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“Logic is the foundation of the certainty
of all the knowledge we acquire.”
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A B S T R A C T

Although instabilities and large oscillations are traditionally considered
as conditions to be avoided in structures, a new design philosophy based
on their exploitation towards the achievement of innovative mechanical
features has been initiated in the last decade. In this spirit, instabilities are
exploited towards the development of systems that can yield designed
responses in the post-critical state. Further, the presence of oscillating
constraints may allow for a stabilization of the dynamic response. These
subjects entail a rich number of phenomena due to the non-linearity, so
that the study of such mechanical systems becomes particularly complex,
from both points of view of the mechanical modeling and of the compu-
tational tools.

Two elastic structures are studied. The first consists of a flexible and
extensible rod that is clamped at one end and constrained to slide along
a given profile at the other. This feature allows one to study the effect
of the axial stiffness of the rod on the tensile buckling of the system and
on the compressive restabilization. A very interesting effect is that in a
region of parameters double restabilization is found to occur, involving
four critical compressive loads. Also, the mechanical system is shown to
work as a novel force limiter that does not depend on sacrificial mechan-
ical elements. Further, it is shown that the system can be designed to be
multi-stable and suitable for integration in metamaterials.

The second analyzed structure is a flexible but inextensible rod that is
partially inserted into a movable rigid sliding sleeve which is kept vertical
in a gravitational field. The system is analytically solved and numerically
and experimentally investigated, when a horizontal sinusoidal input is
prescribed at the sliding sleeve. In order to model the system, novel com-
putational tools are developed, implementing the fully nonlinear inex-
tensibility and kinematic constraints. It is shown that the mathematical
model of the system agrees with the experimental data. Further, a study
of the inclusion of dissipative terms is developed, to show that a steady
motion of the rod can be accomplished by tuning the amplitude or the
frequency of the sliding sleeve motion, in contrast with the situation in
which a complete injection of the rod inside the sleeve occurs. A special
discovery is that by slowly decreasing the frequency of the sleeve motion,
the length of the rod outside the sleeve can be increased significantly,
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paving the way to control the rod’s end trajectory through frequency mod-
ulation.
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fined by the curve X̂ = Lf(Ŷ/L). The elastic rod is in a trivial

equilibrium straight configuration and may buckle in tension

and compression when a load P is applied. . . . . . . . . . . 30

Figure 8 Isosurfaces of Eq. (95) showing the combination of stiffness

ratio q, dimensionless radius of profile curvature at the origin

1/f ′′(0) and load p parameters for bifurcation. Note that all red

curves belong to the same vertical plane defined by 1/f ′′(0) =

−0.1 and correspond to Fig. 9 (bottom, left). The representation

of the lower surfaces has been slit to improve understanding. . 36

Figure 9 Tensile/compressive bifurcation load p as a function of q, for

constant f ′′(0) = {−10, −2, −0.5, 0.5, 2, 10}. The regions O, T,

A, and B are also shown. Tensile bifurcation does not occur for

f ′′(0) > 0, but always occurs for f ′′(0) < 0. In compression,

multiple bifurcation modes can be observed and their number

depends on the values of q and f ′′(0); considering here the first

mode, there are regions where there are none (O and T), two

(A), and four (region B) bifurcation compressive loads. The

grey curves represent higher modes. . . . . . . . . . . . . . 37

xvi

[ December 12, 2022 at 13:33 – classicthesis version 1.0 ]



List of Figures

Figure 10 Upper part, left: Sets O, T, A, and B defined by the number of

critical loads in compression (restricted to first mode) and in

tension, as described in Table 1. Upper part, right and lower

part, left: Coalescent bifurcation load p∗ as a function of q

(left, lower part) and of f ′′(0) (right, upper part), defining the

different boundaries between two of the sets O, T, A, and B.

Lower part, right: Bifurcation load p versus q, evaluated for

two values of f ′′(0); here p∗ is marked with a diamond of the

same colour as the corresponding transition curve. . . . . . . 41

Figure 11 Comparison between tensile/compressive bifurcation loads pq =

PL2/(π2B) for extensible (dashed lines) and inextensible (con-

tinuous lines) rod models and for q = {0.5, 10, 400}. The region

shaded in gray corresponds to p < −1, which has no mechani-

cal meaning. Bifurcation loads corresponding to modes higher

than the first are drawn with lighter lines. As the stiffness ratio

q increases, the bifurcation models converge. At the transition

point 1/f ′′(0) = 0 tensile instability turns to compressive and

the critical load suffers a jump. . . . . . . . . . . . . . . . . 43

Figure 12 Parametric representation of profile curvature at the origin f̄ ′′

and stiffness ratio q̄ defining the limit parameters for which the

two critical loads can be tuned separately. The intersection be-

tween (solid and coloured) curves at different A = −p
(+)
cr /p

(−)
cr

and (dashed) curves pertaining to p
(−)
cr defines the correspond-

ing pair (f̄ ′′, q̄). In the gray zone compressive bifurcation does

not occur and its boundary corresponds to coalescent bifurca-

tion loads p
(−)
cr = p∗. . . . . . . . . . . . . . . . . . . . . 45

Figure 13 Smallest eigenvalue ω̂2
y = γω2

yL
4/(π4B) for f ′′(0) = −6 when

the dimensionless applied load p is varied. Two stiffness ra-

tios are considered to analyse the stability in subset A (left,

q = 6.5) and subset B (right, q = 8.5). Stability (or instabil-

ity) of the straight configuration corresponds to positiveness

(or negativeness) of the smallest eigenvalue ω̂2
y. Restabiliza-

tion (left) or double restabilization (right) is found. . . . . . . 49

Figure 14 Post-critical behaviour in terms of dimensionless force p versus

different measures of structural deformation: clamp displace-

ment ∆, right end rotation θL and vertical displacement dY .

f ′′(0) = −10 and q = 8.4 (upper part) and q = 10 (lower part).

Some stable and unstable deformed configurations are shown

for specific non-trivial states in the central part. . . . . . . . . 52

xvii

[ December 12, 2022 at 13:33 – classicthesis version 1.0 ]



List of Figures

Figure 15 Force (pq = PL2/(π2B)) – displacement (∆/L) diagram for a

structure with q = 4, 30 and skew-symmetric profile defined

by Eq. (134) with f ′′
(
0+
)
= 2 (left) and f ′′

(
0+
)
= 10 (right).

The deformed shapes shown in the inset correspond to the pq–

∆/L pairs highlighted with a circle (with corresponding colour)

on the non-trivial path. . . . . . . . . . . . . . . . . . . . 53

Figure 16 Profile’s shapes realizing a symmetric bilinear force-displacement

p− ∆ curve (shown in the insets) with pcr = {0.01, 0.05, 0.3}

(from top to the bottom) for three different values of the bilin-

ear stiffness ratio r = {−0.01, 0, 0.01} (top), r = {−0.04, 0, 0.04}

(middle) and r = {−0.35, 0, 0.35} (bottom). Crosses and circles

denote the points where the design p−∆ fails, putting out-of-

service the device. . . . . . . . . . . . . . . . . . . . . . . 58

Figure 17 Profile’s shapes realizing a symmetric bilinear force-displacement

p−∆ curve with null bilinear stiffness ratio (shown in the in-

sets), r = 0, for pcr = 0.05 (top left), pcr = 0.05 (top right)

and pcr = 0.3 (bottom). Crosses denote the points where the

design p−∆ fails, putting out-of-service the device. Note that

small values of q extend the range of displacement for which

the designed response is displayed. . . . . . . . . . . . . . 59

Figure 18 Constraint’s profile shapes optimized for realizing (above) a si-

nusoidal force-displacement response, Eq. (147), with a = 0.05

and b = 2 and (bottom) a triangular response, Eq. (148), with

r1 = 0.05, r2 = 0.1, and c = 2. Critical load is pcr = 0.1 (left)

and pcr = 0.2 (right). Different shapes are reported for differ-

ent values of the stiffness ratio q. . . . . . . . . . . . . . . . 61

Figure 19 Oscillating sliding sleeve system. The rod of flexural stiffness B

is inserted partially inside the sliding sleeve and a concentrated

mass m is attached to the rod tip. The sliding-sleeve is allowed

to move in the horizontal and in the vertical direction. . . . . 65

Figure 20 Comparison between the effects of the absolute (left) and rel-

ative (right) rest initial conditions for dissipation parameters

ζ = 0.025 and µ = 0.15. The injection or ejection of the rod

is shown as a function of the release time tr (as a fraction of

the excitation period T ) and the initial external length of the

rod ℓ0. The behaviour of the system subject to the absolute rest

initial conditions shows no clear pattern, while in the relative

rest case a sinusoidal pattern emerges. . . . . . . . . . . . . 75

xviii

[ December 12, 2022 at 13:33 – classicthesis version 1.0 ]



List of Figures

Figure 21 Transition surfaces dividing the three behaviour regions. Red

surface defines the change from injection to quasi-periodic mo-

tion. Blue surface defines the change from quasi-periodic mo-

tion to ejection. Where the two surfaces coincide, there is a

transition from injection to ejection without an intermediate

quasi-periodic state (as shown in Fig. 20, right). The surfaces

are representative for a null release time tr = 0 and dissipation

parameters ζ = 0.025 and µ = 0. . . . . . . . . . . . . . . . 76

Figure 22 Time evolution of ℓ(t) with varying p and fixed dimensionless

amplitude U = 0.04 and frequency Ω = 5, for a null release

time tr = 0. Top, the system with only viscous damping ζ =

0.025 and no dry friction µ = 0. Bottom, system with viscous

damping ζ = 0.025 and dry friction µ = 0.15. . . . . . . . . . 77

Figure 23 Dimensionless average lengths ℓm versus dimensionless ground

displacement amplitude ug (solid lines). The two average lengths

convergence to the same value in the limit of vanishing ground

motion amplitude ug, ℓm = 3
√
3B/(mω2). . . . . . . . . . . 82

Figure 24 Time-series of the twin periodic solutions ℓ±(t) = ℓ±m[1−ϵ±ℓ cos(2ωt)]

and θ±(t) = ϵ±θ cos(ωt) for parameters m = 0.2 kg, B = 1.5

Nm2, ω = 10π rad/sec, and ug = 0.005 m. Usl(t) and θ(t)

can be in phase or differ by a phase of π, giving as a result a

different value for ℓm but the same amplitude εℓ. . . . . . . . 83

Figure 25 Projections of the phase portraits and the Poincare sections

for two half-period shifted phases (upper part) and frequency

spectrum of the response (lower part) for a system with m =

130gr, ug = 5mm, and for dissipation parameters ζ = 0.005,

µ = 0. Three cases are shown for ℓ(t): (Left) Periodic motion

for excitation frequency fex = 2Hz, Quasi-periodic motion for

(Centre) fex = 3.2Hz and (Right) fex = 3.5Hz. . . . . . . . . 84

Figure 26 As for Fig. 25 but for θL(t). . . . . . . . . . . . . . . . . . 85

Figure 27 Experimental setup of the oscillating sliding-sleeve system re-

alized in the Instabilities Laboratory of the University of Trento.

Top part: general arrangement of the experimental setup. Lower

part: details of the sliding sleeve exit (lower left) and the mass

attachment at the tip of the rod (lower right). . . . . . . . . . 86

xix

[ December 12, 2022 at 13:33 – classicthesis version 1.0 ]



List of Figures

Figure 28 Time series of the experimentally measured trajectory of the

mass m for fex = 10 Hz, ug = 10 mm, ℓ0 = 45 cm, m = 303 gr,

for two different release timings, tr = 0.07 T and tr = 0.71 T .

(Top) Description of the release timing; the sliding sleeve mo-

tion is shown with a dashed line while the X component of

the lumped mass trajectory for the two experiments close to

the release time is shown along with the release time measure-

ment. (Middle) The X components of the trajectories of the two

experiments are shown, offset by the measured release time so

that the release is matched. (Bottom) Same as middle part but

for the Y components. . . . . . . . . . . . . . . . . . . . . 88

Figure 29 Composite image of the experimental setup during the exper-

iments with relative rest initial conditions for fex = 10 Hz,

ug = 10 mm, ℓ0 = 45 cm, m = 303 gr, for two different re-

lease timings. (Left) tr = 0.07 T , (Right) tr = 0.71 T , where T

is the period of the sliding-sleeve motion. The experimentally

measured trajectory of the mass m is illustrated with green. . . 89

Figure 30 Experimental measure of the critical amplitude ug,cr for the

rod’s final injection as a function of the frequency fex. If the

amplitude ug becomes smaller than the critical value the rod is

eventually injected. The red curve is for m=130gr and the blue

curve for m=303gr. . . . . . . . . . . . . . . . . . . . . . . 90

Figure 31 Period-average exterior length of the rod for m = {130, 303}gr

and moving constraint amplitude ug = {3.5, 5}mm. The gray

points correspond to the measurements from the experiments,

the blue and red solid line corresponds to the theoretical pre-

diction of the in-phase and out-of-phase solutions respectively,

and the dashed purple line represents the length of the clamped-

free rod in its resonant state. Loss of stability can be observed

for a range of frequencies, resulting to complete injection of

the rod. . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

Figure 32 Same as Fig. 31 but in a log-log scale, revealing the exponen-

tial trend of the external length ℓm as a function of the input

frequency fex. . . . . . . . . . . . . . . . . . . . . . . . . 93

Figure 33 A rectangular wire helical spring realizing an equivalent one-

dimensional rod with very small ratios between axial and bend-

ing/shear stiffnesses. . . . . . . . . . . . . . . . . . . . . 102

xx

[ December 12, 2022 at 13:33 – classicthesis version 1.0 ]



List of Figures

Figure 34 Semi-logarithmic plot of the stiffness ratios q
spring
a and q

spring
s

for a rectangular wire helical spring, as functions of the aspect

ratio a/b of the rectangular wire cross-section with L/D = 5

(reported in Fig. 33 for a/b = 8). . . . . . . . . . . . . . . . 103

Figure 35 A one-dimensional element working as an axially-deformable

elastica, characterized by high shear stiffness ratio qs but low

axial stiffness ratio qa, obtained as an elastic rod inserted within

a helical spring. The spring can slide along the rod so that the

latter does not contribute to the axial stiffness of the structure. 104

Figure 36 Semi-logarithmic plot of the stiffness ratios qa and qs for a

composite rod-spring element (Fig. 35) as functions of L/D. . . 106

Figure 37 Bifurcation dimensionless load pq = PL2/(π2B) as a function

of the dimensionless radius of profile curvature at the origin,

1/f ′′(0), for fixed values of q, (q = 10 on the left and q = 400

on the right). The asymptotic behaviour, Eqs. (226) and (227),

is represented by dashed lines. . . . . . . . . . . . . . . . . 108

Figure 38 Convergence of the quasistatic rotating-clamp problem for the

length L (left), the moment at the clamp M (centre), and the

rotation of the free end θL (right). . . . . . . . . . . . . . . 110

Figure 39 Kinetic energy of the snapping rod as the clamp is rotated. The

Implicit Euler and the Newmark methods are compared. . . . 111

Figure 40 Comparison of the length preservation capabilities of the Col-

location and Galerkin methods of the snapping rod as the

clamp is rotated. . . . . . . . . . . . . . . . . . . . . . . . 111

xxi

[ December 12, 2022 at 13:33 – classicthesis version 1.0 ]



L I S T O F TA B L E S

Table 1 Numbers of main bifurcations for the subsets O, T,
A, and B. . . . . . . . . . . . . . . . . . . . . . . . . . 39

Table 2 Limit behaviour of the oscillating sleeve system. . . 73

Table 3 Properties of the carbon-fiber rod used in the exper-
iments. . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

xxii

[ December 12, 2022 at 13:33 – classicthesis version 1.0 ]



1I N T R O D U C T I O N

Differently from linearized analysis, nonlinear models may lead to a non-
uniqueness of the equilibrium, or dynamic, solution. The presence of mul-
tiple solutions can drive the change from stability to instability along a
loading path, realized through a bifurcation or a snap-mechanism. Bi-
furcations are referred to the emergence of non-trivial modes, emanat-
ing from a trivial configuration. Examples come from diverse fields such
as Engineering, Theoretical Physics (e.g. quantum bifurcations), Chem-
istry (e.g. bifurcating reactions), Biology and Ecology (e.g. three-species
predator-pray models [61]). The term bifurcation was first used by Henri
Poincaré in 1885 in the first scientific article showing the described be-
haviour in mathematics [43]. The phenomenon of bifurcation is closely
tied to the chaos theory, as nonlinear dynamics lead to period doubling bi-
furcations and subsequently to non-periodic solutions for systems under
periodic excitation [53]. The logistic map is another example of bifurca-
tion and chaos in mathematics.

In a similar manner, of importance in many scientific fields are also the
effects of instabilities. In a dynamic context, the term instability is used
to describe a configuration on the equilibrium path for which a small
deviation from the path implies a divergence when the system is evolved
in time. In similar manner, the configuration is deemed stable when the
deviated system converges back to the original equilibrium path.

Bifurcations and instabilities are strongly associated with one another,
as in many cases the appearance of an instability implies a bifurcation in
the equilibrium path. The most usual example is that of the buckling of
beams subject to an axial load; see Fig. 1.

The study of instabilities of structures subject to these types of con-
straint is motivated by the possible disclosure of unexpected mechanical
features that can be exploited to attain a designed response. The phrase
”transition from buckliphobia to buckliphilia” has been used to describe
the current trend of exploring the advantageous properties of buckling
structures [45]. The term ”buckliphobia” refers to the traditional thought
that buckling has catastrophic consequences for the mechanical proper-
ties of a structure and as a result should be avoided at all cost. This is
true for structures that are designed to display negligible deformations

1
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introduction

Figure 1: Typical instabilities in structural mechanics. (Left) Typical bifurcations of the
equilibrium path related to the buckling of beams, (Right) Snap-through insta-
bility of a bistable structure (load-controlled conditions).

or rotations. However, recent advances in structural mechanics aim to
produce structures that take advantage of structural instabilities in order
obtain behaviours that are not possible or very difficult to obtain using
mainstream designs, such as reconfigurable structures or designed me-
chanical properties. In that respect, instabilities are no longer considered
catastrophic and undesirable effects but can be exploited to attain desir-
able properties from mechanical systems.

A first example of a reconfigurable structure is the ”Buckliball”, as the
Authors of the original research paper called the spherical structure that
was introduced as a first example of a new class of structures that can al-
ter their configuration through pneumatic actuation [51]. The ”buckliball”
is a spherical shell with a pattern of voids cut out. When subject to a neg-
ative internal pressure, the structure folds and its size changes uniformly
due to a negative Poison’s ratio that results from the void pattern [8].

Building upon the work of the ”buckliball”, another example of a re-
configurable structure is a thin-stiff spherical shell attached to a thick-
soft inner substrate that can produce a wrinkling pattern when subject to
uniform stress [16]. The pattern on the structure surface can be altered
through pneumatic actuation and the system has been used to change on
demand the aerodynamic properties of a ball [56].

In a similar fashion, buckling has been used to create functional 2D
microstructures [63]. These structures consist of thin ribbons that when
stressed fold into predetermined configurations, such as coils, helices and
a variety of more complex shapes. Also, nested structures can be created
or the structures can be repeated to create interconnected 3D networks

2
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that extend from the microscale to the mesoscale. Such microstructures
can produce novel tunable electric, magnetic and mechanical microsys-
tems.

Further, novel reconfigurable structures that exhibit designed mechani-
cal properties have been inspired by the Japanese arts of folding and cut-
ting paper, origami and kirigami respectively. These structures are used
in compliant mechanisms [39, 40, 44], multistable mechanisms [44, 60],
and proposed as building blocks of mechanical metamaterials [22, 29, 39,
44, 60].

In another example, buckling has been exploited to display zero or neg-
ative stiffness [11, 21, 31, 34], and designed force-displacement response
[36, 54, 65, 67].

Potential applications for instability powered mechanisms include tech-
nologies for energy harvesting [22, 41], where snap-through instabilities
provide fast kinematics and self-tuning properties [25], and for energy
dissipation [4, 21, 31, 62].

In the present work structural instabilities are studied and more specif-
ically instabilities of elastic rods subject to non-standard constraints. By
the term non-standard constraint it is meant a constraint different than the
traditional clamp and hinge constraints fixed in space. In particular, two
types of constraints are considered in the present work. The first, a sliding
profile, generalizes the hinge by assuming that the constrained point of
the rod is able to move along a predefined profile, while the second, the
sliding sleeve, generalizes the clamp by allowing the rod to slide inside
the clamp. In order to study the effects of these constraints, two specific
systems were devised and are briefly presented in the following sections
of this chapter.

1.1 the sliding profile system

This system is composed of an elastic rod that has one of its ends attached
to a clamp that can move along the axis parallel to the undeformed rod
and the other end attached to a hinge that is allowed to slide along a
predetermined curved profile; see Fig. 2. The profile is designed such
that in the unloaded condition the rod is perpendicular to the profile at
the point of contact. When a force is applied to the clamped end, the rod
remains in a straight configuration until the force reaches a critical value,
either in compression or in tension, providing a buckling of the rod. This
critical load depends on the curvature at the point of contact, while the

3
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Figure 2: The sliding hinge system. The system is composed of an elastic rod that has
one of its ends attached to a clamp that can move along the axis parallel to the
undeformed rod and the other end attached to a hinge that is allowed to slide
along a predetermined curved profile.

force-displacement behaviour of the system in the post-critical regime is
determined by the whole shape of the profile.

From a theoretical point of view this system shows a variety of interest-
ing phenomena, such as tensile buckling and negative stiffness. The sys-
tem, originally proposed for the case of an inextensible rod along with an
equivalent single degree of freedom system [11], is enhanced through the
introduction of extensibility. Therefore, in addition to buckling, the rod
displays a restabilization that appears as it reaches a length too short to
make the trivial straight configuration unstable. Under specific properties
of the profile shape, the system is shown to exhibit a double restabiliza-
tion, meaning that the first restabilization is followed by a second buck-
ling and a second restabilization as compression increases. In other words,
the straight configuration loses stability twice and recovers it twice.

Practical examples for this structural system are force-limiters that can
be designed to take advantage of the buckling of beams to activate, used
to prevent unbounded growth of a force applied to a sensitive element. In
this device, when a certain threshold of force is attained, the (incremental)
stiffness vanishes, thus allowing the displacement to grow. This occurs
until a certain limit stroke is reached, at which the device finally locks.
If the force-limiter is purely elastic, dissipation is prevented, so that the
displacement decreases back to zero when the force is released. A small
positive incremental stiffness provides a mechanism for resetting the de-
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vice once the force is small enough. Another advantage of this system is
that the elastic buckling of the beam provides an activation mechanism
that does not require the use of sacrificial elements. Force-limiting mech-
anisms may be used to bound the force transmitted during an impact,
as is the case of automotive seat belt systems, where plastic deformation
developing in mechanical elements prevents reuse of the device [7, 17,
19].

Another crucial application is for vibration isolation of scientific and
measuring equipment [1, 28, 47], (e.g. optical tables [58]), or of gravitation-
al-wave detection laboratories [20], but also of civil structures to be shield-
ed from earthquakes [2, 32, 49].

Furthermore, the designed force-displacement curve can be enhanced
to exhibit multistability, as in reconfigurable metamaterials for shock ab-
sorption [64], shape programming [55], elastic energy trapping [50], and
wave guiding [30]. Several structural schemes have been so far proposed
for these purposes, most incorporating negative stiffness elements, such
as magnetic springs for active vibration control [48, 68, 69], oblique me-
chanical springs [18], extremely deformable [57], or buckling [38, 62]
beams.

An extensive analysis of the sliding profile system is presented in Chap-
ter 3.

1.2 the sliding sleeve system

The sliding sleeve system consists of a rod partially inserted within a
frictionless and rigid sliding sleeve and with a mass attached at the tip
of the rod outside this constraint; see Fig. 3. The quasi-static case of a
rod constrained by a fixed sliding sleeve is studied in [12], where it is
demonstrated for the first time the realization of an outward configura-
tional force at the constraint, parallel to the sliding direction, as effect of a
curvature discontinuity point moving along the elastic rod. The dynamic
response of the same system within a gravitational field is studied in [3],
showing complex dynamic transients ending with a complete injection or
complete ejection of the elastic rod, towards the two trivial attractors of
the dynamical system where the length external to the constraint becomes
zero or infinite.

The oscillation of the sliding sleeve constraint provides an external in-
put that allows the system to exhibit a quasi-periodic motion, without
injecting into or ejecting out of the sliding sleeve. This may also occur
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Figure 3: The sliding sleeve system. The system consists of a rod partially inserted within
a frictionless and rigid sliding sleeve and with a mass attached at the tip of the
rod outside this constraint.

even though the amplitude of the input motion is small, relative to the
dimensions of the system and relative to the displacement of the mass at
the tip of the rod. More specifically, the sliding sleeve oscillation can be
interpreted as capable to introduce a third attractor associated with a fi-
nite external length, in addition to the two trivial one of null and infinite
length. The third attractor is then realized as the result of a balance in
average sense over the time of the configurational force and the gravita-
tional force.

The configurational force constitutes the main driving force of excita-
tion of the system. The term configurational force is chosen due to the fact
that the force mainly depends on the configuration of the rod-sleeve sys-
tem regardless of its dynamic state. These are Eshelby-like forces named af-
ter Eshelby that first introduced them in solid mechanics to model forces
driving crack propagation.

The oscillating sliding sleeve system is discussed in detail in Chapter 4.
It is shown to have self-tuning properties, a desirable effect in applications
such as energy harvesting and energy dissipation. Mechanisms incorpo-
rating the sliding sleeve can be considered for applications in resonant
metamaterials.

1.3 mathematical modeling of the systems

Even in the simplest case that the material properties are linear, the study
of buckling structures entails larger deflections and geometric nonlin-
earities. Therefore, linear models that work well under the assumption

6
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of small deformations, as well as standard analysis techniques that are
adapted to linear problems, are not sufficient and more sophisticated
methods are required.

In order to study the two systems described above, analytical and nu-
merical models are developed. Concerning the analytical models, a closed
form solutions of the extensible and the inextensible elasticae are em-
ployed. Subsequently, a Finite Element framework is developed as an ef-
fort to gain a more accurate model that includes the mass of the rod and
distributed forces.

For the sliding hinge system, the closed-form solution for a cantilever
beam with a force imposed at the free end provided in [6] is exploited.
In particular, this solution, based on Jacobi elliptic functions as an im-
provement over the elliptic integral approaches considered before [26, 27,
37, 42, 52]. For the sliding sleeve system the solution of the inextensible
elastica presented in [3] is used. Further, a finite element formulation of
the sliding sleeve constraint is developed as an extension of the method
provided in [5].

For the purposes of evolving in time the theoretical models a variety of
numerical methods are tested. More specifically, for the time integration
of the elastica models a Crank-Nicolson scheme is used, and for the finite
element model an Implicit Euler method is selected.

The theoretical background of these models is provided in Chapter 2.

7
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2T H E O R E T I C A L B A C K G R O U N D

In this chapter the theoretical background, the mathematical models and
the numerical methods used in the next chapters are presented. First the
static and dynamic models for the elastica are defined for the most gen-
eral case that takes into account the extensibility of the elastic rod and
then the case of the inextensible elastica is discussed. Following this, the
numerical finite element methods are briefly presented. The models and
methods presented in this chapter will be adapted to the specific prob-
lems solved in the subsequent chapters.

2.1 the quasi-static model for the extensible elastica

The closed form solution of the extensible elastica of undeformed length
L is used to solve the governing equations in the quasi-static case, as
a simplification that ignores the density of the rod and other distributed
forces along the rod. The solutions are obtained for the case of the elastica
clamped at one end at some angle α and loaded at the other one through
a force of magnitude R(t) and inclination angle β(t) with respect to the
clamp inclination, as shown in Fig. 4. The solution is obtained in the
rotated coordinate system x-y, rotated by the angle α + β(t), and the
deformation of the rod is described through the rotation θ(s) and the
axial strain ε(s) fields function of the curvilinear coordinate s ∈ [0,L] .

kinematics The deformed rod’s configuration can be described in
the rotated reference frame x-y with varying the coordinate s through the
integration of the θ(s) and ε(s)1 fields as follows

x(s, t) =
∫s
0

[1+ ε(σ, t)] cos(θ(σ, t) +β(t))dσ,

y(s, t) =
∫s
0

[1+ ε(σ, t)] sin(θ(σ, t) +β(t))dσ,
(1)

1 In order to simplify the notation, from this point forward the time variable t is omitted in
the argument list of time-varying quantities and it is implied wherever time-dependent
quantities are considered. When confusion may arise, the time variable will be explicitly
provided.

9
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Figure 4: The simplest problem of the elastica considered in the present work. The rod of
length L and flexural stiffness B is clamped on one end at an angle alpha and
a concentrated mass m is attached to the rod tip. A general force R is applied
to the mass.

or in the original reference frame X-Y as

X(s, t) =
∫s
0

[1+ ε(σ, t)] cos(θ(σ, t))dσ,

Y(s, t) =
∫s
0

[1+ ε(σ, t)] sin(θ(σ, t))dσ,
(2)

by considering that both reference systems have their origin at the posi-
tion of the clamped end of the rod (curvilinear coordinate s = 0), namely,
X(0, t) = Y(0, t) = x(0, t) = y(0, t) = 0. The equations above imply the
following transformation

X(S) = x(S) cosβ+ y(S) sinβ, Y(S) = −x(S) sinβ+ y(S) cosβ, (3)

between the x-y reference system and the X-Y reference system. The posi-
tion of the elastica with a clamp rotated by an angle α with respect to a
given reference frame X̂ - Ŷ can be found by applying the rotation

X̂(s) = X(s) cosα+ Y(s) sinα,

Ŷ(s) = −X(s) sinα+ Y(s) cosα.
(4)

statics The total potential energy of the deformed elastic curve can
be written as

Vext(ε, θ) =
K

2

∫L
0

[ε(σ)]2 dσ+
B

2

∫L
0

[
θ ′(σ)

]2 dσ+ Rx(L), (5)

10

[ December 12, 2022 at 13:33 – classicthesis version 1.0 ]
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where a prime stands for differentiation with respect to the relevant (spa-
tial) argument. The first variation δV of the potential energy for perturba-
tions in the strain δε and rotation δθ is given by

δVext =

∫L
0

Kε(σ) δε(σ) dσ−

∫L
0

Bθ ′′(σ) δθ(σ) dσ+ R δx(L), (6)

where

δx(s) = −

∫s
0

[1+ ε(σ)] sin(θ(σ) +β)δθ(σ)dσ

+

∫s
0

δε(σ) cos(θ(σ) +β)dσ,

δy(s) =

∫s
0

[1+ ε(σ)] cos(θ(σ) +β)δθ(σ)dσ

+

∫s
0

δε(σ) sin(θ(σ) +β)dσ.

(7)

From Eq. (6) and (7) the following governing equations can be derived

Bθ ′′(s) + R [1+ ε(s)] sin(θ(s) +β) = 0,

Kε(s) + R sin(θ(s) +β) = 0.
(8)

closed-form solution For the extensible elastica, the closed-form
solution for a cantilever beam with a concentrated load at the free end
has been derived by Batista [6]. This solution is exploited here in the case
of unshearable rod (parameter ν = 1 in [6]).

Introducing the following non-dimensional parameters2

ρ2 =
RL2

B
, λ = L

√
K

B
, ŝ =

s

L
, (9)

the rotation θ(s) and strain ε(s) fields are given by

θ(s) = 2 arcsin

k sn(ρ̃ ŝ+C, k̃)√
1+m2 cn2(ρ̃ ŝ+C, k̃)

−β,

ε(s) = −
ρ2

λ2
cos(θ(s) +β),

(10)

2 It should be noted that here the symbol ρ is used instead of ω used originally in [6] in
order to not create confusion with the analogous symbols used to denote the angular
frequencies in Sect. 3.3.2.
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where

m2 =

ρ2k2

λ2

1−
ρ2(1− k2)

λ2

, ρ̃ = ρ

√
1+

ρ2(2 k2 − 1)

λ2
, k̃2 =

k2 +m2

1+m2
. (11)

The integration of the kinematic fields (10)1 through Eq. (1) provides the
position of the rod, in the rotated reference frame, at the curvilinear
coordinate s as

x(s) =
2ρ̃

ρ2

{(
E(k̃)
K(k̃)

−
1

2

)
ρ̃ ŝ+ Z(ρ̃ Ŝ+C, k̃) − Z(C, k̃)

−m2

[
sn(ρ̃ŝ+C, k̃) cn(ρ̃Ŝ+C, k̃)dn(ρ̃ŝ+C, k̃)

1+m2 cn2(ρ̃ŝ+C, k̃)

−
sn(C, k̃) cn(C, k̃)dn(C, k̃)

1+m2 cn2(C, k̃)

]}
L,

y(s) =
2 k ρ̃

√
1+m2

ρ2

[
cn(C, k̃)

1+m2 cn2(C, k̃)

−
cn(ρ̃ŝ+C, k̃)

1+m2 cn2(ρ̃ŝ+C, k̃)

]
L,

(12)

while the rod’s curvature κ(s) = θ ′(s) follows as

κ(s) =
1

L

2 ρ̃ k
√
1+m2 cn(ρ̃ ŝ+C, k̃)

1+m2 cn2(ρ̃ ŝ+C, k̃)
. (13)

In the above equations, K and E are the complete elliptic integrals of the
first and second kind, Z, sn, cn, dn are Jacobi elliptic functions, and C is
the constant of integration that can be found by imposing the boundary
condition of zero bending moment, equivalent to null curvature, at the
free end, θ ′(L) = κ(L) = 0.

From the boundary condition of null rotation at the clamp, θ(0) = 0,
the following equation is obtained

k
sn(C, k̃)√

1+m2 cn2(C, k̃)
− sin

β

2
= 0, (14)

to be solved for the value of k. The boundary condition at the right end
κ(L) = 0 yields a formula for C

C = −ρ̃+ (2n− 1)K(k̃), n ∈ N+, (15)
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where n is the mode number. Once k is determined, the coordinates of
the curve in the rotated reference frame x− y can be evaluated from Eq.
(12), and those in the reference frame X− Y from Eq. (3).

Because κ(L) = 0, the parameter k can be related with the rotation of
the beam at the free end θL = θ(L), by evaluating (10) at s = L, through
the following formula

k = sin
θL +β

2
. (16)

2.2 the quasi-static model for the inextensible elastica

The inextensible elastica can be obtained from the extensible case by im-
posing the constraint that the axial strain ε is zero.

kinematics Under the assumption of null axial strain the position of
the elastic curve becomes

x(s) =

∫s
0

cos(θ(σ) +β)dσ,

y(s) =

∫s
0

sin(θ(σ) +β)dσ.
(17)

statics In order to find the deformation of the inextensible elastica
the following constraint is imposed

ε(s) = 0 ∀s ∈ (0,L), (18)

implying that the measure of the tangent vector to the elastic curve is
equal to one, ||(X ′(s), Y ′(s))|| = 1, and

X ′(s) = cos θ(s), Y ′(s) = sin θ(s). (19)

Then, the total potential energy of the inextensible system can be written
as

Vinext = Vext −

∫L
0

N(σ)ε(σ)dσ, (20)

where N is a lagrange multiplier and in the physical model coinsides with
the axial component of the internal force. The governing equations in the
weak form can be written as

δVinext = δVext −

∫L
0

N(σ)δε(σ)dσ = 0, (21)
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and in strong form as

Bθ ′′(s) + R sin(θ(s) +β) = 0,

N = R cos(θ(s) +β).
(22)

closed-form solution The closed form solution of the inextensible
elastica can also be adapted from [6] by setting ν = 0. Then, the constants
m2,ρ̃ and k̃ become

m2 = 0, ρ̃ = ρ, k̃2 = k2, (23)

and the rotation θ(s) field is given by

θ(s) = 2 arcsin [k sn(ρ ŝ+C,k)] −β. (24)

The integration of the kinematic field (24) through Eq. (1) provides the
position of points on the rod, in the rotated reference frame, at the curvi-
linear coordinate s as

x(s) = −
ρ2

2λ2
ŝ+

2 L

ρ

{(
E(k)
K(k)

−
1

2

)
ρ ŝ+ Z(ρ ŝ+C,k) − Z(C,k)

}
,

y(s) =
2 k L

ρ
[cn(C,k) − cn(ρŝ+C,k)] ,

(25)

while the rod’s curvature κ(s) = θ ′(s) follows as

κ(s) =
2 ρ k

L
cn(ρ ŝ+C,k). (26)

In the above equations, K and E are the complete elliptic integrals of the
first and second kind, Z, sn, cn, dn are Jacobi elliptic functions, and C is
the constant of integration that can be found by imposing the boundary
condition of zero bending moment, equivalent to null curvature, at the
free end, θ ′(L) = κ(L) = 0.

From the boundary condition of null rotation at the clamp, θ(0) = 0,
the following equation is obtained

k sn(C,k) − sin
β

2
= 0, (27)

to be solved for the value of k. The boundary condition at the right end
κ(L) = 0 yields a formula for C

C = −ρ+ (2n− 1)K(k), n ∈ N+, (28)

where n is the mode number. Once k is determined, the coordinates of
the curve in the rotated reference frame x− y can be evaluated from Eq.
(25), and those in the reference frame X− Y from Eq. (3).
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2.3 the dynamic model for the extensible elastica

Here the mass of the system is thought to be composed by a distributed
mass of linear density γ and a concentrated mass m at the free end of
the elastica, and in the most general case of a distributed force w(s) at an
angle βw(s) with respect to the x axis along the entire rod, in addition to
the concentrated load R. For simplicity the rotational inertia of the elastica
is neglected.

The total potential energy of the system is

V
dyn
ext = Vext(ε, θ)

−

∫L
0

w(σ) cos(βw(σ)) x(σ)dσ+

∫L
0

w(σ) sin(βw(σ))y(σ)dσ,
(29)

and the kinetic energy is

Tdyn =
1

2

∫L
0

γ(ẋ2(σ) + ẏ2(σ))dσ+
1

2
m(ẋ2(L) + ẏ2(L)). (30)

The Lagrangian of the system is

Lext = Tdyn −V
dyn
ext

−

∫L
0

Nx(σ)[x
′(σ) − (1+ ε(σ))] cos(θ(σ+β))dσ

−

∫L
0

Ny(σ)[y
′(σ) − (1+ ε(σ))) sin(θ(σ+β)]dσ.

(31)

Through the Hamiltonian Principle the following equations of motion can
be derived

N ′
x(s) = γẍ(s) +w(s) cos(βw(s)),

N ′
y(s) = γÿ(s) −w(s) sin(βw(s)),

Kε(s) −Nx(s) cos(θ(s) +β) −Ny(s) sin(θ(s) +β) = 0,

Bθ ′′(s) − (1+ ε(s))[Nx(s) sin(θ(s) +β) +Ny(s) cos(θ(s) +β)] = 0,

(32)

complemented by the following natural boundary conditions

θ ′(L) = 0, Nx(L) = −mẍ(L) − R, Ny(L) = −mÿ(L). (33)
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the case of no distributed mass and no distributed forces

In the special case that the distributed mass and the distributed forces are
thought to be negligible the equations of motion (32) become

N ′
x(s) = 0,

N ′
y(s) = 0,

Kε(s) −Nx(s) cos(θ(s) +β) −Ny(s) sin(θ(s) +β) = 0,

Bθ ′′(s) − (1+ ε(s))[Nx(s) sin(θ(s) +β) +Ny(s) cos(θ(s) +β)] = 0.

(34)

In this case the internal forces Nx(s) and Ny(s) become constant

Nx(s) = Nx, Ny(s) = Ny, (35)

and their values can be found from the boundary conditions (33)

Nx = −mẍ(L) − R, Ny = −mÿ(L). (36)

Since the distributed effects are neglected, the quasistatic solution of
the extensible elastica can be exploited in order to derive a solution to the
dynamic system of equations. For this reason the total force

R̃ = (−Nx, −Ny)
T (37)

applied to the free end of the elastica is defined, along with the corre-
sponding angle β̃ as

R̃(t) =

√
N

2
x(t) +N

2
y(t), tan β̃(t) = −

Ny(t)

Nx(t)
, (38)

and Nx, and Ny can be written as

Nx(t) = −R̃(t) cos β̃(t), Ny(t) = −R̃(t) sin β̃(t). (39)

Next, the equations of motion can be written as

Nx(t) = −mẍL(t) − R(t),

Ny(t) = −mÿL(t),

k(t)
sn(C(t), k̃(t))√

1+m2 cn2(C(t), k̃(t))
− sin

β(t) + β̃(t)

2
= 0,

(40)

where the latter equation is the condition for null rotation at the clamp
as defined in Eq. (14). This system of equations can be evolved in time
for the variables xL(t), yL(t), and θL(t) or alternatively for the quantities
R̃(t), β̃(t), and θL(t). For this reason, the connection between the total
force R̃(t) and the coordinates xL(t), yL(t) is provided through Eqs. (12).
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2.4 the dynamics of the inextensible elastica

In similar fashion to the quasi-static case for the inextensible elastica, the
equations of motion can be derived from the extensible case by applying
the constraint ε(s) = 0. In this case the solution can be given in a closed
form using the quasi-static solution as seen in the previous paragraph.
The equations of motion in this case become

Nx(t) = −mẍL(t) − R(t),

Ny(t) = −mÿL(t),

k(t) sn(C(t),k(t)) − sin
β(t) + β̃(t)

2
= 0.

(41)

Similarly to the extensible case, the relation between the total force R̃ and
the coordinates xL(t), yL(t) is provided through Eqs. (25).

2.5 position-based inextensible elastic curve dynamics

The position of the elastic curve X(s, t) is parametrized by a curvilinear
parameter s ∈ Ω = [0,L] that runs along its length. A vector tangent
to the curve can be obtained by differentiating the curve with respect
to the parameter s and a vector normal to the curve is given by a second
differentiation of the curve with respect to s. The case where a distributed
force w(s, t) is applied on the elastica is considered here.

In order to produce the equations of motion, the inextensibility con-
dition has to be treated. The inclusion of this constraint in the model
produces a system of Differential Algebraic Equations (DAE). The inex-
tensibility condition means that the modulus of the first derivative of the
arc-length parametrized curve is equal to one and mathematically it is
written as

||X ′(s, t)|| = 1 ∀ s ∈ [0,L] ∀t, (42)

or equivalently

||X ′(s, t)||2 = X ′(s, t) · X ′(s, t) = 1 ∀ s ∈ [0,L], ∀t. (43)

It should be noted here that the inextensibility condition (43) is imposed
directly in contrast with a common technique of differentiating the con-
straint in time to reduce the index of the final system of DAEs, as in [5].
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This is to eliminate any drifting effects, that would be detrimental to the
accuracy of long simulations.

In addition to the inextensibility condition, the following boundary con-
ditions are applied, due to the clamp,

X(0, t) = O,

n(t) · X ′(0, t) = 0,
(44)

where n(t) is the unit vector normal to the direction of the clamp.
The kinetic energy of the system is

T(t) =

∫L
0

1

2
γ (Ẋ(s, t))2 ds, (45)

and the total potential energy can be written as the sum of the bending
energy stored in the elastic curve and the work of the distributed force w

V(t) =

∫L
0

1

2
B (X ′′(s, t))2 ds−

L∫
0

X(s, t) · w(s, t) ds, (46)

Then the extended Lagrangian of the clamped rod is

L(t) = T(t) −V(t) −

∫L
0

N(s, t)
[
(X ′(s, t))2 − 1

]
ds

− R(t) · [X(0, t) − O] −M(t)
[
n(t) · X ′(0, t)

]
,

(47)

where N(s, t) is the Lagrange multiplier associated with the inextensibil-
ity condition (modelling the axial component of the internal action), and
R(t), M(t) are the Lagrange multipliers modeling the reaction force and
the reaction moment at the clamp.

After applying the Hamiltonian Principle,∫t∗
t0

δL(t)dt = 0, (48)
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the governing equations can be written in weak form as

t∗∫
t0

L∫
0

γδX(s, t) · Ẍ(s, t) ds dt

+

t∗∫
t0

L∫
0

BδX ′′(s, t) · X ′′(s, t) ds dt

−

t∗∫
t0

L∫
0

δX(s, t) · w(s, t) ds dt+

t∗∫
t0

δX(0, t) · R(t) dt

+

t∗∫
t0

(δX ′(0, t)) · n(t)M(t) dt

+

t∗∫
t0

∫L
0

2 δX ′(s, t) · X ′(s, t)N(s, t) ds dt = 0,

t∗∫
t0

δR(t) · [X(0, t) − O]dt = 0,

t∗∫
t0

δM(t)
[
n(t) · X ′(0, t)

]
dt = 0,

t∗∫
t0

∫L
0

δN(s, t)
[
(X ′(s, t))2 − 1

]
dsdt = 0,

(49)

for all δX ∈ H2((0,L); Rd), δR(t) ∈ Rd, where d denotes the number of
spatial dimensions considered in the simulation, δM(t) ∈ R and δN ∈
H1((0,L); R). In the present work, the inextensible curve is considered in
2D space, due to the nature of the configuration under examination.

strong form Eq. 49 can be written in strong form as

γ (Ẍ(s, t) − g) +BX(4)(s, t) − 2(X ′(s, t)N) ′ = 0 ,
∀ s ∈ (0,L), t ∈ (t0, t∗).

(50)
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The strong form is complemented by the constraints

X(0, t) = O , ∀ t ∈ (t0, t∗),

n(t) · X ′(0, t) = 0 , ∀ t ∈ (t0, t∗),

||X ′(s, t)||− 1 = 0 , ∀ s ∈ (0,L), t ∈ (t0, t∗),

(51)

and the following boundary conditions

BX ′′(L, t) = O,

X ′(0, t)N(0, t) = R(t) +BX ′′′(0, t),

BX ′′′(L, t) = m(Ẍ(L, t) − g) + X ′(L, t)N(L, t).

(52)

2.6 numerical methods

In this section the numerical methods and computational tools used to
obtain some of the results presented in the next chapters are discussed.

2.6.1 Numerical integration of the derived ODEs

The numerical solution of ODEs can be obtained in two ways. The straight-
forward way is to approximate the derivatives of the ODE by some finite
difference rule, exploiting the limit definition of the derivative. The sec-
ond way to obtain a numerical solution is the integration over a timespan
of the ODE and, using a reconstruction of the solution (e.g. a piece-wise
linear continuous function), obtain a time-stepping rule. Both methods
give rules to obtain the solution on time tn+1 given the timehistory up to
the time tn.

The ODEs considered here are of the form

u̇ = f(t,u), (53)

ODEs of higher order can be solved as a system of ODEs of first order by
using the order reduction technique.

2.6.1.1 Solution of ODEs using finite differences

The idea is to approximate the time derivatives as a finite difference. The
choice of the finite difference rule is going to yield different numerical
schemes. The schemes used in the present work make use of a first order
approximation of the time derivatives if the form

u̇(t) =
u(t) − u(t− h)

h
, (54)
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where h is the timestep size and the main difference lies on the choice of
the point in time that the function f is evaluated.

implicit euler scheme The evaluation of the function f is on the
time of the new solution tn+1, giving the following rule

u(tn+1) = u(tn) + hf(tn+1,u(tn+1)). (55)

crank-nicolson scheme The evaluation of the function f is on the
middle of the timestep from tn to tn+1, assuming that the solution is
linear in that timespan. Then the value of the function f can be calculated
as

f(tn+1/2,u(tn+1/2)) =
1

2

[
f(tn,u(tn)) + f(tn+1,u(tn+1))

]
, (56)

and the rule becomes

u(tn+1) = u(tn) +
1

2
h
[
f(tn,u(tn)) + f(tn+1,u(tn+1))

]
. (57)

This method is called semi-implicit due to the appearance of both known
and unknown quantities in the right hand side.

newmark method A widely used method for time integration of
second order ODEs in the form

mü(t) + f(u(t), u̇(t)) = q(t), (58)

is that of the Newmark method. Assuming a solution at the timestep n,
compatible with the constraints, the solution at the timestep n+ 1 can be
obtained by the following formulae

u̇n+1 = u̇n + (1−β1)h ün +β1h ün+1,

un+1 = un + h u̇n +
h2

2

[
(1− 2β2) ü

n + 2β2 ü
n+1

]
,

mün+1 + f(un+1, u̇n+1) = qn+1,

(59)

where β1 and β2 are the two parameters of the time-marching scheme.
The choice β1 = 0.5 and β2 = 0.25 would result in a scheme with zero
numerically-induced dissipation.
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2.6.1.2 Solution of ODEs by integrating over the timestep

By integrating the ODE in the interval [tn, tn+1] and integrating by parts
the left hand side we get

u(tn+1) − u(tn) =

∫tn+1

tn
f(t,u)dt. (60)

Then different rules can be obtained through an appropriate reconstruc-
tion of the function u(t) in that time interval. The schemes obtained in
section 2.6.1.1 can be obtained also using this method. The Implicit-Euler
rule can be found by approximating the integral as∫tn+1

tn
f(t,u)dt = h f(tn+1,u(tn+1)), (61)

and the Crank-Nicolson scheme by approximating the integral with the
trapezoid rule as∫tn+1

tn
f(t,u)dt =

1

2
h
[
f(tn,u(tn)) + f(tn+1,u(tn+1))

]
. (62)

The integration approach can be more versatile, as it gives more choices
for obtaining solutions that respect desired continuity properties. Further,
advantages of this approach become apparent in the case of Differential-
Algebraic Systems of Equations (DAEs) or Equations that cannot be writ-
ten in the standard form (53).

2.6.2 Finite element formulation of the inextensible elastica

The Hamiltonian principle defines a functional operator over space and
time. In order to solve the integral equations that have been derived
from the minimization of this functional, the space and time integrals
are treated separately. First, for every given time t the unknown fields are
reconstructed from discrete data with the aid of known basis functions of
the function space the fields belong to. The discrete data associated with
the space reconstruction are only functions of time. Then, the integration
in time can be performed by a usual time marching scheme. It should be
noted that due to the complex constraints explicit time marching schemes
are not expected to work.
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The spatial integration domain Ω = [0,L] is split in Nel non-overlapping
subdomains Ωi = [si, si+1]. Then the integrals in space can be calculated
as the sum of the integrals over the subdomains Ωi,∫L

0

f(s)ds =
Nel∑
i=1

∫
Ωi

f(s)ds. (63)

On every subdomain Ωi the curve X(s, t) is approximated with cubic
Hermite polynomials, while the Lagrange multiplier distribution N(s, t)
is approximated with a linear function. The unknown fields are recon-
structed in Ωi as

X(ξ, t) = Hi(ξ) · X̂i(t), N(ξ, t) = Pi(ξ) · N̂i(t), (64)

where ξ = s−si
si+1−si

∈ [0, 1], X̂i(t) and N̂i(t) are the space-discrete data that
define the approximate fields X(ξ, t) and N(ξ, t) respectively and

Hi(ξ) =
[
ϕ1(ξ) I, hiϕ2(ξ) I, ϕ3(ξ) I, hiϕ4(ξ) I

]
, (65)

Pi(ξ) =
[
ℓ1(ξ) ℓ2(ξ)

]
, (66)

where hi = si+1− si denotes the length of the line segment in the parame-
ter space, {ϕk(ξ)} are the Hermite cubic spline basis, {ℓk(xi)} are the nodal
basis of the space of linear functions, and I is a 2-by-2 or 3-by-3 identity
matrix depending on the number of spatial dimensions considered.

Assuming the same spatial reconstruction of the fields Xvar(s, t) and
Nvar(s, t), Eq. (49) can be written as∫t∗

t0

A Ü dt+
∫t∗
t0

B U dt =
∫t∗
t0

Q dt, (67)

where

A =

M 0 0
0 0 0
0 0 0

 , B(X̂) =

 K Scl SN(X̂)
ST
cl 0 0

1
2ST

N(X̂) 0 0

 ,

U(t) =


X̂(t)
R(t)

M(t)

N̂(t)

 , Q =


G
0
0

1

 ,

(68)
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M is the mass matrix, K is the stiffness matrix, Scl is the matrix encoding
the clamp constraints and SN(X̂) the matrix encoding the inextensibil-
ity constraint. It should be noted that in the nonlinear case considered
here SN(X̂) depends on the solution X̂ and therefore an iterative nonlin-
ear solver is needed to solve the resulting equations. It should be noted,
that in contrast to linear finite element formulations the Matrix B is not
symmetric (B , BT ).

The system of equations (67) is a Differential-Algebraic system of Equa-
tions (DAE). As such, the matrix A is singular and non invertible as a
whole and the standard procedures for ODEs cannot be applied directly.

One way to integrate the system in time is to use the Newmark method,
however in Chapter 4 an implicit Euler scheme is adopted in order to
avoid some stability issues with the specific constraints. In order to apply
the Implicit Euler scheme, the order of the ODEs is reduced from 2 to 1,
by the following relation

X̂(t) = X̂1(t),
˙̂X1(t) = X̂2(t).

(69)

A convergence analysis and a comparison between different solution
strategies of the discretized model is provided in Appendix C.
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3.1 introduction

An innovative structural system, based on tensile and compressive buck-
ling of an elastic rod, is proposed in the present chapter. More specifically,
an axially and flexurally deformable rod is considered with one clamped
end constrained to move along a straight direction and the other along
a curved profile with a possible discontinuous curvature. The soft rod
remains straight until the axial force is sufficiently small, but it buckles
(under either compression or tension) and enters in a strongly nonlinear
post-critical behaviour, when the load surpasses a critical limit, thus forc-
ing rod deflection. Therefore, in contrast with an inextensible rod, the soft
rod deforms axially before buckling, thus allowing to display an initial lin-
ear force-displacement response. The considered structural system is an-
alytically solved in its nonlinear range and an optimization algorithm is
developed, allowing the design of a desired force-displacement response.
As an example of the obtained results, Fig. 5 reports the response of a
force-limiting device designed by us and showing an excellent perfor-
mance. In a more general context, the force-displacement response of the
proposed structure depends only on the constraint’s profile shape and
on the (axial vs bending) stiffness ratio, so that negative stiffness, or si-
nusoidal, or triangular, or many other ‘exotic’ responses can be designed
(examples are presented in Section 3.5).

The analysis of the proposed structure leads to another important fea-
ture, never observed before: the double restabilization in compression.
Indeed, due to the axial compliance of the rod, it is expected that the
straight configuration recovers stability after buckling, similarly to the
behaviour of the ‘penetrating blade’ [9], and therefore displays a restabi-
lization in compression. However, within a specific set of stiffness ratios
and profile curvatures at the origin, the proposed structure displays a
double restabilization of the trivial (straight) configuration, where four
exchanges of stability are observed. This unexpected feature is analysed
in detail in Section 3.3, but a concise explanation is anticipated in Section
3.1.1.
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Figure 5: Dimensionless force PL2/(π2B) vs. dimensionless displacement ∆/L for an
elastic rod (flexurally and axially deformable and subject to a curved con-
straint), with a stiffness ratio q = KL2/(π2B) = 10, optimized to realize a force
limiter device with |Pcr|L

2/(π2B) = 0.1 and locking near the end of the stroke
(from ∆/L = ±0.73). Deformed configurations of the elastic rod are displayed
for ∆/L = ±{0.1, 0.2, 0.8}, along with the optimized shape of the constraint’s
profile, found to have a discontinuous curvature at the origin (f ′′(0−) = −4.186
and f ′′(0+) = 1.897). The definition of the displacement ∆ is shown in Fig. 7.

The present theoretical analysis initiates with the derivation of the non-
linear equilibrium equations for the extensible elastica (Sect. 3.2). Lin-
earization of these equations governs the determination of bifurcation
(Sect. 3.3.1), which is complemented by a stability analysis of the trivial
configuration (by means of a dynamic approach, Sect. 3.3.2). The post-
critical response is evaluated analytically by adapting an available closed-
form solution [6] to the present boundary conditions (Sect. 3.4). Finally,
an optimization algorithm is developed to find the profile shape display-
ing a prescribed force-displacement curve (Sect. 3.5). The solution of this
problem is shown to change with varying the (axial vs bending) stiffness
ratio, so that many systems can provide the same structural response. Fi-
nally, it is shown that a broad range of post-critical behaviours can be
achieved (including bilinear, sinusoidal, triangular) and that more axially
compliant rods facilitate the optimization.
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The results presented in this chapter can be used in the design of pas-
sive mechanical devices (i.e. not needing external control), delivering a
designed force-displacement response and possibly encompassing multi-
stable behaviour, with applications in the field of force-limiters and soft
mechanisms. Movies of the present structure optimized to provide spe-
cific force-displacement diagrams are available as electronic supporting
material.

3.1.1 A premise on (single and double) restabilization

Using linearization, a simple explanation is provided below for the desta-
bilization and subsequent restabilization of the straight configuration of
an axially and flexurally deformable elastic rod, with a movable clamp at
its left end and a pin at the right one, subject to an axial load P that is
assumed positive when tensile.

The linearized axial and flexural equilibrium equations are

Kε(S) − P = 0, Bθ ′′(S) −

(
1+

P

K

)
P θ(S) = F, (70)

where K and B are the axial and bending stiffness respectively, ε(S) the
local axial strain, θ(S) the rotation of the rod’s tangent with respect to
the undeformed straight configuration, F is the (unknown) reaction at the
pin (orthogonal to P), and the prime denotes the derivative with respect
to the undeformed curvilinear rod’s coordinate S.1

The boundary conditions θ(0) = 0, θ ′(L) = 0, and
∫L
0 θ(S)dS = 0 lead

to the following expression for the bifurcation loads

π
√

−(1+ p)pq cot
(
π
√
−(1+ p)pq

)
= 1, (71)

where p is the non-dimensional load and q is the (axial vs bending) stiff-
ness ratio, defined as

p =
P

K
, q =

KL2

π2B
. (72)

When the rod is made up of a homogeneous material (and with uni-
form cross-section), the stiffness ratio reduces to q = λ2/π2 ≳ 103, where

1 For simplicity the present analysis is developed under the assumption of linear axial
behaviour. Although highly elastic materials such as rubber often display a nonlinear
force/displacement behaviour, the linearity assumption introduced here strongly simpli-
fies the treatment and is however adequate when the strain is not large or when the rod
is realized via springs as the systems reported in Appendix A.
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λ is the rod’s slenderness. However, values of q below that range can be
considered to model, via the extensible elastica, the mechanical response
of architected one-dimensional structural elements. Although the identi-
fication of such structural elements falls outside the scope of the present
research, a rough example is provided by a rectangular wire (die) heli-
cal spring, with a high cross section aspect-ratio. Moreover, by neglecting
configurational forces [3, 10] (which do not influence bifurcation [9, 13]),
another example is given by a round wire helical spring containing a
coaxial flexible piston or a spring having one end sliding along a rod
with uniform cross section.2

The bifurcation loads p for an extensible rod, subject to the above-
mentioned boundary conditions, are reported in Fig. 6 (left part) for a
range of values of the stiffness ratio q. This result shows that bifurcation
does not occur for q < 8.183, while two bifurcation loads (characterized
by the same instability mode) exist under compression for q > 8.183. In
the latter case, the two bifurcation loads have different mechanical inter-
pretations: the one with smallest (greatest) absolute value is referred to as
p
(−)
de

(
p
(−)
re

)
, because it is associated to destabilization (restabilization) of

the trivial configuration at increasing compression. The structural system
therefore displays a (single) restabilization.

Anticipating some of the results discussed in detail in section 3.3, the
presence of a curved profile introduces a tensile instability [10, 11, 66]
at the load value p

(+)
cr and a double restabilization of the trivial config-

uration for q ∈ (qa,qb), depending on the profile curvature. These fea-
tures are shown on the right part of Fig. 6 for a profile with radius of
curvature equal to 1/15 of the undeformed rod’s length, for which the
stiffness ratio range for double restabilization is defined by qa = 12.457
and qb = 19.191. The two bound values qa and qb will be shown to be
approximately linearly increasing with the modulus of the dimensionless
(negative) profile curvature at the origin, f ′′(0).

It is finally observed that the occurrence of the double restabilization
requires a significant shortening of the structure, with the second (and fi-
nal) restabilization displayed at a compressive deformation of more than
90% of the undeformed length. A spring, modelled as an extensional elas-
tica, can be ‘practically’ used in order to achieve such a high compression
experimentally. For example, 10 active coils with closed and ground ends

2 The evaluation of the shear and axial stiffness of these structural examples is deferred to
Appendix A.
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move along a frictionless profile

Figure 6: Bifurcation load p for an axially and flexurally deformable rod attached to a
sliding clamp on its left end and pinned on the right end at a fixed point (left)
or at a point constrained to move on a smooth curved profile (right, with a
radius of curvature equal to 1/15 of the undeformed rod’s length, f ′′(0) =

−15). The bifurcation loads are reported at varying axial/bending stiffness
ratio q. The tensile buckling load p

(+)
cr is reported as black line, the compressive

bifurcation loads of destabilization p
(−)
de and restabilization p

(−)
re associated to

the first mode as coloured lines, while those of higher modes as gray lines.
Ranges of stiffness ratio q for which single and double restabilization occurs
are highlighted.

of an helicoidal spring (with a wire diameter of 0.4 mm, and coil pitch of
10 mm) can achieve a shortening of more than 95% when compressed.

3.2 the extensible elastica with an end constrained to

move along a frictionless profile

A soft rod is considered, connected to a sliding clamp on its left end, while
the right end is constrained to move along a frictionless curved profile,
Fig. 7. The rod has a straight undeformed configuration of length L and
is characterized by both axial, K, and flexural, B, stiffnesses. Therefore, it
is assumed to obey the Reissner rod model [6, 46] in which the shear stiff-
ness is set to be infinite and the deformed configuration is described by
the axial strain ε(S) and the rotation θ(S) fields along the curvilinear un-
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deformed coordinate S ∈ [0,L]. The spatial coordinate s on the deformed
curve is related to the material coordinate S through

s(S) =

∫S
0

[1+ ε(σ)]dσ, S ∈ [0,L], (73)

so that the length ℓ of the deformed rod is

ℓ = s(L) =

∫L
0

[1+ ε(σ)]dσ, (74)

which differs from L because of the presence of the axial strain ε(S). By
introducing a moving Cartesian reference system X–Y, having its origin
coincident with the moving clamp in the deformed configuration and
with the X–axis aligned with the straight undeformed configuration, the
coordinates of the section at a point S are given by

X(S; ε, θ) =
∫S
0

[1+ ε(σ)] cos θ(σ)dσ,

Y(S; ε, θ) =
∫S
0

[1+ ε(σ)] sin θ(σ)dσ.
(75)

Figure 7: Scheme of the proposed structure, where an axially and flexurally deformable
elastic rod is mounted on a moving clamp on its left end and slides with a
pin on a curved profile on its right end. The profile is a perfectly frictionless
constraint, defined by the curve X̂ = Lf(Ŷ/L). The elastic rod is in a trivial
equilibrium straight configuration and may buckle in tension and compression
when a load P is applied.

The clamp can move only along the X–axis and its displacement from
the undeformed state is measured by the distance ∆. Introducing a fixed
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3.2 the extensible elastica with an end constrained to

move along a frictionless profile

Cartesian reference system X̂− Ŷ, with origin coincident with the moving
clamp in the unloaded condition and parallel to the moving X−Y system,
the coordinates of the rod’s axis can be written as

X̂(S) = X(S; ε, θ) −∆, Ŷ(S) = Y(S; ε, θ). (76)

In this reference system, the curved profile is described by

X̂
(
Ŷ
)
= Lf

(
Ŷ

L

)
, (77)

under the constraint f(0) = 1. Moreover, the displacement ∆ (positive
when opposite to the X̂-axis) is given by

∆ = dX(ε, θ) − Lf

(
dY(ε, θ)

L

)
, (78)

where dX is the length of the elastica projection on the X–axis and dY is
the vertical displacement of the pin on the right end of the rod

dX(ε, θ) =
∫L
0

[1+ ε(σ)] cos θ(σ)dσ,

dY(ε, θ) =
∫L
0

[1+ ε(σ)] sin θ(σ)dσ.
(79)

The moving clamp is subject to the dead load P, positive when opposite to
the X axis (namely, tensile state for the section at S = 0), and therefore the
mechanical system is conservative. The potential energy V of the structure
is the sum of the axial and flexural elastic energies and the potential
energy of the dead load,

V(ε, θ) =
K

2

∫L
0

[ε(σ)]2 dσ+
B

2

∫L
0

[
θ ′(σ)

]2 dσ− P ∆, (80)

where a prime stands for differentiation with respect to the relevant (spa-
tial) argument. The first variation δV of the potential energy for perturba-
tions in the strain δε and rotation δθ is given by

δV =

∫L
0

Kε(σ) δε(σ) dσ−

∫L
0

Bθ ′′(σ) δθ(σ) dσ− P δ∆, (81)

where

δ∆ = δdX − f ′
(
dY

L

)
δdY , (82)
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δdY =

∫L
0

[1+ ε(σ)] cos θ(σ) δθ(σ)dσ+

∫L
0

sin θ(σ) δε(σ) dσ, (83)

and

δdX = −

∫L
0

[1+ ε(σ)] sin θ(σ) δθ(σ)dσ+

∫L
0

cos θ(σ) δε(σ) dσ. (84)

The vanishing of the first variation δV for compatible perturbations δε

and δθ provides the following coupled system of nonlinear equilibrium
equations

Bθ ′′(S) − P [1+ ε(S)]

[
f ′
(
dY

L

)
cos θ(S) + sin θ(S)

]
= 0,

Kε(S) + P

[
f ′
(
dY

L

)
sin θ(S) − cos θ(S)

]
= 0,

(85)

complemented by the algebraic constraint, Eq. (78), and the boundary
conditions

Y(0) = 0, θ(0) = 0, θ ′(L) = 0, (86)

respectively prescribing the vanishing of the vertical displacement and of
the rotation at the moving clamp, and the vanishing of the moment at the
pin.

It should be noted that a reaction force R is realized at the pin on the
profile. Due to the frictionless assumption, this force is orthogonal to the
profile, and therefore inclined by the angle α with respect to the X̂–axis
given by the following condition

α = arctan
[
f ′
(
dY

L

)]
. (87)

The trivial straight configuration,

θ(S) = 0, ε(S) =
P

K
, (88)

satisfies the equilibrium equations (85) if and only if f ′(0) = 0. Hence-
forth, this profile property is assumed and under this circumstance bi-
furcation may be displayed depending on the dimensionless curvature
of the profile at null Ŷ coordinate, f ′′(0), and rod’s properties (B, K, L)
through the stiffness ratio q. As shown in [11], the profile shape can also
be designed to present a discontinuous curvature at null Ŷ coordinate,
f ′′(0+) , f ′′(0−) (as in Fig. 7), to better tune the mechanical response
under both signs of ∆ (namely, both directions).
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3.3 bifurcation and stability of the trivial configuration

3.3.1 Bifurcation loads

Bifurcation conditions from the trivial straight configuration, Eq. (88),
are investigated under small rotation θ(S) assumption, providing the lin-
earized version of the equilibrium equations (85)

Bθ ′′(S) − P [1+ ε(S)]

[
dY

L
f ′′ (0) + θ(S)

]
= 0,

Kε(S) − P = 0,
(89)

where the following approximation is considered

f ′
(
dY

L

)
≈ dY

L
f ′′ (0) . (90)

Eq. (89)2 is automatically satisfied for the uniform axial strain field (88)2
and Eq. (79)2 can be linearized as

dY(ε, θ) ≈
(
1+

P

K

) ∫L
0

θ(σ)dσ. (91)

By considering this latter approximation and the uniform axial strain
field (88)2 and by using the dimensionless load p and the (axial vs bend-
ing) stiffness ratio q, defined by Eq. (72), the equilibrium equation (89)1 re-
duces to the following homogeneous and linear integro-differential equa-
tion

θ ′′(S) − pq (1+ p)
π2

L2

(
θ(S) +

f ′′ (0)

L
(1+ p)

∫L
0

θ(σ)dσ

)
= 0. (92)
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The basis for non-trivial solutions of θ(S) is found to be3

θ(S) =



a cos
(√

−(1+ p)pq
πS

L

)
+ b sin

(√
−(1+ p)pq

πS

L

)
+ c, p ∈ [−1, 0],

a cosh
(√

(p+ 1)pq
πS

L

)
+ b sinh

(√
(p+ 1)pq

πS

L

)
+ c, p ∈ [0,∞],

(93)

where a, b, and c are integration constants, where two of these can be
computed as functions of the third one (which remains arbitrary, but
small, in the present analysis) by imposing the boundary conditions.

Therefore, by substituting solutions (93) into the equilibrium equation
(92) and imposing the boundary conditions (86)2 and (86)3, a bifurcation
with non-trivial equilibrium configuration exists when4

f ′′(0)
√
−(1+ p)pq

+ pqπ [1+ (1+ p) f ′′(0)] cot
(
π
√
−(1+ p)pq

)
= 0,p ∈ [−1, 0],

f ′′(0)
√

(1+ p)pq

− pqπ [1+ (1+ p) f ′′(0)] coth
(
π
√
(1+ p)pq

)
= 0,p ∈ [0,∞),

(95)

defining the bifurcation load p as a function of the stiffness ratio q and
dimensionless profile curvature at the origin f ′′(0). It should be noted that

3 The range p < −1 is excluded because it is representative of unnatural bifurcation, involv-
ing self-copenetrated rod configurations.

4 In the inextensible limit (K → ∞, q → ∞, p → 0, but pq = PL2/(π2B) remains finite), the
bifurcation loads correspond to the solution of the following equations

f ′′(0)
√
−pq+ pqπ [1+ f ′′(0)] cot (π

√
−pq) = 0, p < 0,

f ′′(0)
√
pq− pqπ [1+ f ′′(0)] coth

(
π
√
pq
)
= 0, p ⩾ 0.

(94)

The latter equations are equivalent to that provided in [11] for the bifurcation loads (their
Eq. (17) for k = 0). Here, the cases of positive and negative p, corresponding to tension
and compression respectively, are separated in order to highlight the differences between
the two. The separation also facilitates calculations because developments with imaginary
values can be avoided.
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3.3 bifurcation and stability of the trivial configuration

the shape of the profile affects the bifurcation loads only because of its
dimensionless curvature at the origin, f ′′(0). These bifurcation conditions
are displayed in Fig. 8 as surfaces in the three-dimensional space defined
by the parameters p, q and f ′′(0). Moreover, sections of these surfaces at
constant values of f ′′(0) = {−10,−2,−0.5, 0.5, 2, 10} are reported in Fig. 9.

From all of these representations, the following conclusions can be
drawn.

• Differently from a standard Sturm-Liouville problem, governing bi-
furcation for an inextensible rod (q → ∞), the number of bifurca-
tion loads and modes becomes finite due to rod’s extensibility. For
instance, in Fig. 9 (upper part on the left) for stiffness ratio q < 1.231
there is only one mode in tension, while for q ∈ (1.231, 9.264) there
is only one mode in tension and only one in compression. More-
over, in Fig. 9 (upper part on the right) there is only one mode in
compression for stiffness ratio q ∈ (0.822, 8.836).

• Another effect related to the axial compressibility of the rod is that
a bifurcation mode in compression corresponds to more than one bi-
furcation load. Indeed, except in the limit cases of coalescent loads
(discussed below), the bifurcation loads in compression always oc-
cur in pairs, so that one corresponds to the destabilization (loss of
stability) of the straight configuration, while the other to its restabi-
lization. For instance, in Fig. 9 (upper part on the left) for q > 1.231
there is one bifurcation load for the first mode corresponding to
the transition from stability to instability (at increasing compressive
load) of the straight configuration. In addition, one restabilization
load is found for the first mode, corresponding to the transition
from instability to stability. Moreover, it can be observed in the same
figure that for higher stiffness ratio q, where a plurality of modes
emerge, the compressive bifurcation loads always occur in pairs.

• In tension: none or only one bifurcation load may exist, depending
on the sign of the profile curvature at the origin f ′′(0). The fact
that only one critical load is found is related to the presence of the
hyperbolic cotangent function in the bifurcation equation (95)2. In
particular:

– for f ′′(0) > 0, tensile bifurcation does not occur, as in the inex-
tensible case;

– for f ′′(0) < 0, one tensile bifurcation occurs at p(+)
cr > 0 (where

the superscript (+) reminds the reference to tensile load). This
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Figure 8: Isosurfaces of Eq. (95) showing the combination of stiffness ratio q, dimension-
less radius of profile curvature at the origin 1/f ′′(0) and load p parameters for
bifurcation. Note that all red curves belong to the same vertical plane defined
by 1/f ′′(0) = −0.1 and correspond to Fig. 9 (bottom, left). The representation
of the lower surfaces has been slit to improve understanding.
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3.3 bifurcation and stability of the trivial configuration

Figure 9: Tensile/compressive bifurcation load p as a function of q, for constant
f ′′(0) = {−10, −2, −0.5, 0.5, 2, 10}. The regions O, T, A, and B are also shown.
Tensile bifurcation does not occur for f ′′(0) > 0, but always occurs for f ′′(0) < 0.
In compression, multiple bifurcation modes can be observed and their number
depends on the values of q and f ′′(0); considering here the first mode, there
are regions where there are none (O and T), two (A), and four (region B) bifur-
cation compressive loads. The grey curves represent higher modes.

37

[ December 12, 2022 at 13:33 – classicthesis version 1.0 ]



instabilities of extensible rod

is in contrast with the inextensible case, where tensile bifurca-
tion was existing in a more limited set, f ′′(0) < −1 [11].

• In compression: either bifurcation is excluded, or it may occur with
2 or 4 bifurcation loads associated to the same mode, depending
on the values of q and f ′′(0). More specifically, restricting atten-
tion only to the first compression mode, 2 main cases can be distin-
guished, differing in the number of bifurcations at varying q and
f ′′(0):

– 2 bifurcation loads occur, associated to the first mode. Each
of these corresponds to a destabilization load

(
p
(−)
de

)
and a

restabilization load
(
p
(−)
re

)
(where the superscript (−) reminds

the reference to compressive load),

−1 < p
(−)
re < p

(−)
de < 0. (96)

An example of this behaviour is visible in Fig. 9 in the upper
part on the left for q > 1.231;

– 4 bifurcation loads occur, associated to the first mode, corre-
sponding to two pairs of destabilization/restabilization loads,(
p
(−)
de,1,p(−)

re,1

)
and

(
p
(−)
de,2,p(−)

re,2

)
, occurring in the following or-

der5

−1 < p
(−)
re,2 < p

(−)
de,2 < p

(−)
re,1 < p

(−)
de,1 < 0. (97)

An example of this behaviour is visible in Fig. 9 in the lower
part on the left q ∈ (8.488, 13.451);

• In compression: multiple bifurcation loads associated to the same
mode may occur for modes higher than the first. An example is
visible in Fig. 9 in the lower part on the left.

By considering all of the above described cases, four different subsets O,
T, A, and B are distinguished in the q− f ′′(0) plane (Fig. 10, upper part,

5 In the case when double restabilization may occur for a value of f ′′(0), the nomenclature
of the bifurcation loads p

(−)
de and p

(−)
re is enhanced by introducing a subscript 1 or 2 to

distinguish between the first and second destabilization/restabilization loads. In order to
simplify the presentation, this notation is preserved through a continuation principle for
the roots passing from a set of q values where double restabilization is displayed to the
set of single restabilization, as illustrated in Fig. 6.
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on the left), differing in the number of the main bifurcation conditions as
reported in Tab. 1.

Table 1: Numbers of main bifurcations for the subsets O, T, A, and B.

Tensile bifurcation Compressive bifurcation
O 0 0

T 1 0

A 1 2 bif. loads associated with 1st mode
B 1 4 bif. loads associated with 1st mode

In the following description of the bifurcation response, the terms ‘desta-
bilization’ and ‘restabilization’ are introduced to respectively define a bifur-
cation load in compression representing a transition for the trivial config-
uration to become unstable or to return to being stable for compressive
loads at increasing magnitude.

The q − f ′′(0) pairs, defining the boundary of each subset, represent
the transition in the bifurcation response. More specifically:

• the transition from subset A to O or T corresponds to the transition
from the presence of a destabilization p

(−)
de and restabilization p

(−)
re

load (belonging to the subset A) to a situation where bifurcation is
excluded. This occurs at the coalescence

p
(−)
de = p

(−)
re ; (98)

• the transition from subset A to B correspond to the transition from
a pair of bifurcation loads

(
p
(−)
de ,p(−)

re

)
to two pairs

(
p
(−)
de,1,p(−)

re,1

)
and

(
p
(−)
de,2,p(−)

re,2

)
, all associated to the first bifurcation mode in

compression. This necessarily involves one of the following coales-
cences

p
(−)
de,1 = p

(−)
re,1, or p

(−)
de,2 = p

(−)
re,2, or p

(−)
de,2 = p

(−)
re,1.

(99)

Defining the range of q ∈ (qa,qb) limiting the B region, the bound values
qa and qb are approximately linear in the dimensionless profile curvature
when this takes large negative values,

qa ≈ 0.526− 0.796f ′′(0),

qb ≈ 1.655− 1.167f ′′(0),

}
when f ′′(0) < −10. (100)
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It is anticipated from Section 3.3.2 that, considering also tensile buck-
ling (occurring at p

(+)
cr ⩾ 0), the set A can be divided into two pairs of

subsets, so that when the load p belongs to one pair the trivial configura-
tion is stable, otherwise is unstable

p ∈
(
−1,p(−)

re

)
∪
(
p
(−)
de ,p(+)

cr

)
⇒ stable trivial conf.,

p ∈
(
p
(−)
re ,p(−)

de

)
∪
(
p
(+)
cr ,∞) ⇒ unstable trivial conf.,

(101)

while the set B can be divided into two triplets of subsets

p ∈
(
−1,p(−)

re,2

)
∪
(
p
(−)
de,2,p(−)

re,1

)
∪
(
p
(−)
de,1,p(+)

cr

)
⇒ stable,

p ∈
(
p
(−)
re,2,p(−)

de,2

)
∪
(
p
(−)
re,1,p(−)

de,1

)
∪
(
p
(+)
cr ,∞) ⇒ unstable

(102)

The conditions of coalescence correspond to triplets of values for the
parameters p, q, and f ′′(0) and can be visualized as a curve in a three-
dimensional parameter space. To investigate coalescence in a two-dimen-
sional representation, Fig. 10 is introduced. In the upper part (on the left)
of this figure, all transitions between the different sets O, T, A, and B are
reported in the q − f ′′(0) plane as curves drawn with different colours.
The bifurcation load at which coalescence occurs is indicated with p∗ and
is reported in Fig. 10 at varying q (lower part, on the left) and at varying
f ′′(0) (upper part, on the right). Note that in the former case f ′′(0) (in the
latter case q) does not assume a fixed value, but varies.

A detail of the bifurcation p-q curves at fixed f ′′(0) = {−6,−15} is re-
ported in the lower part (on the right) of Fig. 10. Here, occurrences of
coalescence p = p∗ are marked with diamonds of the same colour as the
corresponding transition curve.

A comparison is presented in Fig. 11 between bifurcations calculated
with two models of elastic rod, namely, an inextensible Euler-Bernoulli
rod, and the axially deformable rod investigated in this article, both char-
acterized by the same bending stiffness B and the latter investigated for
constant values of q = {0.5, 10, 400}.

The comparison is reported in terms of a dimensionless value of the
axial load P, namely, pq = PL2/(π2B), reported as a function of the di-
mensionless radius of profile curvature at the origin 1/f ′′(0).

Note in the figure that: (i.) tensile and compressive loads are considered;
(ii.) some modes higher than the first are included (in light colour); (iii.)
the response of the inextensible (extensible) model is reported with a
dashed (continuous) line; (iv.) the region p < −1, highlighted though a
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3.3 bifurcation and stability of the trivial configuration

Figure 10: Upper part, left: Sets O, T, A, and B defined by the number of critical loads
in compression (restricted to first mode) and in tension, as described in Table
1. Upper part, right and lower part, left: Coalescent bifurcation load p∗ as
a function of q (left, lower part) and of f ′′(0) (right, upper part), defining
the different boundaries between two of the sets O, T, A, and B. Lower part,
right: Bifurcation load p versus q, evaluated for two values of f ′′(0); here p∗

is marked with a diamond of the same colour as the corresponding transition
curve.
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gray background, should not be considered as the related compression
level has no physical meaning.

From this figure, two main conclusions can be drawn:

• as the stiffness ratio q increases (from left to right in the figure),
the bifurcation behaviour of the extensible rod converges to that
pertaining to the inextensible one;

• in the figure on the left both models show a transition from a ten-
sile to a compressive bifurcation load (the latter terminates when
p = −1) and other bifurcation modes are not available. Even in both
figures pertaining to q = 10 and 400, and for both rod models, a ten-
sile bifurcation load becomes compressive at the point 1/f ′′(0) = 0.
However, defined as the smaller (in absolute value) load, the criti-
cal load evidences a jump at this point, because the continuation of
the tensile critical load prevails on a higher-order mode, which is
critical for 1/f ′′(0) < 0.

For completeness, the regions O, T, A, and B are also shown in Fig. 11

and these regions suggest the following observations.

• The compressive critical load p
(−)
de for positive profile curvature

f ′′(0) = f ′′a is bounded as follows (Fig. 10)

p
(−)
de

(
f ′′a,q

)
∈
[
−
1

2
, 0
]

, ∀ f ′′a > 0. (103)

• With reference to two values f ′′a and f ′′b of profile curvature at the
origin f ′′(0), the following inequalities hold for the critical loads in
tension (Fig. 11)

f ′′a < 0 and f ′′a < f ′′b ⇔ p
(+)
cr

(
f ′′a,q

)
⩽ p

(+)
cr

(
f ′′b ,q

)
,

∀ q > 0,
(104)

and in compression

f ′′a < f ′′b ⇒ p
(−)
de,1

(
f ′′a,q

)
< p

(−)
de,1

(
f ′′b ,q

)
, (105)

where the definition of critical loads is extended to include cases in which
bifurcation does not occur, by assuming p

(+)
cr (f ′′,q) = +∞ for {f ′′,q} ∈ O

and p
(−)
de,1 (f

′′,q) = −∞ for {f ′′,q} ∈ O∪ T.
Asymptotic expressions for the bifurcation loads in the limit of vanish-

ing profile curvatures, f ′′(0) → 0±, are reported in Appendix B.
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Figure 11: Comparison between tensile/compressive bifurcation loads pq = PL2/(π2B)

for extensible (dashed lines) and inextensible (continuous lines) rod models
and for q = {0.5, 10, 400}. The region shaded in gray corresponds to p < −1,
which has no mechanical meaning. Bifurcation loads corresponding to modes
higher than the first are drawn with lighter lines. As the stiffness ratio q

increases, the bifurcation models converge. At the transition point 1/f ′′(0) = 0

tensile instability turns to compressive and the critical load suffers a jump.

profile with curvature discontinuity at the origin. When
the profile possesses a curvature discontinuity at the origin, f ′′ (0+) ,
f ′′ (0−), each part of the profile defines its ‘own’ critical loads in tension
p
(+)
cr

(
f ′′
(
0±
)
, q
)

and in compression
p
(−)
de

(
f ′′
(
0±
)
, q
)
. The tensile (compressive) critical load for the structure

corresponds to the smallest (the highest) load,

p
(+)
cr = min

[
p
(+)
cr (f ′′(0+), q), p(+)

cr (f ′′(0−), q)
]
> 0,

p
(−)
cr = max

[
p
(−)
de,1(f

′′(0+), q), p(−)
de,1(f

′′(0−), q)
]
< 0.

(106)

With the above premise, the design proposed in this article for the profile
is based on the following two requirements.

• The first design requirement is a prescription that the shape of
the profile that leads to a postcritical behaviour in tension and in
compression is of the type illustrated in Fig. 7, so that in tension
p
(+)
cr = p

(+)
cr (f ′′(0−), q) and in compression p

(−)
cr = p

(−)
de,1(f

′′(0+), q).
From a kinematical point of view, this requirement is equivalent
to the prescription that bifurcation under compression occurs with
dY > 0 and under tension with dY < 0. When these conditions
prevail, the following inequality holds

∆(p)dY(p) ⩽ 0, (107)
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and the critical loads (106) become only functions of f ′′(0) and q

p
(+)
cr = p

(+)
cr

(
f ′′
(
0−
)
, q
)

, p
(−)
cr = p

(−)
cr

(
f ′′
(
0+
)
, q
)

. (108)

• The second design requirement is that the values of the two critical
loads p

(+)
cr and p

(−)
cr must be assigned as desired.

It is clear that the inequality (107) imposes a restriction on the possi-
bility to arbitrarily assign the two critical loads. This restriction can be
obtained as follows.

After the loads are assigned, it can be proven that a specific value of
q exists, say, q̄, for which the critical loads are obtained with the same
profile curvature at the origin, f ′′(0−) = f ′′(0+), say, f̄ ′′.

For q ⩾ q̄ the inequality (107) fails, because

q > q̄ =⇒ f ′′(0+) > f ′′(0−) and

p
(−)
de,1

(
f ′′(0−)

)
> p

(−)
de,1

(
f ′′(0+)

) (109)

meaning that the rod buckles in compression (p < 0) with dY < 0, oppo-
sitely to what is assumed through the inequality (107). More specifically,
for given values of p

(+)
cr and p

(−)
cr , the pairs

{
f̄ ′′, q̄

}
define the range of

values of f ′′(0+), f ′′(0−) and q for which Eq. (107) holds as

f ′′
(
0−
)
⩽ f̄ ′′ ⩽ 0 ⩽ f ′′

(
0+
)

, q ⩽ q̄. (110)

Introducing the ratio A = −p
(+)
cr /p

(−)
cr , the parametric curves{

f̄ ′′
(
p
(−)
cr , A

)
, q̄
(
p
(−)
cr , A

)}
are reported in Fig. 12. The points at the in-

tersection between a (dashed) curve pertaining to a value of p(−)
cr and a

(coloured, solid) curve representative of a value of A lead the values of
the pair f̄ ′′ and q̄ reported on the axes. Note that inside the gray zone in
the figure bifurcation is excluded. The boundary of this zone corresponds
to the occurrence of coalescent bifurcation loads p

(−)
cr = p∗.

3.3.2 Stability of the straight configuration from small amplitude vibration
analysis

The stability of the straight configuration can be assessed by analysing
the nature of the frequency of the time-harmonic small amplitude vibra-
tions around the straight configuration. In particular, the presence (or ab-
sence) of non-real eigenfrequencies defines the instability (or stability) of
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3.3 bifurcation and stability of the trivial configuration

Figure 12: Parametric representation of profile curvature at the origin f̄ ′′ and stiffness
ratio q̄ defining the limit parameters for which the two critical loads can
be tuned separately. The intersection between (solid and coloured) curves at
different A = −p

(+)
cr /p

(−)
cr and (dashed) curves pertaining to p

(−)
cr defines the

corresponding pair (f̄ ′′, q̄). In the gray zone compressive bifurcation does not
occur and its boundary corresponds to coalescent bifurcation loads p

(−)
cr =

p∗.

the straight configuration, and the limit case of vanishing eigenfrequency
would confirm the critical loads obtained from the quasi-static analysis
performed in Sect. 3.3.1. With the purpose of studying the dynamic re-
sponse of the system, a linear mass density γ is considered for the rod, so
that the Lagrangian L of the system can be written as

L =

∫L
0

γ

2

( ˙̂
X2 +

˙̂
Y2
)

dS−

∫L
0

B

2

(
θ ′)2 dS−

∫L
0

K

2
ε2 dS

−

∫L
0

NX

{
X̂ ′ − (1+ ε) cos θ

}
dS−

∫L
0

NY

{
Ŷ ′ − (1+ ε) sin θ

}
dS

− P X̂(0) + RX

{
X̂(L) − L

[
f

(
Ŷ(L)

L

)]}
,

(111)

where NX, NY , and RX are Lagrangian multipliers (the first two represent-
ing the X and Y components of the internal force, the last representing the
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X component of the reaction R at the pin on the curved profile) and the
dot over the functions stands for differentiation with respect to the time
variable t. The equations of motion can be derived from the principle of
least action as

N ′
X = γ

¨̂
X,

N ′
Y = γ

¨̂
Y,

Bθ ′′ − (1+ ε)[NX sin θ−NY cos θ] = 0,

Kε−NX cos θ−NY sin θ = 0,

(112)

along with the boundary conditions

NX(0) = P, NX(L) = RX, NY(L) = RX f ′

(
Ŷ(L)

L

)
. (113)

Considering small time-harmonic vibrations [15] around the trivial equi-
librium configuration (88), the relevant fields are assumed through the
method of separation of variables as

X̂(S, t) = S+
P

K
(S− L) + X̄(S) eiωxt, Ŷ(S, t) = Ȳ(S) eiωyt,

ε(S, t) =
P

K
+ ε̄(S) eiωxt, θ(S, t) = θ̄(S) eiωyt,

NX(S, t) = P+ N̄X(S) e
iωxt, NY(S, t) = N̄Y(S) e

iωyt,

RX(t) = P+ R̄X eiωxt,

(114)

where ωx and ωy are the circular frequencies for axial and flexural vi-
brations, respectively, and functions with an overbar denote functions of
the spatial variable only. The amplitudes of the overbar functions are
considered to be driven by a small positive parameter η, so that

|X̄| ≈ |Ȳ| ≈ |ε̄| ≈ |θ̄| ≈ |N̄X| ≈ |N̄Y | ≈ |R̄X| ≈ η, η ≫ η2. (115)

A substitution of the above expressions into Eqs. (112) and (113), by
neglecting higher-order terms in η, yields the following decoupled differ-
ential equations in the axial and transverse amplitude oscillations

X̄ ′′(S) + ω̂2
x

π2

L2
X̄(S) = 0,

Ȳ
(iv)
(S) − (1+ p)pq

π2

L2
Ȳ ′′(S) − (1+ p)2 ω̂2

y

π4

L4
Ȳ(S) = 0,

(116)
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where

ω̂2
x =

γω2
xL

2

π2K
, ω̂2

y =
γω2

yL
4

π4B
, (117)

to be complemented with the boundary conditions6

X̄ ′(0) = 0, X̄(L) = 0, (120)

for axial oscillations, and

Ȳ(0) = Ȳ ′(0) = Ȳ ′′(L) = 0,

Ȳ ′′′(L) − (1+ p)pq
π2

L2

[
Ȳ ′(L) + (1+ p)

f ′′(0)

L
Ȳ(L)

]
= 0,

(121)

for transverse ones. Due to motion decoupling from Eqs. (116), ωx and
ωy are independent from each other. Taking into account the boundary
conditions (120), the integration of Eq. (116)1 provides the axial mode as

X̄(S) = cos
(
π ω̂x S

L

)
, (122)

where

ω̂x = n−
1

2
, n ∈ N+, (123)

showing that the axial vibrations have always real circular frequencies ωx.
The transverse mode can be obtained from integration of Eq. (116)2 as

Ȳ(S) = C1 cos
(
πλ1S

L

)
+C2 cos

(
πλ2S

L

)
+C3 sin

(
πλ1S

L

)
+C4 sin

(
πλ2S

L

)
,

(124)

where

λ1,2 =

√
1+ p

2

√
−pq±

√
(pq)2 + 4ω̂2

y, (125)

6 The expansion of Eq. (77) truncated to linear terms in Ŷ(L) is

X̂(L) = Lf(0) + f ′(0)Ŷ(L), (118)

which, under the considered assumption f ′(0) = 0, reduces to

X̂(L) = Lf(0), (119)

implying the boundary condition (120)2.
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and C1, C2, C3, and C4 are the coefficients defining the transverse shape.
The homogeneous linear problem in the coefficients Cj (j = 1, ..., 4), ob-
tained by imposing the boundary conditions (121) to the transverse shape,
Eq. (124), represents an eigenvalue problem where ω̂2

y is the eigenvalue
and the coefficients Cj define the eigenvector. In the present problem, it is
found that an infinite set of ω̂2

y values exists, where each value is related
to a specific transverse mode, and that these values are real numbers.
Therefore, it can be concluded that:

• if the smallest eigenvalue ω̂2
y is positive (min[ω̂2

y] > 0), the trivial
configuration is stable because all the eigenmodes have real circular
eigenfrequency ωy;

• if the smallest eigenvalue ω̂2
y is negative (min[ω̂2

y] < 0), the trivial
configuration is unstable because at least one of the eigenmodes
has an imaginary circular eigenfrequency ωy (corresponding to a
divergent oscillation);

• if one of the eigenvalues ω̂2
y vanishes, the trivial configuration is at

the transition between the two previous cases for the specific eigen-
mode. This condition is the dynamic counterpart of the previously
analysed bifurcation for quasi-static deformation.7

As example, the smallest eigenvalue ω̂2
y is reported as a function of the

dimensionless load p in Fig. 13, for f ′′(0) = −6 and two different stiff-
ness ratios, q = 6.5 (left) and q = 8.5 (right), representative of sets A

and B, respectively. Load ranges realizing stable (unstable) trivial con-
figuration, and corresponding to positive (negative) smallest eigenvalue
ω̂2

y, are highlighted as white (gray) regions. These plots confirm the di-
mensionless load ranges corresponding to stable and unstable straight
configuration as expressed by Eq. (101) for set A and by Eq. (102) for B,
and the associated restabilization and double-restabilization phenomena.

7 The equation of motion (116)2, in the case when ω̂2
y = 0, is equivalent to the bifurcation

equation (92), obtained for quasi-static deformation. These two just differ in the reference
kinematic field, corresponding to Ŷ(S) in dynamics and θ(S) for quasi-static deformation.
These are related to each other through Ŷ ′(S) = (1 + p) θ(S) under the small rotation
assumption.
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the structure

Figure 13: Smallest eigenvalue ω̂2
y = γω2

yL
4/(π4B) for f ′′(0) = −6 when the dimen-

sionless applied load p is varied. Two stiffness ratios are considered to analyse
the stability in subset A (left, q = 6.5) and subset B (right, q = 8.5). Stability
(or instability) of the straight configuration corresponds to positiveness (or
negativeness) of the smallest eigenvalue ω̂2

y. Restabilization (left) or double
restabilization (right) is found.

3.4 analytical solution for the nonlinear kinematics of

the structure

3.4.1 Imposition of the curved profile constraint

The general solution for a cantilever beam recalled in Chapter 2 is now
considered as having unknown reaction force R and angle α. Because the
load P is imposed at the sliding clamp, equilibrium implies the following
relation between the angle α ∈ [−π,π] and the positive reaction force R

P = R cosα. (126)

Due to the absence of friction, the reaction force R is perpendicular to the
constraint profile, relating α with the vertical deflection of the free end of
the cantilever beam dY as8

α = arctan
(
f ′
(
dY

L

))
+

π

2
[1− sgn(P)]. (127)

Recalling from Eq. (79) that

X(L) = dX, Y(L) = dY , (128)

8 The definition (127) for the angle α is introduced to ensure positiveness of the profile re-
action, R > 0, independently from the sign of the applied load P. Moreover, the restriction
R > 0 is also needed to exploit the solution obtained in [6].
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these two quantities can be expressed as a respective function, GX and GY

(for conciseness not explicitly reported here), depending on the angle α

and the reaction magnitude R,

dX = GX(α,R), dY = GY(α,R). (129)

Because κ(L) = 0, the parameter k can be related with the rotation of the
beam at the free end θL = θ(L), by evaluating (24) at S = L, through the
following formula

k = sin
θL +α

2
. (130)

Considering Eq. (126), relation (129) can be rewritten as

dX = GX

(
α,

P

cosα

)
, dY = GY

(
α,

P

cosα

)
, (131)

and, since the angle α is related to dY through Eq. (127), Eq. (131)2 pro-
vides a fixed-point recursive relation for the value of dY .

The nonlinear equilibrium configurations can be obtained by solving
a reverse problem, where the displacement ∆ is imposed while the load
P is unknown. In this way, Eqs. (78), (131), and (27) provide a system of
three nonlinear equations in the three unknown parameters P, θL, and dY

to be solved for a given ∆ value

GX

(
α,

P

cosα

)
− L

[
1+ f

(
dY

L

)]
−∆ = 0,

GY

(
α,

P

cosα

)
− dY = 0,

k
sn(C, k̃)√

1+m2 cn2(C, k̃)
− sin

α

2
= 0,

(132)

where k̃ is defined by Eq. (11)3 .
Due to the nonlinearity of system (132), none, one, or multiple non-

trivial equilibrium configurations can be obtained for a given value of the
end displacement ∆.
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the structure

3.4.2 Symmetric profile

Reference is made to a parabolic constraint profile (symmetric about the
X̂–axis) and described by

f(ξ) = 1+
f ′′(0)

2
ξ2, (133)

where ξ = Ŷ/L.
The equilibrium paths in terms of load p as a function of the clamp

displacement ∆/L, rotation θL, and vertical coordinate dY/L of the end of
the rod are shown in Fig. 14 for f ′′(0) = −10. Two different values of q are
considered, q = 8.4 and q = 10, corresponding to a single and a double
restabilization, respectively. Stable and unstable configurations are distin-
guished through continuous and dotted lines, respectively.9 Restricting
attention to non-trivial configurations, the force-displacement diagrams
reveal one stable non-trivial configuration (highlighted with red lines)
and, as a result, the system is bistable. Because none of the non-trivial
bifurcation paths (highlighted with green dotted lines) is stable in com-
pression, the loss of stability at these bifurcation points realizes a ‘snap’
motion towards the non-trivial stable configuration, as shown by the ar-
rows in Fig. 14. Moreover, since f ′′(0) is negative, a tensile bifurcation
exists. The non-trivial path (highlighted with purple lines) at the tensile
bifurcation is found to be stable.

3.4.3 Skew-symmetric profile with discontinuous curvature at the origin

A profile, skew-symmetric about the X̂–axis, is considered as

f(ξ) = 1+
f ′′(0+)

2
ξ |ξ| , (134)

displaying a discontinuity in the profile curvature at the origin,

f ′′
(
0−
)
= −f ′′

(
0+
)

. (135)

For this system, attention is restricted only to the continuous stable path
in terms of pq–∆/L, reported in Fig. 15 for q = {4, 30} and f ′′ (0+) =

{2, 10}. It can be noted that, although the profile shape is skew-symmetric

9 Stability character of the non-trivial configurations and snap motion towards them have
been assessed through the numerical solution of the nonlinear dynamic equations (112)
and (113).
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Figure 14: Post-critical behaviour in terms of dimensionless force p versus different
measures of structural deformation: clamp displacement ∆, right end rotation
θL and vertical displacement dY . f ′′(0) = −10 and q = 8.4 (upper part) and
q = 10 (lower part). Some stable and unstable deformed configurations are
shown for specific non-trivial states in the central part.
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force-displacement curve

Figure 15: Force (pq = PL2/(π2B)) – displacement (∆/L) diagram for a structure with
q = 4, 30 and skew-symmetric profile defined by Eq. (134) with f ′′

(
0+
)
=

2 (left) and f ′′
(
0+
)
= 10 (right). The deformed shapes shown in the inset

correspond to the pq–∆/L pairs highlighted with a circle (with corresponding
colour) on the non-trivial path.

about the X̂–axis, the force-displacement curve does not evidence any
symmetry, except along the trivial branch before bifurcation. In fact, the
post-buckling behavior of the system depends not only on the constraint
shape but also on the signs of the profile angle f ′(ξ) and curvature f ′′(ξ).

3.5 optimization of the profile shape for a design force-
displacement curve

The developed theoretical framework is exploited here to design a device
displaying a prescribed force-displacement p−∆/L curve. The structure
displays a linear elastic range, limited within the tensile/compressive bi-
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furcations, p = ∆/L ∈
[
p
(−)
cr , p(+)

cr

]
, defined by Eq. (106). The design

force-displacement curve is assumed to be characterized as

p

(
∆

L

)
=



p(−)

(
∆

L

)
,

∆

L
< p

(−)
cr ,

∆

L
,

∆

L
∈
[
p
(−)
cr , p(+)

cr

]
,

p(+)

(
∆

L

)
,

∆

L
> p

(+)
cr ,

(136)

where p(+)(∆/L) and p(−)(∆/L) define a target behaviour to be displayed
after bifurcation, tensile and compressive, respectively, and satisfying the
continuity condition

p(±)
(
p
(±)
cr

)
= p

(±)
cr . (137)

Considering that the two critical values are independent of each other,
a discontinuous profile curvature at the origin is needed to control inde-
pendently these two thresholds as related to the tensile and compressive
loading branches of the structure. As previously shown, the stiffness ratio
q and two profile curvatures at the origin f ′′(0−) and f ′′(0+) have to lie
within the ranges provided by Eq. (110).

The post-buckling displacement ∆ is discretized in the two sets ∆
(±)
i ,

characterized by N(±) discretization points (i = 0, ...,N(±)), satisfying

∆
(±)
0 = p±

cr L,
∣∣∣∆(±)

i+1

∣∣∣ > ∣∣∣∆(±)
i

∣∣∣ , ±∆
(±)
i > 0. (138)

Considering the profile as the union of two parts differing in the sign of
Y, the dimensionless coordinate Y/L is discretized through the unknown
points ξ

(±)
i , corresponding to ∆

(±)
i , where

ξ
(±)
0 = 0±,

∣∣∣ξ(±)
i+1

∣∣∣ > ∣∣∣ξ(±)
i

∣∣∣ , ±ξ
(±)
i > 0. (139)

The profile shape is discretized as

f(ξ) = 1+
1

2

i−1∑
j=0

h
(±)
j+1

(
ξ
(±)
j+1 − ξ

(±)
j

)2
+

1

2
h
(±)
i+1

(
ξ− ξ

(±)
i

)2
, ξ ∈

[
ξ
(±)
i , ξ(±)

i+1

]
,

(140)
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force-displacement curve

where h
(±)
i+1 is the piecewise constant profile curvature value,

f ′′(ξ) = h
(±)
i+1, ξ ∈

(
ξ
(±)
i , ξ(±)

i+1

)
. (141)

In order to achieve the target force-displacement curve, a fitting loop is
devised. The algorithm initiates with i = 0 and is repeated for increasing
values of i. After selecting the stiffness ratio q of the rod, the generic
unknown point ξ(±)

i+1 and corresponding profile curvature value h
(±)
i+1 can

be found through a solution of the nonlinear system (132) by imposing
∆
(±)
i+1 and prescribing the force p in agreement with the target response,

Eq. (136), as

p

(
∆
(±)
i+1

L
; ξ(±)

i+1, h(±)
i+1

)
= p(±)

(
∆
(±)
i+1

L

)
. (142)

It is worth noting that the profile optimization can be unsuccessful at a
specific value of ∆ for the following issues.

Issue 1 – A too stiff response is requested. Indeed, the target force-dis-
placement curve p(±) (∆/L) has its first derivative bounded from
above by the maximum post-critical stiffness ratio kmax ∈ (0, 1)
as10

dp(±)(∆/L)

d(∆/L)
< kmax

(
q, Ŷ

)
, (144)

because a unit value would correspond to the stiffest behaviour
given by the purely axial state, which is instead weakened in
the post-critical region by flexure. It is also observed that high
values of q and Ŷ define small maximum post-critical stiffness
ratio kmax;

Issue 2 – The elastica is unstable. Although a profile shape is found, the
involved equilibrium configuration of the rod may become un-
stable. In particular, the stable/unstable response is affected by

10 The profile can be designed for realizing a post-bifurcation response with incremental
negative stiffness,

dp(±) (∆/L)

d (∆/L)
< 0, (143)

a concept under research for applications in vibration isolation and seismic engineering;
see e.g. [2, 35, 49, 68].
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the prescribed boundary condition, namely, it may change de-
pending on whether the displacement ∆ or the load p are im-
posed;

Issue 3 – A force reversal [11, 13, 14] is excluded. Because the profile
shape is described via the horizontal coordinate X̂ through the
function f

(
Ŷ/L

)
, Eq. (77), the present formulation cannot be ex-

ploited to realize force reversals (p changing sign at a given end
displacement ∆ , 0). Therefore, the target response is subject to
the following constraint

±p(±) > 0. (145)

In the limit condition given by p = 0, the optimization proce-
dure fails providing f ′ → ∞, because the only possible equilib-
rium configuration is realized for a reaction inclination angle
α = ±π/2.

While the first two issues above are inherent to the considered model
and cannot be avoided, the latter restriction can be overcome through a
parametric planar description of the profile curve, as for example describ-
ing the profile as X̂(σ) and Ŷ(σ) through a parameter σ.

In the following, examples of application of the optimization algorithm
are presented by considering a uniform spacing
∆
(±)
i+1 − ∆

(±)
i =

(
∆
(±)
N −∆

(±)
0

)
/N(±) in the discretization, with N(±) =

120, ∆(±)
N = 2L.

The following examples are also complemented by movies (available as
electronic supplementary material) showing the theoretical behaviour of
the structure optimized to display specific force-displacement curves.

3.5.1 The design of an elastic force-limiting device

In an ideal force-limiting device, the force P is expected to be initially
linear with the displacement ∆, up to a threshold value at which the bi-
furcation occurs. Subsequently, the force is requested to remain constant
(or slightly raise in its absolute value) at a further increase in the displace-
ment magnitude, up to a point where the structure locks and the stroke
of the device is attained. In practice however, a small increase in the force
magnitude after buckling is desirable, to facilitate the return of the device
to its initial configuration at unloading and to avoid snap motion due to
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negative stiffness. By excluding for the moment the final locking part,
this behaviour can be described in mathematical terms as a symmetric
bilinear force-displacement curve, namely, Eq. (136) with p(±) given as

p(±)

(
∆

L
;pcr, r

)
= ±pcr + r

(
∆

L
∓ pcr

)
, (146)

where r is the bilinear stiffness ratio, relating the incremental constant
stiffness in the post-buckling regime to that characterizing the structure
before bifurcation (therefore enforced by Eq. (144) to r < kmax < 1), and
pcr = p

(+)
cr = −p

(−)
cr .

The constraint’s profile, which realizes a certain designed force-displace-
ment behaviour (defined by pcr and r), is not unique, rather, various
shapes of the profile, realizing the target post-buckling behaviour p(±),
can be found using the algorithm described in the previous section as a
function of q.

A number of constraint’s profile shapes are shown in Fig. 16 for pcr =

{0.01, 0.05, 0.3} (from top to the bottom). The same force-displacement
behaviour (reported in the insets) is obtained by changing q, assuming
2 pairs of values reported in each diagram. Profile shapes with differ-
ent colours correspond to different values of bilinear stiffness ratio r =

{−0.01, 0, 0.01} (top), r = {−0.04, 0, 0.04} (middle) and r = {−0.35, 0, 0.35}
(bottom).

Restricting attention to a null bilinear stiffness ratio, r = 0, the profile
shapes are shown in Fig. 17 for pcr = 0.01 (top left), pcr = 0.05 (top right),
and pcr = 0.3 (bottom), for different values of the stiffness ratio q. The
force-displacement diagrams are reported in the insets.

In both Figs. 16 and 17, some of the profile shapes and the correspond-
ing load-displacement curves are ended with a marker (a cross or a circle).
This marker shows the point where the optimization algorithm fails to
converge because the target stiffness is too high (Issue 1, marked with a
cross), or because a force reversal is found (Issue 3, marked with a circle).
It should be noted that the blue curves in Fig. 16 show negative stiffness
and therefore are unstable for imposed load p.

Also, small values of q provide smoother profiles than those obtained
for large q. Moreover, small values of q lead to a large stroke, defined as
the greatest displacement ∆ reached with the device, see Fig. 17, show-
ing that rod’s extensibility facilitates the profile optimization. It is noted
that small values of q can be obtained by using elements such as those
described in Sect. 3.1.1. On the other hand, rods that are inextensible
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Figure 16: Profile’s shapes realizing a symmetric bilinear force-displacement p − ∆

curve (shown in the insets) with pcr = {0.01, 0.05, 0.3} (from top to the bot-
tom) for three different values of the bilinear stiffness ratio r = {−0.01, 0, 0.01}
(top), r = {−0.04, 0, 0.04} (middle) and r = {−0.35, 0, 0.35} (bottom). Crosses
and circles denote the points where the design p − ∆ fails, putting out-of-
service the device.

(q → ∞) could be used to achieve the same effect, although inextensibil-
ity reduces the performance of the device.

58

[ December 12, 2022 at 13:33 – classicthesis version 1.0 ]



3.5 optimization of the profile shape for a design

force-displacement curve

Figure 17: Profile’s shapes realizing a symmetric bilinear force-displacement p − ∆

curve with null bilinear stiffness ratio (shown in the insets), r = 0, for
pcr = 0.05 (top left), pcr = 0.05 (top right) and pcr = 0.3 (bottom). Crosses
denote the points where the design p−∆ fails, putting out-of-service the de-
vice. Note that small values of q extend the range of displacement for which
the designed response is displayed.

For the practical realization of a force-limiter, a secondary increase in
the stiffness has to be introduced in order to achieve a smooth transition
to a maximum allowable displacement ∆max. This secondary increase in
the stiffness can be achieved by modifying the final part of the profile
shape. An example for pcr = 0.01, q = 10, r = 0, and locking starting
at ∆/L = ±0.73 is shown in Fig. 5, along with the profile shape and the
deformed configuration at ∆/L = ±{0.1, 0.2, 0.8}.

3.5.2 Profile shape for complex force-displacement curves

To show how far the present framework can be exploited to design con-
straint’s profiles imposing highly complicated load-displacement curves,
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instabilities of extensible rod

the present analysis is concluded by finding the profile shapes for a
sinusoidal post-critical response (with constant average load),

p(±)

(
∆

L
;pcr, a, b

)
= ±pcr + a sin

[
2πb

(
∆

L
∓ pcr

)]
(147)

and for a triangular post-critical response (with non-constant average load),

p(±)

(
∆

L
;pcr, r1, r2, c

)
= ±pcr + r1

(
∆

L
∓ pcr

)
∓ r2

∣∣∣∣c(∆

L
∓ pcr

)
−

⌊
c

(
∆

L
∓ pcr

)
+

1

2

⌋∣∣∣∣ , (148)

with the symbol ⌊·⌋ standing for the integer part of the relevant argument.
Both the above design post-critical responses define a multistable element,
where more than one stable displacement ∆ exist at a given load p.

The profile shape for the sinusoidal response (147) with a = 0.05 and
b = 2 is reported in Fig. 18 (upper row) while that for the triangular one
(148) with r1 = 0.05, r2 = 0.1, and c = 2 in Fig. 18 (lower row). Two values
of critical load are prescribed, pcr = 0.1 (left) and pcr = 0.2 (right), while
the stiffness ratio assumes three values, q = {0.5, 1, 2}. Similarly to the
bilinear post-critical response, also for these other two cases, it is evident
that the profile shape becomes smoother and can be defined for greater
∆ and for small values of q.
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3.5 optimization of the profile shape for a design

force-displacement curve

Figure 18: Constraint’s profile shapes optimized for realizing (above) a sinusoidal force-
displacement response, Eq. (147), with a = 0.05 and b = 2 and (bottom) a
triangular response, Eq. (148), with r1 = 0.05, r2 = 0.1, and c = 2. Critical
load is pcr = 0.1 (left) and pcr = 0.2 (right). Different shapes are reported for
different values of the stiffness ratio q.
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4T H E O S C I L L AT I N G S L I D I N G S L E E V E

In this chapter the oscillating sliding sleeve system is presented and anal-
ysed. First, the theoretical model of the system is provided using the
rotation- and position-based formulations. While the former is used to
derive a simple expression for the equations of motion and to attempt the
description of an analytical solution, the latter leads to a robust Finite El-
ement framework for the sliding-sleeve constraint. The general model for
the system where the sleeve can move both horizontally and vertically is
presented. Next, the system is studied both analytically and numerically
for the case that only horizontal movement of the sliding-sleeve is consid-
ered. Finally, the analysis is concluded with an experimental campaign
that confirms the theoretical predictions.

4.1 introduction

The oscillating sliding sleeve system is composed by a flexible but inex-
tensible rod, of length L, flexural stiffness B, linear mass density γ, and
straight in its undeformed configuration, partially inserted inside a slid-
ing sleeve. A mass m is attached at the tip of the rod and the sleeve is
oriented in a vertical direction, as seen in Fig. 19. As mentioned in Chap-
ter 1, the oscillation of the sliding sleeve constraint provides an external
input that allows the system to exhibit a quasi-periodic motion. Anticipat-
ing the results, three qualitatively different behaviours can be observed;
injection, ejection and quasi-periodic motion. The injection/ejection of the
rod in/from the sliding sleeve represent behaviours that have been also
experimentally observed in the case of motion absence for the sliding con-
straint [3, 9]. Differently, the quasi-periodic motion can be realized only
when the sleeve is oscillating.

4.1.1 Configurational forces

Ignoring for the moment any friction effects inside the sliding sleeve, the
vertical inertia is balanced by the sum of the gravity and the configura-
tional force, the latter due to the discontinuity of the curvature of the rod

63

[ December 12, 2022 at 13:33 – classicthesis version 1.0 ]
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at the sliding sleeve exit. This force is realized at the sliding sleeve exit
and is always outward from the sliding sleeve. Previous research [3, 9]
confirms the relation for the magnitude of the configurational force

|FC(t)| =
M2(t)

2B
, (149)

where M(t) is the reaction moment at the sliding sleeve. As the sleeve
oscillates and the rod-mass system is excited, the configurational force
oscillates also. As a consequence, the oscillatory configurational force may
play the role of dynamic stabilizer realising a quasi-periodic motion.

4.1.2 Connection with resonant clamped-free rod

The oscillating sliding sleeve system described above has self-tuning prop-
erties. When the system is excited at an angular frequency ω, the length
of the rod external to the sliding sleeve adjusts so that the excitation fre-
quency ω matches the natural frequency of a clamped rod of the same
length. This prediction is obtained by analytical means and experiments
carried out in the Instabilities Laboratory of the University of Trento con-
firm this finding.

4.2 theoretical modeling with the elastica

4.2.1 Governing equations

Because of the presence of the sliding sleeve, in addition to the rotation
field θ(s, t), the structural system is also characterized by the configura-
tional parameter ℓ(t) ∈ [0,L] measuring the length of the rod outside the
constraint, defined by the set of points s ∈ [L− ℓ(t),L], being L the length
of the entire rod. Considering the sliding sleeve exit as the origin of the
x−y reference system implies the following kinematic constraints for the
position field at the curvilinear coordinate s = L− ℓ(t)

X
(
L− ℓ(t), t

)
= U(t), Y

(
L− ℓ(t), t

)
= V(t), (150)

x
(
L− ℓ(t), t

)
= y

(
L− ℓ(t), t

)
= 0, (151)

while the rotation field of the part of the rod inside of the sliding sleeve
remains null,

θ(s, t) = 0, s ∈ [0,L− ℓ(t)]. (152)
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4.2 theoretical modeling with the elastica

Figure 19: Oscillating sliding sleeve system. The rod of flexural stiffness B is inserted
partially inside the sliding sleeve and a concentrated mass m is attached to
the rod tip. The sliding-sleeve is allowed to move in the horizontal and in the
vertical direction.

The time derivative of the null rotation condition (152) evaluated at
the curvilinear coordinate corresponding to the sliding sleeve exit, θ(L−

ℓ(t), t) = 0, provides the following internal constraint between the time
and spatial derivatives (the latter denoted by a prime symbol) of the rota-
tional field at this point through the sliding velocity ℓ̇(t) as

θ̇ (L− ℓ(t), t) = ℓ̇ (t) θ ′ (L− ℓ(t), t) . (153)

From Eq.(153) it follows that, while the velocity fields are continuous
at the sliding sleeve exit, the velocity of rotation θ̇(s, t) is spatially discon-
tinuous at s = L− ℓ(t) because of the discontinuity of the curvature field
at the same point, so that the velocity of rotation can be evaluated just
inside and outside the sliding sleeve as

lim
|δ|→0

θ̇ (L− ℓ(t) − |δ|, t) = 0,

lim
|δ|→0

θ̇ (L− ℓ(t) + |δ|, t) = ℓ̇(t) lim
|δ|→0

θ ′ (L− ℓ(t) + |δ|, t) .
(154)
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The relative coordinates of the rod inside the sliding sleeve are trivially
given as

x(s, t) = 0,

y(s, t) = s− L+ ℓ(t) , ∀s ∈ [0, L− ℓ(t)],
(155)

and the relative coordinated outside the sliding sleeve can be obtained by
integrating the rotation field θ(s, t) as

x(s, t) =
∫s
L−ℓ(t)

sin θ(s, t)ds,

y(s, t) =
∫s
L−ℓ(t)

cos θ(s, t)ds, ∀s ∈ [L− ℓ(t),L].
(156)

The absolute coordinates of a point s on the rod outside the sliding-
sleeve s ∈ [L− ℓ(t),L], in the earth-fixed inertial frame of reference X− Y,
are decomposed in the following form

X(s, t) = Usl(t) + x(s, t), Y(s, t) = Vsl(t) + y(s, t), (157)

where U(t) and V(t) are the displacements of the sliding sleeve exit in
the horizontal and veritcal directions respectively, as seen in Fig. 19, and
x(t), y(t) are the coordinates of the rod in the reference frame travelling
with the sliding-sleeve and given by Eq. (156).

4.2.2 Lagrangian and governing equations

The Lagrangian L(t) for the considered system is given by

L(t) = T(t) −V(t) −

∫L
L−ℓ(t)

NX(s, t)
[
X ′(s, t) − sin θ(s, t)

]
ds

−

∫L
L−ℓ(t)

NY(s, t)
[
Y ′(s, t) − cos θ(s, t)

]
ds

−

∫L−ℓ(t)

0

Ny(s, t)
[
y ′(s, t) − 1

]
ds,

(158)

where T(t) is the kinetic energy, V(t) is the potential energy, while Nx(s)

and Ny(s) are Lagrangian multipliers (which can be mechanically inter-
preted as the internal forces along the x and y directions). Considering
that the rod has uniform linear mass density γ and has attached a lumped
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mass m (with rotational inertia I) at the coordinate s = L, the kinetic en-
ergy T(t) of the system is given by

T(t) =
m [Ẋ(L, t)2 + Ẏ(L, t)2]

2
+

1

2

∫L
0

γ [Ẋ(s, t)2 + Ẏ(s, t)2]ds. (159)

The potential energy V(t) is given as the sum of the elastic energy
stored inside of the rod and the negative of the work done by the loads
applied to the system. A quadratic form in the rod’s curvature θ ′(s, t) is
assumed for the strain energy of the elastic rod, so that the moment at
the coordinate s is given by the linear relation M(s, t) = Bθ ′(s, t), where
B is the uniform bending stiffness. Considering a gravitational field char-
acterized by the acceleration g in the direction opposite to the y axis, the
concentrated dead load P = mg is applied at the coordinate s = L, while
the uniform dead load γg is distributed all along the rod, the potential
energy V(t) (neglecting an arbitrary constant) is given by

V(t) =
B

2

∫L
L−ℓ(t)

θ ′(s, t)2 ds+ PY(L, t) +
∫L
0

γgY(s, t)ds. (160)

The principle of least action can be applied to the functional A defined
as the integration in time of L(t)

A =

∫t∗
t0

L(t) dt, (161)

with t0 and t∗ being arbitrary initial and final instants of the analyzed
time interval. The minimization procedure for the functional A is ex-
pressed by the vanishing of its variation (see Appendix A for details) and
leads to the following equations of motion for the part of the rod inside
the sliding sleeve

N ′
y(s, t) = γ

{
V̈sl(t) − ℓ̈(t)

}
, s ∈ [0,L− ℓ(t)], (162)

and for the part of rod outside the sliding sleeve

Bθ ′′(s, t) +NX(s, t) cos θ(s, t) −NY(s, t) sin θ(s, t) = 0,

N ′
X(s, t) − γẌ(s, t) = 0,

N ′
Y(s, t) − γ

(
Ÿ(s, t) + g

)
= 0, s ∈ [L− ℓ(t),L].

(163)
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Furthermore, as a complement to the differential systems (162) and
(163), the minimization procedure also provides the boundary conditions
at the two ends of the rod

Ny(0, t) = 0, Nx(L, t) = −mẌ(L, t),

Ny(L, t) = −m
(
Ÿ(L, t) + g

)
, M(L, t) = 0,

(164)

and the interface boundary condition at the sliding sleeve exit, s = L−

ℓ(t),

[[Ny(L− ℓ(t), t)]] =
M(t)2

2B
, (165)

where M(t) is the reaction moment provided by the sliding sleeve and the
symbol [[ · ]] denotes the jump in the relevant argument at a specific spatial
coordinate, namely

[[Nj(L− ℓ(t), t)]] = lim
|δ|→0

[
Nj

(
L− ℓ(t) + |δ|, t

)
−Nj

(
L− ℓ(t) − |δ|, t

)]
, j = x,y.

(166)

By considering the moment-curvature linear constitutive relation M(s, t) =
Bθ ′(s, t) and the condition of null curvature for the part of rod inside the
sliding sleeve, the reaction moment M(t) results coincident with the bend-
ing moment in the rod evaluated at the moving curvilinear coordinate
s = lim|δ|→0(L− ℓ(t) + |δ|),

M(t) = lim
|δ|→0

Bθ ′(L− ℓ(t) + |δ|, t
)
. (167)

The moving coordinate s = L− ℓ(t) is associated with the cross section at
the sliding sleeve exit, so that M(t) corresponds to the bending moment
value at the rod cross section just outside the constraint.

4.2.3 Spatial closed-form solution of the sliding-sleeve system

The closed form solution of the inextensible elastica and sliding sleeve
system has been discussed in [3], for the case where the sliding sleeve is
inclined and not moving. Here the same approach is used and adapted
for the moving sliding sleeve. In order to obtain the closed-form solution
for the sliding-sleeve system we assume that the inertia of the rod is neg-
ligible γ = 0. Then, the mass of the system is just the concentrated mass
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m and from Eq. (163) the internal actions NX(s, t) and NY(s, t) are spa-
tially constant with values NX(t) and NY(t) respectively. The equations
of motion of the system can be written as

NX(t) = −mẌL(t)

= −m(Üsl(t) + ẍL(t))

NY(t) = −m(g+ ŸL(t))

= −m(g+ V̈sl(t) + ÿL(t)),

(168)

where the subscript L denotes the evaluation of the field at s = L. The
equation of the configurational force can be written as

NY(t) = −

[
NX(t)yL(t) −NY(t)xL(t)

]2
2B

. (169)

The quantities NX(t) and NY(t) can be calculated by

NX(t) = −
B

ℓ2(t)
[K(k(t)) −K(σ(t),k(t))]2 sinβ(t)

NY(t) = −
B

ℓ2(t)
[K(k(t)) −K(σ(t),k(t))]2 cosβ(t),

(170)

where K(k(t)) and K(σ(t),k(t)) are the complete and incomplete elliptic
integrals of the first kind respectively,

β(t) = arctan
(
NX(t)

NY(t)

)
(171)

and

k(t) = sin
θL(t) −β(t)

2
, σ(t) = −arcsin

[
1

k(t)
sin

β(t)

2

]
. (172)

Moreover, the position of the tip of the rod can be evaluated as

xL(t) = ℓ(t) {A(t) sinβ(t) − B(t) cosβ(t)} ,

yL(t) = ℓ(t) {A(t) cosβ(t) + B(t) sinβ(t)} ,
(173)

where

A(t) = −1+
2 [E(k(t)) − E(σ(t),k(t))]
K(k(t)) −K(σ(t),k(t))

,

B(t) = −
2 k(t) cosσ(t)

K(k(t)) −K(σ(t),k(t))
,

(174)
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and E(k) and E(σ,k) are the complete and incomplete elliptic integrals of
the second kind.

Finally, the following differential-algebraic system of equations can be
written

m(Üsl(t) + ẍL(t)) + c(t)(U̇sl(t) + ẋL(t))

−
B

ℓ2(t)
[K(k(t)) −K(σ(t),k(t))]2 sinβ(t) = 0

m(g+ V̈sl(t) + ÿL(t)) + c(t)(V̇sl(t) + ẏL(t))

−
B

ℓ2(t)
[K(k(t)) −K(σ(t),k(t))]2 cosβ(t) = 0

NY(t) = −

[
NX(t)yL(t) −NY(t)xL(t)

]2
2B

+ µ |NX(t)| sgn[ℓ̇(t)]

xL(t) = ℓ(t) {A(t) sinβ(t) − B(t) cosβ(t)}

yL(t) = ℓ(t) {A(t) cosβ(t) + B(t) sinβ(t)}

(175)

The first two equations are the differential equations providing the equa-
tions of motion of the mass at the tip of the rod and the last three are the
algebraic equations acting as constraints on the system. This system can
be solved for the five unknowns xL(t), yL(t), ℓ(t), θL(t) and β(t).

The differential system is improved by modelling dissipative behaviour
through two different sources. A viscous damping term with time-variable
coefficient c(t) is introduced to model the dissipation of the rod and air
interaction effects outside the sliding sleeve and equal to

c(t) = 2 ζ

√
3mB

ℓ3(t)
, (176)

where ζ is a non-dimensional value defining the viscous damping coef-
ficient c. A dry (Coulomb) friction inside the sleeve with friction coeffi-
cient µ is introduced to model dissipation at the sliding sleeve. In order
to assist the convergence of any iterative solver for nonlinear systems of
equations, the discontinuous in time dry friction force is approximated
by the following nonlinear smooth function

Ffriction = −µ |NX(t)| sgn[ℓ̇(t)] ≈ −µ |NX(t)|
ℓ̇(t)√

ℓ̇2(t) + ϵ2
(177)
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where ϵ is a small parameter, ϵ ≪ 1.

4.3 position-based weak form

In order to develop a Finite Element model, the position-based formu-
lation is used. The extended Lagrangian of the system for the position-
based formulation is

L(t) = T(t) −V(t) −

∫L−ℓ(t)

0

λ(s, t)n(t) · [X(s, t) − U(t)]ds

−

∫L
0

N(s, t)
[
(X′(s, t))2 − 1

]
ds

− R(t) · [X(L− ℓ(t), t) − Usl(t)] −M(t)
[
n(t) · X′(L− ℓ+(t), t)

]
,

(178)

where λ(s, t) can be interpreted as the transverse reaction inside the slid-
ing sleeve, R(t) and M(t) as the reaction force and moment at the sliding
sleeve opening (modelling the discontinuities), N(s, t) as the internal ac-
tion of the rod in the axial direction and

T(t) =

∫L
0

1

2
γ (Ẋ(s, t))2 ds+

1

2
m (Ẋ(L, t))2, (179)

is the kinetic energy of the system and

V(t) =

∫L
0

1

2
B (X ′′(s, t))2 ds−

∫L
0

γX(s, t) · g ds−m g X(L, t), (180)
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is the potential energy. The application of the Principle of Least Action to
Eq. (178) leads to the equations of motion in weak form as

∫t∗
t0

∫L
0

γδX(s, t) · Ẍ(s, t)dsdt+
∫t∗
t0

mδX(L, t) · Ẍ(L, t)dt

+

∫t∗
t0

∫ l
0

BδX ′′(s, t) · X ′′(s, t)dsdt−
∫t∗
t0

∫L
0

γδX(s, t) · g dsdt

−

∫t∗
t0

mδX(L, t) · g dt+
∫t∗
t0

∫L−ℓ(t)

0

δX(s, t) · n(t) λ(s, t)dsdt

+

∫t∗
t0

δX(l− ℓ(t), t) · R(t)dt+
∫t∗
t0

δX ′(L− ℓ(t), t) · n(t)M(t)dt

+

∫t∗
t0

∫L
0

2 δX ′(s, t) · X ′(s, t)N(s, t)dsdt+
∫t∗
t0

c(t) δX(L, t) · Ẋ(L, t)dt

+

∫t∗
t0

µδX(L− ℓ(t), t) · X′(L− ℓ(t), t)|n · R(t)|

sgn
[
X′(L− ℓ(t), t) · (Ẋ(L− ℓ(t), t) − U̇sl(t))

]
dt = 0,

∫t∗
t0

∫L−ℓ(t)

0

δλ(s, t)n(t) · [X(s, t) − Usl(t)]dsdt = 0,

∫t∗
t0

δR · [X(L− ℓ(t), t) − Usl(t)]dt = 0,

∫t∗
t0

δM
[
nT X ′(L− ℓ(t), t)

]
dt = 0,

∫t∗
t0

∫ l
0

δN(s, t)
[
(X′(s, t))2 − 1

]
dsdt = 0,

∫t∗
t0

δℓ

{[
1

2
B (X ′′(s, t))2

]s=L−ℓ+(t)

s=L−ℓ−(t)

−X ′(L− ℓ(t), t) · R(t) − n(t) · X ′′(L− ℓ+(t), t)M(t)
}

dt = 0.
(181)

Equation (181)1 describes the dynamics of the constrained rod, where
the last two terms are the viscous and dry-friction dissipation forces re-
spectively, while equations (181)2-(181)5 impose the constraints. Equation
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4.4 nonlinear dynamics of the oscillating sliding sleeve -
rod - mass system

(181)6 provides an interface condition at the sliding sleeve exit, that co-
incides with the configurational force obtained with the elastica model
(165). Due to this condition, there exists a discontinuity in the internal
action field N and as a result any spatial reconstruction of N should take
into account this discontinuity. In Eqs. (181) the dissipation terms have
been added as implicitly defined forces to the finite element framework.

4.4 nonlinear dynamics of the oscillating sliding sleeve -
rod - mass system

In this section the dynamics of the oscillating sliding-sleeve system are
presented. The oscillation of the sliding sleeve is considered to be in the
horizontal direction only and to assume a sinusoidal form given by

Usl(t) = ug cos(ωt),

Vsl(t) = 0,
(182)

where ug and ω are respectively the amplitude and the angular frequency
of the sliding sleeve motion.

A dimensional analysis of the system shows that, apart from the dissi-
pative terms, the oscillating sliding sleeve system can be described through
three non-dimensional quantities

Ω = ω

√
ℓ0
g

, p =
mgℓ20
B

, U =
ug

ℓ0
, (183)

where ℓ0 is chosen to be the external length at the initial time ℓ0 = ℓ(0).
Intuitively, it is expected that the rod is injected if the excitation fre-

quency or amplitude approaches zero or if the value of the mass m is very
large. Oppositely, the rod is not injected in the case that the frequency or
the amplitude is large or the mass m is small. This limit behaviour is
summarized in Table 2.

Table 2: Limit behaviour of the oscillating sleeve system.

final injection no final injection
Ω → 0 Ω → ∞
U → 0 U → ∞
p → ∞ p → 0
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4.4.1 Dynamics from initial rest conditions

Among the possible initial conditions for the lumped mass, initial rest
conditions are considered under two scenarios, absolute rest and relative
rest. In both scenarios, the mass is initially held at a fixed height, the
motion of the sliding sleeve starts at t = 0, and the mass is subsequently
released at a time tr.

The initial absolute rest condition is represented by

X(L, tr) = Ẋ(L, tr) = Y(L, tr) = Ẏ(L, tr) = 0, (184)

which are equivalent to the following initial relative coordinate values

x(L, tr) = −ug cos(ωtr), ẋ(L, tr) = ugω sin(ωtr),

y(L, tr) = 0, ẏ(L, tr) = 0,
(185)

The final state of the rod evaluated from the numerical integration of Eq.
(181) is reported in Fig. 20 (left) for dissipation parameters ζ = 0.025 and
µ = 0.15, and for different values of tr (given as a fraction of the period
on the sliding-sleeve motion T = 1/fex), showing no clear division in
separated regions between the different behaviours. The system results
sensitive to the timing (phase shifting) between the mass release and the
sinusoidal motion of the sleeve.

Differently, the assumption of an initial relative rest condition, defined
by

x(L, tr) = ẋ(L, tr) = y(L, tr) = ẏ(L, tr) = 0, (186)

leads to a more clear distinction between the different behaviours, Fig.
20 (right). In this case, although the final state is still dependent on the
timing tr (phase shifting) of the mass release, the uncertainty region is
well defined. It should be noted that there exist small islands of one be-
haviour within the main region of the other, however their size is strongly
affected by the dissipation parameters and are expected to disappear for
large enough values of dissipation.

With reference to initial relative rest conditions, two transition surfaces
are found within the 3D space defined by the dimensionless parameters
Ω, p and U as those separating datasets into regions related to one among
the three possible final states: final injection, final ejection, and an unex-
pected quasi-periodic motion. The transition surfaces are shown in Fig.
21 for a null release time t0 = 0 and dissipation parameters ζ = 0.025
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Figure 20: Comparison between the effects of the absolute (left) and relative (right) rest
initial conditions for dissipation parameters ζ = 0.025 and µ = 0.15. The
injection or ejection of the rod is shown as a function of the release time tr (as
a fraction of the excitation period T ) and the initial external length of the rod
ℓ0. The behaviour of the system subject to the absolute rest initial conditions
shows no clear pattern, while in the relative rest case a sinusoidal pattern
emerges.

and µ = 0. The red surface divides the region of complete injection from
that of quasi-periodic motion, while the blue surface divides the region
of quasi-periodic motion from that of complete ejection. It is also inter-
esting to note that some portion of the two transition surfaces is coin-
cident, implying therefore that a transition between final injection and
final ejection occurs for a range of dimensionless parameters without any
display of quasi-periodic motion (confirming the injection/ejection transi-
tion shown in Fig. 20, right). Therefore, through the transverse oscillation
of the sliding sleeve, the system may gain a third attractor at finite length
ℓ = ℓm , 0, in addition to the two trivial attractors corresponding to ℓ = 0

and ℓ → ∞. To further substantiate the transition between these three
behaviours, the time-series of the external length ℓ(t) for a null release
time t0 = 0 are shown in Fig. 22 for varying values of p. The three dis-
tinct behaviours can be appreciated as the system transitions from final
ejection to a quasi-periodic motion to final injection as the value of p in-
creases. Also, the inclusion of dry friction on the theoretical model has a
mitigating effect on the ejection of the rod; see Fig. 22 (lower part).
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Figure 21: Transition surfaces dividing the three behaviour regions. Red surface defines
the change from injection to quasi-periodic motion. Blue surface defines the
change from quasi-periodic motion to ejection. Where the two surfaces coin-
cide, there is a transition from injection to ejection without an intermediate
quasi-periodic state (as shown in Fig. 20, right). The surfaces are representa-
tive for a null release time tr = 0 and dissipation parameters ζ = 0.025 and
µ = 0.
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Figure 22: Time evolution of ℓ(t) with varying p and fixed dimensionless amplitude
U = 0.04 and frequency Ω = 5, for a null release time tr = 0. Top, the system
with only viscous damping ζ = 0.025 and no dry friction µ = 0. Bottom,
system with viscous damping ζ = 0.025 and dry friction µ = 0.15.
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4.4.2 The search for an analytical periodic solution through asymptotic expan-
sion

In order to obtain an analytical prediction for the mass motion, the differ-
ential system (175) governing the end’s relative position xL, yL is approxi-
mated through its expansion by taking β(t) ≈ π/2 and small end rotation
θL(t) ≪ 1,

mẍL(t) +
3B

ℓ3(t)
xL(t) = mω2 ug cos(ωt),

m (g+ ÿL(t)) =
M2(t)

2B
,

(187)

where, under small rotation, the following approximations hold

M(t) = 2BθL(t)/ℓ(t),

xL(t) =
2

3
ℓ(t) θL(t),

yL(t) = ℓ(t)

[
1−

4

15
θ2L(t)

]
.

(188)

Introducing ℓm as the reference external rod’s length during the peri-
odic motion, a dimensionless time τm can be defined as

τm = t

√
g

ℓm
, (189)

as well as other dimensionless quantities as

τm = t

√
g

ℓm
, Ωm = ω

√
ℓm

g
, pm =

mgℓ2m
B

, Um =
ug

ℓm
,

λ(τm) =
ℓ(t)

ℓm
, ξ(τm) =

xL(t)

ℓm
, η(τm) =

yL(t)

ℓm
,

(190)

and the approximated equations of motion (187) can be expressed in a
non-dimensional form as

∗∗
ξ(τm) +

3

pmλ3(τm)
ξ(τm) = Ω2

mUm cos(Ωmτm),

1+
∗∗
η(τm) −

2θ2L(τm)

pmλ2(τm)
= 0,

(191)

where the symbol ∗· stands for the derivative of the relevant quantity with
respect to dimensionless time τm.
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By assuming the unknown variations in time of the rotation θ(t) and
in length λ(t) as the following periodic functions of the small amplitudes
εθ and εℓ as

θL(τm) = εθ cos(Ωmτm), λ(τm) = 1− εℓ cos(2Ωmτm), (192)

the dimensionless approximated equations of motion (191) truncated at
the smallest orders reduce to

2
[
6εθ − pmΩ2

m(3Um + 2εθ)
]

cos(Ωmτm)

−3εℓ
[
2εθ − pmΩ2

m(3Um + 8εθ)
]

cos(3Ωmτm) ≈ 0,

15

[
pm − ε2θ +

pmε2ℓ (1− 8Ω2
m)

2

]
−
[
15ε2θ + 30pmεℓ − pmΩ2

m

(
8ε2θ + 60εℓ

)]
cos(2Ωmτm) ≈ 0.

(193)

The annihilation of the time-independent term in Eqn. (193)2 leads to

pm =
ε2θ

1− 4ε2ℓΩ
2
m

, (194)

or, equivalently

εθ =
√
pm

√
1− 4ε2ℓΩ

2
m or εθ = −

√
pm

√
1− 4ε2ℓΩ

2
m, (195)

disclosing the presence of twin solutions, one in phase (εθUm > 0) and
another in counter-phase (εθUm < 0) with the ground motion.

Assuming that εℓΩm ≪ 1, the previous equations reduce to

pm = ε2θ → εθ =
√
pm or εθ = −

√
pm, (196)

which in turn simplifies Eqns. (193) as

εθ
[
6− εθΩ

2
m(3Um + 2εθ)

]
cos(Ωmτm)

− 3εθεℓ
[
2− εθΩ

2
m(3Um + 8εθ)

]
cos(3Ωmτm) ≈ 0,

− ε2θ
[
15+ 30εℓ −Ω2

m

(
8ε2θ + 60εℓ

)]
cos(2Ωmτm) ≈ 0,

(197)

which show that the approximated equations of motion are satisfied at
the smallest order when

6− εθΩ
2
m(3Um + 2εθ) ≈ 0,

15−Ω2
m

(
8ε2θ + 60εℓ

)
≈ 0.

(198)

Equations (198) are now solved by considering three main cases defin-
ing the asymptotic order between the different involved parameters.
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Case |εℓ| ≫ |εθ|
2

In this case the dimensionless amplitude and frequency have the follow-
ing asymptotic order

|Um| ≫ |εθ| , |Ωm| ≈ 1√
|εℓ|

, (199)

implying the following relations for pm → 0 and finite values of
√
pmΩ2

m

Um = ± 2
√
pmΩ2

m

, ϵℓ =
1

4
√
pmΩ2

m

√
pm, (200)

which can be rewritten in the dimensional terms as

lm = ± 2

ω2ug

√
B

m
, ϵℓ = ±

ug

8

√
mg

B
, (201)

revealing a gravity-insensitive average length ℓm.

Case |εℓ| ≪ |εθ|
2

In this case εℓ remains undefined and the dimensionless amplitude and
frequency have the following asymptotic order

|Um| ≈ |εθ| , |Ωm| ≈ 1

|εθ|
, (202)

implying the solutions valid for pm → 0 and finite values of pmΩ2
m

Um = ±
2
√
pm

5
, Ωm =

1

2

√
15

2pm
, (203)

and equivalent to

ℓm =
1

2

3

√
15B

mω2
, ug =

1

2

3

√
9

5ω4

6

√
B

m

√
g. (204)

Case |εℓ| ≈ |εθ|
2

In this case the dimensionless amplitude and frequency have the follow-
ing asymptotic order

|Um| ≈ |εθ| , |Ωm| ≈ 1

|εθ|
, (205)
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implying the solutions valid for pm → 0 and finite values of pmΩ2
m

Um = ±
2
(
3− pmΩ2

m

)
3 pmΩ2

m

√
pm, εℓ =

15− 8 pmΩ2
m

60pmΩ2
m

pm. (206)

Substituting the non-dimensional quantities with their dimensional coun-
terparts in Eqn. (206)1, the following equation is obtained

2g

(
ℓ3mmω2

B
− 3

)
± 3ℓmugω

2

√
mg

B
= 0. (207)

By setting

σ =
ug

3
√
g

3

√
3

2

6

√
mω8

B
=

1

3

3

√
3

2
Um

6
√
pm

3

√
Ω4

m,

ρ = ℓm
3

√
2

3

3

√
mω2

B
=

3

√
2

3
3

√
pmΩ2

m > 0,

(208)

both without any restriction in their magnitude within the present analy-
sis, Eq. (207) can be rewritten as the two following cubic equations

ρ3 − 2± 3 ρσ = 0, (209)

each one having only real and positive solution given by

ρ± =

3

√(
1+

√
1± σ3

)2
∓ σ

3
√
1+

√
1± σ3

, (210)

reported as dimensionless average length ℓ+m and ℓ−m curves as func-
tions of the dimensionless ground displacement amplitude ug in Fig.
23. In the case when σ = ug = 0 the two average lengths become co-
incident, ℓ+m = ℓ−m = ℓm, and corresponding to that of the clamped
rod when the excitation frequency coincides with its natural frequency,
ω =

√
3B/(mℓ3m). For the case that Usl(t) and θL(t) are in phase, an

inversion of the phase of ℓ(t) happens at the value ρ = 3
√

5/4. The twin
solutions ℓ±(t) = ℓ±m[1− ϵ±ℓ cos(2ωt)] and θ±L (t) = ϵ±θ cos(ωt) are shown
in Fig. 24 for the parameters m = 0.2 kg, B = 1.5 Nm2, ω = 10π rad/sec,
and ug = 0.005 m.

4.5 from periodic to quasi-periodic response

The numerical integration of the (non-approximated) equations of motion
(175) reveals that, when it has no final injection or ejection, the system may
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Figure 23: Dimensionless average lengths ℓm versus dimensionless ground displace-
ment amplitude ug (solid lines). The two average lengths convergence to
the same value in the limit of vanishing ground motion amplitude ug,
ℓm = 3

√
3B/(mω2).

display a periodic or quasi-periodic response. This is shown in Figs. 25

and 26 where the transition from a periodic to a quasi-periodic behaviour
occurs at increasing the sliding sleeve frequency fex = ω/(2π) in the pres-
ence of a small viscous dissipation (ζ = 0.005, µ = 0). In particular, the
transition from periodic (fex = 2Hz) to quasi-periodic (fex = {3.2, 3.5}Hz)
response can be appreciated through the phase portraits projections and
the Poincaré sections (upper part) and the Fourier Transform (lower part)
of the external length ℓ(t) (Fig. 25) and the rotation θL(t) (Fig. 26) in
time. The results are related to time far after the transient effects are
dissipated and the Poincaré sections are shown for two shifted timings,
t = 2kπ/ω and t = (2k + 1)π/ω for the rotation and t = 2kπ/ω and
t = (2k + 0.5)π/ω for the external length, with k ∈ N within the rele-
vant time interval. Due to nonlinearities inherent to the system vibration,
the periodic solution (192) becomes no longer representative of the sys-
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Figure 24: Time-series of the twin periodic solutions ℓ±(t) = ℓ±m[1− ϵ±ℓ cos(2ωt)] and
θ±(t) = ϵ±θ cos(ωt) for parameters m = 0.2 kg, B = 1.5 Nm2, ω = 10π

rad/sec, and ug = 0.005 m. Usl(t) and θ(t) can be in phase or differ by a
phase of π, giving as a result a different value for ℓm but the same amplitude
εℓ.

tem response at increasing constraint frequency, showing a quasi-periodic
motion described by multiple frequencies that are not rational multiples
of the excitation frequency.

4.6 experimental validation

The present theoretical findings are validated through the experimental
setup shown in Fig. 27, manufactured and tested at the Instabilities Lab-
oratory of the University of Trento. The sliding sleeve is realized through
two parallel arrays of rollers kept at a fixed distance by means of two
acrylic panels. More specifically, the distance between the roller arrays is
set to have the constrained part of the rod straight but still freely sliding.
The sliding sleeve constraint device is attached to an ElectroForce Linear
motor 3300 Series II by Bose and screwed on a rail system that ensures the
motion along one direction only. Above the sliding sleeve constraint, an
adjustable height platform mounting and an electromagnet are installed
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Figure 25: Projections of the phase portraits and the Poincare sections for two half-period
shifted phases (upper part) and frequency spectrum of the response (lower
part) for a system with m = 130gr, ug = 5mm, and for dissipation parameters
ζ = 0.005, µ = 0. Three cases are shown for ℓ(t): (Left) Periodic motion for
excitation frequency fex = 2Hz, Quasi-periodic motion for (Centre) fex =

3.2Hz and (Right) fex = 3.5Hz.

in order to release the rod from a relative rest condition and specific ex-
ternal length. To this purpose, the mass at the tip of the rod is completed
by a circular steel plate fitting the socket embedding the electromagnet.

The rod used is made from a carbon-fiber sheet and its properties are
summarized in Table 3, and two values of the mass m are selected, m =

{130, 303}gr. The range of excitation frequency fex and the excitation am-
plitude ug that are allowed by the experimental setup are fex ∈ [0, 20]Hz
and ug ∈ [0, 10]mm. It should be noted that the mass of the rod (γL) is
a significant fraction of the mass m considered in the experiments and as
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Figure 26: As for Fig. 25 but for θL(t).

a result in the analytical results reported along the experimental data an
equivalent mass is used meq = m+ (γL).

Table 3: Properties of the carbon-fiber rod used in the experiments.

Property Value

Carbon-fiber rod

Thickness 2.04 mm
Width 25.33 mm
Length L 800 mm
Bending stiffness B 1.4363 Nm2

Mass (γL) 67 gr
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Figure 27: Experimental setup of the oscillating sliding-sleeve system realized in the
Instabilities Laboratory of the University of Trento. Top part: general arrange-
ment of the experimental setup. Lower part: details of the sliding sleeve exit
(lower left) and the mass attachment at the tip of the rod (lower right).

The rod’s dynamics is recorded during the experiments with a SONY
PXW-FS5 and a SONY PXW-FS7 cameras, and the related videos are post-
processed using a Matlab script in order to extract the time-histories of
the mass relative coordinates xL(t) and yL(t) and the external length ℓ(t).
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Although an accurate modelling of the dissipative forces is fundamen-
tal for the quantitative prediction of the motion, this task is made difficult
by the high level of complexity and uncertainties related to the several dis-
sipation sources associated with the sliding sleeve constraint. To this pur-
pose, dissipative phenomena connected to the sliding sleeve have been
limited as much as possible through the application of oil lubricant to the
rod, in addition to using rollers with ball bearings.

Two types of experiments have been performed,

• rod’s release from relative rest conditions;

• monotonic variation in the amplitude or frequency of the sliding sleeve
oscillation during the quasi-periodic motion of the rod.

In the following, these types of experiments and the related results are
separately described.

4.6.1 Rod’s release from relative rest conditions

Experiments of releasing the rod from a relative rest condition during
the harmonic oscillation of the sliding sleeve are performed to reveal the
corresponding final state of the rod (quasi-periodic motion, final injection
or ejection) with varying the release time. The strong influence of the
release time on the final state is shown in Figs. 28 and 29 where a mass
m = 303 gr is attached to a rod of initial length ℓ0 = 45 cm constrained by
an oscillating sliding sleeve with amplitude ug = 10 and frequency fex =

10 Hz is released at tr = 0.07 T and tr = 0.71 T , where T is the period
of the oscillation of the sliding-sleeve. In particular, the time-histories of
the experimentally measured absolute mass coordinates XL and YL are
reported in Fig. 28 while the experimental mass trajectories, together with
some deformed configuration, are reported in Fig. 29, showing the final
quasi-periodic motion and the final injection for the rod’s release at tr =

0.07 T and tr = 0.71 T , respectively.

4.6.2 Monotonic variation in the amplitude or frequency of the sliding sleeve
oscillation

After the stabilization of the rod’s dynamics on a quasi-periodic motion,
a monotonic variation in the amplitude or frequency of the harmonic
sliding sleeve oscillation is performed in order to evaluate how the quasi-
periodic motion changes and when it is lost, leading to injection of the rod.
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Figure 28: Time series of the experimentally measured trajectory of the mass m for fex =

10 Hz, ug = 10 mm, ℓ0 = 45 cm, m = 303 gr, for two different release timings,
tr = 0.07 T and tr = 0.71 T . (Top) Description of the release timing; the sliding
sleeve motion is shown with a dashed line while the X component of the
lumped mass trajectory for the two experiments close to the release time is
shown along with the release time measurement. (Middle) The X components
of the trajectories of the two experiments are shown, offset by the measured
release time so that the release is matched. (Bottom) Same as middle part but
for the Y components.

As both the excitation frequency fex and the amplitude ug have an effect
on the behaviour of the rod, two types of experiments were performed to
independently assess the influence of the frequency and the amplitude of
the input excitation, one for varying ug while fex is constant, and one for
varying fex while ug is constant.

The performed experiments show that the behaviour of the system is
significantly affected by the lubrication of the sliding sleeve. However, per-
forming long experiment runs to assess the effect on the quasi-periodic
motion of a monotonic variation in the frequency fex or in the amplitude
ug, the quality of the lubrication degrades and therefore the experimen-
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Figure 29: Composite image of the experimental setup during the experiments with rela-
tive rest initial conditions for fex = 10 Hz, ug = 10 mm, ℓ0 = 45 cm, m = 303

gr, for two different release timings. (Left) tr = 0.07 T , (Right) tr = 0.71 T ,
where T is the period of the sliding-sleeve motion. The experimentally mea-
sured trajectory of the mass m is illustrated with green.

tal result is affected by this additional time-varying dissipation. As a re-
sult, the theoretical predictions can be validated through the experiments
mainly qualitatively, because the loss of quasi-periodic motion can not
exactly coincide.

In the amplitude-varying experiments, a value of the sliding oscillation
frequency fex is fixed while the amplitude ug is initially selected to be
high enough to display a quasi-periodic motion. Next, the value of ug

is decreased at a rate of 0.1 mm every 10 seconds, until the rod is in-
jected at a critical value ug,cr. The value of ug right before the injection is
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recorded as the critical value ug,cr and the process is repeated for a range
of frequencies. The critical amplitude is shown in Fig. 30, as a function
of the excitation frequency ug,cr(fex), for the two different masses that
were used in the experimental campaign, m = {130, 303}gr. At increasing
values of the excitation frequency, the value of ug,cr is initially decreas-
ing and then it increases until a local maximum, before a plateau region
is reached. It should be noted that for a fixed value of ug the critical
curves can be interpreted also as defining the regions of frequencies fex
for which the quasi-periodic motion cannot be sustained.

Figure 30: Experimental measure of the critical amplitude ug,cr for the rod’s final injec-
tion as a function of the frequency fex. If the amplitude ug becomes smaller
than the critical value the rod is eventually injected. The red curve is for
m=130gr and the blue curve for m=303gr.

In the frequency-varying experiments, a value of the amplitude ug is
fixed while the initial value for fex is selected in the range of values for
which the quasi-periodic motion is predicted from Fig. 30. Then fex is
either increased of decreased at a rate of 0.05 Hz every 15 seconds, in
order to cover the entire range of frequencies allowed by the experimen-
tal setup. In more detail, data for fixed values of ug = {3.5, 5}mm and
m = {130, 303}gr were obtained for many starting values of fex. First, the
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value for the starting frequency was selected to be fex = 5 Hz and two
experiments were performed for each combination of ug and m, one for
increasing frequencies and one for decreasing. Then, the largest value of
fex allowed by the experimental setup is selected for the starting value,
and one experiment is performed for decreasing frequencies for every
combination of ug and m. In total three experiments for every ug and
m were performed and the results are shown in Fig. 31. The experimen-
tal results are shown in terms of the period-averaged external length ℓa,
where the averaging period is the period of the sliding sleeve motion
(1/fex), and depicted as a cloud of gray dots. Further, the analytically ob-
tained average external lengths ℓ+m and ℓ−m respectively for the in-phase
and out-of-phase motions, as evaluated in the case |εℓ| ≈ |εθ|

2, Eq. (210),
and the length of the resonant clamped-free rod ℓ0m are shown. The ana-
lytically obtained lengths ℓm for the other ordering law (|εℓ| ≫ |εθ|

2 and
|εℓ| ≪ |εθ|

2) are omitted as they are found not representative of the exper-
imentally observed ordering between the rotation and length variation.

A major result derived during the experimental campaign is the con-
firmation of the prediction for the relation between the external length ℓ

and the frequency of the input excitation; see Fig. 31. In a rough sense,
the external length of the rod ℓ is shown to self-adjust (in an average
sense) approximately within the range [ℓ+m, ℓ−m], so that the rod mass sys-
tem is close to its resonant state and a quasi-periodic motion is realized.
However, the quasi-periodic motion can encounter some instability con-
dition for which the rod trajectory loses the quasi-periodicity character
and just converts into a final injection motion. This behaviour change is
strongly dependent on the dissipation values and for this reason the criti-
cal dataset cannot be effectively evaluated. Finally, the experimental data
are reported in a logarithmic scale, in order to highlight the exponential
nature of the external length ℓm as a function of the excitation frequency
fex.
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Figure 31: Period-average exterior length of the rod for m = {130, 303}gr and moving
constraint amplitude ug = {3.5, 5}mm. The gray points correspond to the
measurements from the experiments, the blue and red solid line corresponds
to the theoretical prediction of the in-phase and out-of-phase solutions respec-
tively, and the dashed purple line represents the length of the clamped-free
rod in its resonant state. Loss of stability can be observed for a range of fre-
quencies, resulting to complete injection of the rod.
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Figure 32: Same as Fig. 31 but in a log-log scale, revealing the exponential trend of the
external length ℓm as a function of the input frequency fex.
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5C O N C L U S I O N S

In the present manuscript two structures with special constraints have
been studied.

In Chapter 3, the extensible elastica has been analytically solved with
an end constrained to move along a curved frictionless profile (with or
without a discontinuous curvature value in correspondence of the straight
configuration). The solution for the full non-linear structural response has
revealed the following features.

• The values of profile curvature at the origin f ′′(0) and of axial/flex-
ural stiffness ratio q have a significant effect on the existence, num-
ber, and value of the bifurcation loads, which may be compressive
or tensile;

• When bifurcation in compression occurs, the system may display a
single or a double restabilization of the straight configuration (oc-
curring at large compression, depending on f ′′(0) and q).

An optimization algorithm has been proposed for the design of the profile
shape, to obtain a prescribed post-critical response. The optimization algo-
rithm was positively tested to realize a large variety of load-displacement
curves (bilinear, sinusoidal, triangular), useful for applications as force-
limiter or other passive mechanisms.

In Chapter 4, the basic structural system of variable-length beam sup-
porting a lumped mass and constrained by an oscillating sliding-sleeve
has been studied and an analytical prediction of the dynamic behaviour
has been obtained. A position-based model has been formulated and de-
veloped to define a finite element framework. An experimental campaign
validated the main theoretical predictions, which can be summarized as
follows

• Twin asymptotic periodic motions are found around two different
values of the average external rod’s length ℓm.

• The system displays self-tuning properties, meaning that the sys-
tem attempts to self-adjust its external length ℓ to realize a quasi-
periodic motion around the corresponding resonant conditions of
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the analogous fixed length rod. The self-tuning occurs successfully
only within a certain range of frequency and amplitude parameters.

The present results pave the way to a novel class of resonant metamateri-
als based on configurational constraints.

future work

The two mechanisms can be used as part of more complex systems, such
as building blocks for metamaterials with tunable properties. For exam-
ple, the sliding hinge system can be used to create mechanical metamate-
rials with designed stress-strain properties. Such concepts are of great im-
portance to the seismic engineering industry, as well as to high frequency
vibration isolation technologies. Moreover, the ability of the sliding-sleeve
system to work at resonant conditions for a broad range of frequencies
make it important to applications that require high values of damping
and energy dissipation. As a result, further work should be directed to-
wards the exploration of possibilities to incorporate the concepts of the
sliding-hinge and the sliding-sleeve mechanisms in the framework of me-
chanical metamaterials for applications in vibration isolation and damp-
ing.

In order to facilitate the manufacturing of such novel materials, ad-
ditive manufacturing techniques could be employed. Multimaterial 3D
printing technologies are suitable for large scale manufacturing of mi-
croarchitected materials and moving part can be embedded in a lattice
without the need of complex assembling processes. More specifically, the
adaptation of the sliding-hinge and sliding-sleeve mechanisms in the con-
text of 3D-printed metamaterials is an important step towards practical
applications. The reliability and reproducibility of the designed behaviour
should be guaranteed when the mechanisms are scaled down and the
nonlinear behaviour due to the materials used should be studied.

Moreover, apart from the adaptation of the designs to manufacturing
techniques, the mechanisms could be further enhanced. In detail, the
sliding-hinge system can be adapted to more complex behaviour, such
as an initial zero-stiffness that increases incrementally as the displace-
ment of the clamp is increased, or the implementation of multistability
at null load by altering the shape of the curved profile to accommodate
multiple points with zero deflection of the rod for non-zero values of the
imposed displacement. Concerning the sliding-sleeve system, the possi-
bility to have a self-oscillating system without the need for the additional
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mass at the tip of the rod should be explored. Such a system would rely
on the distributed mass of the rod in order to realize the self-sustaining
motion.

Additional improvements can be considered for the methods used to
study the two structures. For example, the numerical framework dis-
cussed in the previous chapters should be refined and the limitations
can be improved. As a result, the numerical framework will be a robust
tool that can assist the design process of technologies evolving from the
proposed research.

Concerning the scientific findings during the study of the sliding-hinge
system, it was shown that there exist a region in the parameter space of
the system in which a double restabilization is observed in the theoreti-
cal model. However, in order to highlight the significance of the finding,
experimental evidence is required. Therefore, further experimental study
of the double restabilization effect is deemed important. In order to ob-
tain a physical model with the properties required to experimentally test
this theory, materials with very high compressibility are required and for
this reason ideas from the field of microarchitected materials should be
adopted.
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AE X A M P L E S O F O N E - D I M E N S I O N A L S T R U C T U R E S
D I S P L AY I N G S M A L L VA L U E S O F S T I F F N E S S R AT I O q

To further substantiate the examples introduced in Sect. 3.1.1, a stiffness
ratio evaluation is provided. The evaluation is based on the shear stiffness
Ks, axial stiffness Ka (corresponding to K in the main text), and bending
stiffness B of the Reissner beam equivalent to a helical spring [33]

K
spring
s =

8EIrL

πnaD3
, K

spring
a =

4GITL

πnaD3
, (211)

Bspring =
2EIL

πnaD
(
1+ EI

GIT

) , (212)

where E is the Young’s modulus, G the shear modulus, I is the moment
of inertia of the wire cross-section with respect to the radius of the spring
coil passing through the centre of the cross-section, Ir is the moment of
inertia of the wire cross-section with respect to the axis perpendicular to
the radius passing through the centre of the cross-section, IT is the torsion
constant, L is the length of the spring, D is the coil diameter, and na is
the number of (active) coils.

The dimensionless axial stiffness parameter qa (corresponding to q in
our manuscript) and shear stiffness parameter qs are introduced as

qa =
KaL

2

π2B
, qs =

KsL
2

π2B
, (213)

which reduce for a helical spring to

q
spring
a =

2

π2

(
1+

GIT
EI

)(
L

D

)2

, q
spring
s =

2EIr

GIT
q

spring
a . (214)

Interestingly, the ratio between the two stiffness ratios is given by

q
spring
a

q
spring
s

=
GIT
2EIr

. (215)

We are now in a position to quantify the value of q for the two cases
below.
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values of stiffness ratio q

Figure 33: A rectangular wire helical spring realizing an equivalent one-dimensional rod
with very small ratios between axial and bending/shear stiffnesses.

a.0.1 Rectangular wire helical springs

For a rectangular wire of edges a and b, as illustrated in Fig. 33, the
moments of inertia are given by

I =
ab3

12
, Ir =

a3b

12
, (216)

and, in the considered case a > b the torsion constant by

IT ≈

[
1− 0.63

b

a
+ 0.052

(
b

a

)5
]
ab3

3
. (217)

Considering a steel spring (E = 2.6G, with G being the shear modu-
lus) and characterized by L = 5D (similarly to examples reported in [23,
24, 59]), the stiffness ratios q

spring
a and q

spring
s are shown in Fig. 34 as in-

creasing functions of the aspect ratio a/b of the rectangular cross section.

Finally, considering for example an aspect ratio a/b = 8 and setting the
height b of the wire such that the ratio between b and the pitch of the coil
is 1/20, the corresponding spring (shown in Fig. 33) can be compressed up
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values of stiffness ratio q

Figure 34: Semi-logarithmic plot of the stiffness ratios q
spring
a and q

spring
s for a rectangu-

lar wire helical spring, as functions of the aspect ratio a/b of the rectangular
wire cross-section with L/D = 5 (reported in Fig. 33 for a/b = 8).

to 95% of its undeformed length and is characterized by the two following
stiffness ratios

q
spring
a = 1.225 · 10, q

spring
s = 1.103 · 103, (218)

providing values for an equivalent rod with negligible shear effects and
that could be modelled as the extensible elastica.

a.0.2 Composite rod-spring element

A helical spring is considered to contain a coaxial elastic rod, as shown
in Fig. 35. While one end of the spring is fixed to the corresponding
end of the rod, the remaining part of the spring can slide without friction
along the rod.1 Assuming that the spring and the rod react in parallel, the
shear and bending stiffnesses of the equivalent one-dimensional element,

1 Although frictionless, the moving boundary problem realized through the relative motion
of the spring with respect to the rod may realize configurational forces, whenever a non-
null rod’s curvature is displayed. Nevertheless, due to their higher-order character, such
configurational forces do not affect the buckling analysis and therefore can be neglected
[9]. This implies that the double restabilization feature is not compromised, so that only
the post-buckling response changes.
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Figure 35: A one-dimensional element working as an axially-deformable elastica, char-
acterized by high shear stiffness ratio qs but low axial stiffness ratio qa, ob-
tained as an elastic rod inserted within a helical spring. The spring can slide
along the rod so that the latter does not contribute to the axial stiffness of the
structure.

working as an axially-deformable elastica, are simply the sum of that of
the spring and of the rod, namely

Ks = Krod
s +K

spring
s , B = Brod +Bspring, (219)

while, considering that loads are applied on the spring, the equivalent
axial stiffness coincides with that of the spring because of its frictionless
sliding along the rod,

Ka = K
spring
a . (220)

It follows that the axial stiffness can be tuned independently of the bend-
ing and shear stiffnesses, to attain (almost) any pair of desired stiffness
ratios qa and qs.

As an example for a round wire spring, the axial, shear and bending
stiffnesses are given by

K
spring
a =

Gd4L

8naD3
, K

spring
s =

Ed4L

8naD3
,

Bspring =
Ed4L

32

(
1+

E

2G

)
naD

,
(221)

and for a circular rod of diameter Drod as

Krod
s =

8πG
(
Drod

)2
37

, Brod =
πE
(
Drod

)4
64

, (222)

where for simplicity the rod and the spring have been considered as made
up of the same material (differently, the selection of a material for the rod
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stiffer than that constituting the spring, Erod > Espring further facilitates
satisfaction of the inequality qa ≪ qs with qa ≈ 10). The stiffness ratios
of the equivalent one-dimensional element become

qa =
4G

π2naEβ

(
d

D

)4(
L

D

)3

,

qs =
1

π2β

(
L

D

)2
[

4

na

(
d

D

)4(
L

D

)
+

256πG

37E

(
Drod

D

)2
]

,
(223)

where

β =
1(

1+
E

2G

)
na

(
d

D

)4(
L

D

)
+

π

2

(
Drod

D

)4

. (224)

The stiffness ratios described by Eq. (223) are shown in Fig. 36 as mono-
tonic increasing functions of the ratio L/D, by assuming d/D = 0.1,
Drod/D = 0.8 and the pitch of the coil has been selected in order to
have 95% maximum compression with respect to the undeformed length.
Finally, assuming for example L/D = 50, the stiffness ratios are

qa = 1.211 · 10−1, qs = 2.107 · 103, (225)

corresponding to values of an equivalent rod with negligible shear effects
and that could be properly modelled through the extensible elastica con-
sidered in the present paper.
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Figure 36: Semi-logarithmic plot of the stiffness ratios qa and qs for a composite rod-
spring element (Fig. 35) as functions of L/D.
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BA S Y M P T O T I C B E H AV I O U R O F B I F U R C AT I O N L O A D
F O R VA N I S H I N G P R O F I L E C U RVAT U R E AT T H E
O R I G I N F O R T H E S L I D I N G - H I N G E S Y S T E M

Asymptotic expressions for the bifurcation load in the limit of vanishing
profile curvature at the origin can be obtained by solving the first-order
expansion in f ′′(0) → 0± of Eq. (95). It follows that the critical load under
tension has the following singular asymptote1

lim
f ′′(0)→0−

p
(+)
cr = −

1

f ′′(0)
− 1−

sgn(f ′′(0))
π
√
q

. (226)

Concerning the bifurcation loads under compression, p ∈ (−1, 0), the
asymptotic behaviour determines the presence of two critical loads (cor-
responding to destabilization and restabilization of the trivial configura-
tion) for a number N of critical modes depending on q. The asymptotic
expression for the destabilization p

(−)[n]
de and restabilization p

(−)[n]
re loads,

pertaining to the n-th mode, results to be a finite value independent of
the sign of the profile curvature

lim
f ′′(0)→0+

{
p
(−)[n]
de ,p(−)[n]

re

}
= lim

f ′′(0)→0−

{
p
(−)[n]
de ,p(−)[n]

re

}
=

1

2

(
−1±

√
−1− 4n− 4n2 + q

√
q

)
,

(227)

where the number N of existing critical modes is given by

N = max
{⌊ √

q− 1

2

⌋
, 0
}

, (228)

with the symbol ⌊·⌋ standing for the integer part of the relevant argument.
It is interesting to note that in the limit of f ′′(0) → 0± the structure

reduces to an extensible rod connected to a sliding clamp on its left end
and with the right end constrained only in the horizontal direction. In
this case, the tensile bifurcation load approaches infinity (p(+)

cr → ∞), so
that tensile buckling is excluded.

1 The asymptotic expression (226) also holds for p within the (meaningless) range
(−∞,−1]∪ [0,∞), as it can be appreciated from Fig. 37.
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asymptotic behaviour of bifurcation load for vanishing

profile curvature at the origin for the sliding-hinge system

Finally, the compressive bifurcation loads in the inextensible limit (q →∞) match those pertaining to a cantilever Euler beam (with clamped-free
boundary conditions),

lim
q→∞

{
P
(−)[n]
de

}
= −

(2n+ 1)2π2B

4L2
, (229)

while restabilization does not occur because the corresponding load as-
sumes a negative infinite value

lim
q→∞

{
P
(−)[n]
re

}
= −∞. (230)

As an example, the bifurcation conditions for the dimensionless load
pq with varying the dimensionless radius of profile curvature 1/f ′′(0)

are reported in Fig. 37 for q = 10 (left) and for q = 400 (right). It can
be appreciated that the asymptotic behaviour (drawn as dashed lines) for
1/f ′′(0) → ±∞ is symmetric in the range p ∈ [−1, 0], as predicted by Eq.
(227), and that only one asymptote exists for 1/f ′′(0) → −∞ for positive
p, as predicted by Eq. (226).

Figure 37: Bifurcation dimensionless load pq = PL2/(π2B) as a function of the dimen-
sionless radius of profile curvature at the origin, 1/f ′′(0), for fixed values of
q, (q = 10 on the left and q = 400 on the right). The asymptotic behaviour,
Eqs. (226) and (227), is represented by dashed lines.
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CC O M PA R I S O N O F N U M E R I C A L S O L U T I O N
S T R AT E G I E S O F T H E D I S C R E T I Z E D M O D E L O F T H E
E L A S T I C A

In order to compare the different choices that can be made regarding
the solution of the finite element model of the elastica, a rod attached to
a rotating clamp is assumed. The clamp is rotating in a predetermined
manner and the system is examined in the quasistatic and dynamic cases.
To highlight the fidelity of the present method, the solution of the system
is also provided with the solution given in [5], where the solution is given
by means of the velocity field of the curve obtained by an implicit Euler
scheme, in contrast with the position field in the present method, and
the inextensibility is imposed by collocation at the nodes of the discrete
model, instead of the Galerkin method opted in the present work.

For the quasistatic case, the convergence of the spatial discretization
is compared between the collocation and the Galerkin methods for the
satisfaction of the inextensibility condition. The total length of the rod,
the moment at the clamp and the angle θL at the free end are the three
quantities that were selected for the test. The clamp was rotated at an an-
gle α = 3π

4 . The results plotted in Fig. 38 show that the Galerkin method
shows better convergence characteristics for an increasing number of ele-
ments for all three quantities of interest. It is noteworthy that the length
is preserved within machine precision even for a very small number of
elements; see Fig. 38. For θL, where the relative error of the Galerkin
approach is 2-3 orders of magnitude smaller than collocation.

In the dynamic case, the clamp is rotated slowly and the rod deforms
before it snaps. To highlight the fidelity of the present method, two other
numerical schemes were selected for comparison. The first method con-
sidered for the comparison is the method of [5], where the solution is the
velocity field of the curve obtained by an implicit Euler scheme, in con-
trast with the position field in the present method, and the inextensibility
is imposed by collocation at the nodes of the discrete model instead of the
Galerkin method opted in the present work. As the rod snaps, the dynam-
ics of the system as fast, meaning that the velocities involved are much
greater than the rotational velocity of the clamp. As a result, the rotating
clamp case is ideal for the comparison energy preservation properties of
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discretized model of the elastica

Figure 38: Convergence of the quasistatic rotating-clamp problem for the length L (left),
the moment at the clamp M (centre), and the rotation of the free end θL
(right).

the time-integration schemes; see Fig. 39. Further, the Galerkin method is
found to be superior to the collocation method for the preservation of the
length of the rod; see Fig. 40.
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Figure 39: Kinetic energy of the snapping rod as the clamp is rotated. The Implicit Euler
and the Newmark methods are compared.

Figure 40: Comparison of the length preservation capabilities of the Collocation and
Galerkin methods of the snapping rod as the clamp is rotated.
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[43] H. Poincaré. “Sur l’équilibre d’une masse fluide animée d’un mou-
vement de rotation.” In: Acta Mathematica 259.380 (1885), pp. 1871–
2509. doi: 10.1007/BF02402204.

[44] A. Rafsanjani and K. Bertoldi. “Buckling-induced kirigami.” In: Phys-
ical review letters 118.8 (2017), p. 084301.

[45] P. M. Reis. “A Perspective on the Revival of Structural (In)Stability
With Novel Opportunities for Function: From Buckliphobia to Buck-
liphilia.” In: Journal of Applied Mechanics 82.11 (Sept. 2015). issn:
0021-8936. doi: 10.1115/1.4031456.

[46] E. Reissner. “On one-dimensional finite-strain beam theory: the plane
problem.” In: Zeitschrift für angewandte Mathematik und Physik ZAMP
23.5 (1972), pp. 795–804.

[47] E. I. Rivin. Passive vibration isolation. Amer Society of Mechanical,
2003.

[48] W. Robertson, R. Wood, B. Cazzolato, and A. Zander. “Zero-stiffness
magnetic springs for active vibration isolation.” In: (2006).

[49] E. J. Sapountzakis, P. G. Syrimi, I. A. Pantazis, and I. A. Anto-
niadis. “KDamper concept in seismic isolation of bridges with flex-
ible piers.” In: Engineering Structures 153 (2017), pp. 525–539.

[50] S. Shan, S. H. Kang, J. R. Raney, P. Wang, L. Fang, F. Candido, J.
A. Lewis, and K. Bertoldi. “Multistable architected materials for
trapping elastic strain energy.” In: Advanced Materials 27.29 (2015),
pp. 4296–4301.

[51] J. Shim, C. Perdigou, E. R. Chen, K. Bertoldi, and P. M. Reis. “Buckling-
induced encapsulation of structured elastic shells under pressure.”
In: Proceedings of the National Academy of Sciences 109.16 (2012), pp. 5978–
5983.

[52] J. J. Stoker. Nonlinear elasticity. Gordon and Breach, 1968.

117

[ December 12, 2022 at 13:33 – classicthesis version 1.0 ]

https://doi.org/10.1007/BF02402204
https://doi.org/10.1115/1.4031456


bibliography

[53] S. H. Strogatz. Nonlinear Dynamics and Chaos: With Applications to
Physics, Biology, Chemistry, and Engineering. Studies in Nonlinearity.
Avalon Publishing, 2014. isbn: 9780813349114.

[54] R. Tao, L. Ji, Y. Li, Z. Wan, W. Hu, W. Wu, B. Liao, L. Ma, and
D. Fang. “4D printed origami metamaterials with tunable compres-
sion twist behavior and stress-strain curves.” In: Composites Part B:
Engineering 201 (2020), p. 108344. issn: 1359-8368. doi: 10.1016/j.
compositesb.2020.108344.

[55] R. Tao, L. Xi, W. Wu, Y. Li, B. Liao, L. Liu, J. Leng, and D. Fang.
“4D printed multi-stable metamaterials with mechanically tunable
performance.” In: Composite Structures 252 (2020), p. 112663.

[56] D. Terwagne, M. Brojan, and P. M. Reis. “Smart morphable surfaces
for aerodynamic drag control.” In: Advanced materials 26.38 (2014),
pp. 6608–6611.

[57] L. N. Virgin, S. T. Santillan, and R. H. Plaut. “Vibration isolation
using extreme geometric nonlinearity.” In: Journal of Sound and Vi-
bration 315.3 (2008), pp. 721–731.

[58] M. Vladimir and S. Vladimir. “Optical tables vibration isolation dur-
ing precision measurements.” In: Procedia Engineering 111 (2015),
pp. 561–568.

[59] A. M. Wahl. Mechanical Springs. McGraw-Hill, 1963.

[60] S. Waitukaitis, R. Menaut, B. G. Chen, and M. Van Hecke. “Origami
multistability: From single vertices to metasheets.” In: Physical re-
view letters 114.5 (2015), p. 055503.

[61] W. Wang. “Bifurcation.” In: Encyclopedia of Ecology. Ed. by S. E.
Jørgensen and B. D. Fath. Oxford: Academic Press, 2008, pp. 335–
345. isbn: 978-0-08-045405-4. doi: 10.1016/B978-008045405-4.00176-
2.

[62] J. Winterflood, D. G. Blair, and B. Slagmolen. “High performance
vibration isolation using springs in Euler column buckling mode.”
In: Physics Letters A 300.2 (2002), pp. 122–130. issn: 0375-9601. doi:
10.1016/S0375-9601(02)00258-X.

[63] S. Xu, Z. Yan, K.-I. Jang, W. Huang, H. Fu, J. Kim, Z. Wei, M. Flavin,
J. McCracken, R. Wang, et al. “Assembly of micro/nanomaterials
into complex, three-dimensional architectures by compressive buck-
ling.” In: Science 347.6218 (2015), pp. 154–159.

118

[ December 12, 2022 at 13:33 – classicthesis version 1.0 ]

https://doi.org/10.1016/j.compositesb.2020.108344
https://doi.org/10.1016/j.compositesb.2020.108344
https://doi.org/10.1016/B978-008045405-4.00176-2
https://doi.org/10.1016/B978-008045405-4.00176-2
https://doi.org/10.1016/S0375-9601(02)00258-X


bibliography

[64] H. Yang and L. Ma. “Multi-stable mechanical metamaterials by elas-
tic buckling instability.” In: Journal of materials science 54.4 (2019),
pp. 3509–3526.

[65] X. Yu, J. Zhou, H. Liang, Z. Jiang, and L. Wu. “Mechanical meta-
materials associated with stiffness, rigidity and compressibility: A
brief review.” In: Progress in Materials Science 94 (2018), pp. 114–173.

[66] D. Zaccaria, D. Bigoni, G. Noselli, and D. Misseroni. “Structures
buckling under tensile dead load.” In: Proceedings of the Royal Soci-
ety A: Mathematical, Physical and Engineering Sciences 467.2130 (2011),
pp. 1686–1700.

[67] Q. Zhang, D. Guo, and G. Hu. “Tailored Mechanical Metamateri-
als with Programmable Quasi-Zero-Stiffness Features for Full-Band
Vibration Isolation.” In: Advanced Functional Materials 31.33 (2021),
p. 2101428.

[68] Y. Zheng, X. Zhang, Y. Luo, B. Yan, and C. Ma. “Design and exper-
iment of a high-static–low-dynamic stiffness isolator using a nega-
tive stiffness magnetic spring.” In: Journal of Sound and Vibration 360

(2016), pp. 31–52.

[69] N. Zhou and K. Liu. “A tunable high-static–low-dynamic stiffness
vibration isolator.” In: Journal of Sound and Vibration 329.9 (2010),
pp. 1254–1273.

119

[ December 12, 2022 at 13:33 – classicthesis version 1.0 ]



[ December 12, 2022 at 13:33 – classicthesis version 1.0 ]



colophon

This document was typeset using a personalized version of the typograph-
ical look-and-feel classicthesis developed by André Miede. The style was
inspired by Robert Bringhurst’s seminal book on typography “The Ele-
ments of Typographic Style”. classicthesis is available for both LATEX and
LYX:

https://bitbucket.org/amiede/classicthesis/

More info about the author, Panagiotis Koutsogiannakis, can be found on
the website:

https://pankouts.com

[ December 12, 2022 at 13:33 – classicthesis version 1.0 ]

https://bitbucket.org/amiede/classicthesis/
https://pankouts.com


[ December 12, 2022 at 13:33 – classicthesis version 1.0 ]



 

Panagiotis Koutsogiannakis

Although instabilities and large oscillations are traditionally considered as 
conditions to be avoided in structures, a new design philosophy based on their 
exploitation towards the achievement of innovative mechanical features has been 
initiated in the last decade. In this spirit, instabilities are exploited towards the 
development of systems that can yield designed responses in the post-critical state. 
Further, the presence of oscillating constraints may allow for a stabilization of the 
dynamic response. These subjects entail a rich number of phenomena due to the 
non-linearity, so that the study of such mechanical systems becomes particularly 
complex, from both points of view of the mechanical modeling and of the 
computational tools.
 
Two elastic structures are studied. The first consists of a flexible and extensible rod 
that is clamped at one end and constrained to slide along a given profile at the 
other. This feature allows one to study the effect of the axial stiffness of the rod on 
the tensile buckling of the system and on the compressive restabilization. A very 
interesting effect is that in a region of parameters double restabilization is found to 
occur, involving four critical compressive loads. Also, the mechanical system is 
shown to work as a novel force limiter that does not depend on sacrificial 
mechanical elements. Further, it is shown that the system can be designed to be 
multi-stable and suitable for integration in metamaterials.

The second analyzed structure is a flexible but inextensible rod that is partially 
inserted into a movable rigid sliding sleeve which is kept vertical in a gravitational 
field. The system is analytically solved and numerically and experimentally 
investigated, when a horizontal sinusoidal input is prescribed at the sliding sleeve. 
In order to model the system, novel computational tools are developed, 
implementing the fully nonlinear inextensibility and kinematic constraints. It is 
shown that the mathematical model of the system agrees with the experimental 
data. Further, a study of the inclusion of dissipative terms is developed, to show that 
a steady motion of the rod can be accomplished by tuning the amplitude or the 
frequency of the sliding sleeve motion, in contrast with the situation in which a 
complete injection of the rod inside the sleeve occurs. A special discovery is that by 
slowly decreasing the frequency of the sleeve motion, the length of the rod outside 
the sleeve can be increased significantly, paving the way to control the rod’s end 
trajectory through frequency modulation.

 

[ December 12, 2022 at 13:33 – classicthesis version 1.0 ]


	Dedication
	Abstract
	Publications
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 The sliding profile system
	1.2 The sliding sleeve system
	1.3 Mathematical modeling of the systems

	2 Theoretical background
	2.1 The quasi-static model for the extensible elastica
	2.2 The quasi-static model for the inextensible elastica
	2.3 The dynamic model for the extensible elastica
	2.4 The dynamics of the inextensible elastica
	2.5 Position-based inextensible elastic curve dynamics
	2.6 Numerical Methods
	2.6.1 Numerical integration of the derived ODEs
	2.6.2 Finite element formulation of the inextensible elastica


	3 Instabilities of extensible rod
	3.1 Introduction
	3.1.1 A premise on (single and double) restabilization

	3.2 The extensible elastica with an end constrained to move along a frictionless profile
	3.3 Bifurcation and stability of the trivial configuration
	3.3.1 Bifurcation loads
	3.3.2 Stability of the straight configuration from small amplitude vibration analysis

	3.4 Analytical solution for the nonlinear kinematics of the structure
	3.4.1 Imposition of the curved profile constraint
	3.4.2 Symmetric profile
	3.4.3 Skew-symmetric profile with discontinuous curvature at the origin

	3.5 Optimization of the profile shape for a design force-displacement curve
	3.5.1 The design of an elastic force-limiting device
	3.5.2 Profile shape for complex force-displacement curves


	4 The oscillating sliding sleeve
	4.1 Introduction
	4.1.1 Configurational forces
	4.1.2 Connection with resonant clamped-free rod

	4.2 Theoretical modeling with the elastica
	4.2.1 Governing equations
	4.2.2 Lagrangian and governing equations
	4.2.3 Spatial closed-form solution of the sliding-sleeve system

	4.3 Position-based weak form
	4.4 Nonlinear dynamics of the oscillating sliding sleeve - rod - mass system
	4.4.1 Dynamics from initial rest conditions
	4.4.2 The search for an analytical periodic solution through asymptotic expansion

	4.5 From periodic to quasi-periodic response
	4.6 Experimental validation
	4.6.1 Rod's release from relative rest conditions
	4.6.2 Monotonic variation in the amplitude or frequency of the sliding sleeve oscillation


	5 Conclusions
	Future work

	Appendix
	A Examples of one-dimensional structures displaying small values of stiffness ratio q
	A.0.1  Rectangular wire helical springs 
	A.0.2 Composite rod-spring element

	B Asymptotic behaviour of bifurcation load for vanishing profile curvature at the origin for the sliding-hinge system
	C Comparison of numerical solution strategies of the discretized model of the elastica
	Bibliography
	Colophon


