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Abstract

FaLKM-lib v1.0 is a library for fast local kernel machine imple-
mented in C++. It contains a fast implementation of kernel k-nearest
neighbors (kNN) using the Cover Tree data-structure called FkNN, the
local support vector machine (LSVM) algorithm called FkNNSVM, a
noise reduction technique based on a probabilistic version of LSVM
called FkNNSVM-nr, a fast and scalable version of LSVM called FaLK-
SVM (subdivided in the two modules: FaLK-SVM-train and FaLK-
SVM-predict) and a fast and scalable noise reduction technique called
FaLKNR. The library contains tools for model selection, local model
selection and automatic tuning of kernel parameters. This document
introduces the formulation of the algorithms in the software library;
for a comprehensive discussion on the implemented techniques please
refer to the papers cited in this document and for the use of the soft-
ware refer to the README file included in the package. FaLKM-lib
v1.0 code is freely available for research and educational purposes at
http://disi.unitn.it/~segata/FaLKM-lib.

1 Introduction

This document presents a software library called FaLKM-lib v1.0 for fast
and local kernel machines. FaLKM-lib v1.0 combinis the machine learning
techniques and the tools developed and discussed by Blanzieri and Melgani
(2006, 2008); Segata and Blanzieri (2009a,b); Segata, Blanzieri, Delany and
Cunningham (2008); Segata, Blanzieri and Cunningham (2009). The main
common idea underlying the algorithms in the library is that very often
(feature-space) locality plays a crucial role in machine learning classification
problems. In particular locality can lead to the following advantages:
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Improved accuracy. Local support vector machines (LSVM) which can
be considered members of the class of local learning algorithms (LLA)
introduced by Bottou and Vapnik (1992) are able to improve the gen-
eralization ability of support vector machines (SVM) which are con-
sidered the state-of-the-art classifiers (Cortes and Vapnik; 1995; Vap-
nik; 2000) and of kNN as studied by Segata and Blanzieri (2009a).
Although implemented using specific data-structures for supporting
neighborhood retrieval (we adopt the Cover Tree by Beygelzimer et al.
(2006)) the computational overhead of LLA can be however consistent
and for this reason LSVM are not indicated for large datasets. The
algorithm in FaLKM-lib v1.0 belonging to this class is FkNNSVM
(and, considering the kNN as a LLA, also FkNN).

Improved speed and accuracy on large datasets. Large datasets re-
quire specific strategies to be efficiently tackled. The local approach
to classification with kernels can be applied to large amount of data
using some modifications of the LLA approach we presented in (Segata
and Blanzieri; 2009b) permitting to obtain training and testing times
dramatically lower than SVM ones. The algorithm for fast classifica-
tion with local kernel machines presented here is FaLK-SVM (subdi-
vided in the training module FaLK-SVM-train and the testing module
FaLK-SVM-predict) and introduces novel improvements not discussed
by Segata and Blanzieri (2009b) further decreasing the training and
especially the testing time1.

Improved ability of detecting noisy samples. Noise reduction consists
in detecting and removing samples from a dataset based on their prob-
ability to be corrupted, mislabelled or noisy samples. Noise reduction
can be used for data cleansing in bioinformatics and in the medical do-
main (Malossini et al.; 2006; Gamberger et al.; 2000; Lorena and Car-
valho; 2004; Tang and Chen; 2008), for enhancing the generalisation
ability of learning systems that are not noise tolerant like instance-
based learning and case-based reasoning (Wilson and Martinez; 2000;
Brighton and Mellish; 2002) and for enchancing case-based explana-
tion (Leake; 1996; Cunningham et al.; 2003). In this context we devel-
oped two noise reduction algorithms based on a probabilistic variant
of LSVM (Segata, Blanzieri, Delany and Cunningham; 2008) and on
a variant of FkNNSVM (Segata, Blanzieri and Cunningham; 2009)
available in FaLKM-lib v1.0 under the names of FkNNSVM-nr and
FaLKNR respectively.

Improved speed in performing model selection. Model selection is a
crucial training step in the learning process to assure high classifica-

1Benchmark results can be found on the FaLKM-lib home page: http://disi.unitn.

it/~segata/FaLKM-lib.
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tion performances of kernel based methods. However it is often a very
computationally heavy step (especially if the number of parameters to
set is high) and the found parameters are the same for every sub-region
of the datasets. With the local approach it is possible to tune locally
the kernel and SVM parameters to better capture the local characteri-
zation of the problem and to use only a subset of the local model to es-
timate the parameters in order to unburden model selection. For these
reasons in FaLKM-lib v1.0, in addition to the traditional grid search
model selection, we implemented different strategies of local model
selection in FkNNSVM, FkNNSVM-nr, FaLK-SVM and FaLKNR.

FaLKM-lib v1.0 is implemented in C++ and it is freely available for re-
search and educational purposes (see the copyright file in the library package)
at http://disi.unitn.it/~segata/FaLKM-lib and can be compiled both
under Unix-based systems and Windows systems2. It uses LibSVM (Chang
and Lin; 2001) version 2.88 for training and testing the local SVM models
and our implementation of the Cover Tree data-structure by Beygelzimer,
Kakade and Langford (2006) for nearest neighbor operations.

In the following we very briefly introduce the formulations of the imple-
mented modules. For the usage of FaLKM-lib v1.0 the user should refer to
the README file in the software package.

2 The modules of FaLKM-lib v1.0

We introduce here the formulation and the theoretical complexity bounds of
the modules, and the tools common to all of them. For a detailed discussion
of the modules, please refer to the corresponding cited papers.

The mathematical formalism used to describe the methods assumes to
have a classification problem with samples (xi, yi) with i = 1, . . . , n, xi ∈ H
where H is an Hilbert space (Rp as a special case), yi ∈ {+1,−1} and a
mapping function Φ : H 7→ H induced by a positive definite kernel function
K(·, ·). Given a point x′, it is possible to order the entire set of training
samples X with respect to x′ in the feature space. This corresponds to
define the function rx′ : {1, . . . , n} → {1, . . . , n} as:





rx′(1) = argmin
i=1,...,n

‖Φ(xi)− Φ(x′)‖2

rx′(j) = argmin
i=1,...,n

‖Φ(xi)− Φ(x′)‖2 i 6= rx′(1), . . . , rx′(j − 1)
for j = 2, . . . , n

(1)

2Although we give the Windows binaries and Microsoft Visual C++ makefile, FaLKM-
lib v1.0 has been mainly developed and tested in Unix-based environments.
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the computation can be expressed in terms of kernels as:

||Φ(x)− Φ(x′)||2 = 〈Φ(x), Φ(x)〉+ 〈Φ(x′), Φ(x′)〉 − 2〈Φ(x), Φ(x′)〉 =
= K(x, x) + K(x′, x′)− 2K(x, x′).

(2)
In the following k refers to the neighborhood size (i.e. the k parameter

of kNN and of the other locality-based methods) and m to the number of
testing samples.

2.1 FkNN

The decision rule of FkNN is simply the majority rule computed on the
neighborhood of the testing point retrieved in the feature space:

FkNN(x) = sign

(
k∑

i=1

yrx(i)

)
.

Computational complexity: the bound on the complexity of the pro-
posed implementation of FkNN which uses the Cover Tree data-structure
(like all the other modules), is O(n log n + m · k log n).

2.2 FkNNSVM

The local SVM decision function, as defined in (Blanzieri and Melgani; 2006,
2008), for a point x and a training set X, is:

FkNNSVM(x;X) = sign

(
k∑

i=1

αrx(i)yrx(i)K(xrx(i), x) + b

)

where rt(i) is the ordering function defined by Eq. 1 and αrt(i) and b come
from the training of an SVM on the k-nearest neighbors of x in the feature
space.

Computational complexity: the bound on the complexity of the pro-
posed implementation of FkNNSVM is O(n log n + m · k log n + m · k3).

2.3 FkNNSVM-nr

The probabilistic variant of FkNNSVM on which FkNNSVM-nr (Segata,
Blanzieri, Delany and Cunningham; 2008) is based, can be obtained follow-
ing a refinement of the Platt (1999) method developed by Lin et al. (2007):

p̂ FkNNSVM(y = +1|x; X) =
1

1 + exp(A · FkNNSVM(x; X) + B)
.

4



Choosing a threshold γ ∈ R with 0.0 ≤ γ ≤ 1.0 the decision of removing a
sample (corresponding to the negative output) is based on the probability
that the predicted label of a training point xi is the true label accordingly
the SVM built on its neighborhood (not considering xi itself):

FkNNSVM-nr(xi;X) = sign
(
p̂ FkNNSVM(y = yi|xi; X \ {xi})− γ

)

Computational complexity: the bound on the complexity of the pro-
posed implementation of FkNNSVM-nr is O(n · k log n + n · k3).

2.4 FaLK-SVM

FaLK-SVM precomputes a set of local SVMs in the training set and assigns
to each model all the points lying in the central neighborhood of the k points
on which it is trained. The prediction is performed applying to the query
point the model corresponding to its nearest neighbor in the training set.
The formal definition, based on Segata and Blanzieri (2009b) starts from
a generalization of FkNNSVM for applying an SVM to a point x possibly
different from the point t for which the neighborhood is retrieved:

FkNNSVMt(x) = sign

(
k∑

i=1

αrt(i)yrt(i)K(xrt(i), x) + b

)
.

The decision function of FaLK-SVM is:

FaLK-SVM(x) = FkNNSVMc(x) with c = cnt(xrx(1))

where cnt is the function that retrieve the local SVM model defined as
cnt(xi) = xj ∈ C
with j = min

(
z ∈ {1, . . . , n}∣∣xz ∈ C and @c ∈ C s.t. rxi(c) < rxi(xz)

)

and C is the set of the centers of the models selected as follows:
ci = xj ∈ X

with j = min
(
z ∈ {1, . . . , n}∣∣xz ∈ XCT \Xci

)

where Xci =
⋃

l<i

{
xrcl

(h)

∣∣ h = 1, . . . , k′
}

.

where 1 ≤ k′ ≤ k and XCT is the training set reordered using the separation
invariant of Cover Tree which assures to take as centers points that are as
distant as possible thus further reducing the number of local SVM that need
to be trained. FaLK-SVM is divided in two submodules: the training mod-
ule FaLK-SVM-train which takes the training set and builds the model and
the FaLK-SVM-predict which uses the model to perform the predictions.
We also implemented a faster variant of FaLK-SVM-predict which perform
the nearest neighbor operations to retrieve the trained local model not with
respect to all the training points but with the points in C only.
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Computational complexity: the bounds on the complexity of the pro-
posed implementations of FaLK-SVM-train and FaLK-SVM-predict are
O(n log n+ |C| ·k log n+ |C| ·k3) and O(m ·k log n) respectively which reduce
to O(n log n) and O(m log n) for reasonably low k values. The variant of
FaLK-SVM-predict retrieving the local models using the centers only, takes
O(m · k log |C|).

2.5 FaLKNR

FaLKNR is a version of FkNNSVM-nr without the probabilistic approach
which is applicable for large and very large datasets thanks to the integra-
tion of the approach of FaLK-SVM as detailed by Segata, Blanzieri and
Cunningham (2009). The removal of a sample xi ∈ X (corresponding to the
negative output) is based on the following formulation:

FaLKNR(xi) = 1− |FkNNSVMc(xi)− yi|

Computational complexity: the bound on the complexity of the pro-
posed implementation of FaLKNR is O(n log n+ |C| · log n ·k+ |C| ·k3 +k ·n)
which is O(n log n) for reasonably low k values.

2.6 Tools common to all modules

The following tools are common to all (or some of) the FaLKM-lib v1.0
modules.

Multi-class classification. The generalization from binary class classifi-
cation to multi-class classification is straightforward for the kNN-based
techniques, whereas for the local SVM models we use LibSVM (Chang
and Lin; 2001) which handles multi-class classification with the one-
versus-all approach.

Model selection. The traditional model selection is implemented with cross
validation and can be applied to the SVM regularization parameter C,
to the kernel parameters and to the neighborhood size k.

Local model selection. The local model selection is implemented with
various options; basically a local cross validation step is performed on
a subset (or all) of the local models in the training set. The local
κ-fold cross validation consists of the following steps:

1. the k′ most internal samples, called S, are separated from the
remaining external points, called SE ;

2. S is randomly splitted in κ disjoint internal validation sets Si

with 0 < i < κ;
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3. for each fold i a model is trained on SE ∪ (S \ Si) and evaluated
on the correspondent Si set, taking the mean of the accuracies
on the κ folds. A particular strategy for locally tune the width
parameter of the Gaussian RBF kernel based on the histogram
of the distances of the local neighborhood is also available.

Classification measures. The classification modules and the (local) cross
validation gives as output the classification accuracy and (if a binary
class dataset is used) the precision, recall and F-measure.

3 Benchmarks

Benchmarks of computational performances, classification accuracy, and
noise reduction ability of preliminary versions of FaLKM-lib v1.0 modules
can be found in the correspondent papers. The empirical comparisons are
made with kNN, SVM and approximated SVM algorithms like (Tsang et al.;
2005; Bordes et al.; 2005) for the classification modules and with tradition
case-based competence enhancing techniques for the noise reduction mod-
ules. The performances of the last version of FaLKM-lib v1.0 are however
slightly better and the current benchmark results are available on FaLKM-
lib v1.0 home page at http://disi.unitn.it/~segata/FaLKM-lib.
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