11a)–(11d) with ε = 2× 10−6 using a fourth order ADER-DG scheme (N = 3) on 11,200 elements
(dashed blue line); new thermodynamically compatible HTC DG scheme on 4096 elements with N = 9
(dashed red line) (Color figure online)
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Fig. 11 Numerical solution of the Riemann problem RP2 obtained with different numerical schemes at time
t = 10: split scheme of [50] on 100,000 elements (solid black line); vanishing viscosity limit of the viscous
system (11a)–(11d) with ε = 1 · 10−6 using a fourth order ADER-DG scheme (N = 3) on 10,200 elements
(dashed blue line); new thermodynamically compatible HTC DG scheme on 2048 elements with N = 9
(dashed red line) (Color figure online)
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Fig. 12 Numerical solution of the Riemann problem RP3 obtained with different numerical schemes at time
t = 0.5: split scheme of [50] on 250,000 elements (solid black line); vanishing viscosity limit of the viscous
system (11a)–(11d) with ε = 2× 10−6 using a fourth order ADER-DG scheme (N = 3) on 10,200 elements
(dashed blue line); new thermodynamically compatible HTC DG scheme on 2048 elements with N = 9
(dashed red line) (Color figure online)
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Fig. 13 Roll wave test problem for turbulent shallowwater flow at time t = 12.5: comparison of the numerical
results obtained using the new HTC DG scheme (N = 5) with the experimental profile of Brock [16, 17]
(Color figure online)

of a direct numerical simulation (DNS) of the vanishing viscosity limit of the equations on
a sufficiently fine mesh.

The numerical results obtained with the HTC DG scheme are in excellent agreement with
both reference solutions, even for RP3 with its complex wave pattern. This highlights the
importance of the discrete thermodynamic compatibility when discretizing non-conservative
hyperbolic equations like system (11).

4.2.3 Roll Waves

The last test case concerns the simulation of one-dimensional roll waves and was originally
proposed and numerically solved in [50]. The obtained numerical results can be compared
with the experimental data provided by Brock in [16, 17]. The one-dimensional domain
� = [0, L] is periodic with length L = 1.3. According to [50] the initial condition reads

h = h0(1+a sin(2πx/L)) with a = 0.05, v1 = √
gh0 tan θ/C f , v2 = 0 andQ =

√
1
2ϕh

2I.
The remaining parameters of this test problemare θ = 0.05011, ∂xb = tan(θ), h0 = 0.00798,
C f = 0.0036, Cr = 0.00035 and ϕ = 22.76, see [50]. In order to simulate this test case,
the following dissipative source terms must be added to the right hand side of (11): in the
momentum equation (11b) we add the term −C f

√
vmvmvi to the right hand side and in the

PDE for Qik , Eqn. (11c), we add −α/hQik , with α = max
(
0,Cr

trP−ϕh2

trP2 ‖v‖3
)
to the right

hand side, see [50] and [21] for details. It is obvious that in the presence of the dissipative
source terms, total energy in the turbulent flow is no longer conserved.

We run the new thermodynamically compatible DG scheme proposed in this paper using
512 elements, a polynomial approximation degree of N = 5 and an artificial viscosity of
ε = 4 × 10−5. Simulations are run until a final time of t = 12.5. As already suggested in
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[21], the bottom slope is simply implemented as an algebraic source. In Fig. 13 the numerical
results obtained with the new HTC DG scheme are compared with the experimental profile
of Brock documented in [16, 17, 21, 50]. In order to perform this comparison, the spatial
coordinate has been normalized by the reference length L and the wather depth has been
normalized by h0, i.e. we plot h/h0 over x/L . The numerical results have been shifted in x
direction so that the numerical shock location coincides with the experimental one. In total
two periods of the simulation are shown. Overall, one can note a good agreement between
the numerical results and the experimental reference data.

5 Conclusion

In this paper we have introduced new high order accurate and thermodynamically compat-
ible discontinuous Galerkin finite element schemes for the Godunov–Peshkov–Romenski
(GPR) model of continuum mechanics and for the first order hyperbolic model of turbulent
shallow water flows of Gavrilyuk et al. [50, 62]. The key feature of our new methods is that
they discretize the entropy inequality directly as a primary evolution equation, while total
energy conservation is achieved as amere consequence of the thermodynamically compatible
discretization of all other equations. The new DG methods satisfy a cell entropy inequality
by construction, and can be proven to be nonlinearly stable in the energy norm due to the
thermodynamic compatibility. The new DG schemes proposed in this paper can therefore be
seen as the missing dual algorithms to known entropy consistent DG schemes, which usually
discretize the total energy conservation law directly and obtain the entropy inequality as a
consequence, see e.g. [30, 38, 48, 60, 70, 87, 89].

To the very best of our knowledge, the DG schemes presented in this paper are the first
provably thermodynamically compatible DG schemes for the unified model of continuum
mechanics of Godunov, Peshkov and Romenski [54, 77] and for the turbulent shallow water
model of Gavrilyuk et al. [50, 62]. It is also the first time that a DG scheme has been
developed which does not directly discretize the total energy conservation law, but which
obtains total energy conservation as a consequence of a compatible discretization of all the
other PDE. Compared to existing HTC finite volume schemes [20–22] the mathematical
proofs for the DG framework are more complex, in particular concerning the design of a
proper thermodynamically compatible numerical viscosity, for which the jump termsVmust
have opposite sign compared to classical symmetric interior penalty Galerkin schemes [47].

Wehave applied our newDGschemes to awide range of test problems in one and two space
dimensions, obtaining overall a very good agreementwith available exact, numerical and even
experimental reference solutions. As in previous work on thermodynamically compatible
finite volume schemes [20–22] the high order DG schemes presented in this paper rely on a
path-integral and a Godunov parametrization of the physical flux fk = ∂p(vk L) in terms of
a generating potential L in order to construct a thermodynamically compatible flux for the
inviscid Euler and shallow water subsystems.

We clearly emphasize again that for all proofs provided in this paper we assume all
integrals to be exact. Further work on provably thermodynamically compatible DG schemes
including numerical quadrature errors will be necessary in the future, also considering the
recent ideas of Abgrall et al. [1, 3].

In the future, we plan to extend our thermodynamically compatible DG schemes also
to the magnetohydrodynamics (MHD) equations and to the conservative SHTC system of
compressible two-fluidflowsproposed and studied in [71, 84, 86, 95]. The thermodynamically
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compatible DG schemes presented in this paper have been analyzed only in the semi discrete
setting. The fully discrete case is clearly out of scope of the present paper. Further research
will also consider fully-discrete thermodynamically compatible time discretizations, either
making use of the line integral approach of Brugnano and Iavernaro [18, 19], or by extending
the exactly conservative fully-discrete FV scheme forwarded in [22] for the Euler subsystem
to the full GPR model and other more complex SHTC systems. However, the approach
presented in [22] requires the calculation of q = q(p) which is very complex in case of
the GPR model. For alternative extensions to the fully discrete case, at least for the Euler
subsystem, see e.g. [22, 73, 79, 80].

Moreover, we will investigate whether it is possible to extend thermodynamically com-
patible DG schemes in such a way as to preserve curl and divergence involution constraints
exactly, see e.g. [15, 39] for involution-preserving semi-implicit discretizations on staggered
meshes. We will also consider an extension of the framework of thermodynamically com-
patible schemes to the class of semi-implicit hybrid finite-volume / finite-element methods
[11, 23, 24] on staggered unstructured meshes.

The development of provably thermodynamically compatible limiters for the DG scheme
presented in this paper was out of scope of this work and will be left to future studies. Instead
of sophisticated limiters, a simple artificial viscosity approach has been used in this paper.
In the future we will consider also slope and moment limiters [64, 65], provably positivity
preserving limiters [97], as well as the use of cell-centered thermodynamically compatible
finite volume schemes [3, 20–22] as a posteriori subcell limiters, similar to the ideas on
subcell limiting for DG schemes presented in [41, 60, 90, 91].

A fundamental mathematical property of any reasonable numerical scheme for nonlinear
systems of hyperbolic conservation laws that was not investigated in this paper at all was the
invariant domain preserving property (IDP), such as the positivity of density and entropy.
Future work will consider provably IDP extensions of our methods, making use of the math-
ematical techniques presented in the seminal work of Guermond and Popov et al. concerning
provably invariant domain preserving schemes [31, 57–59] and in the work of Kuzmin et al.
[7, 65–67] concerning bound-preserving algebraic flux limiters and slope limiters for high
order continuous and discontinuous Galerkin finite element schemes.
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