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A B S T R A C T

This study aims to develop a probabilistic model using machine learning techniques to identify
high-frequency trading (HFT) based on order book data. The model enables precise intraday
identifications, addressing the lack of a widely accepted framework for HFT identification and
the inconsistencies arising from proxy indicators. Leveraging academic data, the model offers
improved consistency and reproducibility for future HFT research. By incorporating fuzzy logic,
the probabilistic model allows policymakers greater flexibility in shaping policies. The study
utilises data from the BEDOFIH database of the French capital market and develops a robust
classification model capable of accurately distinguishing HFT. Additionally, reverse engineering
enhances the model’s interpretability by transforming it into an interpretable regression tree
without compromising its predictability. This research contributes to advancing HFT research,
providing valuable insights, and offering a transferable methodology for identifying HFT in
diverse market contexts.

1. Introduction

During the last few decades, there has been a keen interest in technological development, allowing industries to exploit their
advancements to stay competitive in the highly competitive business environment. Finance, specifically financial markets, is one
of the many industries that adopted information technology significantly, evolving into new electronic markets. The electronic
platform eradicated all paperwork for buying and selling stocks and cut the trading process to a fraction of a second. This allowed
market makers and other traders to increase the frequency of order submission within a relatively limited trading hour. As the
trading frequency has increased, computers have been progressively used to send many orders to the market, providing a round-trip
execution time of microseconds, laying the groundwork for the advent of High-Frequency Trading (HFT henceforward).

HFT is a breakthrough in finance that is constantly adopting innovations to enable ultra-fast data transmission because of
a competitive nature against latency (Bernales, 2019). The (SEC, 2010) regarded High-Frequency Trading as one of the most
significant market-structuring changes that accounted for more than 50% of US-listed equity trading. Yet, there is no unanimity
among regulators or academics regarding the definition of high-frequency trading (Brogaard and Garriott, 2019). However, due
to the increasing attention of scholars and regulators devoted to HFT, its operation has come under great scrutiny (Korajczyk and
Murphy, 2019; Kelejian and Mukerji, 2016; Menkveld, 2016), especially concerning the impact on liquidity (Ammar et al., 2020;
Yang et al., 2020).

The main characteristics of HFT identified by SEC’s Concept Release (2010) are (i) the use of sophisticated and high-speed systems
to place orders, (ii) investing in co-location facilities and dedicated data feed, (iii) initiating and concluding positions frequently
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and in very short timeframes, (iv) placing numerous orders and cancelling them in a fraction of a second and (v) maintaining zero
or a low inventory at the end of the day.1

As a result of the lack of a standard definition for HFT, regulators and researchers have applied different identification methods.
In general, regulators have greater access to data on trading venues, and their way of identification typically includes account-
level information. For example, the European Securities and Markets Authority, in its report published in 2014, identified HFT in
two steps: first, they flagged HFT companies based on their primary business, and then, based upon some criteria2 on their order
live, they specified the HFT activities. Indeed, they incorporate both direct and indirect methods for detecting HFT activities at
the account level of each participant in the market (Benos and Sagade, 2016; Breckenfelder, 2019). On the other hand, academic
studies conducted in the field of HFT have relied on various identification methods according to the quality and the attributes of
the available data (Bazzana and Collini, 2020; O’Hara et al., 2019).

Some issues with these two identification methods constitute the primary focus of this research. Direct identification is carried
out based on the information provided by HFT-based firms and excludes participants who do not reveal their involvement with
HFT. For instance, HFT desks of investment banks with significant HFT activities are excluded in the direct identification (Biais
et al., 2014). Those with privileged access to the account level data integrated some quantitative criteria with direct identification
to identify HFT activities (Boehmer et al., 2018; Brogaard et al., 2014, 2017; Hagströmer et al., 2014; Hagströmer and Nordén,
2013; Kirilenko et al., 2017). A direct label of HFT has been applied in several studies with privileged access to venues’ data at the
account level (Hossain, 2022; ASIC, 2015; Breckenfelder, 2019; Brogaard and Garriott, 2019; Jarnecic and Snape, 2014).

In contrast, indirect identification tends to be more inclusive than direct identification because it is based on functional rather
than institutional information. Different methods have been used in the literature to identify HFT based on trade data. Hasbrouck and
Saar (2013) define a measure called RunsInProcess based on the practice of high-frequency traders of linking orders. Ersan and Ekinci
2016) adapt this measure to the order data from the Istambul market. Both Van Ness et al. (2015) and Aitken et al. (2018) build
proxy based on cancellation orders, Comerton-Forde et al. (2018) identify HFT using two measures of reaction speed. Brogaard

nd Garriott (2019) focus on the behaviour related to the overnight position, used with some adjustment also by Kang et al. (2022).
oth Li (2021) and Ekinci and Ersan (2022) use the approach of inference from electronic message data, following Ekinci and Ersan
2018). Ekinci and Ersan (2018) introduce a measure called the HFT activity index (HAI), which captures the extent to which trading
trategies rely on speed and technology. The authors test their approach using data from Borsa Istanbul and find that it effectively
dentifies HFT activities. Malinova and Park (2020) have identified HFT looking at orders by the same trader in different markets,
.e. the ‘‘sniping’’ strategy. More recently, Hossain (2022) used four different measures to verify their different power to identify
FT.

A different approach is based on the machine-learning framework. Mankad et al. (2013) propose a dynamic machine-learning
ethod to uncover and analyse the ecosystem of an electronic financial market. It aims to identify and understand the relationships

mong various market participants, such as high-frequency traders, liquidity providers, and other market agents. Han et al. (2022)
ropose an explainable machine learning framework for discovering the dynamics of high-frequency trading in financial markets.
he authors argue that traditional machine learning methods for HFT are often black-box models that need more transparency and

nterpretability.
All the studies that have used indirect methods to identify HFT have only used a single proxy or a small set of proxies to

apture the operational characteristics of HFT (Hasbrouck and Saar, 2013; Leone and Kwabi, 2019; Mankad et al., 2013; Scholtus
t al., 2014). Moreover, each study’s proxies are usually different from those of others due to the dataset’s unique features. The
evel of dispersion in proxy has contributed to inconsistency in empirical studies on HFT as Elizarov et al. (2017) have shown that
dentification of HFT is sensitive to the cutoff level of a particular proxy, let alone a different proxy.

This viewpoint guides our search for an identification strategy that meets two criteria. First, instead of relying on a small subset of
roxies, it should initially make use of as much of the information provided in the order as possible. Second, it should make minimal
se of account-level data or, at the very least, data that is easily accessible also to non-regulatory staff or academics. Additionally, we
tilised fuzzy logic and immediate identification to outperform the regulator’s identification. In contrast to binary logic, fuzzy logic
llows for greater flexibility in HFT activity identification and policy application. As a result of this instant recognition, policymakers
an restrict HFT activity in real time to exert more or less influence over the market.

In light of this perspective, the study employs machine learning to leverage a wealth of data for real-time identification. We used
he label supplied by the French regulator to train the machine and elicit a general probabilistic model to address the identification
nconsistency in prior research. The inconsistency stemmed from the need for a standard model for HFT identification, which caused
cholars to use different proxies for HFT.

Since this study’s probabilistic model is developed using data accessible to academics, it is expected to provide more consistency
nd reproducibility for further HFT research. The data for this research provide a classification based on functional and institutional
nformation during a year. This classification is assumed as a target to be reached immediately following each order using our
achine learning technique but with publicly available data. In other words, the machine learns from the classification made by

he French regulator and produces a probabilistic model with publicly available features to classify any new order instantly. The
inal model incorporates all functional and institutional information at account level data into a trained classifier, allowing further
esearch on HFT to use public order book data to identify HFT activities.

1 Van Vliet (2017) introduces a simple model explaining the decision process made by HFT firms.
2 When the 10th percentile of order life for a given firm in a particular stock is less than 100 microseconds, then that firm’s trading activity in that specific

tock is considered high-frequency trading (HFT).
2
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Much literature is available on HFT, in which the emphasis is on the effect rather than the identification. In other words, most
tudies focus on HFT’s influence on various market aspects rather than attempting to identify it in depth. Therefore, HFT has been
xtensively explored, but identification needs to be addressed. The purpose of this study is to fill this research gap.

In other words, this study contributes to the literature in two ways. First, it provides an instant and probabilistic method
f identifying high-frequency trading on the French stock exchange using publicly available data. Second, and perhaps most
mportantly, our comprehensive coverage of the process, from feature engineering of row data to model interpretation, makes it
traightforward to adapt and apply these techniques to identify HFT in any stock market.

. Data

The data for this study comes from BEDOFIH.3 This database includes historical high-frequency data from the main European
stock markets, including Autorité des Marchés Financiers (AMF) Euronext Paris, which is opted for this research. The BEDOFIH AMF
Euronext Paris database contains the order and trade histories of companies permitted to trade on Euronext Paris, whose market of
reference is Euronext Paris.

The database contains all information about submitting, cancelling, modifying and executing every order in microsecond time
stamps for each instrument per day. Each order has an ID which lasts until the complete execution or cancellation. It means the
modification or partial execution of an order does not change the ID. Still, another variable (characteristic ID) keeps track of
modification and increments by one in each step. This separation allows the analysis of each order modification during the time.

Furthermore, combining an order ID and the characteristic ID generates a unique key for the exploration. Although the database
does not provide the data at the account level of market participants, it has used the information of each account to reveal the
type of participants involved in each order and trade. The French regulator, the Autorité des Marchés Financiers (AMF), categorises
all market participants into three groups: outright high-frequency traders (HFTs), mixed HFTs, and non-HFTs. More specifically, a
market participant is recognised as an HFT if it has at least one of the following conditions (AMF, 2017): (i) the participant has
cancelled at least 100,000 orders during the year, and the lifetime of those cancelled orders is below the average of the lifetime of
all orders in the order book; (ii) the participant has cancelled at least 500,000 orders within 0.1 s after submission and 1% of those
cancelled order persisted less than 0.0005 s.

The HFT distinguished by these conditions can be either an outright HFT or a mixed HFT. If a participant meets at least one
of the conditions and is not an investment bank, it is labelled as outright HFT, but if the participant is an investment bank, it is
categorised as mixed HFT. The third group of participants includes those who do not meet any of the two conditions and are flagged
as Non-HFT.

Therefore, participants are classified based on information at the account level and in two steps sequentially. The first step
undertakes the functional approach to differentiate all participants involved in high-frequency trading from non-HFTs. Then in the
second step, an institutional approach is taken to classify those engaged in high-frequency trading to mixed and outright HFT based
on their identity, whether it is an investment bank or not. Indeed, the identification of HFT activity is determined from a functional
approach. The institutional approach in the second step is applied only to exclude the HFT desk of investment banks.

2.1. Sample

Rather than analysing individual transactions, this study examines orders submitted within the order book, regardless of whether
they are executed, cancelled, or expired. Consequently, the sample encompasses all French-listed securities traded on May 4th, 2017.4
This particular day yielded many order submissions, as indicated by the 867 order files in the BEDOFIH database.

Each order file within the dataset provides precise details about every order entered into the order book, including a timestamp
accurate to the microsecond. Additionally, for each security traded at least once during the given day, a corresponding trade file
contains supplementary information regarding the execution of orders, if applicable.

In the initial step, we exclude files that contain at most 150 orders or lack an accompanying trade file. This filtering process
eliminates securities that had no trading activity or failed to attract a minimum of 150 orders. Consequently, our sample consists
of 307 securities, collectively accounting for over 9 million orders.

Digging deeper into the sample’s composition, it includes 12 bonds and 295 equities. Within the equity category, 97 equities
fall into the micro-cap classification (with a market capitalisation below e250 million), 93 equities fall into the small-cap type
(with a market capitalisation exceeding micro-cap but below e2 billion), 59 equities fall into the mid-cap classification (with a
market capitalisation exceeding small-cap but below e10 billion), and 46 equities fall into the large-cap classification (with a market
capitalisation exceeding e10 billion).

3 European high-frequency financial database.
4 We acknowledge the limitations inherent in our research, particularly about using data from 2017. It is essential to recognise that the strategies employed

y high-frequency traders (HFT) may have undergone significant transformations since then, potentially influenced by the impacts of the pandemic on financial
arkets. However, it is crucial to emphasise that our research primarily aimed to identify individual orders submitted by HFT rather than analysing the overall
atterns and dynamics of HFT activity. Regardless of the specific trading strategy, HFT traders employ the same means of executing their strategies: submission,
odification, and cancellation of orders. Hence, our research focuses on analysing every single order independently from other orders, as these execution actions

re the key components through which HFT strategies are implemented. We acknowledge that further research is necessary to delve into the strategic patterns
3

f HFT activity and gain a more comprehensive understanding of its dynamics in contemporary market conditions.
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Table 1
Features selected and extracted. The list of features with their codes and explanations. The first ten features are taken directly
from the BEDOFIH database, and the others are extracted using our feature engineering approach.

Row Feature code Features explanation

1 o_cha_id Characteristic identifier of the order
starts at 1 and increments by 1 when the order is modified

2 o_state How an order has left the order book
3 o_bs Side of order: buy or sell order
4 o_type Type of order: limit order, stop limit order or others
5 o_validity Type of order validity: fill or kill, good for the day, etc.
6 o_price Order price
7 o_q_ini Initial order size
8 o_q_neg Cumulative quantity negotiated for a given order
9 o_account Type of user account (client account, own account, etc.)
10 o_nb_tr Number of transactions attributed to the order
11 o_price_diff Difference of order price with the last negotiated price
12 forecastError Difference of order price with the next negotiated price
13 o_life Life of order in millisecond
14 depth Depth of order in the book at the time of submission
15 BBO_diff Absolute difference of buy (sell) order price with

then-current best bid (offer)
16 recs If the order is submitted in trading group which is regulated

covers equities with continuous trading and a static collar
17 o_member Whether the order is placed with a high-frequency trader or not

Utilising the two trade and order files for the remaining securities, we constructed a dynamic order book by retiming and
ynchronising trades according to when the order was submitted. The resulting order book is at least as rich in information as
he original order book. Unlike most other studies, our data are not adjusted to be distributed at equal intervals. This allowed us to
reserve all of the information inherent in the dataset.

The features extracted from the constructed order book at the time of order submission are then-current depth, best bid/offer
nd the difference of price order with the prevailing best bid/offer and the last traded price. These features, along with some other
vailable features at the time of submission, such as the number of times the order is previously modified, buy or sell order, type of
rder, order validity, order price, initial order size, and even account type cannot be differentiating in the kind of trader. It should
e noted that several additional details revealed after the conclusion of the order (being cancelled, filled, or modified) enhance the
ata.

Our sample’s median order life is 6.7 s and around one-third of orders last less than one second. It indicates few seconds
fter order submission, most orders leave the order book and reveal more information such as order life, type of book release
modified, fully filled or partially filled), number of transactions involved, number of modifications, a difference of order price with
ext negotiated price (as forecast error) and cumulative quantity negotiated. This indicates that it would be worthwhile to delay
dentification until the end of the life of the order, thus having richer information for more accurate classification, as the delay is
onsiderably less than the existing annual identification.

As mentioned, the BEDOFIH database provides the classification for each order based on account-level information about the
raders and annual investigation of their trade activities. This classification is performed once a year and requires traders’ ID, which
s not exposed to the public.

Orders without price, like market orders and orders submitted during the pre–opening, are excluded from the sample. Since
ost features are extracted based on the order price, marker orders submitted without expressing the price are excluded from the

ample. Furthermore, charges submitted during the pre–opening period are excluded due to studies (Bellia, 2018) showing that
raders perform differently due to the different nature of trading mechanisms that are not continuous auctions but double auctions.

.2. Features engineering

Unlike transaction-based data, an order-based database contains many observations since many orders do not end up with
ransactions for many reasons. While each observation includes some information that cannot be removed, it is possible to draw
ome variables irrelevant to the study, increasing the computation’s efficiency and preventing overfitting.

On the other hand, it is possible to create new variables from existing variables following the theory that provide more
nformation than their initial counterparts. Therefore, we organised the database to include the following features using a process
f elimination and creation of variables, known as feature engineering.

Table 1 reports the features selected for this study. Features 1 through 10 are taken directly from the database, while features
1 through 16 are extracted from other variables using feature engineering and reconstructing the order book. Features 11 and 12
eflect the difference between the order price and the last and next price at which the security is traded. The two features arise
rom the fact that those who immediately follow the market (with the lowest o_price_diff) differ from those who lead (with the

lowest forecastError) the market. The order Life measures the interval between when an order is validated and when it leaves
4

he order book. Historically, high-frequency traders have invested heavily to reduce their latency, which is the rationale behind this
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feature. Due to the ability of HFTrs to monitor all bids and offers in a millisecond using powerful computers, we assumed Depth
and BBO_diff could distinguish HFT from other traders. recs, the last feature extracted, indicates trading groups regulated and
covering equity with continuous trading and a static collar. Along with the fact that HFTrs are interested in high-liquidity stocks
due to the low-latency nature of their trading, we suggested that recs is the characteristic that differentiates trading groups with
the best liquidity.

The idea of adding recs to the database comes from the fact that the initial investigation of this classification revealed that
the participation of HFTs is very diverse across securities, with a min of 0 and a max of 99.77 per cent. The minimum (maximum)
participation is in securities with a low (high) number of orders. For example, 287 orders have been submitted for FR0000188799
(an OAT Bond), all by non-HFTs, while 99.77 per cent of 95,919 orders submitted for FR0010221234 (Eutelsat share) belong to
HFTs. There is no doubt that HFT plays an imperative role in causing high numbers of orders for a given security and may result
in concerns regarding reverse causality. Still, to begin with, it is the features of security that attract HFTrs.

Euronext Paris has already considered these differences and placed every security in mutually exclusive trading groups. Every
trading group has regulations and restrictions, some of which may decrease liquidity and discourage HFTers from participating.
Since the trading groups in Euronext Paris are numerous, we created recs indicator to separate more liquid ones from others.

Considering that there are many trading groups at Euronext Paris, we created the recs indicator to distinguish the trading
groups with higher liquidity from others. recs represents any regulated trading group in which Equities are traded with continuous
uctions and static collars.

.3. Order book reconstruction

The order book must first be reconstructed to extract features such as depth and BBO_diff. Consequently, each limited buy
(sell) order is compared to all other buy (sell) orders already submitted and valid in the order book to find its rank inside the bid
(offer) side of the order book. The task was quite demanding because the number of valid orders in the order book grew during the
trading day, and each of the last orders must be checked against millions of valid orders. Comparisons are based on the priority of
prices on two sides of the order book. We first developed an indicator for each order to identify which orders needed to be included
in the comparison based on their type, time of submission, and validity. Second, we extracted and sorted the prices among the
included orders and determined the ranking of the submitted order within them. The rank indicates the depth of the order at the
time of submission.

As a result of having a list of flagged orders for each timestamp in which an order was submitted, we could determine the
appropriate bid and offer for each submission time. Consequently, the BBO_diff was created, which indicates the difference
between each order’s price and the then-current best bid or offer. This feature is slightly different from o_price_diff, which
indicates the price difference from the last traded price since the best bid or best offer may not result in a transaction.

Our study aims to include as much data as possible to train the machine without overfitting, so we examine all securities
simultaneously. Despite this, the features of securities differ significantly in value. This issue has been addressed by standardising
the features of securities so that they are placed into the same range of variability. For example, we scaled the order price, the initial
quantity of an order, negotiated quantity and best bid and offer to their median.5 While o_price_diff and forecastError
caled to the median of order price divided by 100 to be shown as a percentage of the price.

Another issue with our order data is the presence of extreme outliers. Despite their very high values, sometimes hundreds of
imes more than the median, they were comparatively small in number, so a 99.98% winsorization6 was able to smooth out our
ata.

According to the BEDOFIH classification, mixed HFTs are investment banks that carry out HFT activities but are categorised in
he same way pure HFTs are classified. Therefore, from a functional perspective, mix and pure HFT are equivalent. Consequently,
e disregard this distinction and consider all pure and Mixed HFT to be part of one HFT class regardless of whether investment
anks are involved.

.4. Hidden orders

Various exchanges and trading venues offer the option to hide orders; however, it is essential to distinguish that complete order
iding is typically permitted in dark pools rather than in the lit markets, which are the primary focus of our investigation. In lit
arkets, there is usually a requirement to display a minimum quantity for orders, commonly known as iceberg orders.

Our dataset encompasses both disclosed and hidden quantities of iceberg orders. Iceberg orders, appropriately named, consist of
visible portion that appears on the order book, similar to any other order. The visible portion of an iceberg order is placed in the
rder book based on its price, featuring a lower quantity than the overall order size. It is essential to highlight that the presence
f hidden portions within iceberg orders does not compromise the accuracy or validity of the features we extracted from the order
ook, which depends on the price of the order. For instance, the depth of each order in the order book is influenced by its price
nd the prices of other orders regardless of the number of orders.

5 Since most orders have zero negotiated value, we ignore zero when calculating the median for negotiated quantity.
6 For values less than percentile 0.01, the percentile was replaced, and for values greater than 99.99%, the corresponding percentile was replaced.
5
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Table 2
Summary statistics of numerical variables grouped in HFT and Non-HFT. N is the number of observations. For each feature, there are two rows. The first row
shows the summary statistics of the HFT group, and the second is for the non-HFT group.

Variable N Median Min Max 1st quart. 3rd quart. Mean Sd

o_cha_id 8.77 × 106 1 1 6 961 1 1 7.96 119.3
2.53 × 105 109 1 16 558 1 4 726 2 862 4 400

o_price_buy 4.40 × 106 0.999 0.689 1.225 0.995 1.002 0.998 0.009
1.29 × 105 0.998 0.689 1.451 0.994 0.999 0.993 0.027

o_price_sell 4.37 × 106 1.001 0.698 1.451 0.997 1.004 1.001 0.009
1.24 × 105 1.002 0.689 1.451 1.001 1.007 1.010 0.042

o_q_ini 8.77 × 106 1 0.004 303.6 0.699 1.48 1.70 5.36
2.53 × 105 1.132 0.004 303.6 0.943 3.77 5.67 22.53

o_q_neg 8.77 × 106 0 0 127 0 0 0.15 1.56
2.53 × 105 0 0 127 0 0 0.68 4.71

o_nb_tr 8.77 × 106 0 0 292 0 0 0.13 0.65
2.53 × 105 0 0 402 0 0 0.39 3.98

o_price_diff 8.77 × 106 0 −1 660 1 550 −1.5 1.5 −0.39 42.96
2.53 × 105 1 −1 660 1 550 −4 35 2.99 141

forecastError 8.77 × 106 0 −2 200 1 390 −2 1.6 −0.57 44.96
2.53 × 105 0 −2 200 1 390 −8 23 0.40 163.9

o_life 8.77 × 106 6 223 0.001 1.95 × 1010 265 42 110 6.36 × 105 3.30 × 107

2.53 × 105 4 863 101 0.002 2.07 × 1010 175 986 1.34 × 107 3.78 × 107 3.63 × 108

depth 8.77 × 106 2 1 173 1 4 4.88 9.81
2.53 × 105 2 1 162 1 3 6.08 12.77

BBO_diff 8.77 × 106 2.2 × 10−4 0 0.47 1.02 × 10−4 6.34 × 10−4 1.4 × 10−3 6.7 × 10−3

2.53 × 105 1.1 × 10−3 0 0.51 0 4.3 × 10−3 0.011 0.036

To comprehensively address any concerns related to iceberg orders, we conducted a specific identification and analysis of these
rders in our study. Our examination revealed that iceberg orders represent a small fraction, comprising approximately 1% of the
otal orders submitted in the limit order book. Additionally, we calculated the ratio of the hidden portion within iceberg orders
ithin our sample. This ratio represents the percentage of the iceberg order’s quantity that remains concealed and is not visible in

he order book data. Our analysis demonstrated that the hidden ratio ranges from a minimum of 0.2% to a maximum of 99.96%,
ith an average value of 78%. Given that the hidden ratio does not reach 100%, we can confidently assert that all hidden orders

n our dataset are partially hidden and none completely concealed.
Therefore, it is evident that the partially hidden orders in the lit markets uphold the effectiveness of the methods we have

eveloped in this study for feature extraction and identification. Moreover, achieving real-time identification of HFT by considering
he visible portion of the iceberg orders remains feasible.

. Descriptive statistics

Table 2 shows the summary statistics of numerical variables grouped by HFT and non-HFT. For each variable listed in the left
olumn, there are two rows such that the first row summarises the HFT orders, and the second reports the non-HFT orders. To see
f there is a significant difference between the means of the two groups, we ran a two-sample t-test for all numerical variables. The
ull hypothesis was rejected at a very low (almost zero) significance level.

Table 3 reports the relative frequency of categorical variables in two groups of HFT and non-HFT orders. The values are reported
s percentages and add up to 100 in each row. The relative frequency of o_state shows that the broker cancels most HFT orders

while most non-HFT orders are modified. This is further supported by the higher mean and median of o_cha_id among non-HFT
orders since the characteristic ID increments whenever the order is modified. recs, as an extracted indicator for securities with high
liquidity, presents a great power of differentiating so that 99.59% of HFT activities took place in securities with recs indicators.

Tables 2 and 3 demonstrate that the selected and extracted features differ considerably between HFT and non-HFT orders. Thus,
there is an opportunity to identify HFT by these features.

4. Method

Focusing on identifying HFT with the selected and extracted features, we try to find an algorithm of machine learning that is
more suitable for the order data. The target we will reach by the ML algorithm is the AMF classification but with fuzzy logic. After
finding the best algorithm for identification, we test the algorithm against other sets of data from other trading days. Ultimately,
we interpret what the model has done in the identification process.

4.1. Choosing an algorithm

The main objective of this study is to develop a probabilistic model to identify high-frequency trading with no need for trader
ID at the earliest possible time. Current identification models require trader ID, which is only available to the exchange authorities
6

and is performed once a year since they are obtained by annual data. In particular, we aim to exploit the yearly and account-based
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Table 3
Relative frequency of categorical variables categorised by HFT and Non-HFT members. Each row represents HFT or Non-HFT group, while the columns correspond
to different categories. The values in each cell indicate the proportionate frequency (in per cent) of that particular category within the HFT or Non-HFT group.
For example, in the top-left cell, it can be observed that 7.51% of HFT orders have a state of 2. The codes 2, 4, 5, C, 0, 3, S, and P in the o_state variable
represent the following order states: totally filled, cancelled by the broker, modified, cancelled by the trading system, new entry in the book, eliminated due to
day validity, eliminated by supervision, and cancelled by the self-trade prevention, respectively. In addition, the o_validity variable includes codes 0, 1, 2,
3, 4, 6, 7 representing good for the day, good till cancel, valid for auction, fill or kill, good until a specific date, and valid for closing, respectively. Similarly,
the o_account variable uses codes 1, 2, 3, 4, 6, and 7 to indicate order submissions by client account, own account, retail liquidity provider, retail market
organisation, liquidity provider, and parent company account. Moreover, the o_type variable employs codes 2, K, and 4 to denote limit orders, market-to-limit
rders, and stop limit orders, respectively. The o_bs variable uses B and S to indicate sell and buy orders, respectively. Lastly, recs refers to orders submitted

for an asset in a regulated trading group that covers equity with continuous trading and a static collar.
o_state 2 4 5 C 0 3 S P

HFT 7.51 78.33 13.91 0.14 0.01 0.06 0.00 0.03
Non HFT 16.12 12.50 66.46 2.35 0.41 2.16 0.01 0.00

o_validity 0 1 2 3 4 6 7

HFT 96.67 0.00 0.00 3.08 0.14 0.10 0.00
Non HFT 83.97 1.47 0.00 4.03 8.12 2.42 0.00

o_account 1 2 3 4 6 7

HFT 4.84 25.48 8.19 0 61.36 0.13
Non HFT 19.93 17.04 0 9.20 53.83 0.01

o_type 2 K 4

HFT 99.99 0.01 0.00
Non HFT 97.80 1.44 0.77

o_bs B S

HFT 50.14 49.86
Non HFT 51.06 48.94

recs false true

HFT 0.41 99.59
Non HFT 54.70 45.30

identifications that exchange authorities perform to develop a robust model capable of distinguishing HFT but only with publicly
available data on order books.

As mentioned, we use order-level data in Euronext Paris provided with HFT flags. The data lacks trader ID for orders, and our
nalysis is based on intraday aggregated data in two groups of traders, high-frequency traders (HFTrs) and others called non-HFTrs.
lthough the French market regulator categorised HFT into two groups, Pure and Mix, depending on whether the trader is an

nvestment bank, we ignored this further categorisation because Mix and pure HFT are classified by the same characteristics and
xpected to have the same functions.

The starting point for choosing a classification algorithm stems from the data characteristics that, in our case, are low dimensional
the number of observations is staggeringly high while few features are available) and highly skewed class distribution. Additionally,
he interaction between the features is determinative and must be considered. These characteristics and requirements fit well in the
ecision tree approach.

ecision tree
A decision tree is a supervised learning algorithm of machine learning in which the machine splits the data into two or more

n each step based on single features to improve the classification. Despite the simple logic, it has many advantages over other
lassification methods.

It makes no assumptions about relationships between variables, so there is no concern about collinearity which is likely in our
ata. For example, if two features are highly correlated and we split based on one, little or no information can be obtained by
plitting on the other, and it will be ignored in favour of another feature.

The decision tree considers the interaction between features due to its sequential algorithms. The interaction is theoretically and
ractically significant because we have few features, and each interaction between a few variables may explain the variability in
he classifications. Immunity of the decision tree to outliers is also crucial since the order book contains fleeting orders submitted
y fat finger error or for manipulation. Unlike the regression model, the decision tree considers non-linearity and does not require
caling or converting categorical variables to several dummy variables.

Despite many advantages, it bears some disadvantages, among which overfitting is more critical. A single decision tree deeply
rown with many branches has a shallow bias, but it might fail to predict out-of-training sample data. Several techniques have
een suggested to overcome the vulnerability to overfitting, each of which mitigates one of the abovementioned advantages. We
an compromise one characteristic in favour of more generalisability depending on which characteristic is more important in
ach situation. For example, when accuracy is more critical than interpretably, we implement the ensemble tree method, which
ddresses the skewness issues and will be discussed in the next section. Limiting depth, leaf size, and pruning are other techniques
or overcoming techniques that improve generalisability and interpretability with a potential reduction in accuracy.
7
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Ensemble tree
The ensemble is a supervised learning approach in which multiple learning models (weak learners) are combined to produce a

etter predictive performance. Supervised learning algorithms generally look for a hypothesis through a hypothesis space that best
its the data concerning the particular problem. Ensembles combine each algorithm’s found hypotheses to form a better-performing
ypothesis. This hypothesis may not be included in the hypothesis space of weak learners.

There are several types of ensembles, and choosing the best option depends on why we move from base learners to ensemble
earners. In our case, the concern is the imbalanced number of classes and overfitting. Therefore, boosting is the best (so far) ensemble
echnique that takes care of these issues. It is noteworthy that ensemble methods typically require more computational and storage
esources than base learners, especially regarding the order book data, which becomes more crucial. For example, among all six
vailable boosting techniques, our resources could not afford to apply ‘‘bootstrap aggregating’’ (aka bagging or random forest) and
‘total boost’’ on our extensive dataset. However, they could have performed better in the reduced data version over the other four

ethods.
Therefore, we evaluate four boosting methods- adaptive boosting, logic boosting, robust boosting, and random under-sampling

RUS) boosting- all available in the MATLAB machine learning toolbox. The selected ensemble methods work sequentially so that
he misclassification of each step will be used to adjust the hypothesis space of the next step. Each boosting method performs this
equential process differently.

oosting evaluation
Theoretically, ensemble tree-boosting methods are evaluated by investigating the process of combining weak learners to see

ow they deal with different data characteristics such as noise, skewness, etc. Another evaluation method is to use real-world data
nd seek the best predictive power. Although the empirical approach requires more computational resources, the results are more
ealistic because no assumptions are made.

Following empirical evaluation, we employ the hold-out technique for validation, which is a part of the data excluded from
he training to be used later to evaluate the trained model’s precision. As already explained, data are cleaned from outliers and
rrelevant features and another side, some features like order life and order depth were extracted and added to the database.

We created a non-stratified random partition to evaluate boosting methods that held 20% of data out of training. Holdout data
ill later be used as test data to assess and compare each model’s predictive power. The standard CART algorithm constitutes 100
eak learners for an ensemble with surrogate splits. Due to missing values in the data, ensembles of trees with surrogate splits
erform better.

The classification provided by BEDOFIH is multi-class, including pure-HFT, Mix-HFT and Non-HFT. Specifically, BEDOFIH
lassifies traders in two sequential steps. First, it functionally separates all HFTs from Non-HFT and then sub-classifies those HFTs
nto Mix-HFT and Pure-HFT based on whether they are investment banks. Since the investment bank affiliation is not available in
rder book data, we only focus on the first step, functional classification and differentiate Mix and Pure HFT from Non-HFT.

To Evaluate the classifier, one can use many measures, each driven from a different proportion of cells in the confusion matrix.
ontrary to most classification problems focusing on precision measures, we pay attention to sensitivity and specificity measures in
his stage because the goal is to find the best model with higher power of detectability rather than interpreting the predicted class.

Precision (aka positive predictive value), recall (aka sensitivity) and overall misclassification error are provided in each matrix.
n the case of HFT class, precision answers ‘‘What percentage of predicted HFT are actual HFT?’’ and recall is the answer ‘‘What
ercentage of actual HFT are predicted as HFT?’’. While the nominator of both accuracy measures is the number of indeed predicted
FTs, the denominator of precision is the number of predicted HFTs, and recall is the number of actual HFTs.

Sensitivity, also known as recall, power of the test and True Positive Rate (TPR), shows what percentage of HFTs are detected
s HFTs. On the contrary, specificity, also known as True Negative Rate (TNR), indicates the ratio of Non-HFT, which the model
enuinely detects. Error type 1 is the complement of TNR, and error type 2 is the complement of TPR that is TPR = 1 − 𝛽 and

TNR = 1 − 𝛼.

Results of validation
We trained four models using data from May 4th, 2017 and 4 boosting methods for the ensemble tree. The validation of these

models has been performed using hold-out data from the same day. Fig. 1 reports the validation of four trained models depicted in
the confusion matrices. The matrices show how many order in the hold-out data is classified or misclassified as HFT and non-HFT.
The numbers in these 2 × 2 matrices allow us to compute any evaluation metrics.

odel selection approach
As confusion matrices in Fig. 1 show, none of the models outperforms others in all validation measures. Thus, the approach for

etermining the best model is decisive in highlighting the critical measures.
As mentioned, in the model selection stage, the focus must be on the TNR and TPR, but even selecting between these two for

he final decision on the best model requires a different approach. If the cost of misclassifying HFT (i.e. The true class is HFT but
etected as NON) is high, TPR is the decisive measure. TPR shows what percentage of HFT is indeed detected by the trained model.
onversely, if the cost of misclassifying NON is high, TNR is the measure for finding the best model. This study’s approach is on the
igh cost of misclassifying NON, which implies we prefer a model with the highest detection rate of NON without vital compromise
n HFT detection.
8
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Fig. 1. Confusion matrices. It shows the model’s confusion matrices trained with the ensemble tree’s four-boost technique. Target classes are true member types
of holdout data, and output is predicted member types by each model. The confusion matrices report the number of predicted versus actual classes. The true
predictions are depicted in blue, and the wrong predictions are shown in pink. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)

Table 4
True negative and positive rate of four models against different sets of data.

AdaBoostM1 LogitBoost RobustBoost RUSBoost

Against hould-out subset TNR 0.73639 0.39691 0.73195 0.73694
TPR 0.99859 0.99996 0.99947 0.99564

Against data from 02/01/2017 TNR 0.53894 0.08962 0.53794 0.63961
TPR 0.99576 0.99981 0.99752 0.98808

Against data from 03/01/2017 TNR 0.56524 0.15148 0.55740 0.65282
TPR 0.99693 0.99945 0.99786 0.99276

Against data from 04/01/2017 TNR 0.60478 0.17817 0.60202 0.68572
TPR 0.99475 0.99855 0.99555 0.99024

Against data from 05/01/2017 TNR 0.63293 0.23851 0.63753 0.72329
TPR 0.99605 0.99974 0.99706 0.99176

Against data from 06/01/2017 TNR 0.67545 0.38210 0.64299 0.72286
TPR 0.99797 0.99994 0.99886 0.99418

Results of testing by out-of-sample data
Table 4 lists the TPR and TNR of the models. The first two rows are from the classifying test of 20 per cent of data that has been

held out of training, and the other rows come from a test conducted on data from different days.
Throughout all tests, the model trained using the RUS boost ensemble technique provides the most significant rate of TNR while

providing almost the same rate of TPR as other models. On average, choosing RUS boost over other models improves TNR by at
least 8.14%, compromising only 0.45% of TPR. It is important to note that the higher TPRs can be attributed to the fact that HFTrs
generally share similar trading activities and exhibit common characteristics. This homogeneity in HFT behaviour makes it easier
for the model to identify and classify HFT instances accurately. On the other hand, the non-HFT category encompasses a diverse
9
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Table 5
Predictive and Negative Predictive Values.

PPV and NPV 20% Hold-out 2.1.2017 3.1.2017 4.1.2017 5.1.2017 6.1.2017

PPV of RUS boost model 0.9924 0.9812 0.9847 0.9845 0.9853 0.9882
NPV of RUS boost model 0.8306 0.7385 0.8007 0.7764 0.8245 0.8418

Table 6
True negative and positive rate of four models against six sets of data.

AdaBoostM1 LogitBoost RobustBoost RUSBoost

Against hould-out subset TNR 0.70771 0.75197 0.75301 0.89767
TPR 0.99252 0.99349 0.99267 0.95654

Against data from 04/05/2017 TNR 0.75276 0.76638 0.76947 0.87106
TPR 0.99498 0.99457 0.99538 0.94946

Against data from 03/01/2017 TNR 0.65148 0.67438 0.68902 0.90164
TPR 0.99326 0.99353 0.99357 0.95706

Against data from 04/01/2017 TNR 0.6845 0.70093 0.71558 0.90985
TPR 0.99149 0.9919 0.99097 0.95125

Against data from 05/01/2017 TNR 0.70965 0.73087 0.74474 0.92327
TPR 0.99251 0.99143 0.99278 0.95401

Against data from 06/01/2017 TNR 0.69898 0.7234 0.73186 0.89897
TPR 0.99502 0.99525 0.99502 0.9557

range of market participants, including different trading strategies and objectives. This heterogeneity within the non-HFT group
presents a more significant challenge for the model to detect non-HFT traders, leading to comparatively lower TNRs accurately.

The observed increasing trend in TNR from January 2nd to January 6th can be attributed to the higher homogeneity of
rder characteristics among non-HFT participants, particularly in a direction opposite to that of HFT traders. To provide a more
traightforward explanation, let us consider a scenario where our model detects HFT traders solely based on the short lifespan of
heir orders. A higher TNR on a specific trading day indicates that the lifespan of orders submitted by non-HFT participants is
onger and more uniformly distributed among all non-HFT traders. In other words, there is a greater homogeneity among non-HFT
articipants in terms of order duration, specifically in a manner that distinguishes them from HFT traders. As a result, increasing
he homogeneity among non-HFT participants in the opposite direction of HFT detection leads to a higher TNR.

Given these observations, we have chosen the RUS boost7for the rest of our analysis. Table 5 shows the positive and negative
redictive values (PPV and NPV) for the RUS boost model against hold-out data and five other data sets from different days. PPV
nd NPV describe the model’s predictive performance in detecting HFT and Non-HFT. For example, a PPV of 99.24% explains that
ess than one per cent of those seen as HFT is misclassified. The NPV is less than PPV, meaning non-HFT orders cannot be detected
ccurately by those features we chose and extracted for HFT identification. It can be because non-HFTrs are more diverse than
FTrs regarding trading strategies. Nevertheless, the model exhibits satisfactory performance in identifying non-HFT instances.

The results highlight the selection of the boosting method based on the high penalty associated with misclassifying non-HFTrs,
hile still providing a robust ability to identify HFTrs.

Therefore, we suggest an ensemble decision tree boosted by the RUS method for identifying HFT. Although the model is highly
ccurate, little information can be gleaned from it to determine how the identification has been carried out and how it relates to
he theoretical definitions of HFT. To address this issue, we will present some methods for interpreting the final model in the next
ection.

obustness check
We reproduced everything we had done up to this point, but this time we trained the models using data from January 2, 2017,

o see if our results would be robust if we trained the models using a different data set.
Table 6 demonstrates the consistent superiority of the RUS boost model over the other three models in terms of true negative

ate, even when trained with different datasets. This performance advantage comes with only a minimal compromise in true positive
ate. Consequently, our findings exhibit robustness across diverse datasets used for training and evaluation.

The persistent higher true positive rate compared to the true negative rate can be attributed to the homogeneity of HFTrs, as we
ave previously discussed. In contrast, the heterogeneity of non-HFT participants contributes to the relatively lower true negative
ate. This phenomenon aligns with our earlier explanation of the characteristics and behaviours exhibited by HFT and non-HFT
raders.

Overall, these results reinforce the strength and generalisability of our findings, indicating that the RUS boost model consistently
utperforms alternative models in capturing true negatives while maintaining competitive true positive rates.

7 The problem of random undersampling adaptive boosting (RUS boost) is that it only considers a small part of data for training. For example, if the class
ith fewer members consists of 3 per cent of data, it undersamples the more significant class so that two classes have the same number in training. Due to our
10

umerous observations, we could train our model correctly even though it covered only a tiny fraction of our dataset.
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Table 7
Performance of RUS-boost model trained with different datasets for different market capitalisation.

Subset
proportion

Trained by data from May 4th 2017 Trained by data from Jan 2nd 2017

F-score Accuracy F-score Accuracy

Against Large-cap subset 70% 0.9954 0.9909 0.9774 0.9561
Against Mid-cap subset 25% 0.9952 0.9904 0.9749 0.9514
Against Small-cap subset 4% 0.9770 0.9564 0.9170 0.8537
Against Micro-cap subset 1% 0.8923 0.8476 0.7730 0.7257

To assess the performance of our RUS-boost model in different market capitalisation categories, we trained the model using two
istinct datasets. Table 7 provides an overview of the model’s performance across various subsets and includes the proportion of
rders in the order book for each category.

The results showcase the model’s capability to identify HFT orders across different market segments effectively. With significantly
igh F-scores and accuracy, the model performs exceptionally well for the large-cap and mid-cap subsets, which constitute the
ajority of orders in the order book (70% and 25%, respectively).

While the model’s performance remains commendable for the small-cap subset, there is a noticeable decrease in performance as
he subset proportion decreases. This trend becomes more pronounced in the micro-cap subset, representing a mere 1% of orders,
here the model faces a more significant challenge. The lower F-score and accuracy values in this subset can be attributed to the

imited data available for micro-cap orders. The smaller proportion of orders poses a difficulty for the model in accurately identifying
FT activity within this category.

Overall, the analysis affirms the effectiveness of the RUS-boost model in identifying HFT orders across diverse market
apitalisation categories. It emphasises the importance of considering the subset proportions and data availability when interpreting
he model’s performance.

.2. Interpretation of the model

As already mentioned, ensemble decision tree classifiers are generally more accurate than simple trees, but they lead to predictors
hat are difficult to interpret compared to decision trees. Therefore, it is compelling to understand how the classifiers made their
lassifications. One way to achieve this is to reverse engineer the process to move as far backwards as possible.

everse engineering
Accuracy and interpretability are two aspects that hardly come together, so we take a reverse engineering approach to explain

highly accurate model.
The ensemble tree returned a model with high accuracy but uninterpretable. An interpretable model with clear logic can

lluminate the ensemble model’s black box and clarify clear reasoning. The starting point for this reverse engineering process is
hose estimated scores from the ensemble model. The model produces a matrix of scores with one row for each observation and
wo columns. Although the mathematical analysis of how these scores are calculated is beyond the scope of this paper, we know
he score of each observation represents the degree of confidence that the observation is part of that class. The higher the score,
he greater the level of confidence.

These scores are, in fact, one step before a final binary classification is made. Based on an observation’s features, the ensemble
odel assigns scores to each observation and then classifies the observation by the resulting score. The investigation is performed

n a convoluted sequence of processes called a black box. Various ensemble methods generate scores based on the other methods
sed to calculate them. In the case of RUS boost, the scores are all positive, and the sum of each observation’s scores for two classes
s always a constant. If the observation’s score for a given class is higher than the average of its two scores, the model classifies the
bservation in that given class otherwise in the other class. The magnitude of the scores indicates the degree of confidence in the
lassification. Scores around the average are those observations classified with the lowest confidence.

The threshold simplifies classifying observations but keeps us from knowing how confident we are about each observation class.
his means that in the transition from scores to binary classification, we lose the confidence levels for each class. Indeed, scores are
icher in information than the final binary classification. In the next section, we will use these scores to create a simulated dataset
o understand the black box better.

imulation
To determine how the calculated scores come from the features, we create a dataset with the features and the score based on those

eatures. We use only scores assigned to the HFT class for each observation, as the non-HFT score is merely a constant minus the HFT
core. As a result, the simulated dataset consists of the same variables as the original dataset but minus the member type flags, which
re replaced with the HFT scores. To simplify our explanation based on fuzzy logic, we performed a simple linear transformation of
he scores to probability by scaling them to their maximum. The linear transformation ensures that linear relationships have been
reserved. As a result, the transformed score represents the probability that an observation belongs to the HFT class.

The same reasons that led us to choose a decision tree for classification also led us to select a regression decision tree for our
imulated data. The simulated dataset only differs in member types, which are now replaced by a continuous variable of scores.
11

cores are considered the dependent variable in a regression tree model.
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Fig. 2. Pruned tree regression of simulated data.

A regression tree model is constructed based on the simulated dataset. Overfitting is of no concern and even preferred in this
classification, which is solely used to reverse engineer ensemble training. Indeed, we will build an interpretable regression tree
representing the black box of ensemble trees. As a result, to achieve a perfect fit between the scores and the features, we eliminated
those observations misclassified in the ensemble model, which made up about 1% of the data.

To ensure the best possible fit, we constructed a deep regression tree, and then to make an interpretable model, we pruned it
back to a maximum of 15 leaves. It has long been demonstrated that building a deep tree and then pruning it to a specific number
of leaves yields a more accurate model than simply building the tree with that number of leaves.

A single tree, the representative of ensemble model
Fig. 2 shows the pruned regression tree, which represents the ensemble tree boosted by the random under-sampling method.

The final values in each leave show the probability of being HFT. With fifteen nodes in the decision tree, this simplified regression
model offers insights into the relationship between the selected features and the probability of an order being classified as HFT.
The tree structure reveals the importance of variables such as ‘‘recs’’ (trading group regulation), ‘‘order life’’, ‘‘state of the order’’,
‘‘account type’’, and ‘‘BBO_diff’’ in determining the HFT classification.

Table 8 listed these groups from the most probable states of being an HFT order to the least likely.
Only five features represent the ensemble model in the regression tree and the table below. This means that the interpretable and

simplified version of the ensemble tree uses only five of the 16 features to describe a simple regression model with fifteen nodes.
Two sets of data for both models are used to determine how close the regression estimate is to the estimate of the ensemble model.

Fig. 3 shows the cumulative distribution function for both in-sample and out-of-sample estimations. We used data from January
2nd 2017, for out-of-sample. As one might expect, there are fewer kinks in the simple regression tree than in the ensemble model.
It may stay very close to the original model along the entire graph.

To test the predictive power of the simplified regression tree, we estimated the HFT probability for January 2nd 2017, data and
then categorised them into HFT and non-HFT data. Probability less than 50% replaced with class non-HFT and others with class
HFT. PPV and NPV were 97.1% and 79.7%, respectively, very close to those in the original ensemble model reported in Table 5.

Table 8 shows the sorted leaves of the regression tree from high to less probable HFT. For example, the first row says if an order
placed by a market maker or parent company for equity which is being traded in a regulated market with the continuous auction
and static collar (recs) and then is cancelled by the broker or by STP mechanism, it is an HFT order with a probability of 99%. On
the contrary, if an order is placed by a Retail Market Organization (RMO) or a market maker for security, not in recs and remains
in the order book for more than 98 s, it is a non-HFT order with a probability of 99.8%.

Unlike recs, account, and order state, which are limited to the categories included, the BBO difference and order life domain
are continuous, and the thresholds are likely to change in another model. Yet what is significant here is to illustrate the ability
of regression trees and fuzzy logic to interpret ensemble models that provide accurate classification through non-interpretable
processes.
12
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Fig. 3. Cumulative distribution function.

As can be seen from the tree graph and the sorted table, recs and order life are the most distinguishing characteristics, meaning
that almost all orders for securities with recs and all orders with order life less than the specified thresholds are more likely to be
HFT.

5. Discussion and conclusion

The empirical results from the evaluation of the models established that the ensemble model combined with random under-
sampling among several supervised learning approaches is the most effective method for detecting HFTs in order book data. The
model showed a very robust performance in classifying data from five other trading days during a week and performed very well
on all those days. The method requires feature engineering, and those extracted features based on theory were among the most
differentiating ones in the final model and the regression tree. For example, the shorter order life and tendency to the securities
with the highest liquidity have long been attributed to HFT in the literature.

To shed light on the black box of the ensemble model, we took a reverse engineering approach to the fullest extent possible. We
assigned the ensemble score to the features in an interpretable manner. As a result, we could build a regression tree that returned
13
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Table 8
Sorted list of the states resulted from regression tree.
recs Account Order life Order state BBO Diff Prob. of HFT Type of order

1 6, 7, 3 4, p 99% Order for recs placed by Market Makers (MM) or Retail MM or parent company account
that is cancelled by the broker or self-trade prevention (STP) mechanism

1 6, 7, 3 < 14 389 2, 5, C, O, 3 < 0.2% 95% Order for recs placed by MM or Retail MM or parent company account
that totally filled, modified, eliminated by day validity, eliminated by
corporate events or cancelled by trading system within 14 389 seconds,
with a price in range of BBO ±0.2%

1 6, 7, 3 < 14 389 2, 5, C, O, 3 > 0.2% 88% Order for recs placed by MM or Retail MM or parent company account
that totally filled, modified, eliminated by day validity, eliminated by
corporate events or cancelled by trading system within 14 389 seconds,
with a price out of range of BBO ±0.2%

1 2 < 428 4 < 2% 88% Order for recs placed by a proprietary account, cancelled within 428 seconds
and its price is in range of BBO ±2%

1 2 < 428 2, 5 83% Order for recs placed by a proprietary account totally filled or modified
within 428 s

0 < 98 4 80% Order for securities not in recs that has been cancelled by the broker
within 98 s

1 2 > 428 < 0.7% 71% Order for recs placed by a proprietary account, with a life more than
428 s and a price in range of BBO ±0.7%

1 1 66% Order for recs securities placed by a client account
1 4 < 428 > 2% 65% Order for recs placed by a proprietary account, cancelled within

428 s and its price is out of range of BBO ±2%
1 2 > 428 > 0.7% 53% Order for recs placed by a proprietary account, with a life more than

428 s and a price out of range of BBO ±0.7%
1 6, 7, 3 > 14 389 2, 5, C, O, 3 48% Order for recs placed by MM or Retail MM or parent company account

that totally filled, modified, eliminated by day validity, eliminated by corporate
events or cancelled by the trading system and with a life of more than 14 389 seconds

0 1, 2, 7 > 98 45% Order for securities not in recs placed by clients account, proprietary account
or parent company account and lasted more than 98 s

0 < 98 2, 5 43% Order for securities not in recs, totally filled or modified less than 98 s
1 4 1.7% Order for securities in recs placed by a RMO
0 4, 6 > 98 0.2% Order for securities not in recs placed by Market makers (MM) or Retail

Market Organizations (RMO) with an order life of more than 98 s

the probability of being HFT. The regression tree that most closely resembles the ensemble model showed very high accuracy in
classification, regardless of whether in-sample data was used.

The interpretation of the regression tree and its branches goes beyond model accuracy. It offers insights into the strategies
ssociated with HFT, revealing valuable information for policymakers and researchers interested in understanding the dynamics
nd behaviours of HFT participants. This interpretation contributes to the literature by supporting the theoretical definition of HFT
nd providing a simple and innovative method for interpreting non-interpretable classification models.

This study adds to the existing literature in several significant ways. Firstly, the resulting model demonstrates exceptional
recision and reliability in detecting HFT. Moreover, the approach employed in this study can be applied to any market with similar
rder book data, enabling the identification of HFT in real-time, unlike existing techniques that rely on annual data. This real-time
apability empowers regulators to monitor and regulate HFT activities following order completion promptly. Additionally, publicly
vailable data, as opposed to relying solely on regulatory data, facilitates broader research on HFT and removes potential data
imitations, leading to further advancements in HFT identification.

Furthermore, the methodology presented in this study has the potential to establish a standardised approach to HFT identification.
nifying the identification process can eliminate inconsistencies arising from various methods, resulting in more consistent and

eliable research outcomes. This standardisation can enhance the understanding of HFT’s impact on financial markets and facilitate
omparative studies across different markets and regulatory environments.

While the developed model is currently tailored to stock markets with order book data similar to the AMF database, the
omprehensive methodology presented can be transferable to other stock exchanges. Researchers and practitioners can utilise the
tep-by-step approach, encompassing data preparation, feature extraction, model selection, and interpretation, as a guideline for
onducting similar studies in diverse market contexts. This transferability fosters future research on HFT detection and promotes a
eeper understanding of HFT dynamics across global markets.

Additionally, the created model was interpreted in detail, down to the probabilities assigned to each branch of the decision
ree, thanks to this study’s novel reverse engineering approach to decode the ensemble tree’s black box. Using the idea of fuzzy
embership, policymakers can benefit from this probabilistic categorisation and develop flexible policies. Indeed, the interpretation

f the ensemble model contributes theoretically to the literature by supporting the theoretical definition of HFT and methodologically
y presenting a simple and innovative way of interpreting non-interpretable classification models. Policymakers and researchers
an interpret very accurate models and thus gain an understanding of the aggregate behaviour of HFTrs, which can lead to further
nvestigation and optimisation of policies.

While this study’s results may help detect HFT using the AMF database, the methods used for feature engineering, model selection,
nd reverse engineering to interpret the model generally apply to any dataset. Therefore, our research not only aids in identifying
FTs in the French market but also provides methodological guidance for the broader task of identifying HFTs in general through

he application of machine learning. By leveraging the strengths of the model and its methodology, policymakers and researchers
an gain valuable insights into the behaviour and impact of HFT, paving the way for a better understanding and management of
his increasingly prevalent trading strategy.
14
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