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Abstract

The work studies the properties of a coordination game in which agents repeatedly compete

to be in the population minority. The game reects some essential features of those economic

situations in which positive rewards are assigned to individuals who behave in opposition to the

modal behavior in a population. Here we model a group of heterogeneous agents who adaptively

learn and we investigate the transient and long-run aggregate properties of the system in terms

of both allocative and informational eÆciency. Our results show that, �rst, the system long-run

properties strongly depend on the behavioral learning rules adopted, and, second, adding noise

at the individual decision level and hence increasing heterogeneity in the population substantially

improve aggregate welfare, although at the expense of a longer adjustment phase. In fact, the

system achieves in that way a higher level of eÆciency compared to that attainable by perfectly

rational and completely informed agents.
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1 Introduction

This work investigates the dynamic properties of minority games under di�erent forms of hetero-

geneity amongst agents and di�erent learning procedures.

In the game, �rst introduced by Challet and Zhang (1997, 1998), a population of N agents (where

N is an odd number) must each simultaneously and independently choose between two sides, say

0 and 1. The side chosen by the minority of the agents is the winning one - each gaining a �xed

positive reward -, while all members on the majority side obtain a null payo�.

Formally, the model is an N-person coordination game with multiple asymmetric Nash equilibria

in pure strategies, and a unique symmetric mixed strategy equilibrium. In the following, we assume a

large population, and we investigate the conditions under which repeated interaction amongst players

causes some form of aggregate self-organization to emerge.

The game, notwithstanding its extreme simplicity, does capture some basic features of quite a few

processes of social and economic interactions whereby orderly coordination rests upon the existence

or the emergence of some behavioral heterogeneity in the relevant population.

Some coordination problems of this kind have long been discussed in Schelling's seminal work

on those patterns of \sorting and mixing" where order at an aggregate level might �nd its roots in

persistent micro adjustments within heterogeneous populations (Schelling, 1978). They also bear a

close resemblance to the \El Farol" Problem devised by Brian Arthur (1994) . In this game, a number

of agents must independently decide each night whether or not to attend a bar called \El Farol".

Each agent receives a positive utility from attending the bar as long as this is not too crowded.

Otherwise he prefers to stay home. Somewhat similar coordination problems are involved in the

experimental market entry games [e.g., Ochs (1990), Meyer et al. (1992); Ochs (1995) and references

therein] where a group of N players must decide at each stage whether or not to enter one or more

markets each having a �xed capacity k, with k < N .

Finally, the model captures some basic features of speculation on �nancial markets - which has

been indeed the primary concern of minority-game modeling so far. A classic reference in this respect

is to Keynes' \Beauty Contest" metaphor, where the payo� to an individual player does not stem

from the accuracy of the appreciation of the intrinsic beauty of various contest candidates but rather

from guessing the guesses of the ensemble of the other evaluators.

Strictly speaking, the beauty contest metaphor crucially involves positive feedback investment

strategies - in the language of technical trading in �nance - since the payo� is based on a majority rule,

while minority games (MG, hereafter) fundamentally address those aspects of speculation dynamics

involving activities of arbitrage against average market behaviors. These negative feedback strategies

characterize agents trying to infer some - actual or imagined - structure in the history of collective

interactions and, through that, trying to \beat the market" - that is, \beat the majority view" -

by arbitraging against it. In the literature on chartist rules, this roughly corresponds to contrarian

strategies [e.g., in the behavioral �nance literature, De Bondt and Thaler (1995)].

In this work we shall precisely address the collective outcomes of such interactions in the MG

setup. Are orderly aggregate coordination and absence of arbitrage opportunities generic properties

of minority-type market processes, independently of any further speci�cation of microeconomic be-

haviors? Or, conversely, do �ner details of the ecology of agents populations (such as their sheer size)

and their decision processes (e.g., the number and degree of rational sophistication of their decision
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rules, their amount of memory, etc.) a�ect collective adjustment processes and long term outcomes?

Previous results on the MG based on adaptive agents with deterministic decision rules [e.g., Chal-

let and Zhang (1997, 1998); Savit et al. (1998)] do suggest that diverse degrees of market eÆciency

fundamentally depend upon some underlying heterogeneity in the population. Here we explore the

more general case whereby heterogeneous agents, endowed with memories of variable length, are

allowed to adaptively learn. Interestingly, �rst, eÆcient coordination turns out robustly to be an

emergent property resting on an ecology of diverse agents who do not play Nash equilibrium strate-

gies. Second, we show that collective eÆciency is not monotonic either in the rational sophistication

of the agents nor in the information they are able to access. Rather, again, it crucially depends on

the ecology of behaviors over the population.

In Section 2 we briey illustrate the basic features of the game, study the properties of its

equilibria and introduce a notion of adaptive strategy. Section 3 discusses the role of heterogeneity for

collective dynamics under the assumption of strategies over the population and adaptive deterministic

behaviors. In Section 4 we introduce a probabilistic learning model and study both the transient

and limit properties of the dynamics. In particular, we analyze the allocative and informational

eÆciencies - which we shall de�ne below - of the system under di�erent degrees of computational

complexity of the purported agents and di�erent parameterizations of the learning rule. In general,

our results suggest that it is heterogeneity in the population rather than individual computational

abilities which mainly accounts for the observed aggregate properties.

2 The Minority Game

2.1 The Baseline Game-theoretic Framework

The minority game is played by a group N of players, where N must be an odd number. On each

period of the stage game, each player must choose privately and independently between two actions

or sides, say 0 and 1. The payo� �i for i 2 f0; 1g is the same for all N players and is equal to

�i =

(
1 if ni � (N � 1)=2

0 otherwise
(1)

where ni is the number of players choosing side i. Each player is rewarded with a unitary payo�

whenever the side he chooses happens to be chosen by the minority of the players, while players on

the majority side get nil.

It is easy to see that the game has
� N
(N�1)=2

�
asymmetric Nash equilibria in pure strategies, in

which exactly (N � 1)=2 players choose either one of the two sides. Clearly, under pure-strategy

equilibrium play, the payo�s for the two \parties" are quite di�erent. Players belonging to the

minority side are rewarded a �xed positive payo�, while those on the majority side earn nothing.

The pure strategy equilibria, hence, are not strict, because players on the majority side are just

indi�erent between sticking to equilibrium play and deviating. The game also presents a unique

symmetric mixed-strategy Nash equilibrium, in which each players selects the two sides with equal

probability1.

1Of course, there are in�nite asymmetric mixed-strategy equilibria.
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The Minority Game is a simple game of coordination, in which, however, the payo� asymmetry

implied by the pure strategy Nash equilibria is likely to rule out simple precedent-based solutions

of the underlying coordination problem. The goodness of the achieved coordination can be easily

measured by the average size of the winning minority. The further this size is from (N � 1)=2, the

higher is the amount of money which is, so to speak, left on the table, hence the lower the resulting

aggregate welfare. Note that under mixed strategy equilibrium play, individual expected payo� is

equal to .5 on each period of the stage game, and the group payo� follows a binomial distribution

with mean equal to N=2 and a variance of N=4. The measure of variance is indeed an equivalent

measure of the degree of eÆciency achieved in a population. The higher the variance, the higher

the magnitude of uctuations around the mixed strategy Nash equilibrium and the corresponding

aggregate welfare loss.

2.2 The Behavioral Foundations of the Minority Game: Adding Beliefs

Let us start by discussing the nature of the game equilibria when players choose their actions on the

basis of idiosyncratic (i.e. agent-speci�c) beliefs about other players' aggregate behavior, and try to

exploit the latter to their advantage. This perspective, which amounts to consider agents endowed

with inductive rather the deductive rationality, has been adopted in the minority literature including

the El Farol model (Arthur, 1994) and it is common to multi-agent accounts of �nancial markets

[e.g., Arthur et al. (1997); Brock and Hommes (1998); LeBaron (2000) and references therein].

One way to model beliefs in this setting, which has traditionally been used in the previous

simulation studies on the MG, is to endow players with sets of adaptive strategies, where a strategy

may be de�ned as a function mapping a particular sequence of observed past outcomes up to a

certain period with an action to choose in the next period. In the following we show indeed that

an explicit account of this form of strategic behavior does not change the set of the mixed strategy

Nash equilibria of the game.

Consider a group of N agents who play the MG with a payo� function2 as from Eq. 1. The

only information made available after each round is the winning side (0 or 1). We de�ne the market

information as the (history) H of play, i.e., a binary string specifying which side has won in each

period of the stage game. We also de�ne a parameter m as the portion of the past history H that

players retain in memory. So, if m = 3, players' strategies will be based only on the outcomes

observed in the last 3 rounds of the game.

An adaptive strategy may be de�ned as a prescription on the action to take on the next round of

play (i.e., to choose 0 or 1) provided that a particular history (i.e., a particular sequence of m bits)

has been observed up to that point. For example, in the case in which m = 3, an example of strategy

is shown in Table 1.

The history columns specify all the possible sequences of aggregate outcomes (i.e., of winning

sides) in the last m periods; the action columns specify which action to choose on the next round

in correspondence to each particular sequence observed3. Given a certain value of the parameter m,

2Various modi�cations of this payo� function have been proposed by Challet and Zhang and by De Cara et al.

(1999)). We stick to the original one for its simplicity and because the essential features of the model are highly

insensitive to the proposed variations.
3Note again that this de�nition of strategy di�ers considerably from the notion of strategy as complete plan of action

used in standard game theory. Rather it represents \mental models" or \subjective beliefs" as in Arthur (1994) and

3



the total number of strategies that can be generated is equal to 22
m
, corresponding to the 22

m
ways

of assigning either action to all the 2m possible binary strings of length m.

Given the foregoing de�nition of strategies, we study, as a �rst important benchmark, the equi-

libria associated with the \homogenous" game where all the players have access to the full set of

strategies. Moreover, rather than considering the dynamics of the history string h, generated by the

successive players' choices, we begin by focusing on the static case requiring that all the strings h

can appear with equal probability4. Under this hypothesis, despite the high number of strategies, we

show that a unique mixed strategy Nash equilibrium exists by which players assign equal probability

to choosing either side, 1 and 0, regardless of past history. However, given the above de�nition of

strategy, there are actually in�nite ways in which players may end up choosing sides with equal

probability.

In order to clarify the analysis that follows, let us introduce some notation. A pure strategy

s 2 Sl is a mapping Hl ! f0; 1g from the set of binary strings of length l to the set of actions.

Consequently, a mixed strategy m = fx�; � 2 Slj
P

�2Sl
x� = 1g can be thought as a map Hl ! [0; 1]

which associates to each binary string h 2 Hl the probabilitym(h) =
P

�2Hm
x�s(h) than the action

following it be 1. Let �l be the 22
l
dimensional mixed strategies simplex. For what follows, it

is important to notice that the actual mapping between the mixed strategies space and the space

�2l [0; 1] of maps from Hl to [0; 1] is many to one and surjective, i.e. there are many ways of building

up the same mixed strategy starting from the pure strategies set and each mixed strategy can be

realized in at least one way.

Consider a population of N (odd) agents. If �m 2 �N�m is a mixed strategy pro�le (the vector

composed by the players mixed strategies) we denote the mixed strategy of player i as mi and the

vector of mixed strategies of all players except i as �m�i. The mixed strategy pro�le de�nes, for

each binary string, the population probability of playing 1 (the expected frequency of players playing

action 1) associated to a given binary string:

�m(h) =
1

N

NX
n=1

X
j2Sl

mj(h) =
X
j2Sm

Pj( �m)sj(h) (2)

where Pj( �m) is the expected probability of playing strategy j (the frequency with which this strategy

will be played).

The payo� function in Eq.1 de�nes the expected payo� of player i given the past history h and

the complete mixed strategy pro�le �m:

Umi; �m(h) = mi(h)(1 � �m(h)) + �m(h)(1 �mi(h)) (3)

and we say that a mixed strategy m1 is superior to m2 if, given the mixed strategy pro�le �m, it is

Um1; �m(h) � Um2; �m(h), 8h 2 Hl. This de�nition allows one to discuss equilibria in a way similar to

what is done in more canonical population games.

Theorem The strategy pro�le �m is a Nash equilibrium i� mi(h) = 1=2, 8mi 2 �m, 8h 2 Hl

Marengo and Tordjman (1996).
4This prescription is introduced for purposes of analytical tractability and stems from a symmetry consideration:

there is no reason for a player to assign ex-ante a greater probability to a particular history string.
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The meaning is rather straightforward: a mixed strategy pro�le is a Nash equilibrium only when

the players' mixed strategies assign probability one half to pick either side, 1 and 0 irrespectively of

the past history, i.e. when all the players are perfectly symmetric random players. Notice, however,

that the ways of realizing such a mixed strategy are in�nite. Hence, the actual number of mixed

strategy Nash equilibria is also in�nite.

Proof

In order to demonstrate the assertion we proceed by identifying the i-th player's best replies to

a given mixed strategy pro�le �m�i for the rest of the population. For this purpose, it is convenient

to express the payo� in Eq. 3 isolating the contribution of the i-th player's strategy from that of the

rest of the population:

Umi; �m�i(h) =
N + 1

N
mi(h) +

N � 1

N
�m�i(h) �

2

N
mi(h)

2 �
2(N � 1)

N
mi(h) �m�i(h) (4)

and mi(h) has to be chosen in order to maximize the foregoing expression. The solution depends on

the value of �m�i(h) and the quadratic form of Eq. 4 allows one to immediately �nd it. De�ning

p�(h) =
N + 1� 2(N � 1) �m�i(h)

4
(5)

the solution reads

m̂i(h) =

8><
>:

0 p�(h) � 0

1 p�(h) � 1

p�(h) otherwise

(6)

The same procedure can be repeated for each string h to obtain the best reply mixed strategy to

�m�i(h). In order to obtain the set of Nash equilibria, we have to �nd strategies that belong to the

set of mutual best replies, i.e. m̂i(h) = �m�i(h), 8h 2 Hl. Inspecting Eq. 6, it turns out that this can

happen only when 0 < p�(h) < 1 and the following condition is satis�ed

�m�i(h) =
N + 1� 2(N � 1) �m�i(h)

4
(7)

The solution is then �m�i(h) = 1=2, implying m̂i(h) = 1=2.

Q.E.D.

3 The Minority Game with Heterogeneous Agents

One of the interesting questions one may explore in the MG framework is whether and how the

presence of heterogeneity among players' beliefs may impact on the system degrees of self-organization

around the Nash equilibria of the game.

In line with previous simulation studies by Challet and Zhang, one may introduce heterogeneity

in the population via a diversity of strategies. Given a certain value of m, each player is initially

endowed with a number s of strategies which are randomly drawn from a common pool. Hence,

although both m and s are identical over the population, heterogeneity arises from the random

initial strategy assignments.

In the course of play, each active strategy i is characterized by a value qi(t), which indicates the

total number of points accumulated by that strategy at time t. Indeed, after each period of the game,
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all the strategies that have made a correct prediction in that period (i.e., all strategies prescribing

the choice of the side which ex post resulted the winning side) are assigned one point each.

Given the initial strategy assignment and the updating rule just described, players' behavior at

each round of the stage game is completely deterministic, as each agent picks, among the strategies

he possesses, the one with the highest number of accumulated points.

Note that in such a framework, however, agents' heterogeneity is only introduced via the initial

assignment of strategies to players and does not stem from di�erent \personal histories". If, for

example, the same strategy i is initially assigned to two di�erent players, the value of qi(t), which

determines the strength of that strategy at time t will necessarily be the same for both players, as it

will only depend on the number of times that strategy has made a correct prediction whether it was

actually played or not.

In order to evaluate the population's performance, it is necessary to introduce a measure of

allocative eÆciency. A natural candidate is provided by the average number of players belonging to

the winning party, i.e. the average number of points earned by the whole population5. In accordance

with the previous literature, as a measure of allocative eÆciency we compute a quantity associated

to the foregoing one, namely the mean squared deviation from the half population, �. Let N be the

number of agents, and N0(t) the number of agents choosing side 0 at time t, then in a repeated game

of duration T the mean squared deviation is computed as

� =
1

T

TX
�=0

(N0(�)�
N

2
)2 : (8)

Clearly, the lower the value of �, the higher the system eÆciency.

The dynamic process can be expected to depend to some degree on the initial strategy distribution

and on the initial game history, which are both generated randomly. Therefore, in order to eliminate

any dependence on initial conditions from our results and to focus only on asymptotically stable

states, in all the simulations presented here we applied an averaging procedure over 50 independent

sample paths with randomly generated initial histories and strategy distributions.

In addition, at the beginning of each simulation the system was left to evolve for an initial

\adjustment phase" of length T0 in order to wash away any possible transient e�ects on the subsequent

averaging procedure. The quantities so obtained can thus be considered asymptotic properties of the

system as long as T0 and T are chosen high enough as to provide a good approximation of the limit

T !1.

The dependence of the volatility measure � on N , m and s for the original minority game has

been thoroughly investigated in the previous simulation studies and is summarized in Fig. 1 for the

case s = 2.

As noticed by Savit et al. (1998), the type of market regime is determined, at least in �rst

approximation, by the ratio z = 2m=N : hence the curves for various N collapse if plotted in this

variable. In this respect, notice that even if the actual number of possible strategies is 22
m
, their

relative strengths are completely de�ned in term of the frequency P (0jhm) with which, over a history,

a 0 follows a given m�length string hm. And there are 2m of such variables. So, z can be interpreted

as the density of agents in the strategy space degrees-of-freedom.
5Recall from the previous Section that this quantity measures the degree to which the population is close to a Nash

equilibrium, whether pure or mixed strategy.
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As shown in Fig. 1 three di�erent regimes of the system can be identi�ed. First, a \random

regime" occurs when z is large (the agent are sparse in the strategy space). Here the system can

hardly organize and its behavior can be described as a collection of random agents choosing their

side with a coin toss. In fact suppose the past history to be a given hm and suppose there are

Nd(hm) agents whose strategies prescribe di�erent actions based on that history while there are

N0(hm) and N1(hm) agents whose strategies prescribe the same party (we restrict ourselves to the

s = 2 case), respectively 0 and 1. If the agent in Nd choose randomly, the variance is �(hm) =

Nd(hm)=4 + (N0(hm) � N1(hm))
2=4. The average over the possible hm will then give � = N=4.

Notice that � is shaped by two factors, namely a uctuation in the choices of agents able to choose

and a uctuation in the initial distribution of strategies. Note also that the allocative eÆciency in

this case (as measured by �) equals that of a population of players playing the mixed strategy Nash

equilibrium de�ned over the two actions 0 and 1 (cf. Section 2.1).

The second regime could be called the \ineÆcient regime" for z << 1. Here the agents densely

populate the strategy space, and their actions are strongly correlated. This correlation leads to a

worsening of the overall performance due to a \crowd" e�ect (Johnson et al. 1998): the agents in

fact are too similar to each other and they all tend to choose the same party on the basis of the

available information.

The third regime for z � 1 is where coordination produces a better-than-random performance.

Here the agents are di�erentiated enough not to yield \crowd" e�ects, but at the same time suÆciently

distributed over the strategy space so as not to produce a random-like behavior.

The literature on the MG in fact, has mostly focused on the criticality of the value zc where � is

minimum, suggesting that a major change in the system behavior happens when this point is crossed

(Challet and Marsili, 1999). As we will see in the following sections, this criticality survives to the

introduction of the probabilistic learning rules.

4 Adaptive Learning

4.1 The Model

What happens to the system properties when additional heterogeneity is introduced in the popula-

tion? In particular, what happens when agents are endowed with a probabilistic decision rule? In

order to tackle the problem, in the following we investigate changes in the dynamics and asymp-

totic properties of a population of agents playing the MG as a function of changes in the nature of

the agents' learning models. Hence, we leave unaltered the setup previously described, and modify

only the way in which agents update their strategies' relative strength. In particular, we adopt the

following probabilistic updating rule.

Recall the de�nition of qi(t) as the total number of points strategy i would have won if played

until time t. Then each agent chooses among her strategies following the probability distribution:

pi(t) =
e�qi(t)P
j e

�qj(t)
: (9)

where the sum on j is over all the strategies possessed by the player. Note that, in general, di�erent

players will assign di�erent probabilities to the same strategy due to the di�erent strategy endow-
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ments. Hence, the introduction of a probabilistic learning rule adds noise at the individual level and

it also increases heterogeneity in the population.

The choice of a stochastic learning model is well supported by the available experimental evi-

dence on adaptive behavior in games as well as by evidence from psychology experiments. In fact,

most descriptive models of adaptive learning, whether belief-based or reinforcement-based, imply a

probabilistic choice and updating of available actions [cf. Erev and Roth (1998), Camerer and Ho

(1999)].

The parameter � can be considered as a sort of sensitivity of choice to marginal information: when

it is high, the agents are sensitive even to little di�erences in the notional score of their strategies.

In the limit for � !1 the usual minority game rule is recovered. On the contrary, for low values of

� a great di�erence in the strategies' strengths is required in order to obtain signi�cant di�erences

in probabilities.

The model indeed bears close similarities with a discrete time replicator dynamics (see Weibull

(1995)). The connection is straightforward if one looks at the probability updating equation associ-

ated with Eq. 9:

pi(t+ 1) = pi(t)
e� Æqi(t)P

j pj(t)e
� Æqj(t)

: (10)

where Æqi(t) = qi(t+1)�qi(t) are the points won by strategy i at time t. If one thinks of a continuous

process Æqi(t) = _qi(t)Æt, where _qi(t) is the instantaneous \�tness" of strategy i, then the continuous

time replicator dynamics equation is recovered keeping only the �rst terms in Æt expansion:

_pi(t)

pi(t)
= _qi(t)�

X
j

pj(t) _qj(t) (11)

4.2 Transient length

In everything that follows we will restrict our analysis to the case N = 101 and s = 2 and we will

speak of the optimal value for memory length mo with reference to the value of m which minimizes

� under this parameter choice6.

Let us consider the problem of de�ning the correct values for T0 and T in Eq. 8 above. The

central question is: How long must the system be left evolving before it reaches the asymptotically

stable dynamics? Fig. 2 plots the average � value based on the \deterministic" (i.e. � = +1) MG

as a function of the time length T over which this average is taken with a transient T0 = T . As it

can be seen from the graph, the values used in the literature on the MG are generally suÆcient to

obtain a prediction correct to few percentage points. However, two properties are worth noticing:

� The system approaches the asymptotic value from above, intuitively suggesting that the system

\learns" over time to self-organize

� For low values of m, in the \ineÆcient regime", and for high value of m, in the \random

regime",the system reaches a stable dynamic quite fast. On the contrary, for values of m near

the optimal value mo, the system takes a longer time to self-organize

6The choice to set s=2 is justi�ed by the fact that the system exhibits the same qualitative properties for any s � 2,

while reducing to a trivial case for s=1.
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Consider now the case in which the learning rule is the one described in Eq. 9, shown in Fig.3. For

high values of � this learning rule approaches the standard one, and accordingly, the transient length

is similar to the one found in such cases. However, as � decreases, the length generally increases. The

increase is most dramatic for values of m near the optimal value mo, and it progressively disappears

for higher values of m. The interpretation of such a result stems from the meaning of � in terms

of the learning rule. Supposing non trivial dynamics for m near mo, the parameter � sets the time

scale on which such dynamics are attained.

As an illustration, consider the following example: Let be r(t) = p1(t)=p2(t) the ratio of the

probabilities that an agent associates to his two strategies, and �q(t) = q1(t) � q2(t) the di�erence

in their respective strengths. From Eq. 9 it follows that r(t) = e��q(t). Assuming that the di�erence

in the two strategies performance holds constant over time (an assumption which is generally true in

the initial transient regime where agents' behavior is basically random) we obtain �q(t) � t: hence,

from the equality above, a given di�erence in probability is obtained at a time which is inversely

proportional to �.

In order to estimate the time scale over which the system long-run properties are attained, we use

the following procedure. Holding all the parameters and the initial conditions constant, the system

volatility can be expressed as a function of both the transient phase duration, and of the time length

over which it is averaged, i.e. � = �(T; T0). Starting from a reference time Tr,
7 we compute the mean

volatility progressively doubling T and T0, and thus obtaining a series of values �n = �(2nTr; 2
nTr).

When the relative variation j�n � �n�1j=�n falls below a �xed threshold �, we stop and take the last

computed value of � as an estimate of its asymptotic value. The corresponding time length T̂ (�) will

be an estimate of the time implied by the system to reach this asymptotic state. As can be seen

in Fig. 6 the increase in T̂ when � is lowered is mainly concentrated around mo, with shapes that

suggest the presence of a regime discontinuity.

4.3 Allocative eÆciency

In order to analyze the asymptotic properties of �(m) for di�erent �'s, we use the procedure just

described regarding the calculation of T̂ , i.e. we leave the system evolve until \stability" is reached8.

The simulation results are plotted in Fig. 5. Interestingly, when � decreases, the performance level

of the system generally increases. Moreover, such increase is larger the lower the value of m, and it

becomes negligible form � m0. The observed behavior is consistent with the idea that for high values

of m, the system dynamics tends to be determined by the initial distribution of strategies among

players, while players themselves have no opportunity to attain a higher performance by adjusting

their behavior. Recall that an increasing m means an increasing number of possible strategies over

which players may initially draw. For a �xed N , the \ecology" of drawn strategies becomes thinner as

compared to the notionally available ones. That phenomenon, it turns out, prevents the system from

self-organizing. Note that this property is quite robust and largely independent from the particular

learning rule adopted. Our results, in fact, are perfectly in line with previous simulation studies in

the high m region.

7Note that the chosen value for T0 is irrelevant as long as it is small compared to the typical time scale.
8Let us emphasize that the stable state does not imply point convergence to any state but simply long-run stability

of the relevant time-averages (e.g., the mean volatility �) even if the system continues to uctuate in its limit state.
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Conversely, for low values of m, the choice of the particular learning rule adopted does matter in

terms of aggregate eÆciency. In fact, when m is small, the original learning rule (� =1) produces

a \crowd" e�ect (corresponding to large groups of agents choosing the same side) which, due to

homogeneity in the initial strategy endowments, prevents the system from attaining a high degree of

eÆciency9. On the contrary, the introduction of a probabilistic learning rule for the strategy choice

acts like a brake that dumps the amplitude of such correlated uctuations. At the individual level, this

corresponds to lower �'s, i.e. to higher degrees of \inertia", as agents update their probabilities more

slowly. In other words, as � decreases each agent behaves as if he was applying a sort of stochastic

�ctitious play approximation [e.g., Fudenberg and Levine (1998)] 10, with an implicit assumption of

stationarity on the distribution of other agents' choices. If the whole population shares the same

� - as in the present model - the assumption is, in a way, self-ful�lling: a decrease in � makes the

behavior of the population as a whole change at a slower pace. A slower probability updating at

the individual level and the resulting more stable collective behavior, together, imply that � is a

non increasing function of �. In fact, if the system reaches a dynamical stability via an averaging

procedure over the past outcomes, increasing the time scale over which averaging occurs cannot rule

out previously attainable equilibria.

However, note that in order to capture the long run eÆciency properties of the system for low

values of � it is necessary to let the population play until stability is reached, according to the

procedure described above. Our results, in fact, were not captured by previous simulation studies

(Cavagna et al., 1999). Since the latter were all performed with a �xed time length their conclusion

was that when � is small enough, the system behavior resembles the behavior of a random system.

This �nding was in fact due to both the increase in the transient length and the purely random initial

dynamics which occur when � is decreased. Then, by �xing a time length, for small values of � the

simulations capture throughout the adjustment phase, and the system behavior perfectly mirrors

that of a collection of agents who choose at random (indeed our results of a �xed time simulation

are plotted in Fig. 6 and are perfectly in line with the existing literature11).

As can be seen in Fig. 5 the performance attainable in the MG via a collective organization of

agents with limited information and limited ability to choose is, in general, surprisingly high. In the

following we show that the level of eÆciency achieved in the double limit � ! 0 and m! 0 actually

equals that attainable with hypothetical perfectly informed and perfectly rational agents endowed

with a greater exibility in choice.

Consider for instance a collection of agents with the following characteristics: each agent is

assigned S = 2 strategies, and a vector of length 2m containing the probability p(hm) of playing

according to its �rst strategy after the occurrence of the history string hm. Moreover, for each hm,

each agent knows the values of N0(hm), N1(hm) and Nd(hm) indicating respectively the number

of agents for which their strategies both prescribe to play 0, both to play 1, or to play di�erently.

Assuming that the game structure and the amount of information available to agents is common

knowledge and that the agents are perfectly rational, the problem completely factorizes and, for each

9In some sense, one can interpret the \crowd" e�ect as a collective form of overreaction (Thaler, 1993).
10Note that �ctitious play implies that a player best responds to the observed frequency of the opponent's play.
11In other words, to discover the asymptotic properties of the system, the limits T ! 1 and � ! 0 have to be

performed in this order.
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hm, every agent in Nd(hm) will solve the game analytically choosing p(hm) in order to minimize

(N1(hm)�N0(hm))

2
� p(hm)Nd(hm) (12)

i.e. making the average fraction of the population choosing a given side as near to N=2 as possible.

This choice will produce a volatility � � Nd=4 = N=8 which is roughly similar to what obtained in

the simulation shown in Fig. 5 in the low m, low � region 12. However, note that, as from Fig.5,

these fully rational, fully informed players are (on average) \beaten" by a set of \self-organizing"

agents with memory m � mo, reaching a nearly double eÆciency.

A �nal remark concerns the variance of the distribution of � as a function of � for various m's,

as shown in Fig. 7: when � decreases the variance of � decreases for any m. However it remains

three times greater for m = mo suggesting a stronger dependence of the asymptotic performance

on the initial strategy assignment which the system is not able to wash out. That is, signi�cant

path-dependence e�ects are present.

4.4 Informational eÆciency

What we have been calling allocative eÆciency basically highlights the collective ability of capturing

the payo�s which the game notionally allows. A complementary issue regards the informational eÆ-

ciency of the market process, i.e., the extent to which the future system outcomes are unpredictable,

or, in other words, the absence of any arbitrage opportunities. Thus, let us analyze the informational

content of the binary string H of successive winning sides. Let p(0jhl) be the probability that a 0

follows a given string hl of all the possible 2
l strings of length l (as depicted in Fig. 8).

For the original \deterministic" MG the analysis performed in Savit et al. leads to the identi�-

cation of two regimes: a \partially eÆcient regime" for m < mo in which p(0jhl) � :5;8hl as long as

l � m and in which no informational content is left for strategies with memory less or equal to the

one used by the agents; and an \ineÆcient regime" for m > mo in which the distribution of p(0jhl)

is not at, even for l � m, meaning there are good strategies that might exploit the market signal to

obtain di�erential pro�ts. For l > m both the regions show a non trivial distribution p(0jhl) with an

increasing degree of \ruggedness" as l increases. The e�ect of introducing some degree of behavioral

randomness through the parameter � leads to the obvious e�ect of reducing the \ruggedness" of the

distribution of p(0jhl) (see Fig 8).

In order to study the behavior of the system as � changes we introduce two related quantities

which can be used to characterize the informational content of the time series. The �rst is the

conditional entropy S(l) de�ned as:

S(l) = �
X
hl

p(hl)
X

i2f0;1g

p(ijhl) log p(ijhl) (13)

where the summation is intended over all the possible strings of length l and p(hl) is the frequency of

a given string in the system history H. The maximum value S(l) = 1 is reached for a at distribution

p(0jhl) = :5; and it corresponds to the impossibility of forecasting (in probability) the next outcome

12We are assuming �N = N1(hm)�N0(hm) < Nd(hm). Notice that for random agents �N �
p
(N) and Nd � N

and that one can neglect the �N=Nd terms in the solution of Eq. 12 when N is large.
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based on the previous l outcomes. The idea that the information content can be used to \exploit the

market" leads to the de�nition of a second quantity A(l):

A(l) =
X
hl

p(hl)max fp(0jhl); p(1jhl)g (14)

which is the average fraction of points won by the best strategy of memory l. This is a measure of

the reward obtained by the best arbitrageur with memory l ( whereas if no arbitrage opportunities

are present A(l) is equal to :5.)

Before analyzing the behavior of these quantities when � is varied, let us briey consider as a sort

of ideal benchmark the properties of a population composed of perfectly rational, perfectly informed,

agents with common knowledge of strategy distributions. Not surprisingly, in these circumstances the

problem factorizes for each past history and the dependence on m disappears. The history produced

by such a system is a random series of 0 and 1. Indeed the number of agents choosing one side is

distributed according to a binomial around N=2 with di�erent widths for di�erent hm. In particular,

this means that in such an extreme case the \memory" loses any predicting power and no arbitrage

opportunity is left for agents with longer memory, i.e. no residual information is left in the time series

and the behavior of agents makes the market perfectly eÆcient from an informational point of view.

In the last resort, there is nothing to be learned from any history because agents know everything

from the start and coordinate their mixed strategies accordingly. Under this assumption we expect

S � 1 and A � :5.

Short of such an ideal case where the market loses its coordinating role, because agents ex ante

generate the coordination \in their heads", let us consider, for example, a population of \random

agents". Here, due to the unbalance in the initial strategy endowments we expect a non trivial

structure to appear for every l; thus S < 1 and A > :5.

In Fig. 9 we plot S(l) and A(l) for histories generated with a value of m < m0, in the \partially

eÆcient regime". The e�ect of decreasing � shows up when l > m but the information content for

high l is never completely eliminated. The market becomes less eÆcient the larger the time scale l

at which it is observed. In fact it can be shown under very general assumptions that certain strings

in the history are more abundant than others (Savit et al., 1998) and the long-range correlation that

was responsible for the \crowd" e�ect at high � survives as a non trivial structure in p(0jhl) for high

l. All this applies despite the fact that to an agent with memory l � m the market appears perfectly

eÆcient regardless of the � value.

For values of m > m0 in the \ineÆcient phase" the e�ect is in some sense reversed. As can be

seen in Fig. 10 the e�ect of decreasing � is again negligible for l � m but in the limit � ! 0 the

curve becomes at for l > m. This last result deserves some comments: the atness in l � m means

that no gain is achieved from inspecting the time series with a very long memory l >> m because

no more arbitrage opportunities are open for a longer memory agent than the best possible agent

of memory m. The market can be considered to be, again, partially eÆcient in the sense that it

generates an upper bound on the maximal attainable arbitrage capability which does not depend on

the arbitrageur memory.

The particular form of the conditional entropy in Fig. 10 suggests that in the limit � ! 0

the system can be described as a Markov chain of memory m 13. The result can be explained
13Notice that by construction, in the learning rules considered here the past is not discounted, and the agents weigh
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by noticing that when � is small only great di�erences in the past performances of strategies are

relevant and in the limit � ! 0 only in�nite di�erences become relevant. Putting it another way, the

frequency of victories of the various strategies becomes constant implying the formation of a static

hierarchical structure in the strategy space which at the end is responsible of the Markov character

of the resulting history. The appearance of \best strategies" in m > mo region is well revealed by

the plot of the average score by the best strategy versus the average point scored by the player (see

Fig. 11): a correlation in fact appears between the performance of a player and the performance of

its best strategy. Moreover, in the m � mo region a sub-population showing the same kind of high

correlation coexists with another group that presents no correlation, composed of agents possessing

two equally performing strategies.

Conversely, only in the low m region no strategy ends up being preferable to others and no player

is bound to lose due only to his initial strategy endowment.

Notice, however, that equivalence between strategies does not necessarily imply equivalence in

the agents' performances. This is highlighted by the plot of the variances and the supports of the

points distribution for di�erent values of � and m in Fig. 12. Interestingly, only for low m and low �

does equivalence in strategy performance imply a relatively uniform distribution of points over the

population. In the other parameter regions learning does not eliminate performance heterogeneity

over the population. Loosely speaking, the market self-organizes over an ecology of \mental models"

and players, entailing the long-run coexistence of relative \winners" and \suckers".

5 Conclusions and Outlook

One of the central questions we addressed in this work is the extent to which market dynamics

generated by arbitraging activities, as represented in Minority Games, display generic properties,

independent from particular behavioral assumptions. Our answer is largely negative: simple varia-

tions in the agents' learning algorithms, we show, yield important modi�cations in the asymptotic

properties of the system.

More speci�cally, we show that less sensitivity to marginal information, i.e., more inertia in the

learning algorithm entails improved long-run collective performances, although at the expense of

longer adjustment phases. Together, performance asymmetries across agents, as measured by the

variance (or analogously) the support of the earnings distribution over the population, fall as inertia

in the agents' behavior increases.

In general, some degrees of randomness help in improving allocative and informational eÆciencies

of the market - as de�ned above. The major e�ect of randomness is that it performs like a brake

on the system dynamics, thus preventing groups of players who densely populate the strategy space

from acting in a strongly correlated way and thus from producing \crowd" e�ects which worsen the

system performance14.

their strategies on the basis of all the game outcomes starting from the beginning of the simulation (however, see the

Appendix for an analysis of the system properties when a time decaying factor is introduced).
14The introduction of randomness in individual behavior is indeed only one of possible ways to maintain behavioral

heterogeneity in the population. For instance, the same e�ect has been obtained in De Cara et al. (2000) by substituting

the \global" evaluation of strategies on the system history H with a \personal" evaluation in which each agent uses

the binary string made up of her own record of victories. A diversi�cation mechanism is again at work breaking the
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Table 2 summarizes the di�erent system properties - i.e. di�erent market \regimes" - conditional

on di�erent ecologies of strategies (as captured by the parameters z = 2m=N and � respectively).

Indeed, one of our major conclusions, which re�nes over previous results in the Minority Game

literature, is that market eÆciency - in the complementary de�nitions proposed above - is only

achieved in correspondence of an \optimal degree" of heterogeneity, whether in the agents' decision

behavior or in their underlying sets of beliefs. Moreover, our results suggest, more rationality - as

approximated here by a greater ability of the agents to track novel environmental information - may

well lower average performances (an analogous result is obtained in a di�erent setup by Brock and

Hommes (1989)).

The general sensitivity of system dynamics upon particular learning algorithms also indicates a

natural way forward, beyond the exercises presented in this work, experimenting with cognitively less

demanding learning rules. So, for example, it would be interesting to explore the properties of pure

reinforcement learning whereby agents update only the strategies they play. That would also set a

\zero-level" model in terms of degrees of required information and cognitive abilities - somewhat at

the extreme opposite to the models studied so far in the Minority Game literature. And, somewhere

inbetween, one might explore more re�ned learning models such as that in Easley and Rustichini

(1999).

Moreover, beyond the strict setup of Minority Games so far, the impact of phenomena of social

imitation still awaits to be studied15. And, more generally, the robustness of the foregoing conclusions

ought to be checked in less \reduced form", institutionally richer models, such as arti�cial markets

of the type outlined in Marengo and Tordjman (1996), Arthur et al. (1997) and Chiaromonte and

Dosi (1998) [e.g., Kirman (1999) for a review].

Finally, a complementary line of inquiry regards the analysis of behaviors and learning of human

subjects under experimental settings isomorphic to the market interactions formalized above.

In the last resort, all these latter exercises, together with the results presented here ought to be

considered as adding some pieces of evidence to the much broader e�ort aimed at identifying the

variables which determine a \universality class", if any, of market processes involving coordination

cum heterogeneity, as distinguished from those characteristics which strictly depend upon speci�c

distributions of beliefs and learning rules. Were our results con�rmed in further studies, they would

add strength to the conjecture that eÆcient coordination might not stem from the adherence of

populations of agents to Nash equilibrium behaviors, but rather emerge out of persistent forms of

heterogeneity in beliefs and behaviors within the population.

6 Appendix

Many authors, especially in the experimental literature [e.g., Erev and Roth, (1998)] add to the

description of the learning process one more parameter, connected with the idea that agents weigh

more the information they received in the recent history as compared to the one coming from far

back in the past. This parameter typically takes the form of a decay factor. If �i(t) are the points

scored by strategy i at time t and � (0 < � � 1) the information decay factor, the updating rule for

correlation among agents.
15A germane model of �nancial dynamics with stochastic choice and social imitation is Kirman (1993).
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the total strength becomes

qi(t+ 1) = �qi(t) + �i(t) (15)

and the associated updating rule for the probabilities:

pi(t+ 1) = p�i (t)
e�qi(t)P

j p
�
j (t)e

�qj(t)
: (16)

The e�ect of introducing such a \memory leakage" is twofold: First, it puts an upper limit to the

maximal strength any strategy could reach, namely 1=(1 � �). Second, in presence of no informa-

tion ux, the equiprobability between strategies is steadily restored. This e�ect implies that if one

takes the limit � ! 0 keeping the value of � constant, the system will converge to a collection of

random agents. In turn, this implies that agents, loosely speaking, have to collect a larger amount

of information before they start behaving as a self-organized system.

The e�ect of introducing \forgetting" in the learning rule is easily understood: if the agents forget

more rapidly than they learn they are always bounded to less eÆcient behavior. Indeed ,as can be

seen from Fig. 13, if the value of � is decreased the eÆciency of the system is proportionally reduced.
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history action history action

000 1 100 1

001 0 101 0

010 0 110 1

011 1 111 0

Table 1: An example of strategy with m = 3.

low z high z

low � high A.E., high I.E. partial A.E., partial I.E.

high � low A.E., high I.E. partial A.E., low I.E.

Table 2: System properties: a summary (A.E. and I.E. stand for Allocative and Informational

EÆciency, respectively.)
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Figure 9: Conditional entropy S(l) (left) and arbitrage opportunity A(l) (right) as a function of the

time depth l for m = 3 < mo.
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Figure 10: Conditional entropy S(l) (left) and arbitrage opportunity A(l) (right) as a function of the

time depth l for m = 6 > mo.
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Figure 11: Plot, for each player, of the scoring rate of his best strategy against his own winning rate

for a population of 101 players over 30 independent runs with � = :04.
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Figure 12: Variance (rectangle) and support (straight line) of the scored points distribution in a

population of N = 101 with s = 2, over 30 independent runs. Notice that while in the high �

simulations the distributions are similar in width for any m, when � is reduced the low m region

emerges as the \socially optimal" one.
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Figure 13: � as a function of the run length T for di�erent values of � and �. The simulations

are performed with m = 6 where a greater sensitivity of the transient time length to the learning

parameters � and � is expected (see Section 4.2).
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