greatly differs from the random search, because it provides
higher rewards to a diverse behavior. There is also an
archive, which stores the previously explored areas of the
search space. The novelty score is then counted as the
average distance from the F-nearest neighbors. However,
the distance metric is problem-dependent, which could
be problematic (Lehman and Stanley, 2001a).  Another
interesting wdea, which promotes the novel behavior, 15
the Behavior characterization algorithm (Meyerson et al.,
2016). This algorithm maps each individual behavior to a
vector space. The search is then driven towards diversity
in a metric space of these behaviors. Another approach to
this problem is Curiosity learning. It works with intrinsic
rewards that promote exploration (Pathak et al., 2017).
Building on Nowvelty Search, Surprise Search was later
introduced as another divergent search technique working
with the notion of surprise. It achieves an efficiency
comparable to the Novelty Search and is also able to find
solutions more frequently (Gravina et al., 2016).

The ability to generate a diverse set of high-performing
solutions in evolutionary algorithms is crucial and has been
addressed in many so-called Quality-Diversity algorithms,
such as the MAP-Elites algorithm (Mouret and Clune,
20015) or NS with Local Competition (Lehman and Stanley,
2001b).  In MAP-Elites (Mouret and Clune, 2015), the
search space is discretized into unique regions, for each
of which the best-performing solution is identified. The
selection of the fittest individuals withing a population
is restricted to a specific feature, the fittest individuals
are kept in a multidimensional archive and only replaced
if they are outperformed. This way a diverse group of
well-performing  individuals with different features can
develop in the domain space in a single run. However, the
problem of local optima within the elite may still occur
over ime and the scalability to high-dimensional spaces
is also problematic due to the exponential growth of the
regions with increasing dimensionality.  This problem
is overcome by CVT-MAP-Elites algorithm (Vassiliades
et al., 2016), which extends the MAP-Elites algorithm and
proposes a solution to reduce the number of regions in
high-dimensional spaces.

The problem of the deceptive local optima arises not just in
evolutionary algorithms, but also in reinforcement learning
itself. The reinforcement approaches optimize only for
the reward (e.g. DON (Mnih et al, 2013), A3C (Mnih
et al., 2016)) often fail to learn behaviors and strategies
1o overcome the local optima and solve the task at hand
(Jackson and Daley, 2019). To solve this issue, Novelty
Search and other approaches such as episodic curiosity
(Savinov et al., 20019} were explored. In (Jackson and
Daley, 2019) instead of measuring the final position of the
agent and comparing it to other individuals of the current
generation and the ones in the archive, the Levenshigin
distance between the sets of actions performed by the agents
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was used to measure the extent of behavioral novelty. The
approach of comparing the sequences of actions instead
of the final positions removes the need to detect the exact
position of an agent for each frame, and therefore makes it
easier o generalize Novelty Search to any Atari game.

Our approach: Sugar Search

,/ e

Figure 1: Visualization of the hard map with {on the right)
or without the sugars (on the left). The red dot is the start-
ing point, the green dot is the goal, and the black lines are
the obstacles. The sugars are represented as gray rectangles,
they are placed randomly, and their density is the only hy-
perparameter. Only the agent who collects the sugar first is
rewarded for it

Even though Novelty Search is conceptually interesting,
it seems to employ a certain degree of supervision, which
is needed to measure and decide how unigue each agent’s
behavior is. But this is inconsistent with what we observe
in nature, where it is rather the environment that formulates,
motivates, and rewards individuals for being different.

This difference can be demonstrated on a maze problem
specified as follows. A maze contains multiple obstacles
and a target. In the environment, there are agents whose
goal is 1o reach the target while avoiding obstacles, If an
agent reaches an obstacle, its movement stops.

In the Novelty Search algorithm, the agents that stop at a
puoint far away from the others will receive a higher fitness,
which motivates them to explore the maze. On the down-
side, this requires us to compute the k-nearest neighbors for
each agent.

Owr approach is fairly different. We propose a method called
Sugar Search, which introduces sugar objects as a form of
a reward. Sugars are distributed randomly (and uniformly)
over the map, and an agent is rewarded only if he is the first
one o collect a sugar object. This way the only form of
supervision is the sugar placement and, compared o Nov-
elty Search, we can avoid the costly computation of the k-
nearest neighbors and eliminate the archive completely, The
concept of the sugar-based search leads to a different pattern
in the exploration of the search space than Novelty Search
does.

d-sBuipaaoold/jes)/npajiwioallp//:dpy wouy papeojumoq

€ |BSl/6GYSE0T/ L/VEICZOZIES! /P

20z Atenuer Lg uo Jesn O LNIYL 1A VLISHIAINN Aq ypd’ 26500



Owr fitness function p for an agent & is defined by:
plx) = Zf.'ﬂ”i’f.‘f[.r. 8}
i=1

where n is the total number of sugars, s; is the i-th sugar.
And the function collect returns 1 if 5; was collected by the
agent r, otherwise it returns 0. Once a sugar is collected
by a specific agent, no other agent can collect it and get
rewarded again, also sugars do not re-spawn. The main loop
of the algorithm is described in depth in Neural Network
configuration.

The visualization of the sugar placement in a maze is shown
in Figure |, where the hard map that was used in our
experiments is depicted. It is important to highlight that the
sugars are placed randomly and their density is the only
hyperparameter.

Pixel Novelty

Maturally, we started thinking of ways to generalize Sugar
Search in the games, where we do not have access 1o the
position of the agent. A good example of this problem
are Atari Games, where the only information we have 1s
the screen. Therefore, agent localization and tracking are
difficult.  To overcome this problem, we propose Pixel
Movelty, a generalization of our Sugar Search. Instead of
rewarding the agent for collecting the sugar first, we will
reward him for generating a new set of pixels (new screen
content) first. Every time this occurs, the agent’s fitness
value is increased and the pixel compositions of the new
screen are stored for future comparisons. If this or any other
agent creates the same screen in the current generation, he
is not rewarded again. Importantly, the archive of screens
is reset after each generation, therefore in the next run, the
same logic is applied. This idea promotes the agents to act
in an unexpected, new, and never-before-experienced way,
and it also solves the problem of agent localization and
tracking. Eliminating this process is expected to reduce the
computational time significanily.

Experiments

Maze navigation task

To prove our suggested approach - Sugar Scarch and to see
how it compares (o the objective-based search and Novelty
Search, we decided to test these algorithms on the maze en-
vironments. These environments, proposed in (Lehman and
Stanley, 200 1a), are widely vsed due to the fact that they
contain many dead ends and local optima. Algorithms that
are optimizing the distance to the goal may be caught in a
local minimum and thus perform worse than the divergent
algorithms like ours.
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wavy movement is required to move further away from the goal
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(c) Super-hard map. It intro-
duces more dead ends and a
complex movement of the agent
is needed to pass it successfully.

Figure 2: Medium, hard and super-hard map. The red dot
is the starting point, the green dot is the goal, and the black
lines are the obstacles.

The maze navigation task takes place in a set of 3 maze
environments of increasing difficulty, which are shown in
Figure 2. The maps of these mazes were designed to cor-
respond with the mazes from the original Novelty Search
paper (Lehman and Stanley, 201 la). The medium map in
Figure 2a has deceptive dead ends that can lead the agent to
4 local minimum. To overcome this problem, the agent has
to develop a wavy movement to get through the obstacles to
the goal. The second maze, the hard map, is more difficult
because the agent has to move completely away from the
goal in order to reach it, as we can observe in Figure 2b.
Finally, we have also constructed the super-hard maze
shown in Figure 2¢, which is a combination of the medium
and the hard mazes. It contains deceptive ends and also re-
quires a non-trivial movement (o reach the goal.

For the maze navigation task, sugars were distributed ran-
domly and uniformly over the environment with a density of
0.3 per pixel as listed in Table 1. In the fitness-based search,
a distance to the zoal was used to determine the fitness value
of the agent. In the Novelty Search technigue, |5-nearest
neighbors were used.

All experiments were done under the same conditions and all
the configuration specifics are listed in Table 1. The agent
that gets close enough to the goal, within a fixed amount of
time, is considered to be the solution.

Throughout the experiments, we use agents that are con-
trolled by a neural network (NN) shown in Figure 3. The
goal of an agent is o develop such a NN that it can navi-
gate him from the starting point to the endpoint of the maze
before the timeout. Each agent is equipped with 8 sensors
in total: 4 range finder sensors, which show the distance to
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the nearest obstacle on each side, and 4 radar sensors, which
indicate the direction 1o the goal. The value of these sen-
sors is normalized and used as the input to the neural net-
work, which will evaluate whether the agent should move
up, down, left or right. The specifics of the NN that was
used throughout all the experiments are further described in
Neural Network configuration.

HIOOER LAYERS

INPUT LAYER OUTPLIT LAYER

Figure 3:
task.

Agent’s neural network in the maze navigation

Atari games task

The maze navigation task is a well-suited environment 1o
test our approach and compare it o other works such as
Novelty Search. More advanced problems such as walking
robots could show the same resulis,

Further, we decided to implement this idea and generalize it
to the environment of Atari games. Atan games have been
widely used to compare many machine learming algorithms,
especially deep reinforcement learning algorithms (Mnih
et al., 2013). But due to the many implementations of Atari
games, it is difficult o compare the results of different
algorithms. That is why the OpenAl Gym (Brockman et al.,
2016) games were chosen at the beginning o avoid any
differences in the underlying environment and to see if our
ideas could compare with some of the famous algorithms
(Mnih et al., 20013) Young et al., 2019,

Later on, due to the difficulties with the agent localization
and tracking in the OpenAl Gym (Brockman et al., 2016),
we have decided 1o 1est our Sugar Search approach on the
MinAtar (Young and Tian, 2019).  MinAtar is inspired
by the Arcade Learning Environment (Bellemare et al.,
2012} but simplifics the games o make experiments with
the environments more accessible and efficient. Currently,
MinAtar provides analogues to 5 Atan games. which we
have extended by Ms. Pacman and Montezuma's revenge
implementation.  The environments provide a stale repre-
sentation, where each of the n channels corresponds to a
game-specific object, such as the ball, the paddle, and the
brick in the game Breakout. Thanks to this environment, we
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were able to track the agent and perform Sugar Search,

The goal of the agent is similar to the maze navigation task:
to develop such NN that it can achieve the highest score
possible. In the MinAwar environment, the agent’s input
consists of all the swate representations of the objects. In
the OpenAl gym, the input is the screen pixels. However,
for computational reasons, the screen resolulion was
down-sampled 8 times to (210/8) = (160/8) pixels, and the
RGB colors were converled into gray-scale. This alteration
resulted in 520 input neurons used in the experiments, from
the original 100,800,

All the necessary configuration parameters used in the Atari
games task are included in Table 1. In the fitness-based
search, a score was used to determine the fitness value of the
agent. In the Novelty Search technigue, S-nearest neighbors
were used. However, to reach even better performance,
we had to modify the idea of our approach slightly by
re-spawning a new sugar during the game. Because in some
Atari games, e.2. Ms, Pacman, the agent has no finish poini
and its goal is to collect as many points as possible before
getting Killed. This requires traveling 1o places that have
been explored in the past but may be beneficial to revisit
in the present moment, To motivate the agent 1o behave in
such a way, we decided to re-spawn a sugar every | frame.

Neural Network configuration

Table 1: The experiment configuration for both the Maze
navigation task and the Atari games of our Sugar Search
with RNM.

Each agent has o develop a neural network, which will
allow him to achieve the goal. The challenge is how 1o
develop this neural network. In the original paper (Lehman
and Stanley, 201 la) NEAT, an evolutionary algorithm was
used (Stanley and Miikkulainen, 2002). However, it has
numerous hyperparameters which are difficult to optimize.
Instead, we used Elman recurrent neural network (Elman,
1990y (RNN), which is a simple NN with a recurrent
hidden layer. We used random Gaussian noise o mutate its
weights.

Parameters Maze env. | Atari env.

Population size 250 75

Muax. genecrations 1200 10K

Time frame {max. frames) 00 250

Sugars density per pixel 0.3 0.3

{ re-spawn time frame - 5

Hidden layer 1 1

Hidden neurons 32 a2

Activation function Rell RelU
“Gaussian noise | N(D, 0.1%) | N(0, 0.17%) |
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In our algorithm, we randomly initialize weights to the
RNN for each agent. When the time limit is reached, we
evaluate 10% of the best agents and keep them for the next
generation. The rest of the population is modified - random
Gaussian noise is added to its weights. After this mutation,
the agents are added to the next generation. This approach
is much simpler and results in fewer hyperparameters.

The benefits of our concept of the NN are obvious from
the experiments on the medium map, where NEAT needed
19.8 generations on average to finish the maze, whereas
the simple Elman neural network (Elman, 1990) with our
evolutionary algorithm only needed 10.4 generations (these
results were averaged from 50 runs). This proves that our
approach is much better, and for these reasons we used it in
all of our experiments. All the other parameters necessary
for the reproduction of the experiments are listed in Table 1.

Results
Maze navigation task

We have evaluated the results from the least to the most com-
plex map: the medium map, then the hard map, and finally
the super-hard map in Figure 2. All the results are shown
in detail in Table 2. The level of success of the search tech-
niques is measured by the average number of generations
needed to reach the goal and the number of successfully fin-
ished runs out of 50 (meaning runs where we were able to
reach the goal). Note that we use the same way to reference
the maps as in the Novelty Search (Lehman and Stanley,
2011a) paper to avoid confusion.

On the medium map, Novelty Search and our Sugar Search
performed similarly, while the fitness-based search was ap-
proximately two times slower. All of these techniques were
able to successfully finish all 50 out of 50 runs. The dif-
ference between divergent searches and fitness-based search
is statistically significant (p < 0.01; Student’s t-test). On
the hard map, where the deceptiveness of the environment is
more compelling, a remarkable difference between all three
examined algorithms can be distinguished. Sugar Search
performed significantly better than Novelty Search in terms
of the success rate and the number of generations needed,
as shown in Table 2. The difference between Sugar Search
and Novelty Search is statistically significant (p < 0.05;
Student’s t-test). Both divergent approaches largely outper-
formed the fitness-based search, which was unable to reach
the goal in any run.

Similar results were observed on the super-hard map. The
fitness-based approach failed to reach the goal in any run
again. The divergent approaches were able to solve this
maze with a reasonable success rate: 14 for Novelty Search
versus 24 for Sugar Search, and with an average number of
generations needed: 345.3 for Novelty Search versus 280.4
for Sugar Search. This difference is not statistically signif-
icant (p < 0.05; Student’s t-test). A larger sample of runs
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on this map would be needed to confirm the significant dif-
ference of our Sugar Search outperforming Novelty Search,
which can be observed in the results.

Table 2: Maze navigation task performance in the average
number of generations needed to reach the goal and the num-
ber of successfully finished runs out of 50 (meaning runs
where we were able to reach the goal). The standard de-
viation is in parentheses. Bold font indicates the best per-
formance for each metric. All numbers are averaged on the
successful runs only. Symbols 1 () represent that the higher
(lower) the better.

Maze Generations | Finished runs
Results (out of 50)
med. | hard | super- | med. | hard | super-
map | map | hard | map | map | hard
map map
Fitness- 17.6 - - 50 0 0
based (9.18)
approach
Novelty | 10.4 | 237.7| 3453 | 50 | 23 14
approach | (5.08) | (172.12)| (183.42)
Sugar 11.7 | 153.3| 2804 | 50 | 35 | 24
Search (5.96) | (97.53) | (101.78)
(ours)
Reward density

Naturally, while working on the maze problem, an inter-
esting question arose. How does the density of the reward
distribution on the map affect the results? Our hypothesis
was that having as many sugars as there are pixels on the
map would produce the best results since theoretically a
higher density of sugars should lead agents to the goal more
efficiently.

From a series of experiments on the medium map with a
varying sugar density parameter as shown in Figure 4, we
have proven this hypothesis valid. Placing sugar on every
pixel produces the best results, and reducing the sugar
density generally slows down the process of reaching the
goal. Interestingly, performing a small-scale reduction of
the reward density still produces comparable results.

These findings can be beneficial when applied to a similar
problem defined in a continuous space, where the sugar
placement cannot be realized per pixel for computational
reasons.
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Figure 4: Average number of generations needed to reach
the goal (the lower the berter) and the sugars per pixel den-
sity trade-ofl curve.

Combining Sugar Search with the fitness-based
approach

We could observe that in a deceptive maze problem, the di-
vergent search, especially our Sugar Search, completely out-
performs the objective-driven search. But what if we com-
bined these two approaches?

We wanted to explore this idea further and decided to de-
sign a combined approach, where the agent is rewarded not
only for being novel {(divergent search) but also for moving
towards the goal (fitness-based search). This combined ap-
proach requires us to define the weights of each component
that would produce the best results, meaning we need to find
an optimal alpha.

plz) = a * distance + (1 — o) * sugars

In order to find an optimal alpha and observe how this

weighted approach stands in comparison with the original
Sugar Search and other technigques, we have executed a
series of experiments on the medium and the hard maps.
To reduce the computation time, as a proofl of concept,
we have excluded the super-hard map from the following
experiments. Based on the results of the basic Sugar Search
algorithm, we can expect to observe similar trends on the
super-hard map as the hard map.
From the results shown in Table 3, we can conclude that
the combined approach leads to improved performance,
specifically in the average number of generations needed
to reach the goal. On the other hand, an improvement is
not observable in the agent’s success rate. It was 29.3 on
average on the hard map, which is slightly worse than Sugar
Search alone.
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Table 3: Maze navigation task with the weighted approach:
performance in the average number of generations needed to
reach the goal and the number of successfully finished runs
out of 50 (meaning runs where we were able to reach the
goal). The standard deviation is in parentheses. Bold font
indicates the best performance for each metric. All numbers
are averaged on the successful runs only. Symbols T (])
represent that the higher (lower) the better,

Maze Results Generations | Finished runs
(out of 50) 1

medium | hard | medium | hard
map map | map map

Fitness-based 17.6 - S0 ]

approach 918

MNovelty approach 10.4 237.7 50 23

appr-uac]-. (5.08) (17213

Sugars 1.7 | 1533 30 35

approach (5.496) (97.53)

Weighted 8.0 148.7 50 32

with alpha 1/4 (797 (104.25)

Weighted 5.4 122.4 S0 30

with alpha 2/4 (408 (86,55

Weighted 6.7 139.1 50 26

with alpha 3/4 [4.59) (9087

Agents without sensors

The idea behind this section is to prove that the agents
are really processing the information from their sensors
to avoid hitting an obstacle and that they are not simply
memorizing a sequence of optimal actions instead. This
problem could arise when we take into consideration the
amount of memorization and the overall generalization in
terms of the agents’ performance in the mazes.

To prove this, we have decided to experiment with a blind
agent. The original agents were blinded - meaning they
had all their inputs removed and had to rely solely on their
memory in the hidden layer, as shown in Figure 5a. Later,
we have modified this concept further in order to elevate
the memory and created a modified blind agent that had
a simple binary counter as its input as shown in Figure
5b. This binary counter is a timer, which helps the agent
memorize sequences of actions.

From Table 4 we can see that the blind agents can navi-
gate throughout the map successfully without having any
information about the environment, simply by memorizing
a sequence of actions. However, having information from
the sensors about the nearest obstacle and the location of
the goal significantly accelerates the process of reaching the
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BPUTLAYER  HIDDEM LAYERE  DUTPUT LAYER

() A blind agent relies solely on the memory in the hidden
layer.

NPT LAYER HEDDEM LAYEAS  OUTPUT LAYER

(b) A maosdified blind agent with a simple binary counter on the
L

Figure 5: Modified agents without the sensors and their NN,

goal. Itis also important 1o note that the blind agents are not

with Pixel Novelty are also competitive or comparable to
other approaches, meaning that Pixel Novelly is a valid
generalization of Sugar Search.

From the results in Table 5, we can conclude that the
achieved scores differ based on the characteristics of each
game, where some approaches seem 1o be more fitted
than others. Generally speaking, we can observe a pattern
in Atari games with no distinctive local optima, such as
Breakout or Space Invaders, where a simple fitness-based
search outperforms both ouwr Sugar Search and Novelty
Search. Interestingly, Pixel Nowvelty also performs rather
well in these games (it even achieved the highest score in
Breakout).

Regarding Sugar Search, it outperformed both the fitness-
based search and Nowelty Search by far in games like
Freeway or Ms. Pacman and was even able to compete
with algorithms like DON (Mnih et al., 2013) despite its
simplicity. This demonstrates that our search technique is
very powerful and able o produce competitive results.

Table 5: MinAtar games performance in the average number
of the achieved game score. Bold font indicates the best
performance for each metric. All numbers are averaged from
L0 generationsfepisodes. Symbols T (L) represent that the
higher (lower) the better,

adaptable and will fail completely when placed in a slightly Came Fitness{ Sugar | Novelty | Pixel | DON
different starting point or if the task is modified. based | Search| Search | Nov- | 1
Search | (ours) 1 elty
Table 4: Maze navigation task for agents without sensors: T t iﬂm’}
performance in the average number of generations needed '
to reach the goal. The standard deviation is in parentheses. Seaguest § 7 6 5 20
Bold font indicates the best performance lor each metric, Breakout 13 3 5 21
Symbols T () represent that the higher (lower) the better. Asterix 12 10 14 10 17
Freeway 16 53 49 28 50
Maze Sensors || Binary Nao input | S, Invaders 43 1] 14 21 45
Results counter | MsPacman | 1897 3580 1962 2480 1099
medivm map | 1175905 | 37.8 soes | 96.1 (891 Montezuma's, 0 41 22 22 46
hard map 1533 w753 | 5974 gsees | 1154.7 0278 revenge
MinAtar results OpenAl Gym results

In this environment, we ran experiments on 7 different Alar
games 1o test and compare the fitness-based approach, Sugar
Search, and its generalization - Pixel Novelty to other tech-
nigues like Novelty Search (Lehman and Stanley, 201 1a)
or DON (Mnih et al., 2013). The results in Table 5 show
that Sugar Search dees not always lead to a higher score
compared to the fitness-based approach, but it performs
comparably well with Novelty Search consistently across
different games, as shown in Table 5. The scores achieved
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In the OpenAl Gym environmenl, experiments on 12 Atari
games in total were performed with both Pixel Novelty
and the fitness-based approach. The specific games to be
included in the experiments were selected 1o represent equal
subsets of games, half of which contains multiple obvious
local minima (e.g. Montezuma's revenge) and 15 expected
to show the advantages of our approach. The results of
the expenments are presented in Table 6 in comparison
with the fitness-based approach and reinforcement learning
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algorithms like DQN (Mnih et al., 2013) and A3C algorithm
(Mnih et al., 2016).

Table 6: OpenAl Gym games performance in the average
number of the achieved game score. Bold font indicates the
best performance for each metric. All numbers are averaged
from 100 generations/episodes. Symbols 1 () represent that
the higher (lower) the better.

Game Fitness- | Pixel DON1 | A3CFF

based T | Novelty 0

(ours) 1

BeamRider 1188.6 900.4 86724 132359
Breakout 15.4 24.1 303.9 551.6
Enduro 86.9 52.2 475.7 82.2
Pong 21.0 24.3 16.2 11.4
Seaquest 780.4 480.3 2793.9  2300.2
S. Invaders 1075.7 1205.3 1449.7  2214.7
Riverraid 2390.5 1810.7  4065.3 10001.2
Freeway 30.0 0.4 25.8 0.1
Gravitar 2350.4 700.6 216.5 269.5
Zaxxon 6240.1  5400.4 831.0 2659.0
Venture 440.5 200.3 54.0 19.0
Montezuma’s 0.0 10.0 50.0 53.0
revenge

In the light of the results, rewarding the agents solely for
generating new pixels in Pixel Novelty leads to the same
or better results as the score-driven reward system in the
fitness-based approach. These overall positive results are
the outcome of the agent’s behavior in Pixel Novelty: as
the agent tries to generate a new unseen screen content,
he conquers obstacles on the way and by doing so also
achieves a reasonable score.

Additionally, when compared to DQN and A3C algorithms,
we are able to achieve a higher score in 5 out of 12 games.
Furthermore, it is important to highlight that our results
were achieved with a significantly greater efficiency, since
we only needed 20 million frames and 1 CPU for 24 hours,
whereas the results from DQN and A3C were trained on
320 million frames, which is 16 times more.

We have proven that our simple evolutionary technique
is a scalable competitive alternative to the reinforcement-
learning algorithms (Salimans et al., 2017) and that it
can achieve similar results even with a divergent-driven
approach and with a largely improved efficiency.
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Conclusion

The idea of placing rewards within the environment to pre-
cede the problem of local minima performs surprisingly well
in the maze experiments, especially taking into consider-
ation that this concept completely disregards the objective
(score). As the experiments have shown, our technique out-
performed the popular Novelty Search (Lehman and Stan-
ley, 2011a) in both the success rate and the solution speed,
furthermore, it is also conceptually simpler and easier to im-
plement. Following this proof of concept of our technique,
we have also explored the effect of multiple local minima
and different reward densities on the search efficiency. The
results indicate that the sparse rewards model could be ap-
plied to problems in a continuous or a higher-dimensional
space.

We have subsequently generalized our search technique and
studied how it performs in a more general and popular set
of tasks - Atari games. Our technique performed compa-
rably well with a basic fitness-based search and some of
the most common reinforcement learning algorithms (DQN
(Mnih et al., 2013), A3C (Mnih et al., 2016)). We consider
it to be a great achievement considering that our results were
computed on much fewer frames than DQN or A3C.

In summary, we believe that it is rather the environment that
formulates, motivates, and rewards individuals for being dif-
ferent and novel as we can observe in nature. Also supported
by the fact that the concept has been proven valid on multi-
ple experiments in this paper. This suggests that new ways
of defining novelty, which avoid any form of supervision,
can generally be successful and could be worth exploring in
the future.
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Figure 1: Top: Snapshot of an experimentally found cluster
of oil droplets in water recorded with a confocal microscope.
Bottom: Final configuration of 2,000 multidisperse particles
at the bottom of a cylinder in a computer simulation.

Abstract

We simulate the movement and agglomeration of oil droplets
in water under constraints, like confinement, using a simpli-
fied stochastic-hydrodynamic model. In the analysis of the
network created by the droplets in the agglomeration, we fo-
cus on the paths between pairs of droplets and compare the
computational results for various system sizes.

Introduction

Spatial arrangements of hard spheres are widely studied in
physics, as these systems serve as simple models for granu-
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lar matter, colloidal systems, and molecular crystals (Reiss
et al.,, 1996; Russel et al., 1989; Mitarai and Nakanishi,
2003; Metcalfe et al., 1995; Zallen, 1998). Mostly, monodis-
perse and bidisperse systems are considered, i.e., all spheres
exhibit the same radius value or one of two different values,
but sometimes also multidisperse systems with radii chosen
from a finite set of prespecified radius values have been in-
vestigated (Miiller et al., 2009; Schneider et al., 2009). Also
packings of non-spherical items for which the determination
of overlaps is more difficult, such as ellipsoids (Pfleiderer
and Schilling, 2007; Matuttis and Chen, 2014) and sphero-
cylinders, have been studied. It has, e.g., been found that a
random packing of ellipsoids with a specific aspect ratio (M
& M candies) is denser than a random packing of spheres
(Donev et al., 2004). Furthermore, arrangements of parti-
cles with long-range interactions, in confinement, and under
constraints, such as shear forces and repulsive walls, (Ricci
et al., 2007; Ochoa et al., 2006) have been investigated.

In our collaboration, we intend to develop a probabilis-
tic compiler (Flumini et al., 2020; Weyland et al., 2020) to
aid the three-dimensional agglomeration of droplets filled
with various chemicals in a specific way in order to e.g. al-
low the creation of desired macromolecules via a successive
reaction scheme (Schneider et al., 2020a,b). Neighboring
droplets can form connections, either by forming bilayers
(Li and Barrow, 2017) or by getting glued to each other
by matching pairs of single-stranded DNA (Hadorn et al.,
2012). Chemicals contained within the droplets can move
to neighboring droplets either directly, as hydrophobic com-
pounds can be exchanged between adjacent oil droplets at
the contact face, or, if the oil droplets are contained in a
hull comprised of amphiphilic molecules like phospholipids,
through pores within these bilayers. Thus, a complex bi-
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layer network is created, with the droplets being the nodes
of this graph and the existing connections being the edges
between the corresponding droplets. In such bilayer net-
works, a controlled successive reaction scheme can be ef-
fectuated to produce the intended macromolecules. Within
the scope of this paper, we present computational results for
basic simulations of a simplified agglomeration process of
a polydisperse system of droplets, mimicking experiments.
Here we want to focus on the question which influence the
density of the droplets has on the agglomeration process of
the particles and on some specific properties of the networks
created, which are of crucial importance for the gradual re-
action scheme intended. In order to focus on these questions
and to exclude effects from other experimental properties,
we simulate the droplets as hard spheres and ignore details
of the surface structure of the particles, attractive forces as
well as adhesion effects. As the extension of the bilayers
is very small and as due to their small radii (Aprin et al.,
2015), the droplets keep their spherical shape during the ex-
periments, as shown in Fig. 1, this simplified approach is
justified.
Networks can be in general analyzed

« either on an elementary level, i.e., by considering proper-
ties of the single nodes within a network, like the degree
of a node (the number of nodes a node is attached to via
edges),

e or by considering groups of nodes, e.g., by finding cliques
of nodes which are fully connected with each other within
such a group (Marino and Kirkpatrick, 2018),

e or by taking the overall network into account, e.g., by de-
termining whether the network is dominated by a large
cluster and even percolating (Stauffer and Aharony, 1994;
Stauffer, 1986; Naftaly et al., 1991),

* or by taking a local-global attitude, e.g., by investigating
the role some specific nodes play for the overall network
(Schneider and Kirkpatrick, 2005).

Often random networks are considered in which nodes are
connected with randomly selected edges (Bollobas, 2011).
But in real-world networks, like genetic networks or the
World Wide Web, the degrees of the nodes often follow
a scale-free power-law distribution (Barabdsi and Albert,
1999) due to the tendency that a newly added node pref-
erentially attaches itself to nodes with higher degree. In
contrast, Gaussian distributions are found for degree num-
bers in random networks. We are mainly interested in the
time evolution of the network formed by the connections
between the various droplets. In this paper, we focus on the
paths between pairs of droplets, i.e., on the question whether
paths between them exist and, if yes, how large the geodesic
distances between them are. In some applications of ar-
tificial chemistry we intend to perform on such a network
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of droplets, the maximum geodesic distance determines the
maximum number of steps in the gradual chemical reaction
scheme.

Simulation Details

We consider polydisperse systems of oil droplets in water,
which are modeled as hard spheres. The radii of the parti-
cles are randomly chosen from a uniform distribution in the
range of 10 — 50um. Initially, they are randomly placed in
a cylinder of height 4 mm and radius 1 mm without over-
laps among particles or between particles and walls. The
particles are initialized with zero velocity. As we are inter-
ested in the effect of particle density on the agglomeration
process and on the properties of the evolving networks, we
perform 100 simulations each for various numbers N of par-
ticles, with N = 10, 20, 30, 40, 50, 60, 70, 80, 90, 100,
110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 250, 300,
350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900,
950, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800,
1900, 2000, 2500, 3000, 3500, 4000, 4500, and 5000. The
presented results are averages of these 100 simulation runs.

The simulation is divided in time steps of 6t = 10~ ?s. In
each time step, the particles are subjected to various forces:
All particles are filled with oil of the density o = 1.23kg/1,
so that they sink in water due to gravity reduced by the
buoyant force. Furthermore, the three spatial components
of the velocity vectors ; are subjected to random velocity
changes. Each velocity component v;"¥"* is changed inde-
pendently by a uniform random variable chosen from the
interval [—0.05|v;"¥*],0.05|v;"Y"*|]. The particles are also
subjected to the Stokes friction force

Fi g = —6mnr; vy, (D
with the radius r; of the particle, the current velocity ¥,
and the viscosity n = 0.891mPas of water at 25°C. The
concept of added mass is used (Stokes, 1851). This vir-
tual mass is the inertia added to the mass of the particle,
because an acceleration or deceleration of a body in wa-
ter must move or deflect some volume of surrounding fluid
when it moves through it. For a spherical particle with ra-
dius r; far away from other boundaries, the added mass is
given by %m"? Ofluid, 1.€., it is half of the mass of the fluid
displaced by the particle.

After the new velocities of the particles are determined in
this way, their positions are updated according to

Due to the stochastic nature of the random velocity changes,
only this Euler scheme is suitable for the determination of
velocities and positions of the resulting stochastic differen-
tial equation of motion (Kloeden and Platen, 2013).

After the determination of these new positions, some con-
ditions are enforced: First, it is checked whether a particle
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collides or even overlaps with a boundary of the cylinder at
its new position and whether the overlap would increase if
the velocity vector of the particle remains unchanged. In
this case, the collision normal is determined and the veloc-
ity vector of the particle is updated according to the standard
collision rules with an elasticity factor of 0.9. If there is an
overlap, the position of the particle is updated in order to
resolve the overlap. Analogously, then checks for collisions
and overlaps between pairs of particles are performed and
their velocity vectors and positions are updated accordingly.
The overlaps have indeed to be eliminated as otherwise they
partially remain and can even increase over time, especially
in the regime of slow velocities.

In total, 107 time steps of duration 6t = 10~ °s are per-
formed during a simulation run. A simulation run thus cov-
ers in total a time span of 7 = 100s which is sufficient
for finishing the agglomeration process within the dimen-
sions of the cylindrical container, as the smallest particles
have a radius of at least rgmaliest = 10pm in our sim-
ulations. Shorter §¢ and longer 7 would be needed for
smaller rgmanest, as 0t scales with rs2mallest and 7 scales
with rsﬁaucst due to the Stokes friction force, because of
which the sink velocity is smaller for smaller spherical par-
ticles. Thus, reducing rsmailest by €.g. a factor of 10 would
result in an increase of the number of necessary time steps
and thus of the computing time by a factor of 10*. The com-
puting time for one simulation also depends on the number
N of particles in a quadratic way, i.e., T ~ N 2. For ex-
ample, it took roughly 12 hours on a standard laptop for
N = 2000 particles. The bottom part of Fig. 1 exhibits a
final configuration of a simulation containing 2000 particles.

At the end of each 1000th time step, a configuration is
recorded for the network analysis, such that we get a set of
10* stored configurations and thus of networks from each
simulation run, which are equally spaced in time with a time
delay of At = 10~ 2s between each pair of successive con-
figurations.

Network Analysis
General Remarks

As a first step in the network analysis, we need to create a
network from a spatial configuration of droplets. For an-
swering the question whether an edge exists between a pair
(i, 7) of droplets, we need to determine the distance D (i, j)
between their midpoints. Let (x;, y;, ;) be the triple of mid-
point coordinates of droplet ¢, then the Euclidean spatial dis-
tance between two droplets ¢ and j is given by

Diij) = (@i — 2 + =) + (5 — 2)° )

Two droplets ¢ and j overlap if D(3,j) is smaller than the
sum of their respective radii r; and ;. Assuming that an
edge between a pair of droplets exists if there is a not yet
completely resolved overlap between them or if they exactly
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touch each other or if they get very close to each other, we
can define an NV x N adjacency matrix n with

1 ifD(i,5) — (ri +r;) <0.1lpym
0 otherwise

n(i,j) = { Q)
This symmetric matrix 1 contains all information about the
network formed by the droplets. For example, the number e
of edges is given as

e:Zn(i,j). )

i<j

As 7 turns out to be extremely sparse, we create neighbor-
hood lists A/(¢) for each node i, containing all nodes to
which node 7 is connected by an edge:

N(@) = {jln(i,j) =1} (6)

The number of elements of A/ (4) is called the degree k(i)
of node 7. Using these neighborhood lists, the computation
time for the determination of some network properties can
be significantly reduced compared to the use of the adja-
cency matrix alone.

We performed 100 simulations each for various numbers
N of particles and recorded 10* configurations from each
simulation. The results shown below are ensemble averages
over these 100 simulation runs or values derived from these
averages. Thus, each curve in the left pictures of Figs. 2,
3,4, 5, 6, and 8 is comprised of 10* data points, which are
ensemble averages of 100 simulation runs, so that 109 net-
works had to be evaluated for each curve.

Geodesic Distances

As mentioned above, we intend to perform a gradual re-
action scheme on this network of droplets, i.e., neighbor-
ing droplets should exchange chemicals either directly at
the contact face or through pores in the bilayers, the re-
sulting intermediary reaction products serve as educts for
a next step with the next droplet connected. Thus, we are
interested in the question whether such reaction paths ex-
ist and how long they are, i.e., how many steps we can
perform gradually. Thus, in this paper, we focus on the
investigation of distances between nodes. Hereby we are
not interested in the Euclidean distance D(i, j) between the
midpoints of the droplets, as given in Eq. (3), or the mini-
mum distance of points within a pair of droplets, as given by
D(i,j) — (r; + r;), but in the minimum number of edges
one has to cross when trying to get from node 7 to node j on
a path comprised by the edges of the network. For example,
this distance d(i, j) between pairs (7, j) of nodes, which is
also called geodesic distance (Gonzalez and Cascone, 2014),
equals 1 if (¢, j) = 1 and d(4,5) = 2 if n(¢,5) = 0 but
n(i,n) = n(n,j) = 1 for at least one node n # ¢, 5. If no
path from some node ¢ to another node j can be found, one
sets d(i,j) = oo. As 7 is very sparse, we use the Dijkstra
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algorithm to determine these geodesic distances (Dijkstra,
1959). Please note that the matrix d is symmetric, as we do
not apply preferential directions to our edges.

Computational Results
Growth of the Network

Mean degrees Before we investigate the existence of
paths and the lengths of geodesic distances, we have a look
at some observables describing the time evolution of the size
of the network. We start off our investigation by considering
the average degree (k) of the particles, which is usually seen
as one of the most important observables when performing
a local network analysis. But it is also related to the overall
number e of edges by the equation

N x (k) = 2e. 7

Figure 2 shows for some selected numbers N of droplets
that the average (k) of the degrees sigmoidally increases in
time. As the inset reveals, (k) indeed increases in a double-
sigmoidal way. There is a first sigmoidal increase at short
time scales, in which first small groups, especially pairs of
droplets, are formed with some small probability. However,
we are mainly interested in the subsequent second sigmoidal
increase, as this main increase is the one in which the net-
work formation takes place. This second sigmoidal increase
is the more pronounced the larger the number N of droplets
is. We denote the final value of the degree of node i as k¢ (4)
and its average over all nodes as (k). We have a closer look
at the increase of the final mean values (k) of the degrees
with increasing N in the right picture in Fig. 2. While (k)
can be nicely fitted linearly for very small N and quadrati-
cally for small NV, we find criticalities for larger N, such that
we get the overall behavior

N for N < 40
c1N + ¢y N? for N < 80
(kr) =19 ¢ ¢ for 40 < N < 900

S | A —
(Ncrit,l - N)’y
Cq tanh (05 (N — Ncrit’g)ﬁ) for 850 S N

with the prefactors cy, ..., cs, the critical exponents «, (3,
and +, and the critical numbers Neit 1 and Neyis 2 of par-
ticles. Various fits of the functions in Eq. 8 with similar
fitting qualities result in @« = 1...1.1, v = 04...0.5,
B = 0.1...0.18, Nepig,1 = 940...1000, and Neyig 2 =
780...845. Please note that the prefactor c4 = 6...7 pro-
vides an estimate for (k¢) in the limit N — co. While the
values for prefactors and critical numbers of particles will
change if altering the simulation parameters, the theory of
critical phenomena decrees that the critical exponents «, (3,
and v and the form of the functions stay identical.

Cluster Numbers and Cluster Sizes Next, we would like
to have a look at a prominent example of global network

®)
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analysis, studying cluster numbers and cluster sizes. A clus-
ter is defined as a subset of nodes in which a path exists
between any pair of nodes in this subset. Please note that we
count clusters consisting of one node only also as clusters.
Figure 3 shows the sigmoidal decrease of the number N, of
clusters, normalized by the number NV of droplets in order to
better compare the results for various /N. Each curve starts
at a value of 1, as each droplet forms a cluster of its own
at the beginning. Generally, we find sigmoidal decreases of
N, in time. With increasing NV, the increase first becomes
steeper and then less steep again. The final values N, ; for
the number of clusters, which are shown in the right picture
of Fig. 3, exhibit a very interesting behavior: the data points
can be well fitted to a parabolic function for small N. N, ¢
first increases with increasing NV till N = 450 to a value
of ~ 261.41 and decreases afterwards till N = 1400 to a
value of ~ 17.56. This symmetry can be easily explained:
For small N, the bottom of the cylinder is gradually filled
with a two-dimensional agglomeration of droplets, forming
clusters, with increasing N. This behavior is mirrored in the
bottom area free of droplets, which is gradually split in a
first increasing number of clusters of connected free areas,
but then more and more of these free area clusters vanish.
For larger values of NV, the droplets need to be stacked in
a three-dimensional way and the number of droplet clusters
fluctuates between 12.02 and 25.68.

Another quantity which needs to be considered is the size
of the largest cluster Stauffer and Aharony (1994); Stauffer
(1986); Naftaly et al. (1991), in order to find out whether one
large cluster is dominating the overall system and whether
even the whole network is percolating. For this purpose, we
measure the size Cy,.x Of the largest cluster, i.e., the num-
ber of nodes contained in the largest cluster. The left pic-
ture in Fig. 4 shows that C',,x normalized by IV increases
sigmoidally to almost 1 for N > 1000. The final values
Cmax,¢ are shown in the right picture of Fig. 4. We find
that these final values increase almost linearly with N for
N > 1000, they are only slightly smaller than N. Almost
all nodes (aside from 12-27) are part of the largest cluster.
The situation is different for smaller N, as can be nicely
seen in the inset. Here we find that the number of particles
not being part of the largest cluster first increases, then peaks
at N = 550 with a value of 468, and afterwards decreases
again. This structure is reminiscent of the parabolic shape in
the right picture of Fig. 3, but here the form of the peak is
less symmetric.

Existence of Paths

In order to better understand the results for geodesic dis-
tances, we first need to know how many paths in the net-
work exist. We count the number N,, of existing paths be-
tween pairs of nodes, i.e., the number of geodesic distances
which have a finite value. Please note that while there is a
geometric restriction for the maximum value of a degree of
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a node, which is also called the kissing number (Schneider
et al., 2022), there is no such restriction for N,,. N,, can take
values up to N x (N — 1)/2, for which all possible paths
between pairs of nodes exist. In Fig. 5, we have a look at the
fraction

2N,

T Nx(N-1) ©)

o
of existing paths. This fraction is restricted to the range from
fp = 0, for which no edge exists in the network, to f, = 1,
for which the network is connected, i.e., for which a path
exists from any node to every other node. The inset in the
left picture of Fig. 5 with the double-logarithmic plot reveals
that f,, exhibits a double-sigmoidal increase over time. We
are interested in the second sigmoidal increase. The right
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picture in Fig. 5 shows the final values of f), at the end of the
simulation runs for various N. Here we find again a double-
sigmoidal increase. Even for the largest values of N used,
the fraction of existing paths does not reach a value of 1 but
only of ~ 0.99. Thus, there are either singular droplets or
very small groups of droplets which are not connected with
the remaining system. These droplets could lie at the bottom
of the cylinder without touching other droplets.

Geodesic Distances

In the next step, when intending to measure a mean geodesic
distance, we have to define how exactly we intend to mea-
sure it. The main problem here is how to take those distances
between pairs of nodes into account for which no path exists.
We defined above that d(i, j) = oo in this case, but this defi-
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Figure 4: Left: Time evolution of the size Cyy.x of the largest cluster, normalized by N, for various numbers N of particles.
Right: Final values of the size Ciyax ¢ Of the largest cluster for various numbers N of particles. The fit is given by f(N) = N.
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Figure 5: Left: Time evolution of the fraction f,, of existing paths between pairs of nodes for various numbers N of particles.
In the inset, the curves are redrawn in a double-logarithmic plot. Right: Final values f,, ; for the fraction of existing paths for

various numbers N of particles.

nition is not suitable for taking averages. If no path between
a pair (7, j) of nodes exist, some authors set d(4, j) to an ar-
bitrarily chosen value v > N, as for an existing path, a dis-
tance can only take a value in the range 1 < d(4,j) < N—1.
As the results then depend strongly on the value v, we make
another choice and set

~ X dig) ife>0
(d) = P iy (10
0 otherwise

Therefore, if there is at least one edge and thus at least one
path in the network, then we take the average of the geodesic
distances of the existing paths only. Otherwise, we indicate
with a value of 0 that no path exists. But if there is exactly
one edge and thus one path in the network, then (d) = 1.
At the beginning, one will thus see a transition from 0 to

160

1, as the probability for the existence of a first edge in-
creases. With an increasing number of edges, also longer
distances can occur, such that the mean value increases. Fig-
ure 6 shows the computational results for (d). As already
mentioned above, we generally plot the ensemble average
over 100 simulations. The inset nicely shows the transition
whether some small network exists for small N. And also
otherwise the graphic exhibits some interesting properties
for (d) and its time evolution, the most important of them
being the intermediary maximum occurring for larger num-
bers of droplets.

If we have a look at the final values (ds) of the mean dis-
tances for various N, we find that it first increases to some
intermediate maximum, decreases again and then slightly in-
creases afterwards with increasing /N, as shown in the right
picture of Fig. 6. The maximum lies in a range of NN, in
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of (dy) for small N.

which the transition from a quasi two-dimensional network
at the bottom of the cylinder to a three-dimensional network
starts to take place. (This maximum is missing in the left
picture of Fig. 6, as no curves for 500 < N < 1000 are
shown there.) Obviously, shorter paths can at first be found
by adding further droplets in the third dimension. But as the
particles have to be stacked in the third dimension even fur-
ther with further increasing [V, the mean distance starts to
increase again.

Similarly, the intermediate maxima in the curves for the
largest values of N can be explained. In Fig. 7, we have a
closer look at these intermediate sharp maxima which occur
only for N > 800. (Wide maxima which are higher than the
final values also occur at slightly smaller values of INV.) The
larger N, the earlier the maximum occurs at a time ¢,,,:

(1D

tm X N
For the largest values of NV considered here, the height of the
intermediate maximum increases with increasing N.

In the next step, we would like to consider the maximum
distance of the network. Here again we first have to properly
define how we intend to measure this maximum distance. In
accordance to the definition of the mean distance in Eq. (10),
we define the maximum distance as

g max{d(i,j)|I pathi — j} ife>0
max = 0 otherwise

. (12)

Please note that when it comes to considering maximum dis-
tances, two types of maximum distances are often discrim-
inated (Boitmanis et al., 2006; Erdos et al., 1989): Other
authors first start off with determining a maximum distance
d;max for each node defined as the maximum of distances
for all paths starting at node ¢ and ending at some other node.
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Then the diameter D of a network is defined as the maximum
of these maxima,

D= max di,mam (13)
K3

and the so-called radius R of a network as the minimum of

these maxima,

R = m{in di max- (14)
In this sense, our maximum distance dy,,x corresponds to
the diameter of the network. dnax is of special interest for
us, as we need to know the maximum number of steps possi-
ble for the gradual reaction scheme which shall be governed
by the compiler we intend to develop. dy,ax corresponds to
or provides a good estimate for this maximum number of
steps. Contrarily, we are not interested in the radius of our
networks, as we have already seen that isolated droplets or
small isolated groups of droplets can lie at the bottom of the
cylinder. But these isolated parts, which would define R,
play no further role in our considerations.

Figure 8 shows the time evolution of the maximum dis-
tance dpax. At first glance, one sees the similarity to the
time evolution of the mean distance (d) in Fig. 6: Again
we get a double-sigmoidal increase: at first, the maximum
value increases to 1, such that we now know that only pairs
of droplets are formed in this stage, with the probability for
pair formation increasing with time and with increasing V.
The subsequent main sigmoidal increase can be analyzed as
for (d). Again we have a look at the final values for various
N, which are shown in the right picture of Fig. 8. The fi-
nal values first sharply increase till N = 700, for which an
ensemble average of the final maximal distances of 50.85 is
found. Then it decreases again till N = 1300. For large N,
we find a slight increase of the final values of d .
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We also find intermediate maxima again for N > 800.
The time ¢max,m at which dmax exhibits its intermediate
maximum is also rather the same as the time the interme-
diate maxima occur for (d) and we find again the power law

. 1
max,m X =7,
ax, N

15)
as shown in Fig. 9. We also find that the heights of these in-
termediate maxima increase with increasing NV for large V.
Besides these sharp maxima which we get for N > 800, we
also find wide intermediate maxima with fluctuating heights
for slightly smaller values of V.

Conclusion and Outlook

In this paper, we presented results of simulations for the ag-
glomeration of droplets. As we are interested in the effects
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of varying numbers of particles on the agglomeration pro-
cess and on the resulting droplet networks, we study a very
simplified system, in which the droplets are represented as
hard spheres, subjected to gravity reduced by buoyancy, as
well as Stokes friction, added mass effect, random velocity
changes, and almost-elastic impacts. Connections between
these particles are virtually formed if they (almost) touch or
overlap. The particles gradually agglomerate at the bottom
of the cylindrical container. The analysis of this agglomera-
tion process shows that the results for the time evolution and
the final outcome strongly depend on the number of parti-
cles. In particular, we find two transition regimes: at small
numbers N of particles, we find an over time gradually in-
creasing number of droplets lying finally at the bottom of the
cylinder where they either stay isolated or gradually form
pairs and then some slightly larger groups with other parti-
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cles reaching the bottom as well. When increasing N even
further, a network of droplets is created at a bottom layer of
the cylinder. During this regime, we find an increase of the
mean and maximum geodesic distances, followed by a de-
crease for larger system sizes. For very large numbers of par-
ticles, the time evolution of the observables at first more or
less reflects the final outcome for small and then intermedi-
ate numbers of particles, showing e.g. intermediate maxima
for the geodesic distances (the earlier, the larger the num-
ber of particles is), before displaying the properties of truly
three-dimensional networks of particles. As only large val-
ues of the maximum distance allow very extended gradual
reaction schemes governed by our compiler, we suspect that
it is misleading to believe that the structures optimum for
our purposes need to be three-dimensional. Instead, when
using a unary system of droplets, we should consider work-
ing with the largest cluster in a quasi two-dimensional layer
at the bottom of the cylinder, which exhibits a fractal dimen-
sion (Falconer, 2003) significantly smaller than 2.

We intend to continue our investigations by measur-
ing clustering coefficients, fractal dimensions, the locations
of droplets with differing radii, and the importance some
droplets might have for the overall network. Furthermore,
we plan to extend our investigations first to binary systems,
in which two particle types A and B are present and con-
nections can only be forged between pairs of A — B but
not A — A or B — B and then to ternary systems, in which
there are three particle types A, B, and C with connec-
tions between adjacent pairs of A — B particles but in which
the additional C'-particles are unable to form any connec-
tions. Hereby we want to study the breakdown of the size
of the largest cluster with increasing density of C-particles
and find out whether there is a regime as well in which the
maximum geodesic distance between droplets increases to
suitable values. Furthermore, we want to add gluing forces
between particles to find out how they change the results.
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Towards Adaptive Sensorimotor Autonomy: Developing a system that can adapt
to its own emergent and dynamic needs

Matthew Egbert!:?
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2 Te Ao Marama, University of Auckland, New Zealand

Egbert and Barandiaran (2014) present a model of sensori-
motor autonomy (Di Paolo et al., 2017), demonstrating how
a pattern of sensorimotor activity can reinforce the mech-
anism that produces it. Subsequent investigation (Egbert,
2018) evaluated the adaptability of these autonomous sen-
sorimotor ‘habits’, showing that they were robust to some
perturbations, but not capable of adapting to changes to their
own viability limits (Ashby, 1952) as has been demonstrated
in other autonomous systems (Egbert and Pérez-Mercader,
2016).

This paper presents a new model intended to cap-
ture a more adaptive form of sensorimotor autonomy:
the VIability-Sensitive Sensorimotor Autonomy (VISSA).
VISSA plays the role of a ‘brain’ in an agent; it produces,
from the sensorimotor state, a motor output and is itself
transformed by its history of sensorimotor states. It inter-
acts with a dynamic environment through a body’s motors
and sensors and through these interactions, self-sustaining
patterns of sensorimotor behaviour emerge. This abstract
provides an overview of VISSA and the first experiments
that we are performing to evaluate its adaptability.

VISSA is a node-based sensorimotor-to-motor map
(Woolford and Egbert, 2020) similar to the Iterant
Deformable Sensorimotor Medium (IDSM) presented in
(Egbert and Barandiaran, 2014; Egbert, 2018), in that it con-
sists of a collection of ‘nodes’ that describe how the robot’s
motor activity is to change for any given sensorimotor state.
Each node is a tuple: N = (Np, Ny, Ny a, Ny g), where
N, indicates the node’s sensorimotor ‘position,” i.e. region
of sensorimotor space for which it determines the motor out-
put; N, is the node’s ‘age’, a scalar value that approximates
how long it has been since that node has been active; and
Ny 4 and Ny g are the node’s ‘motor vectors’—ways that
the node can change the system’s motor output. Like in the
IDSM, behaviours and the collections of nodes that generate
them are ‘precarious’ (Di Paolo, 2009; Egbert, 2018)—when
nodes are not used for an extended period of time, they cease
to exist. This ‘use it or lose it” dynamic means that only pat-
terns of behaviour that maintain themselves by causing their
own repetition can persist in the long term. Unlike previ-
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ous architectures, VISSA includes an adaptation mechanism
whereby each node adapts its influence so as to increase the
likelihood of moving the sensorimotor state toward other
nodes. We aim to investigate if this local ‘learning’ pro-
cess can enable a more holistic form of adaptation whereby
a cyclic collection of nodes adapts to sustain itself.

Implementation. At any given time, the ‘active node,’
N™*, i.e. the node that is closest to the sensorimotor state,
determines the change in motor output. Every iteration,
the active node switches which of its motor vectors it uses
to determine its output. So, if on the previous iteration
%? = Ny, 4, then on the current iteration % = Ny g,
and vice versa.

After every iteration a score, .S, is calculated that quanti-
fies how well the most recently used motor vector performed
at causing the sensorimotor state to approach all of VISSA’s
nodes,

S = Z a(Né)(qS(N;,mt:t) — ¢(N}, mt:t—&t))

Ni£N*
where the weight of each node, «(N,) =
max <0,1 + %) is a truncated linear function

of the node’s age, that gives more weight to nodes
that have been visited less recently and zero weight to
nodes that have been visited very recently. The function
¢(Np, x) = m describes a non-linear proxim-
ity of the sensorimotor state (x) to the position of the node
in sensorimotor space (Np), sampled at the current (¢ = ¢)
and previous iteration (t = t — dt).

Scores for the two most recent uses of Ny, 4 and N3, 5 are
then used to update the active node, using a (1+1) Evolution-
ary Strategie (Droste et al., 2002) adjusting the motor veloc-
ities to improve at moving the sensorimotor state toward
other nodes within the network, with a preference for nodes
visited less recently. As the sensorimotor state changes, the
active node changes and so as time passes, an adaptive self-
maintaining network of nodes emerges, where each node is
in a loop adapting so as to better enable the next node in the
loop. At least, that is the idea! Experiments are ongoing
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to evaluate how this local adaptation male might produce an
emergent collective of nodes that can also adapt in o way
that prolongs its existence.

Exp. #1 A minimal demonstration of local adaptation.
With a single motor variable and no sensory vaniables, the
sensorimotor state is just a motor state, represented by a sin-
gle scalar value, m € B. Three nodes are placed evenly in
sensorimotor space and assumed to fit within a larger col-
lection, where movement from N to N to N? eventually
resulls in a return (via other nodes N3 N™, which are not
simulated, back o N, Given this assumplion, motor activ-
ity that causes motion in the positive direction (i. e. from N
o N to N?) is considered ‘adapted” as it causes the nodes
in the network to be regularly revisited and thus is good for
the overall persistence of the collection. In my talk, T will
describe the simulations that show that the middle node, V'
is indeed capable of adapting its velocity vectors in a way
that that would improve the overall persistence of the col-
lection and from a varety of initial conditions.

Exp. #2: An adaptive autonomous collective? [ sim-
ulate a robot situated in a 1D periodic environment. [is
position » & (0, 1] changes as a function of its motor
state (95 = ) and determines the state of its sensor,
s = exp(—40)r — 0.75]*). where |r — (.75 is the distance
between the robot and the peak stimulus location, The robol
is controlled by VISSA which now operates in a 2D sen-
sorimotor space. To intialize the nodes [ simulate a brief
training phase, where the robot is initially placed at r = 0.6
and its motor is externally controlled as a function of time
mo= w This causes the robot 1o move back and
forth close to the stimulus—a cycle in sensorimotor space
involving positive and negative motor states with high and
low stimulus levels, Every I(kh iteration (the time step,
Af = 0,01) a node is added with its position, Ny set 1o the
current sensorimotor state of the robot; its Ny 4 set to the
current rate of motor change; its Ny g set 1o a “wrong value’
{i.e. anegative fraction of Ny 4. Ny g = —0L1 Ny 4); and
N,=0.

After training ends, the nodes adapt to correct their wrong
values to those that reproduce a cycle of behaviour, The
behaviour that emerges appears to be robust (Figs. | & 2):
with u sensorimotor loop similar to that driven during train-
ing repeated many times, but with variations. Some of the
variations are minor, bul four tmes during the trial, there s a
stgnificant divergence from portions of the main loop. [ will
discuss these resulis and the additional experimenis that are
needed to probe the limits of the robustness and adaptability
of the VISS A-based behaviour.
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Abstract

As part of the European Horizon 2020 project ACDC, a
chemical compiler is being developed that allows the self-
assembly of artificial, three-dimensional, vesicular structures
to be first simulated and then translated into reality. This work
reports on simulations that shed light on an important aspect:
How to disentangle inter-vesicular connections?

Introduction

The scenario to be discussed in this extended abstract is il-
lustrated in Fig.1. Two vesicles are joined by a sticker mech-
anism based on specific DNA-DNA interactions (Hadorn
and Eggenberger Hotz (2010); Hadorn et al. (2012); Schnei-
der et al. (2021)). The goal is to introduce a mechanism that
makes this process reversible. The motivation for doing so
is to correct possible errors, separate parts from a larger as-
sembly, or create empty spaces in larger clusters Weyland
et al. (2020).

1 'l'r |
e R ™
I >
5
i ok
adne DNA B Streptavidin Competition
Figure 1: Two vesicles linked with streptavidin-DNA-

linkers together. The incorporated pores allow the passage
of DNA-strands designed to compete with the already linked
ones and liberate the vesicle from its partners.

Therefore, mechanisms have been devised in which DNA
tags can leave a vesicle and compete with the pre-existing
DNA strands connecting the two vesicles. If the interaction
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of the exiting DNA is higher than that of the bound DNA,
competition occurs which, if strong enough, can free the
vesicle from its partners.

DMLty

g

Figure 2: The protein Streptavidin (white and green squares)
is anchored to the vesicular membrane with biotinylated
poly-ethylen-glycol (PEG), which is linked to phospholipids
(amphiphilic molecules building up the membrane). The
DNA-strands (wavy lines) are linked to the Streptavidin and
can bind to each other by specific DNA-DNA interactions.

The details of the linking mechanism are explained in
Fig. 2. Chemicals that interfere with the specific linkers
have been developed and the incorporation of them into the
vesicles is done by the Pautot-Weitz-Method(Pautot et al.
(2003)). The vesicles are equipped with pores that allow
competing molecules to diffuse into the environment and
compete with the established linkers. Using nucleic acid
snippets (DNA, RNA), it is possible to shape the interac-
tion energy between the different vesicles and ensure that
the competing free snippet also breaks the existing links.

The following steps were performed to produce a sticker
that can be used to selectively bond two vesicles together:
Polyethylene glycol (PEG) is a non-toxic polymer with the
general molecular formula Co,, Hyy, + 20,,41. PEGs can
be anchored in vesicular membranes and have a biotin at
their end. The protein streptavidin has a high affinity for
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biotin and is used to bind it to biotinylated PEGs, which
are anchored in the vesicular membrane. The DNA strands
(wavy lines) are linked to the streptavidin molecule. The use
of PEG to link the vesicles has the advantage of reducing
non-specific binding of the vesicles due to entropic effects.
If two vesicles are now equipped with DNA strands that can
specifically link to each other via hydrogen bonds, they can
attach to each other, In the process, the vesicles deform due
to the adhesion forces and a flat adhesion zone is formed.
Unbound stickers can diffuse freely on the surface of the
vesicles.

Figure 3: The linkers can diffuse freely in the vesicular
membrane until they find a partner of the other vesicle to
link and get trapped in the adhesion zone between the (wo
vesicles.

A simulation was developed for the competition of the
snippets with already existing links. The conservation of
mass and the reactions lead to the following set of equations:

‘j’;[‘- = K1« FL[t) « C2[t] — k2 + OL)
(148

% = K3+ FL[t]+CLl[t] — k4= NL[t]
FL{| = 10— NL[f| - OL[]

(L is the concentration of DNA-DNA linkers between
the bound vesicles. As explained in Fig. 3, the linkers are
free to diffuse on the surface of their vesicles until they find
a partner on the other vesicles and become trapped between
the vesicles. As a result, a linker zone is formed between
the vesicles, We assume that all available stickers are in this
zone. VL are the linkers where the old linker O L is replaced
by the new one. NL is the concentration of successfully
replaced linkers by the competing DNA snippet from inside
the vesicle. Since the DNA-DMNA interactions can also break
down, there 1s also a concentration of free linkers, which we
denote by F'L. The number of all streptatividin molecules
on the two vesicles remains constant and 15 the sum of FL+
NL 4 OL = eonst. We set this constant to 1.0, !

Results and Discussion
The results in Fig. 4 are intuitively clear. The binding energy
of the DNA-DNA interaction must be higher for the compet-
ing DNA strand than for the old interactions. What may not

"All the simulations were performed with Mathematica®, a
product of Wolfram Inc,
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be so obvious is that the rate of resolution of the DNA-DNA
interactions is also important (see Fig. 5): the higher the
interaction energy of the old linkers, the longer one has to
wait until equilibrium is reached. To obtain a working ex-
periment, one should design the system with a rather weak
interaction energy between the DNA-DNAs, just enough to
keep the vesicles together and ensure a short waiting time
until equilibrium is reached. This reflects an important de-
sign mechanism in nature: developmental processes often
rely on a large number of weak interactions instead of a few
strong ones, which has the advantage that the processes can
be easily adjusted because changing a single interaction re-
guires little energy.
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Figure 4. Left: The competition is weak (k1 smaller
than k3) and the old linker concentration does change
only slightly. NL = (L0106716 OL = 0.987037 FL = 0.00229118
{equilibrium values)). Right: The competition is strong (k1
bigger than k3) and the old linkers is displaced by the new
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Figure 5: If the binding of the weaker linker is very high,
the experimentalist has to wait a long time until equilib-
rium is reached. kl=0.5 k2 =00001 k3 =0.1 k4 = 0.00]
NL = 0963488 OL = 0.0365123 FL = L27385 = 10° 7 {equilib-
rium values)
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Abstract

Honey bees (Apis mellifera L.) localize the queen and aggre-
gate into a swarm by forming a collective scenting network
to directionally propagate volatile pheromone signals. Previ-
ous experiments show the robustness of this communication
strategy in the presence of physical obstacles that partially
block pheromone flow and the path to the queen. Specifically,
there is a delay in the formation of the scenting network and
aggregation compared to a simple environment without per-
turbations. To better understand the effect of obstacles be-
yond temporal dynamics, we use the experimental results as
inspiration to explore how the behavioral parameter space of
collective scenting responds to obstacle. We extend an agent-
based model previously developed for a simple environment
to account for the presence of physical obstacles. We study
how individual agents with simple behavioral rules for scent-
ing and following concentration gradients can give rise to col-
lective localization and swarming. We show that the bees are
capable of navigating the more complex environment with a
physical obstacle to localize the queen and aggregate around
her, but their range of behavioral parameters is more limited
and less flexible as a result of the spatial density heterogeneity
in the bees imposed by the obstacle.

Introduction

Social insect groups often navigate complex and unknown
environments. To do so, group members must effectively
communicate. Insects, such as honey bees, often exchange
information and coordinate group processes by communi-
cating via pheromones, volatile chemical signals that decay
rapidly in time and space (Conte and Hefetz, 2008; Lensky
and Cassier, 1995). In the context of honey bee swarm for-
mation around the queen, worker bees localize the queen by
following her pheromones and propagate the signals about
her location by “scenting” (Mclndoo, 1914; Peters et al.,
2017; Nguyen et al., 2021b). The scenting behavior consists
of a given bee sensing local pheromone concentration above
a given threshold and releasing pheromones from the Na-
sonov gland while rigorously fanning its wings to disperse
the signals to other bees. Wing fanning creates a directional
bias in the flow of pheromones, allowing bees farther away
from the queen to sense the signal and further propagate
them. This collective scenting strategy creates an effective
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communication network for localization and aggregation in
honey bee swarms (Nguyen et al., 2021b).

Nguyen et al. (2021a) experimentally showed the robust-
ness of collective scenting in the presence of obstacles that
partially block pheromone flow and the open path to the
queen. Compared to a simple environment without any ob-
stacle, the more complex environment requires more time
to explore and navigate. However, the bees still effectively
employ the scenting strategy to overcome the obstacle and
aggregate around the queen (Fig. 1B).

Inspired by the experiments, we turned to computational
modelling to further explore how physical obstacles affect
the parameter space that dictates the dynamics of localiza-
tion and aggregation based on collective scenting. A pre-
vious work modeling social amoeba aggregation by chemi-
cal signaling has shown the system’s robustness to physical
obstacles, with agents releasing isotropic chemicals that dif-
fuse axi-symmetrically (Fates, 2010). To model honey bee
chemical signaling, a previous study (Nguyen et al., 2021b)
used agent-based modeling to study how simple behavioral
rules can generate complex collective behaviors and took
into consideration the directional bias of signals that pro-
vide directional information to group members. The au-
thors studied the effect of two behavioral parameters that
the bees may vary with input from the environment—the di-
rectional bias representing the magnitude of wing-fanning
and the concentration threshold above which they can detect
the signal. The model showed the importance of directional
signals seen in the scenting strategy in efficient localization
and aggregation around the queen that can avoid less de-
sired outcomes, such as small clusters far from the queen. In
this study, we build upon this model by adding physical ob-
structions to the system (Fig. 1A,C). Per the experiments in
Nguyen et al. (2021a), we expect to observe the robustness
of the bee communication system in the more complex en-
vironment. More importantly, by modeling, we aim to gain
insights into how the behavioral parameter space responds
to the presence of obstacle. The insights may contribute to
designs and improvements in non-biological systems with
individuals that are limited to local interactions but must co-
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A) Scenting in the presence of obstacle
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Figure 1: Experiments and model of collective scenting in
the presence of a physical obstacle. A) A scenting bee agent
can produce a pheromone signal with directional bias with
advection-diffusion (wy, = 10}, A physical obstacle can par-
tially block the signal. B) An experiment where worker bees
use scenting to navigate the obstacle and localize the queen,
C} A computational model simulating pheromone diffusion
and honey bee scenting behavior in presence of ohstacle,

ordinale group processes in complex environments, such as
robots that must navigate obstructions (Abivev et al., 2010

Methods
Experimental setup & analysis

We followed methods described in detail in Nguyen et al,
{202 1b) for experiments without obstacle and in Nguyen
et al. (2021a) with obsiacle, As this paper mainly focuses
on modeling, we briefly summarize the methods. The back-
lit arena (S0x50%1.5 cm) is semi-2-D 1o prevent flying, as
bees have been shown to scent while standing (MclIndoo,
1914). The experiments are recorded aerially with a video
camera (4K resolution, 30 fps). The gueen is kept in a
cage (10.5x2.2x2.2 cm) at the top right corner (Fig. 1B).
A wooden bar is placed diagonally for the obstacle condi-
tion. Workers are placed at the bottom left corner, and a
plexiglass sheet encloses the arena. For cach environmental
condition, we report results for three experiments with sim-
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ilar number of worker bees ranging from 240 to 380, Five
experiments per condition were presented in Nguyen ¢t al,
{2021a); we present three per condition here for consistency
in number of bees in the simulation (N = 300).

To awtomatically detect scenting bees and their orien-
tations, we use computer vision approaches presented in
Mguyen et al. (2021b) (Appendix Fig. Al). We detect
individual bees (i.e., x, y centroids) by Otsu’s methed of
adaptive thresholding, and morphological transformations
{Otsu, 1979; Dougherty, 1992). To classify a bee as scenting
or non-scenting, we train a ResNet-18 convolutional neu-
ral network (CNN)} model (He et al., 2016) that achieves
95,17% test accuracy. We create a regression model for ori-
entation estimation, which achieves 96.71% test accuracy.

We then reconstruct attractive surfaces to correlate the
scenting events with the spatiotemporal density of bees. For
cach scenting bee ¢ at time ¢, we define its position as
s!',, and its direction of scenting as s, (unit vector). As-
suming the scenting bees provide directional information
to non-scenting bees, we treat s/, and s7, as a set of gra-
dients that define a minimal surface of height fle, . t).
Thas, fix. y.t) corresponds to the probability that a ran-
domly moving non-scenting bee will end up at position
{x, y) by following the scenting directions of scenting bees:
fla,y) = Fyoy [ Vdrdy where Vf = s, + s, We
regularize the least squares solution of surface reconstruc-
tion from its gradient field, using Tikhonov regularization
{Harker and O'Leary, 2008, 2011).

Finally. we obtain some time-series properties. The num-
ber of scenting bees over time is presented as a rolling mean
with the window size of 100 frames. The average distance
o the queen is computed as the average distance of all black
pixels to the gqueen's location, as the bee detection method
cannot detect every single individual bee when they touch
or overlap. The queen’s cage and the obstacle are stationary,
thus the remaining black pixels in the arena represent only
the moving bees and allow us to use this proxy. For each
property, we average the time-series data across all experi-
ments for each condition and obtain the standard deviation,

Modeling pheromone diffusion

We model pheromone advection-diffusion using the 2-D dif-
fusion partial differential equation to describe pheromone
concentration, O, y, 1], at a position and time:

OC(z, y.t) . PC(x,1) *C(y, 1)
g a2 U
aC(r.t)  8C(yt)
Bz HUNTE By

— t

(1}
where C'(x, y. t) is the concentration at position [z, y] at time
f, w and wy, are the = and i components of emission vector
respectively, £2 is the diffusion coefficient, and - is the decay
constant. The behavioral parameter representing the direc-

—C(z, 4, 1)
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tional bias, wy, is the magnitude of the advection—diffusion
of pheromone released by a bee (Fig. 1A). Treating a single
scenting bee as a point source of localized and instantaneous
pheromone emission, we solve Eq. 1:

C A? + B?
C(x,y,t) = 7%61'19 (—4Dt - vt> )

where CY is the initial concentration, A = (x — wpw,t), and
B = (y — wpwyt). The environmental parameters of the
model include: the size of the 2—-D arena (X,,,;, and X,,,42)
and the size of a grid cell (0x), the start and final time of the
simulation (¢; and ¢¢) and the time integration constant (d;).

Similar to the experiments, we model the physical ob-
stacle as a diagonal linear bar of pixels with a small open-
ing. Pheromones cannot diffuse past the obstacle by a line-
of-sight method. The obstacle forms a line segment C'D,
and segment EF forms between the scenting agent and
a given pixel. Intersection of the lines indicates that the
pheromone from the scenting agent does not reach the pixel.
To find the point of intersection, we solve the matrix equa-
ig? gZ? } Zﬂ = [gz? } where Acp is the slope
of CD, Agr is the slope of EF, Bcp = —1, Bpp = —1,
Cgcp is the negative y-intercept of CD, and Cp is the neg-
ative y-intercept of ED. If a solution exists, we check if the
intersection point lies on both lines. If there is no solution
or the solution does not lie on both lines, there is no inter-
section and the pheromone from the source at F is present
in the pixel at F'.

tion:

Modeling behavioral rules

In a discrete 2-D arena (Appendix Fig. A2A), the queen
is stationary and frequently releases pheromone isotropi-
cally, i.e., without directional bias (wb = 0). She is the
global point of convergence for the swarm. The behavioral
rules of workers are: (1) A worker bee performs a random
walk. Based on her distance to the queen, the bee detects
the queen’s pheromone if above the threshold (77). (2) If T'
is met, the bee orients towards the direction up the gradient.
The negative vector of the gradient scaled by wy, is the di-
rection to emit pheromone and disperse it via wing-fanning.
The bee then either walks up the gradient (Appendix Fig.
A2B) or stands still for a certain time to emit and fan her
own pheromones, each event with a 0.5 probability. (3) Bees
that detect this cascade of secondary signals will follow the
same rules to head towards maximum pheromone concen-
tration or scent and further propagate the information.

We formalize the worker bees’ behavior as a probabilis-
tic state machine (PSM) (Rabin, 1963). The PSM consists
of a set of finite states that describe bee behavior and a
probabilistic transition matrix for how a bee may change
from one state to another. Specifically, the state model
SMyorker = (S, 80,1, M), associated with each worker,
defines her set of behavioral rules within the environment,
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. Sn rWalk tMet emit | fan | dWalk
rWalk G <T G>T 0 0 0
dWalk G <T &>T 0 0 0
tMet 0 0 05 0 05
emit 0 0 0 1 0
fan L>Pohcai<T | o Porci>T | 0 | ti<Py| O

Table 1: Probabilistic state machine transition matrix for
honey bee behavioral rules. Variables randomW alk,
thresholdM et, and directedW alk abbreviated as rWalk,
tMet, and dW alk, respectively.

and S M., orker components are fixed across all worker bees:
S = {randomW alk, directedW alk, thresholdMet,
emit, fan} is a set of finite states, where the variable
randomW alk is a random walk when the threshold is not
met, directedW alk is the walk up the concentration gradi-
ent, thresholdM et is when the threshold is met, emit is the
instantaneous release of pheromone, and fan is the wing
fanning at a constant position. sg = randomW alk is the
initial state of each bee. I = {¢;,¢;}, is a set of flags for the
input conditions on state transitions, where for a given bee,
t; is a counter for the time that bee is in the fan state and ¢;
is the concentration at that bee’s position.

For the transition matrix M, there are two relevant param-
eters, P, and T, representing the emission period made of
the emit and the fan state and the threshold over which a
bee can be activated from state randomW alk. Table 1 pro-
vides the conditions and probabilities for transitioning from
the current state, s, to the next state, s,,.

We compute the gradient of pheromone concentration for
a given bee to find the direction of greatest local change:

V(e C =KiEi(x — 2; — wpyw,t)d

+ KiEBi(y — yi — wywyt)y @
where K; = —A/2Dt\/t and E; = exp(—(z — z; —
wpwt)? 4+ (y — yi — wpwyt)? /4Dt — At), x, y are the po-
sition of the activated bees, and z;, y; are the position of
the scenting bees (i.e., pheromone source) ¢. The cumula-
tive gradient for the concentration at a single bee’s position
is the sum of the normalized gradients resulting from each
pheromone source or emitting bee ¢:

v(x,y)ccumulative = Z v(m,y)ci(xa 7/)
%

“4)
= Z K,E; X% + Z K,E;Y§

where X = o —x; — wbw;t andY =y — gl;z — wywyt. This
gradient defines the vector that points in the direction of the
bee’s heading for its directed walk. The negative vector of
the gradient is the direction for this bee’s pheromone emis-
sion for signal propagation, and thus its x and y components
make up the w, and w, terms of Eq. 2.

Each discrete pixel or cell contains only one bee at a time.
Pixels that make up the physical obstacle do not contain any
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bees. Upon its next movement, a bee agent checks if the
intended pixel is already occupied by another bee or the ob-
stacle; if so, the bee chooses another nearby pixel within
457 over five ilerations until it stays at the current posi-
tion. Based on the model parameterization in Nguyen et al,
(2021b), we explore a range of values for the behavioral pa-
rameters, the directional bias wy, and concentration threshold
T, that bees could adjust based on input from the environ-
ment. For each combination of the parameters, we repeat
the simulation three times per condition. Other parameters
remain constant across all simulations (Appendix Table 2).
The algorithm is presented in Appendix Algo. 1.

Construction of phase diagrams

We extract several properties from the simulation data for
time-series analyses: the bees' average distance to the
queen, the average number of scenting bees, and the aver-
age distance to the gueen from the farthest active bee. To
characterize the growth of the queen’s cluster size and the
number of clusters that form, we use the density-based spa-
tial clustering of applications with noise (DBSCAN) algo-
rithm {=: 0.25. minimum number of bees 1o form a cluster:
5} to cluster bees at every time step (Ester et al., 1996),

To characterize the collective scenting behavior deter-
mined by the behavioral parameters (w5, T'), we define four
possible phases (e the outcome of simulations, rather than
a period in a time sequence) as previously seen in Nguyen
et al. (2021b): phase | of small clusters of bees spread
throughout the arena, phase 2 of bees reaching the queen’s
vicinity by random walk, phase 3 of bees swarming around
the queen by forming a percolation network of senders and
receivers of pheromone signals created by scenting bees as
seen in the experiments, and phase 4 of no clustering at all.
To construct the phase diagrams, we use three properties o
distinguish the phases: the final number of clusters, the fi-
nal queen’s cluster size. and the distance of the farthest ac-
tive bee to the queen. We sequentially applied the following
conditions 1o each simulation identify its phase group: 1) If
the final number of clusters = 1.5: Phase | with many small
clusters; 2) If the final number of clusters () — 1.5 and the
final gueen’s cluster size < 250 bees: Phase 4 with no clus-
tering; 3) If the farthest active distance < 4.0: Phase 2 with
clustering at the gueen’s location via random walk ; 4) If the
farthest active distance = 4.0 Phase 3 with clusiering af the
gueen’s location via a scenting percolation network.

Results

Bees navigate obstacles by collective scenting

As previously presented in Nguyen et al. (202 La), the expen-
ments comparing the localization and aggregation dynamics
in the presence and absence of physical ohstacles show that
bees are able to solve the problem in both conditions by em-
ploying the collective scenting strategy. We show snapshots
of the experiment and the corresponding attractive surfaces
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C) Scenting bees D) Distance to queen
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Figure 2: Experiments. Aj) Snapshots of an experiment
where worker bees are in a semi-2[» arena with a caged
queen without obstacles. The corresponding attractive sur-
faces [ show the scenting events correlating to the spatial-
temporal density of bees. B) Snapshots and surfaces of an
experiment where bees are initially placed on on side of a
bar obstacle and the gueen is on the other side. C) The aver-
age number of scenting bees over time for both conditions,
D) The average distance 1o the gueen over time.

for an example experiment without obstacles (N = 3200 in
Fig. 2A. Over 1800 seconds or 30 minutes, the bees activate
a scenting network early (around ¢ = 140 sec), as reflected
in the surface in which the scenting directions collectively
point to the gueen’s area (i.e., surface regions of higher f
values). Most of the bees have formed a swarm around the
queen around ¢ = 900 sec or 15 min. In the presence of

d-sBuipaaoold/jes)/npajiwioallp//:dpy wouy papeojumoq

©7esl/6SySE0T/ L/7E/220ZIes!/Ip

20z Atenuer g uo Jesn OLNIYL I V.LISHIAINN Ad 4pd 26500



® queen

@scenting @ directed walk @ random walk
worker bees ——

bRt e G
&0 0 ;;'1 o

Figure 3: Simulations of four different phases. The gueen is a red circle at the top right corner. Worker bees are circles
colored by their internal state: scenting (green), performing a directed walk up the gradient (orange ), and performing a random
wilk (gray). The instantaneous pheromone concentration C'(x, y, §) corresponds to the green color seale. Common simulation
parameters are N = 300, Cy = 0.0575, D = (L6, and 5 = 108. A) Phase | where bees aggregate into small clusters: uy, = (0,
T = 0.0001 for both conditions. B) Phase 2 where bees cluster around the queen via random walk; uy, = 30, T = 0.5 for no
ohstacle; wy, = A0, T = 0.2 for obstacle. C) Phase 3 where bees create a percolating network of senders and receivers of the
pheromone signal to cluster around the gqueen; wy, = 50, T = 0.025 for no obstacle; wy, = 50, T' = 0LO75 for obstacle. D)
Phase 4 where no clustering occurs; wy, = G0, T = 1.0 for both,

obstacles, the bees generally require more time and explo-
ration to form the scenting network. In Fig, 2B, we show
snapshots of an example obstacle experiment (N = 310), in
which bees search around the space behind the bar until a
few bees find the opening and begin forming the collective
seenting network atl around 900 sec or 15 min, Most bees
swarm around the queen by ¢ = 1800 see (30 min).

To guantitatively compare the aggregation process over
time for the two conditions, we analyze the number of scent-
ing bees over ime (averaged over three experiments for each
condition, with shaded area showing the standard deviation )
in Fig. 2C. Without the obstacle, there is a sharp peak in
the early phase of the experiment (around 350 sec) when
bees quickly form the scenting network and a gradoal de-
crease as most bees have clustered around the queen. In
the presence of the obstacle, there is also a very carly peak
{around 50 sec); however, this peak of scenting oceurs be-
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hind the obstacle before the bees find the opening. A smaller
peak around 900 sec occurs when bees find the opening and
forms a scenting network where the attractive surface shows
the scenting directions oriented towards the queen (Fig. 2B),
Further, we compared the average distance to the queen over
time (Fig. 2D). The distance sharply decreases early in the
absence of an obstacle. With an obstacle, the plateau from
the stant of the experiment until approximately 8(0} sec in-
dicates the time the bees spend behind the obstacle until the
first hees explore and find the opening.

Model shows constrainis in behavioral parameter
space in the presence of obstacles

The experimental results indicate the robustness of the col-
lective scenting strategy in the presence of a physical obsta-
cle and provide insights into the temporal dynamics of the
aggregation process in different environments. The experi-
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Figure 4: The effect of a physical obstacle on the phase
boundaries for all simulmions with varying wy, and T, Phase
dingrams constructed from scenting model dynamics using
summary heatmaps of the final number of clusters, the final
queen’s cluster size, and the distance of the farthest active
bee to the queen. Phase 3 is highlighted in pink. A) Phase
diagram without obstacle. B) Phase diagram with obstacle,

menis are an inspiration for the agent-based maodel where we
further explore the behavioral parameters behind the mech-
anisms of the collective scenting and localization process.
With and without physical obstacles, the model shows the
four distinct phases defined in the Methods section:

Phase 1: Low values of both wy and T produce small
clusters of bees (Fig. 3A). Without an obstacle, signals reach
the entire swarm and lead to clusters earlier than with an
obstacle (around 900 and 3000 time steps, respectively),

Phase 2: High values of T produce swarms around the
queen only via the bees that slowly reach the queen by ran-
dom walk (Fig. 3B). When the obstacle is present. more
time is required for bees 1o spread out throwghout the arena
(after 1500 time steps compared to by 900 time steps).

Phase 3: High values of wy and low values of T lead 10
the percolation network of scenting (Fig. 3C). Withowt the
obstacle, the network has begun to form by around 900 time
steps, while it takes around 5000 tme steps with the obsta-
cle. Although bees in phases 2 and 3 evenmally clusier a
the queen’s location, pheromone signals reach a much far-
ther distance in phase 3 than in phase 2,

Phase 4: Very high values of T and wy, lead 1o no worker
bees ever activated to scent or perform the directed walk up
the gradient. and therefore no clustering (Fig. 3D).

Alihough all four phases are present in both conditions,
the presence of the physical obstacle affects the phase ar-
eas and boundaries, The phase diagram of four phases as
determined by (., T7) for simulations without the obsta-
cle is shown in Fig. 4A. Treating the phase diagram as
an image of a total of 36,100 pixels, phase 3 occupics ap-
proximately 11,925 pixels of 33.03% of the total diagram.
When an obstacle is added to the arena, phase 3 only occurs
when wy, = 50 and occupies approximately 4,500 pixels or
12.47% of the wtal diagram. Most of the parameter space
that makes up phase 3 in the phase diagram for simulations
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Figure 5: Time series of phase 3 simulations in Fig. 3C with
and without obstacle (green and blue curves, respectively).
A} The average distance of the worker bees to the queen over
time. B} The average size of the queen’s cluster over time.
) The average number of scenting bees over time. D) The
average distance of the farthest scenting bee over time.

without obstacles becomes phase | in the diagram with the
obstacle; the remaining phase 3 region becomes phase 2 in
the diagram with the obstacle. For both conditions, phase
3 never oceurs when there is no directional bias (1w, = )
or when the concentration threshold is maximal (T = 1.0).
Lastly, we compare the temporal dynamics of phase 3 sim-
ulations in Fig. 3C (time-series averaged over three repeti-
tions), The average distance 1o the queen decreases faster
and converges to a lower value when there is no obstacle
{Fig. 3A), With the obstacle, we observe a slower decrease
due to the exploration required to find the opening, and a
convergence al a higher distance due 1o some bees that are
still behind the obstacle by the end of the simulation. Sim-
ilarly, the average growth in the queen’s cluster size over
time is faster and the final size is larger when there is no ob-
stacle (Fig. 5B). Both the average number of scenting bees
{Fig. 5C) and average distance of the farthest scenting bee
{Fig. 503) follows similar trends of sharp initial increase and
plateau {number of scenting bees) or slight decrease (farthest
active distance), but there is a delay in the sharp increase
when the obstacle is present,

Discussion
Experimental studies show that bees employ the collective
scenting strategy when localizing the queen and aggregating
around her to form a coherent swarm (Nguyen et al., 2021 h).
This communication method is observed in a simple envi-
romment free of any perturbations as well as a more com-
plex environment with the presence of physical obstacles
(Nguyen et al., 2021b.a). The experimental results demon-
strate a temporal delay in the peak of collective scenting and
a slower decrease in the average bee distance to the queen as
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the ohstacle requires the bees to first explore the space and
find the apening before forming the scenting network.

While the experiments illuminate the temporal dynam-
ics of localization in the presence and absence of obstacles,
we also turn o modeling o better understand how the be-
havioral parameter space 1s affected by the environmental
perturbation. The model predicts four distinct outcomes, or
phases, determined by the directional bias and concentration
threshold, (wg, T 1) many small clusters, 2) clustering via
only random walk, 3) clustering via signal propagation, and
4) no clustering. All four phases are present in both environ-
ments. However, the boundaries of the phases shift in the
presence of the obstacle. Phase 4, dictated by very high T
and very high wy, remains constant. However, the successful
aggregation of phase 3 occupies a smaller overlapping area
of the phase diagram with the obstacle, constraining the pa-
rameters to only one value of high w, = 50, while the phase
spans iy values of 30, 40, and 50 in the diagram for simu-
lations without the obstacle. With low values of T°, most of
the ares encompassing phase 3 in the diagram without ob-
stacles becomes phase | in the diagram with obstacles—the
physical wall leads to the breaking of the chains of scenting
bees in the percolation network, resulting in the formation
of small local clusters on both sides of the obstacle. The
phase 3 region with high values of T° becomes phase 2 with
the obstacle, as the wall separates bees from one another and
prevents the percolation network from forming.

Nguyen et al. (2021b) shows the effect of bee density on
phase boundaries: As density increases, there are more bees
to create and sustain the communication network, and the
range of uy, and T and the area in the phase diagram for
phase 3 is greater. In this study, the shrinking of phase 3
in the presence of the obstacle suggests that the wall has a
similar effect to decreasing total density, by decreasing the
effective density of scenting bees available to form a robust
scenting percolation network, The bees are capable of nav-
igating the obstacle environment to localize the gqueen and
aggregate around her, but their range of potential behavioral
parameters for the task is more limited and less flexible.

The model offers a simplified simulation of the bee col-
lective scenting behavior, Some caveats and limitations that
prevent the simulations from better matching the experimen-
tal data include the lack of spontaneons scenting observed
in reil bees but not modeled due to a lack of better under-
standing of the mechanisms, Further, bees in experiments
seemingly stop scenting as they gather at the queen’s cluster,
while we simply allow bees 1o continue scenting without a
stop function. Future analysis of the experiments is reguired
te understand the mechanisms of these behaviors in order to
improve the accuracy of the model.

Additional future directions include testing variows den-
sities in simulations with obstacles to further understand the
density effect on the phase diagram and the temporal dynam-
ics of aggregation. There may be a critical density below
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which the suceessful aggregation via propagation in phase
3 will not be present, as the obstacle dramatically reduces
the effective density of scenting bees. Further, the physi-
cal obstacle in this study is relatively simple: more complex
physical obstacles or other Kinds of environméntal pertur-
bations (e.g., varying opening size in the obstacle, multiple
obstacles, a maze, wind, or a moving gueen) are of interest
and can further shed light on how bee swarms navigate the
complex. noisy environments found in nature, Lastly, un-
derstanding how the behavioral parameters shift in varying
environments for the bees may further inform the design and
development of swarm robotic systems to include a param-
eter space that allows for suceessful group coordination in
the presence of physical obstacles.
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Appendix

Line-of-sight method. For o given line with end coordinates
(g, g ) and (2, ya), its slope is m = (g2 — )/ {22 — &) and
y-intercept 15 b = —miry + yy. The equation of the line in stan-
dard form, Ar + By = ', is; mxr — y = —h, where the constant
A=m, B =—1,and " = —b The system of equations for the
R it e pE — Yy = be

tines CD and EF is: { i W

mgrs —y = bgp
Transforming to a matrix equation o solve, where Aep =

mcp. Aer = mer, Bop = =1, Ber = =1, Cop = —bep,
& = .‘!,r:'{,l Brn T - (-'["EZ'
EF EF- Aer Ber| v Cuv

Additional figures, table, and algorithm,

A) Deep learning data

B) Scenting bees detected C) Zoom-in

e
-
"’{.

Figure Al: A) Training data examples for deep learning
models to classify scenting bees and estimate orientations.
B) Detections of scenting bees and their orientations (teal
arrows). C) Zooming into scenting bees with wide wings.
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Figure A2: A) The L = L 2-d simulation arena is dis-
cretized into | = [ sized pixels. B) When a bee detects a lo-
cal pheromone concentration above the activation threshold
(e, y.t) = T it computes the gradient around it {using
the nearest 9 pixels, highlighted in different shades of green)
and walks up the gradient towards higher concentration,

Algorithm 1 Honey Bee Quesn-Finding Algorithm

: procedure SET ENVIRONMENTAL PARAMETERS
SF‘"I l‘-ﬂ] .’ln-m..m .-\-n.uq” 1 li_'l.

Temporal: 8,05, 8

Pheromonal: 12, 4

% procedure SET QUEEN PARALMETERS

T T !"‘.h1 + Uiy

[

o

7: procedure SET WORKER PARAMETERS
: o Yuiss Pors Coi

ik Free parameters; ww, T, N,

1 procedure SIMULATE QUEEN-FINDING

11 Initialize Concentration Map

1% for t_iin timesteps do

14 g Stop 1. Check if each bee s emitting

14: e & Build list of pheromone sources

i b Step L1 Check Queen

16 ift_i% P, == 0then

im Cueen omits pheromone vin Eg. 3

L2 Added Queen to Pheromaons Sources

Bk e Step 1.2, Check Workers

.11 for worker i in Workers do

h if stute == emit then

9 worker i emits pheromone vin Eqg. 3

24: Addd worker | to Pheromone Sources

24: o Stop 2. Build Concontration Map

5 e & Compute gradient using Pheromone Sources
3 for pheromone_source i in Pheromons Sources do
v l'[uhltl- Clomcentration Hn]'r

BH; for worker | in Workers do

B Caleulate concentration gradiont via Eq. 5
ik Calenlate directed emission direction

3l p Step 3. Updato next state for Workers

33 for worker i in Workers do

L Upsdate next state according 9 5 M oocier

Algorithm 1: Queen localization and aggregation algorithm
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Parameter Meaning Walue
i Min size of grid arena -5
D i Moax size of grid arena 3
By Grid cell size 0.01
bi kg Stant and Anal tme 0, 150
A Time integration constant 0.005
D Diffusion coefficient 0.6
¥ Decay constant 108
(Tq:%4) Cueen 2-13 position (1,-2)
Fa Queen emission frequency 80
Cy, | Queen initial concentration 0.0575
w,, Queen bias scalar L]
I{.T-..-, M :I wﬂl‘hﬂ :".-I-"-' wﬁi“lﬂ“ E |-"||'rl||n-| inﬂuII_
P Worker emssion penod R
Co, | Worker initinl concentration L0375
Ny Worker density 30K
iy, Worker bias scalar [0, 10, 20, 30,
40, 50, 60|
T Worker activation [le-d, le-3, 0,01,
threshaold 0025, 0,05, 0.075,
0.1, 0,20, 0,25, 0.3,
0.4, 0.5, 0.6,0.7, 1.0]

Table 2: Free parameters, ury, and T, of the ABM are bolded.
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Abstract

We revisit the perceptual crossing simulation studies, which
are aimed at challenging methodological individualism in the
analysis of social cognition by studying multi-agent real-time
interactions. To date, all of these simulation studies have re-
ported that it is practically impossible to evolve artificially a
robust behavioral strategy without introducing temporal de-
lays into the simulation. Also, all of the studies report on
a single strategy: a perpetually crossing agent pair. Here,
we systematically report on the evolutionary success of neu-
ral circuits on the perceptual crossing task, with and without
sensory delay. We also report on two different strategies in
the ensemble of successful solutions, only one of which had
been discussed in the literature previously.

Introduction

Research on social cognition has largely assumed that study-
ing a single individual engaged in a social interaction is suf-
ficient to understand the dynamics and behavior that consti-
tute a social interaction. In the last couple of decades, there
have been calls to take the social interaction itself, instead of
the individuals in isolation, as the object of study (Schilbach
et al.,, 2013). From this interactionist perspective, social
interaction is more than simply the arena in which social
cognition plays out; it enables or constitutes social cogni-
tion (De Jaegher et al., 2010; Froese and Di Paolo, 2011).
Making social interaction the object of study, instead of
a social agent, need not entail more complex experiments.
One minimalist example of an interactionist experimental
paradigm is perceptual crossing (Auvray et al., 2009). In
these experiments, participants are asked to identify when
they think they are interacting with a partner participant in a
simple one-dimensional virtual environment while unaware
of what they are actually interacting with. The tasks are de-
signed to so that they cannot be solved by either participant
independently; successful identification of the partner neces-
sitates mutual interaction. The dynamics of behavior that re-
sult suggest that studies of social interaction should never be
limited to analyzing a single individual’s behavior. Recent
work has expanded the paradigm to two dimensions (Ro-
hde and Paolo, 2008; Rohde, 2010; Lenay et al., 2011), to
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the domain of human computer interaction (Barone et al.,
2020) and to different populations, from adults and adoles-
cents (Hermans et al., 2020; Froese et al., 2020; lizuka et al.,
2015; Froese et al., 2014; Lenay and Stewart, 2012) to indi-
viduals with autism (Zapata-Fonseca et al., 2018).

There has also been a growing interest in using simulation
studies in order to investigate the dynamics of social inter-
action (Di Paolo, 2000; Quinn, 2001; lizuka and Ikegami,
2004; Ikegami and lizuka, 2007; lizuka and Di Paolo, 2007,
Williams et al., 2008; Di Paolo et al., 2008; Froese and
Di Paolo, 2008; Reséndiz-Benhumea and Froese, 2020;
Reséndiz-Benhumea et al., 2021). Some of these models
have been specifically designed to generate insights for mu-
tually informing collaborations between the field of artifi-
cial life and the traditional empirical sciences (e.g. Ikegami
and lizuka, 2007; Di Paolo et al., 2008; Rohde and Paolo,
2008). This is particularly true for the perceptual crossing
paradigm, where there have been a set of rich contributions
from simulation studies that have managed to successfully
replicate the experiment and contribute to hypotheses to be
tested in further social experiments (Di Paolo et al., 2008;
Froese and Di Paolo, 2010). In particular, the simulation
studies have predicted challenges and patterns of interac-
tions that would be faced by human participants (Di Paolo
etal., 2008). In some cases, these predictions have then been
supported by experimental evidence from humans (Auvray
et al., 2009), facilitating model-experiment dialogue (for a
review see Auvray and Rohde, 2012).

Despite the advances, important questions remain open.
First, simulation studies have all relied on the introduction
of a sensory delay for the agents to perform the perceptual
crossing task successfully (Di Paolo et al., 2008; Froese and
Di Paolo, 2010, 2009). Crucially, the practical need for de-
lays in the models has been considered a potentially impor-
tant component for the explanation of the adaptive perfor-
mance of the task in human participants, and has motivated
psychological studies. However, the necessity of a sensory
delay in human participants is unlikely (lizuka et al., 2015).
Second, the dominant (or potentially the only) strategy that
has been discussed in the simulation literature so far has
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been a perpetually crossing strategy, where agents continue
to cross back and forth perpetually. It is unclear whether any
other strategies are feasible. However, most of the simula-
tion studies report on only one of the solutions, not on the
full ensemble of possible solutions.

In this paper, we revisit the original work on the evolu-
tion of perceptual crossing agents and we extend this work
to answer the open questions above. The rest of this pa-
per is organized as follows. In the next section, we describe
the perceptual crossing task and the set up of the agents for
all experiments. Then we present results from a series of
three experiments which explore the evolution of perceptual
crossers under various conditions. Finally, we conclude with
a general discussion of the experimental results, and outline
some directions for future work.

Methods

We set out to replicate the agent and task as described in
previous simulation studies (Froese and Di Paolo, 2010;
Di Paolo et al., 2008; Froese and Di Paolo, 2009). Two
agents coexist on a ring (i.e., a one-dimensional environ-
ment that wraps around; Fig. 1A). Agents are able to move
around the ring with a maximum velocity (2 units of space
per unit of time) in either direction. There are three dis-
tinct types of objects that can be encountered by an agent
(Fig. 1A): the other agent’s avatar, the shadow of the other
agent, and a static object. Each object occupies a total of 2
units of space. The shadows are 48 units of space away from
the agent. The ring is 600 units in circumference, and the
fixed objects are placed across from each other at 150 and
450. Agents can move past each other and their respective
static objects unimpeded. The neural controller that governs
movement (described below) is rotated from one agent to the
other, so that left and right movement aligns with the orien-
tation of the agent. The shadows of the agents are reflected
about the ring, so that one agent’s shadow is to its left and the
other agent’s shadow is to its right, as depicted in Fig. 1A.
The sensory input of an agent is activated (set to 1) when
its receptor field overlaps with another object; otherwise it
remains off (set to 0).

The behavior of each agent is controlled by a continuous-
time recurrent neural network (Beer, 1995) with the follow-
ing state equation:

N

—yi+ > wio(y; +0;) +gis+ 1L (D)
=1

TiYi =

where y; is the state of each neuron, 7 is the time constant,
wj; is the strength of the connection from the j" to the it
neuron, 6 is a bias term, o(z) = 1/(1 4+ e~%) is the stan-
dard logistic activation function, g; is the sensory weight
from the binary sensor s to neuron ¢, and I; represents an
external input to each neuron. The output of a neuron is
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Figure 1: Task and agent setup. (A) The task takes place
in a 1-dimensional ring where two agents face each other.
Each agent can sense the other’s avatar (A), a shadow of the
other’s avatar (S), and a fixed object (F). (B) Each agent has
a sensor (cyan) that can send information to all /V neurons
(black). The neurons in the circuit are fully inter-connected,
including self-connections (not depicted). The output from
one neuron drives the left motor and another neuron drives
the right motor (magenta). The neural circuits in the two
agents are identical (i.e., they have the same parameters).

0; = o(y; + 0;). Following the original simulation stud-
ies (Fig. 1B), the sensor, s, is fully connected to all neurons
in the circuit; the neurons are fully interconnected (includ-
ing self-connections); and two of the neurons are chosen to
drive the left and right motors, respectively. The velocity of
an agent is proportional to the difference between the out-
puts of the two motor neurons: v = (01 — 02), where 0y
and o, represent the outputs of the neuron controlling the
left and right motors, respectively, and + is a constant that
determines the agent’s maximum possible velocity. In all of
our simulations, the maximum velocity was set to v = 2.
As with the original simulation studies, the two agents
have identical neural controllers. The neural parameters of
the controller are evolved using a real-valued genetic algo-
rithm. Given that both agents are clones of each other in
terms of their neural controller, each genome encodes the
parameters for only one neural controller. The following
neural parameters, with corresponding ranges, are evolved:
time-constants 7 € [1, 10], biases # € [8,8], and all con-
nection weights (from sensors to neurons, g, and between
neurons, w) € [8, 8]. We used a generational algorithm with
rank-based selection and a population size of 96 genotypes.
Successive generations are formed by first applying random
Gaussian mutations to each parent genome with a mutation
variance of 0.05 (see Beer, 1996 for details). In addition,
uniform crossover is applied with 50% probability. A child
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replaces its parent if its performance is greater than or equal
to that of the parent; otherwise the parent is retained.

The fitness evaluation is intended as a replication of the
original simulation studies, such that neural controllers are
evolved so that the two agents successfully find each other.
We evaluate the performance of a pair of agents by systemat-
ically varying the starting location of the two agents. Specif-
ically, the starting location for the first agent in a pair is cho-
sen between 0 and 600 in steps of 50; the starting location for
the second agent in the pair is between O and the first agent’s
starting location, for a total of 78 trials. Each trial lasts 800
time units and proceeds as follows: (1) the neural states of
both agents are initialized to 0. (2) During the first 400 units
of time, the agents interact without evaluation. We treat this
as a transient period because it allows for agents initialized
at the maximum starting distance moving at their maximum
velocity enough time to traverse the ring environment and
find each other. (3) For the remainder of the simulation after
the transient period, we record and normalize the distance
between the two agents. For a given trial, the score that a
given pair of agents with a given neural controller receive is:

fo1-12 @)
where d is the average separation between the two agents
during a trial (excluding the initial transient period), 298 is
the maximum spatial distance between the two agents. Since
the 1-D environment wraps around between 0 and 600 units,
300 is the maximum spatial distance between points on the
ring; and because the agents are 2-units wide and the sen-
sors are binary, the agents cannot detect proximity beyond 2
units of space away from each other. The final fitness of the
evaluation is the average fitness across all trials.

While we try to maintain as close a replication to the orig-
inal study as possible, we summarize the key differences
between the original fitness evaluation and ours. First, the
distance during the initial transient period is not taken into
consideration for the fitness here. Second, the fitness here
is normalized to run between 0 and 1 based on the mini-
mum distance at which an agent can sense the other agent.
Finally, this evaluation is deterministic: the starting posi-
tions of the agents are deterministic, the position of the fixed
objects does not change, and the relative position of both
shadows to the agent is fixed. Additionally, there are two
minor differences between our agent/task setup and the orig-
inal study: the objects (the agent’s avatars, the agents’ shad-
ows, and the static objects) occupy 2 units of space instead
of 4; and the maximum velocity is 2 instead of 1. Also, the
stochastic search algorithm used in our simulation is differ-
ent from those used previously. As far as we can tell, each
simulation study that has replicated the work has used dif-
ferent stochastic search algorithms, and we have no strong
reason to believe that the results depend on the particularities
of it. Crucially, as with the original studies, since the avatars,
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shadows, and fixed objects are indistinguishable to either
agent, success in this task requires that the agents evolve
a system for accurately detecting mutual interactions. As it
has been demonstrated by previous implementations of the
model, including only distance in the fitness function makes
for a non-trivial task (Froese and Di Paolo, 2010, 2009).

Part I: Replicating original results

The goal of our first set of simulations was to replicate the
experiments in the original studies. The agents must solve
the perceptual crossing task with the original sensory delay
of 2.5 units of time (25 timesteps using a step size of integra-
tion of 0.1) and with a fitness function that selects for close
average proximity between the two agents. We report on the
evolutionary performance across different circuit sizes and
on two different strategies observed in the ensemble of suc-
cessful perceptual crossers.

What general trends are observed in the evolution of per-
ceptual crossers with sensory delay? One hundred evolu-
tionary runs were performed for two-, three-, and four-node
circuits (see Fig. 2). There are two main groups of solutions.
The first and most dominant ones can be seen in the peak
around 0.92 in the histograms, comprising 93% of all evolu-
tionary runs with two-neuron circuits, 70% of three-neuron
circuits, and 62% of four-neuron circuits. These solutions
entirely fail to find the other agent from a small subset of the
starting conditions. Because this group fails to solve the task
from all possible starting configurations, we do not study
them in any more detail in this paper. There is a second
group of solutions that solve the problem nearly perfectly
(>0.99). The size of this second group increased with the
number of neurons: 1% of all two-neuron circuits, 10% of
three-neuron circuits, and 16% of four-neuron circuits. We
analyze the behavior of this group of solutions in more detail
in the remainder of this section.

What are the overall tendencies observed in the behavior
of successful perceptual crossers? We analyzed all solutions
with a fitness greater than 0.99 across a wider range of con-
ditions than were examined during evolution. Specifically,
we analyzed the performance of this high-performing en-
semble over 100 x 100 starting conditions across the full
spatial range [0, 600] and over a range of shadow distances
[48, 52]. We kept track of the performance of these individu-
als in three different ways: (a) the performance as measured
in the original simulations studies (i.e., with the transients
and without normalization based on sensory-range; x-axis,
Fig. 3A); (b) the performance measured without the ini-
tial transient and with normalization (y-axis, Fig. 3A); and
(c) the number of times the two agents crossed each other
in a trial (Fig. 3B). The results of the behavioral robustness
analysis is shown for all 27 high-performing solutions in the
ensemble in Fig. 3.

We highlight three key observations from this analysis.
First, most of the circuits are behaviorally robust across a
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Figure 2: Evolutionary performance statistics. Performance
histograms for two-neuron (A), three-neuron (B), and four-
neuron (C) circuits. Relative frequency of binned proximity
as a percentage of total trials is plotted. The maximum prox-
imity is 1.0. The dashed line depicts the cutoff of 0.99 for
agents analyzed in more detail.

wider set of conditions: 81.48% of the solutions maintained
a performance greater than 0.95. This suggests that the con-
ditions presented during evolution, including particularly a
relatively small set of starting positions and a fixed shadow
distance, were sufficient for agents to generalize. Second,
our fitness function offers two improvements on the original
fitness function: (a) Equally fit solutions no longer obtain a
wide range of fitness; (b) The fitness of some great solutions
is no longer indistinguishable from much worse solutions.
The fitness function is one potential explanation for the dif-
ficulties evolving mentioned in the original simulation stud-
ies. Finally, not all successful solutions perpetually cross.
This last observation was unexpected. As far as we gath-
ered from the literature, there were no reports of minimally
crossing solutions; only of perpetual crossing solutions.
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Figure 3: Behavioral robustness statistics. (A) Relationship
between original and current measure of performance. Each
point represents one solution from the top ensemble of solu-
tions. The current measure of proximity excludes transients
and normalizes the distance based on the sensory range.
The color of the point represents the size of the circuit:
two-neuron (blue), three-neuron (orange), and four-neuron
(green). Filled disks represent solutions with minimal num-
ber of crossings. Open circles represent solutions that cross
perpetually. (B) Median number of crossings across the so-
Iutions that achieved a robustness performance greater than
0.95 (above the dashed line in panel A). Solutions with fewer
than 15 crossings (dashed line) per trial were labeled as min-
imal crossers. Solutions with greater than 15 crossings were
labeled perpetual crossers.

Part I1: Agents without sensory delay

Having replicated the original results, the second major goal
of ours was to attempt to evolve perceptual crossers with-
out a sensory delay. Given that previous reports always in-
cluded a sensory delay (Di Paolo et al., 2008; Froese and
Di Paolo, 2010, 2009), we did not expect these evolutionary
runs to succeed. Nevertheless, it would be important and in-
formative to understand how and why the no-sensory-delay
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Figure 4: Evolutionary performance statistics for agents
without sensory delay. Performance histograms for two-
neuron (A), three-neuron (B), and four-neuron (C) circuits.
Dashed line depicts 0.99 cutoff for selecting agents to ana-
lyze further.

condition failed.

We again performed one-hundred evolutionary runs for
two-, three-, and four-node circuits to solve the perceptual
crossing task, this time without a sensory delay. We main-
tained the same modified version of the fitness function that
selects for proximity between the two agents. As in the pre-
vious experiment, there was a peak of evolutionary runs that
became stuck around a fitness of 0.92 (Fig. 4). Crucially,
and contrary to what had been reported until now, we ob-
served that a substantial number of evolutionary runs suc-
ceeded (fitness>0.99). Moreover, the proportion of success-
ful runs was substantially larger without a sensory delay than
with it: 4% of all two-neuron circuits, 32% of three-neuron
circuits, and 40% of four-neuron circuits.

Do solutions without a sensory delay generalize well such
that agents find each other across a broad range of condi-
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tions? As with the first set of experiments, we performed
a behavioral analysis of all 76 solutions with fitness > 0.99
(Fig. 5). We highlight the key insights from this analysis.
First, solutions without the delay were largely robust to the
wider range of starting conditions and to the different dis-
tances between an agent’s shadow and avatar. All but one of
the 76 solutions had performance above 0.95 using our up-
dated proximity function (Fig. 5A). Second, only one of the
75 robust solutions crossed perpetually; all others crossed
fewer than 15 times on average (Fig. 5B). Based on these re-
sults, we define minimal crossers as pairs of agents that cross
each other fewer than fifteen times on average and perpetual
crossers as pairs of agents that cross each other continuously,
or more than fifteen times. This last finding prompted the
next set of experiments.

Part II1: Promoting perpetual crossing

When agents were evolved with sensory delay, we replicated
the successful findings of the original simulation studies.
Notably, in addition to the perpetual crossing strategy that
had been reported originally, we observed a second strategy:
minimal crossers (i.e., pairs of agents that crossed each other
fewer than 15 times on average within a given trial). When
agents were evolved without sensory delay, we were sur-
prised to find that they still succeeded at finding each other,
but primarily using the minimally crossing strategy. Given
that the previous simulation studies primarily focused on an-
alyzing solutions that cross perpetually, the natural follow up
question was: Can we reliably generate agents without sen-
sory delay that solve the problem with a perpetual crossing
strategy?

In this third and final set of experiments, we set out to
evolve agents without sensory delay to find each other and
cross perpetually. Our goal was to accomplish this by only
redesigning the fitness function to more closely match the
desired behavioral goal. Specifically, we introduced a term
that promoted perpetual crossing, in addition to proximity.
Including the additional term allows us to ask whether the
perpetual crossing strategy only arises in the presence of
sensory delay. Thus, here our motivation was more about
refining and further understanding the modeling approaches
to perceptual crossing than directly replicating perceptual
crossing work in humans.

The additional perceptual crossing term simply counted
the number of times two agents crossed and averaged this
across all the different starting conditions. We explored
three different ways to introduce this additional term and
we only succeeded with one. In one batch of experiments,
we multiplied or added the proximity term and the crossing-
count term together. In a second batch, we used an incre-
mental approach in two stages: in the first stage, only prox-
imity was evaluated; in the second stage, the proximity term
and the crossing-count term were again multiplied or added
together. Neither of these two strategies successful results.

#20z Atenuer Lg uo Jesn O LNIHL 1A VLISHIAINN Aq 4pd° 26500 € 1eSI/6G7SE0Z/L/vE/2Z0zIes!ypd-sBulpaadoid)les)/npajiw-joalip//:diy woly papeojumoq



1.00F )
095[--------@C% e ____________
0.90F i

0.85}

Current proximity function

0.80] -

o5
0.75 0.80 0.85 0.90

Original proximity function

L |
50f |
4f
00 ]
200 3
!
|

ol

Qb= I I I

0 20 40 60 80 100 120

Relative frequency

Median number of crossings

Figure 5: Behavioral robustness statistics of agents with no
sensory delay. (A) Relationship between original and cur-
rent measure of performance. Each point represents one so-
lution from the top-performing ensemble. Color represents
circuit size: two-neuron (blue), three-neuron (orange), and
four-neuron (green). Filled disks represent solutions with
minimal number of crossings. One open circle represents a
perpetual crossing solution. (B) Median number of cross-
ings across the solutions that achieved a robustness perfor-
mance greater than 0.95 (above the dashed line in panel A).

In the final batch of experiments, we employed a condi-
tional fitness evaluation: if the proximity term was lower
than 0.99, only it counted towards fitness; if the proximity
term was higher than 0.99, then the fitness involved the sum
of the proximity and the crossing-count term. Using this
formulation, agent pairs can achieve a fitness greater than 1.
Only with this approach did we obtain successful perpetual
Crossers.

Is it possible to evolve perpetual crossers without a sen-
sory delay? We performed the final set of one-hundred
evolutionary runs for two-, three-, and four-node circuits.
As with all previous experiments, there was again a large
number of runs that became stuck around a fitness of 0.92
(Fig. 6). In this run, a smaller batch of runs got stuck also at
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Figure 6: Evolutionary performance statistics for agents
without sensory delay and with a fitness function that
encourages crossing. Performance histograms for two-
neuron (A), three-neuron (B), and four-neuron (C) circuits.
The dashed line depicts the cutoff of 1.15 for selecting
agents to analyze in more detail.

a fitness of around 1. This corresponds to solutions that can
find each other perfectly, but do not cross perpetually. Only
a small fraction of the evolutionary runs surpassed both chal-
lenges. Based on observations of the behaviors, we counted
the number of successful solutions as those that surpassed a
fitness of 1.15 on the combined task: none of the two-neuron
circuits, 6% of three-neuron circuits, and 6% of four-neuron
circuits. All 12 of the successful perpetual crossing solu-
tions had a performance above 0.95 on the robustness test
(Fig. 7A); and all of them had a median number of crossings
above 80 (Fig. 7B).

What can we learn from the behavior of a perceptual
crossing agent without sensory delay that crosses perpetu-
ally? Although a detailed analysis of the dynamics of one
of these circuits is outside the scope of this contribution, we
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Figure 7: Behavioral robustness statistics for agents without
sensory delay evolved to cross perpetually. (A) Performance
of the best solutions (each point) using the original and the
current measure of proximity. Color represents circuit size:
two-neuron (blue), three-neuron (orange), and four-neuron
(green). All solutions are perpetual crossers, as depicted by
the open circles. (B) Median number of crossings across
the solutions that achieved a robustness performance greater
than 0.95 (region above dashed line in panel A).

can learn something about the operation of these circuits by
looking at examples of their behavior. In this final section,
we visualize the behavior of one of the top three-neuron cir-
cuits without sensory delay in three stages of detail (Fig. 8).
First, we visualize the average proximity performance of
the two agents throughout the full duration of a trial as a
function of a wide range of starting conditions (100 x 100)
(Fig. 8A). It is important to keep in mind that in this solution,
like in most of the successfully evolved solutions, the agents
always find each other and remain close to each other there-
after. This map of performance, then, does not reflect their
ability to find each other, but rather how much exploration
the agents exhibit as a function of the starting positions. A
performance of 1.0 represents starting configurations where
the agents find each other early in the evaluation trial; while
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Figure 8: Behavior of one of the top three-neuron circuits
without sensory delay. (A) Proximity performance of the
two agents as a function of their starting positions. Color
indicates proximity performance. (B) A sample of 78 trials
from the full range of different starting conditions as exam-
ined during the fitness evaluation. (C) Detailed look at the
interaction between two agents for one trial.

a performance of 0.8 represents agents that find each other
after the first 200 units of time. As a second step, we can
observe the agents’ movement in the one-dimensional ring
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over time given a smaller set of starting conditions (78 to-
tal) across all of time (Fig. 8B). One thing that is interesting
to note here is that these agents find each other somewhat
uniformly along the length of the environment; other solu-
tions in the ensemble exhibited different patterns, and not
always uniform. Finally, we can visualize a single trial over
the small window of time where the agents first interact and
then maintain a mutual crossing (Fig. 8C). One thing to note
is that the pattern of crossing was quite different across all
12 of the different top three- and four-node circuits. For
some of the solutions, the absolute position of the cycle of
crossing stayed constant; for other solutions the pair drifted
slowly in time while continuing to cross around each other.
Overall, the main take-home message from looking at exam-
ples of the behavioral trajectories of some of these agents is
that there is a wide variety of patterns of behavior according
to which they could be grouped.

Discussion

In this paper, we set out to replicate the perceptual cross-
ing simulation studies (Froese and Di Paolo, 2010; Di Paolo
et al., 2008; Froese and Di Paolo, 2009) and refine the ap-
proaches used. First, we observed that evolving agents with
a sensory delay resulted in two clearly distinct behavioral
strategies: perpetual crossers (agents that find each other
and continuously cross) and minimal crossers (agents that
stop moving after crossing each other a limited number of
times). As far as we are aware, only the former had been re-
ported in the literature (Froese and Di Paolo, 2010; Di Paolo
et al., 2008; Froese and Di Paolo, 2009). Presumably, per-
petual crossers are preferred because they continuously in-
teract. Second, we succeeded at artificially evolving agents
without the sensory delay, contrary to what has been previ-
ously reported (Di Paolo et al., 2008; Froese and Di Paolo,
2010). However, an analysis of the successful solutions re-
vealed that nearly all of them adopted a minimally crossing
strategy. Finally, by modifying the fitness function to select
for both proximity and crossings, we were able to generate
agents without sensory delay that adopted the perpetually
crossing strategy.

There are two factors that are likely to have played an im-
portant role in the success of the evolutionary runs in our
simulation studies. First, by including the initial transient
of the behavioral trajectories of the agents in each trial, the
fitness function in the original simulation studies blurred the
performance of otherwise successful circuits (c.f. Fig. 3A).
By eliminating the transients, we could measure with more
precision the percentage of trials where agents found each
other. Second, the original simulation studies involved a
stochastic fitness evaluation, varying the starting position of
the agents and the distance of the shadows in each trial. The
purpose of this was to make sure the agents learned the task
robustly. However, for this task, a deterministic fitness eval-
uation was sufficient to produce equally robust solutions.
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Finally, the positioning of the shadow in these experi-
ments led to some initial exploratory and counter-intuitive
results. In every one of the formulations of the task that we
examined (Froese et al., 2014; Froese and Di Paolo, 2010),
there was no explicit statement on whether the shadow was
positioned to the left or the right of the agent/participant.
Most crucially, it was not stated whether the shadow of
one agent was reflected or rotated with respect to the other
agent. However, in all the schematics of the task (Froese
et al., 2014; Froese and Di Paolo, 2010), except for one of
them (Auvray and Rohde, 2012), the shadow appeared to
be reflected. Importantly, the original paper (Auvray et al.,
2009) has a schematic that represents the shadows as re-
flected. In preliminary experiments, we examined both con-
ditions (although we only report here on the reflected condi-
tion). The rotated-shadow condition provided counter intu-
itive results. Although we might predict that the task would
be impossible because agents would end up mutually os-
cillating around each other’s shadows, thinking they have
found the other agent, evolution reliably found a clever hack
that relied on the symmetry of the nervous systems. Because
the two agents start moving in the same direction (left or
right), they always encounter the other’s avatar and shadow
in the same sequence: one first and then other (depending on
the direction). This allows them to “hardcode” which stimu-
lus to center on without the requirement to mutually interact.
This is, of course, not a possibility for the condition where
the shadows are reflected.

Future Work

The next step for future work is to perform detailed analy-
ses of the evolved perceptual crossers without sensory delay.
Using the mathematical tools of dynamical systems theory,
one can identify how the underlying dynamical structure of
the agents supports their joint interaction. A psychophysi-
cal analysis might illuminate additional differences between
the perpetual and minimal crossers that we identify. Such an
analysis might also be useful for connecting our results to
empirical work on humans, further strengthening the model-
experiment loop that the perceptual crossing paradigm has
established. Of particular interest would be to run new em-
pirical experiments with humans to test whether participants
can be prompted to use perpetual versus minimal strategies
depending on either the sensory-delay condition and/or dif-
ferent variations of the task prompt.
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Abstract

We demonstrate here that the morphogenetic Primordial Particle
System, which was originally defined for two dimensions only, can
also operate with minimal adaptations in a three-dimensional
setting, producing similar life-like structures and dynamics.

Introduction

Self-organizing morphogenetic complexity arising from
simple local interactions is a core topic of Artificial Life.
Systems like the Game of Life [1] and many of its variants,
e.g., HighLife [2], produce complex emergent phenomena in
discrete 2D space. The search for a 3D variant of such systems
is ongoing, although several candidates have been suggested
[3,4]. With a comparable level of microscopic simplicity, the
Primordial Particle System (PPS) shows comparable emergent
macroscopic features in continuous 2D space, as a system of
self-propelled particles [5] following a simple motion law
(Equ. 1). Here we extend PPS to 3D space as the new PPS*".

The PPS Mechanics: From 2D to 3D

Our original 2D PPS [6] is a set II of particles. In each time
step t, each particle i € II is defined by its position in space
(x(i, 1), y(i, t)), and by its orientation @(i, t). Particles move
with velocity v and rotate with the following motion law

L= o+ Bsgn(RGY) — LGO) NG, (1)

where R(i,t) and L(i,t) are the number of other particles
inside of the semicircle right and left of the particle within
radius 7, thus the total neighborhood size of each particle i is
N(i,t) = R(i,t) + L(i,t). The parameter a gives a constant
rotation, while B scales the density-dependent rotation. The
function sgn() refers to the signum function, returning the
sign of a value as +1, 0, or -1. The 2D PPS described in [6] is
PPS « [a = 180° B = 17°, v = 0.67, r = 5.0]. We here
extend this system to 3D space, where each particle’s position
is defined by (x(i,t), y(i,t), z(i,t)) and each heading is
(o(i, t), Wi t). @(it) is the pitch and P (i, t) is the yaw of
the particle, there is no roll rotation in this system. Our focal
PPS* is PPS « [ = 180°, B = 24°, v = 0.67, r = 3.5].
In order to keep computational loads in 3D space low, we
decrease the neighborhood radius to v = 3.5 and therefore
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increase the neighborhood-dependent rotation coefficient to
B = 24°. In a PPS’®, the number of particles within the
hemispheres left L(i,t) and right R(i,t) of each particle i
determines its yaw rotation, and the number of particles within
the hemisphere above A(i, t) and below B(i, t) each particle i
determines its pitch rotation. Particles start with randomized
initial positions and orientations. We simulated 1600 particles
in a wrapped cubic space of 40 voxels side-length. We use
Euler integration to solve the system for a period of 0 < t <
T'with At = 1. 0. Figure 1 details the update procedure.

Implementing the microscopic rules of PPS®” in a nutshell

Vtimesteps t €{1,2,3, .., T} (sequential oder)

A AntR A AR FT T T AR iy pigApaptpdguihhgaget

1 Vparticlesi € II: (randomized order)

. e S

t 1. Measure R(i, t) and L(i, t) within radius r
2. Calculate N(i,t) = R(i,t) + L(it)

3. Update (rotate) the particle’s yaw (i, t):
At

4. Update x(i, t), y(i, t) and z(i, t):
Move particle forward by a distance of v/2

5. Measure A(i, t) and B(i, t) within radius r

Y !
\’; PA 4 B sgnRGLE) — LG D) - NG, b)

P ! 6 Update N(i,t) = A(i,t) + B(,t)

I+ 7. Update (rotate) the particle’s pitch (i, t):

C b A=+ BsgnWG ) - BGH)- NGO
H . 8. Update x(i, t), y(i, t) and z(i, t):

Move particle forward by a distance of v/2

..... bocoooomoodicoooonoooe oo dhoceoSa e sooobScoooo

COL: 9. Update final particle color depending on N(i, t)

Figure 1: Particle update procedure in a PPS®.

Particles’ colors shown in Figure 3 indicate their participation
in emergent structures. Particle colors depend purely on the
local particle density. With N(i,t) < 7 they are green
(nutrients), with 7 < N(i,t) < 12 they are brown (immature
spores), with 12 < N(i,t) < 20 they are blue (cell surface).
With N(i,t) > 20 they are yellow (cell core). If the number
of other neighboring particles exceeds 7 within a small radius
(r = 1. 3), a particle’s color will be magenta (mature spore).

Our main goal here is to show that a PPS with almost the
same microscopic set of rules can also work well in 3D if the
rotational motion law for the rotations yaw and pitch are
executed in an alternating regime. As a measure of success,
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we investigate if the PPS*P shows the characteristic properties
of the original PPS: (A) Spontaneously forming spores from
freely roaming nutrients. (B) Growth of such spores to cells if
enough nutrients are available. (C) Division of cells into two
spores or (D) into two cells. (E) Long-term habitat conquest
by emerging structures. (F) Logistic growth of populations.

Results

For space constraints we show mostly exemplary snapshots
here, a video that shows the full runs of the features (A-E) is
available online [7]. Figure 3A shows that initially randomly
distributed particles can first aggregate to an immature spore
(brown), which then can attract more particles to form a
mature spore (magenta). Figure 3B shows that such a spore
can grow into a cell structure, with a dense core (yellow) and
a medium-density outer layer (blue). Such a cell can then
either divide into two spores (Figure 3C) or into two cells
(Figure 3D). Figure 3E shows that — starting from a single
emerging spore — the whole habitat gets conquered and altered
due to the replication process in PPS*". We found emergent
spores to consist of 14+1 and emergent cells of 30+13
particles. Figure 3F shows the population dynamics of this
process, by showing the median number of particles assigned
to cells and spores, respectively, from 24 different runs, as
well as the population dynamics of the exemplary run shown
in Figure 3E. We fitted (LSD method) a variant of the classic
Lotka-Volterra competition model [8,9] to our data (Figure
3F), describing the population dynamics of particles in cells
C(t), in spores S(t), and as free nutrients F(t). The macro-
scopic OAE-model captures the PPS* dynamics well (Figure
2). RS and RC are the populations’ growth rates, KS and KC
are carrying capacities and b is a competition coefficient. We
start the model with one cell and one spore of minimal size.

Macroscopic OAE model of emerging PPS*® dynamics
AS/At = RS - S(©) - (1 — (S(O) + b - C(£)/KS),
AC/At = RC - C(t) - (1 — C(t)/KC), and
F(t) = 1600 — S(t) — C(t) with At = 1.0 and with
a parametrization of RS = 0.0014, KS = 270,b = 0.75,
RC = 0.0023, KC = 136, S(0) = 13, C(0) = 17.

Figure 2: Macroscopic model of the PPS*® dynamics.

Discussion & Conclusion

We translated the original PPS with only minimal adaptations
into a three-dimensional system, keeping all emergent
structures and dynamics that make the PPS interesting. The
shapes, the behaviors, and the population dynamics of
emergent structures described in Figure 3 resemble the
observations from the original 2D version of the PPS [6]
closely. It is yet open for future investigations, how and why
such a simple rotational motion law of particles can yield a
“virtual ecosystem” of emergent life-like structures. In
contrast to other morphogenetic systems operating in
continuous space, e.g. self-propelled particles in ‘swarm
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chemistry’ (SC) [10-12] or wave-based models in ‘Lenia’
[13], a PPS is microscopically (far) less complex. But, as a
PPS is based on permanently moving particles, the emerging
structures are less stable compared to Lenia or SC, which also
made the 2D-to-3D transition recently [13,14]. We followed
the classic ALIFE approach of “complexity from simplicity”
intentionally: Keeping the system’s microscopic simplicity,
while also keeping its macroscopic complexity, contributes to
the feasibility of a future physical embodiment of this system,
e.g., with an autonomous swarm of loosely coupled micro- or
nanorobots — a step towards active reconfigurable matter.
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Figure 3: We found all significant macroscopic properties
emerging in a PPS®, which are known from the original PPS.
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Abstract

Fireflies’ dazzling light displays are courtship rituals: flying
males announce their presence as suitable mates to the fe-
males on the ground. Their light signal is composed of a
species-specific on/off light sequence repeated periodically.
However, thousands of fireflies flashing in a swarm can cre-
ate immense visual clutter that hinders the detection of po-
tential mates. A partial solution to this visual clutter problem
is to flash according to sequences that are more distinct and
detectable than those of other individuals. Here, we inves-
tigate how distinguishable flash sequences can co-evolve by
developing a method for simulating sequences that minimize
their mutual similarity with each other while minimizing their
energetic cost and predation risk. This simple set of rules pro-
duces flash sequences that are remarkably similar to those of
real fireflies. In particular, we observe an emergent periodic-
ity in the resulting sequences, despite the lack of any period-
icity requirements on the sequences. In addition, we demon-
strate a method of reconstructing the evolutionary pressures
acting on sets of firefly species. We do so by carrying out
simulations that follow known phylogenetic relationships of
extant species alongside their characteristic flash patterns.

Introduction

The multitude of flashes that punctuate a summer’s night are
mating calls from fireflies (Lampyridae): a chorus of air-
borne males announces their presence as suitable mates to
females on the ground (Fig. 1A). Fireflies emit light from
an abdominal “lantern” organ capable of producing biolu-
minescence. Some species emit steady glows, while others
emit patterns of discrete flashes (Stanger-Hall et al., 2007,
Lewis and Cratsley, 2008). Here, we focus on the latter,
as these have the potential to temporally encode informa-
tion and can further provide insight into the development of
communications for multi-agent systems (Lewis and Crats-
ley, 2008).

The flying males flash according to a species-specific pat-
tern. Each instance of the pattern is followed by a longer
‘quiet’ or ‘dark’ period wherein the females can respond
with a species-specific delay (Lewis and Cratsley, 2008;
Stanger-Hall and Lloyd, 2014). If a pair of fireflies recog-
nizes their flashes as indicative of the same species, they
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Doubly periodic sequence

Singly periodic sequence

P. punctulatus FPI P. obscurellus
IPI = FPI IPI Pulse duration
o n # of pulses =3
N N N S8 =
—A—A—A—— HH
6 0

0 2 4
Time (seconds)

2 4 6
Time (seconds)

Figure 1: Firefly swarms flash to attract mates. A: Long
exposure of a swarm of Photinus carolinus fireflies at the
Great Smoky Mountains National Park, Tennessee, USA.
B: Firefly flash patterns are typically either singly or dou-
bly periodic, as illustrated with the characteristic patterns
of Photinus punctulatus and Photinus obscurellus, respec-
tively. Flash patterns can be parameterized by four values:
the pulse duration, the number of pulses in a flash burst, the
IPI (interpulse interval, or short period) and the FPI (flash-
pattern interval, or long period). For singly periodic se-
quences, the IPI is necessarily equal to the FPIL.

can continue to dialogue until they locate each other. On
some occasions, fireflies misidentify a signal from a firefly
of another species as being from their own. Female fireflies
do mistakenly respond to signals from males of the wrong
species, while males also locate and approach females of
other species, leading to the male realizing the mistake and
abandoning the interaction (Lloyd, 1968, 1969; Stanger-
Hall and Lloyd, 2014). Moreover, female Photuris fireflies,
dubbed “femme fatales”, are able to mimic (though not nec-
essarily perfectly) the flash responses of various species of
Photinus males, luring the male into a deceptive dialogue
that results in its attack by the female (Lloyd, 1957; Stanger-
Hall and Lloyd, 2014).

While a female’s flash response is relatively simple and
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Figure 2: In the vocabulary generator, firefly agents simultaneously minimize a cost function in order to arrive at species-specific
flash sequences. A: The similarity between sequences of different species is determined by calculating the longest common
substring (LC'S). In this example, the LC'S is 4 bits. The predation score p, given by the proportion of on bits in the sequence,
is also shown. Agents of the same species compare sequences, and the lower-cost sequence is adopted by both. Sequences
can also mutate by flipping or transposing bits. B: Starting from random initial conditions, multiple species minimize the cost
function to achieve distinguishable sequences. C: Evolution of a set of firefly sequences over the course of multiple epochs of
the vocabulary generator. Starting from random initial conditions in epoch 0, the five species’ sequences become increasingly

periodic by epoch 4000.

often consists of a single flash (Lewis and Cratsley, 2008;
Stanger-Hall and Lloyd, 2014), male flash sequences can be
more complex. Among North American firefly species, male
sequences have been observed to be either singly or doubly
periodic (Fig. 1B) (Stanger-Hall and Lloyd, 2014). Singly
periodic sequences consist of single flashes (of equal dura-
tion) spaced apart by regular quiet intervals. Doubly peri-
odic sequences consist of flash “bursts” of several pulses in a
row, separated by longer quiet periods. A flash sequence can
be parameterized by 4 values (Fig. 1B): the pulse duration,
the interpulse interval (IPI), the flash-pattern interval (FPI),
and the number of pulses per pattern. The IPI represents
the short period of a sequence, consisting of a pulse and the
subsequent pause before the next pulse in a burst. The FPI
represents the long period, consisting of the entire flash burst
and the succeeding quiet period. If the sequence is singly pe-
riodic, the IPI and FPI are equal. As male sequences have
been more extensively documented for a range of species
than female responses, we focus here on only male signals.

Thousands of fireflies flashing in a swarm presents the
possibility of immense visual clutter. This results in a “cock-
tail party problem”: fireflies must detect the correct pattern
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of their potential mates while filtering out flashes of other
species, similar to how a partygoer can focus on a single
conversation while filtering out background music and ir-
relevant chatter (Bee and Micheyl, 2008). In some species,
fireflies synchronize their flashes with swarm mates (Buck,
1988), a social phenomenon that can alleviate visual clut-
ter (Moiseff and Copeland, 2010). The mechanisms, driv-
ing factors, and consequences of synchronization in fireflies
remain a widely investigated topic (Moiseff and Copeland,
1994, 2020; Sarfati et al., 2021) and source of inspiration
for the design of decentralized robotic systems (Christensen
et al., 2009; Perez Diaz, 2016).

In more visually complex scenarios, tens of different fire-
fly species can occupy the same geographical area (Lloyd,
1969; Stanger-Hall and Lloyd, 2014). Even if individual
fireflies synchronize, it would be beneficial for different
species to have distinct flash patterns to facilitate species
recognition. Indeed, character displacement has been ob-
served in North American firefly species, where species with
overlapping geographical distribution (sympatric) exhibit
greater differences in their flash patterns than (allopatric)
species that do not (Stanger-Hall and Lloyd, 2014). Sym-
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patric species can differ in their mating times and breeding
habitats as well (Lloyd, 1966; Lewis et al., 2004). It has also
been observed that fireflies decode species information pri-
marily from the temporal characteristics of flash patterns,
namely the pulse duration, number of pulses, IPI, and/or
FPI, rather than the color of the light or the movement pat-
terns of the flashing firefly (Lloyd, 1966; Lewis et al., 2004).
Hence, we focus solely on temporal information in flash pat-
terns in this paper.

The more conspicuous a flash pattern is, the more notice-
able the firefly is to potential mates, but also nearby preda-
tors. Bats and spiders, for example, may be attracted to the
firefly’s flash (Lloyd, 1973). Predation pressure has resulted
in some species foregoing their flash altogether, and in-
stead relying on less efficient pheromone signaling to evade
danger (Stanger-Hall et al., 2007; Stanger-Hall and Lloyd,
2014). There may also be energy costs, albeit minimal, asso-
ciated with flashing (Lewis and Cratsley, 2008), and pressure
to minimize energy expenditure would likewise diminish the
amount of flashing. As such, we treat both energy cost and
predation risk as the same driving force, and will henceforth
refer to this cost mechanism as predation risk. Hence, we
investigate how firefly flash patterns can co-evolve to be dis-
tinguishable under a potentially competing pressure to re-
duce predation risk.

In this paper, we develop a method for simulating dis-
tinguishable firefly-like signals according to an evolution-
ary process that we term the “vocabulary generator”. In the
vocabulary generator, firefly agents possess binary flash se-
quences; the sequences mutate at a specified rate, and agents
adopt others’ sequences in order to minimize a cost func-
tion that penalizes both high amounts of flashing (a pre-
dation risk), and similarity between sequences of different
species. We demonstrate that even when sequences are ini-
tialized to random strings of bits that can only change in
a bitwise manner, the sequences nevertheless self-organize
into near-periodic patterns that resemble real firefly flash se-
quences. We observe that the competing pressures to mini-
mize predation risk and confusion between species presents
a tradeoff, wherein prioritizing discriminability between se-
quences results in both a higher amount of flashing as well
as more complex sequences that contain flash bursts instead
of singly periodic flashes. Finally, we explore how the vo-
cabulary generator can be used to “reverse-engineer” a cost
function that can capture the relative strength of evolution-
ary pressures which shaped the flash patterns observed in
extant species.

Vocabulary generator

We introduce the “vocabulary generator”, an evolutionary
method for simulating firefly-like signals (Fig. 2). This
method is inspired by the naming game procedure, wherein
agents achieve common vocabularies via pairwise interac-
tions (Steels, 1997; Baronchelli et al., 2008). In our pro-
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cedure, multiple firefly species simultaneously minimize a
cost function over a series of epochs, whereby fireflies of the
same species iteratively compare their sequences via pair-
wise interactions to mutually adopt the lower-cost sequence.
Unlike in the naming game, sequences in vocabulary gener-
ator can mutate, as in some evolutionary language models
(Nowak and Krakauer, 1999; Nowak et al., 1999). The ob-
jective in the vocabulary generator is for fireflies of the same
species to arrive at the same characteristic flash sequence,
with that sequence being distinguishable from the sequences
adopted by other species.

A flash sequence of length L is defined as a binary string
of bits, each with value 1 (on or flashing) or O (off or not
flashing):

(an)ﬁzlv an €{0,1}.

In defining the cost function, we focus on two aspects
likely to shape the evolution of firefly communication:
the distinguishability between species-specific patterns, and
predation risk. We define the cost C of a particular sequence
as follows:

C((an)koy) = wes + wyp, (1)

where s denotes the average similarity between that se-
quence and sequences of all other species, and p the pre-
dation risk of the sequence. w, and w,, are weights whose
relative values can be adjusted to produce sequences with
different characteristics.

We define the similarity between two sequences
(am)L_, and (a,)E_, as the length of the longest
common substring under cyclic permutation, denoted
LCS((am)E_,, (an)k_,), representing the maximal possi-
ble overlap between the sequences. We consider all cyclic
permutations in comparing the sequences as in nature, there
is no guarantee that two different co-habitant species start
flashing their sequences at the same time or at a constant off-
set. The longest common substring between two sequences
is given by

LOS((am)pz1; (an)i—1) =

og%?fq f((am)anzl — (an — An+k(mod L))szzl)a )
where a,, — a4 indicates shifting the nth element of the
sequence by k places, and f(a,)%_, represents a function
that computes the length of the longest consecutive sub-
sequence of zeroes in the sequence (a,)%_,. For exam-
ple, f(1,0,0,0,1,0,1) = 3. We note that the spatiotem-
poral resolution and signal processing mechanisms of real
fireflies vary from species to species, and the ability of fe-
male fireflies to discriminate and respond to simulated male
flashes of varying length or period has been explored for
various North American species (Lloyd, 1966; Carlson and
Copeland, 1985). These can be further quantified in future
field experiments in order to inform the similarity compu-
tation. Here we ignore spatial considerations such as the
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Figure 3: Example ensembles of flash sequences simulated for 3, 5, and 7 species, with weight ratio ws/w,, values of 0.4 (left
column), 1.4 (middle column), and 2.4 (right column). The weight ratio w,/w, represents the tradeoff between similarity and
predation pressures, and higher values of this ratio produce sequences with a greater number of flashes.

movement of the firefly or the potential attenuation or ob-
scuring of signals by foliage or other obstacles, and we as-
sume that a single bit represents the highest temporal resolu-
tion achievable. To compute the similarity term s for a given
sequence, the LC'S between that sequence and all other se-
quences of different species is averaged and normalized by
the length of the sequence, such that s is valued between 0
and 1.

Moreover, we define the predation risk p as the propor-
tion of on bits over a given sequence length, ie., p =
25:1 ar /L. The more a firefly flashes, the higher the pre-
dation risk. Likewise, p is valued between O and 1. Ul-
timately, this cost function presents a tradeoff: minimizing
predation risk will result in sparser flash sequences, but min-
imizing mutual similarity may require the presence of more
flashes to distinguish between species.

In the vocabulary generator (Fig. 2), we define N, dif-
ferent species of fireflies, with each species containing Ny
individual firefly agents. In population genetics simulations,
one way to shorten the time to convergence while keeping
the mutation rate constant is to introduce the concept of
populations for each species (Gillespie, 2004). Hence, we
consider a population of Ny agents for each species rather
than a single representative phenotype for that species. Each
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agent is assigned a binary sequence (a%'?)L_, | initialized to
a random string of bits such that a9 ~ Ber(0.5), where
Ber(p) denotes the Bernoulli distribution with probability p,
o € {1,..., N} denotes the species, and ¢ € {1,..., Ny}
denotes the agent identity.

Then, the cost function for a sequence (aZ'?)L_; in a sys-

tem with NV, species and Ny agents per species is given by:

¢ ((GZ’¢)£:1) =

N, Ny
wS o o_l ’
(A Yo D LCS((an?)iy, (ag P )ro)
s o'=1,0'#0 ¢p=1
w L
+ e 3)
n=1

The vocabulary generator method (Procedure 1) is illus-
trated in Fig. 2A and proceeds as follows. The similarity be-
tween sequences of different species is determined by com-
puting the LC'S (Eq. 2), and the similarity score s for each
sequence is determined by averaging over the normalized
LC'S between that sequence and those of all other species
(Fig. 2A, Box 1). Then, for each pair of firefly agents be-
longing to the same species, their costs are computed using
the previously determined similarity score s, following Eq. 3
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Procedure 1 Vocabulary generator
Input: number of species N, number of agents V¢, length
of sequence L, mutation rate p, epochs to simulate NV
for c =1to N, do
for ¢ = 1to Ny do
forn=1to L do
ay, < random integer € {0, 1}

for epoch=1to N do
for o =1to Ny do
for  =1to Ny do
for ¢/ = ¢ to Ny do
Covp ¢ C((a7)fr)
Co.pr = C((a7? )z1)
if Cg@ > Clﬁd)' then
(ag®)hoy « (ag?)h
if random number € (0,1) < p then
mutate((aZ?)L_,)
elseif C, 4 < C, o then
(ag"d)ﬁ:l — (a2’¢)£:1
if random number € (0,1) < p then
mutate((a%% )E_,)
function MUTATE((a,,)5_,)
r < random integer € {1,...,L}
if random integer € {0,1} = 0 then
a, <la,
else
x4 ay
Y < Q14r(modL)
ar <y
A14r(modL) < T

(Fig. 2A, Box 2). Then, the agent with the higher-cost se-
quence adopts the sequence of the other agent. The sequence
can also mutate with a specified probability (the mutation
rate) by flipping a bit (from off to on or on to off) or trans-
posing two adjacent bits (Fig. 2A, Box C). The above steps
are then repeated until the average costs of the sequences
reach a steady state (Fig. 2B). Moreover, Fig. 2C illustrates
the evolution of the sequences from a system of 5 species,
initialized to random sequences in epoch 0, and reaching a
steady state by epoch 4000.

Examples of sequences simulated with the vocabulary
generator are illustrated in Fig. 3. The top row shows se-
quences generated for ensembles of N, = 7 species with
Ny = 10 agents; the resulting characteristic sequence for
each species is shown. The middle row illustrates ensem-
bles of N, = 5 and the bottom row ensembles of N, = 3,
with Ny = 10 agents in both cases. The ratio of the cost
function weights w,/w, increases from left to right, with
sequences in the left column simulated using w,/w, = 0.4,
ws/w, = 1.4 for the middle column, and w;/w, = 2.4 for
the right column.
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We observe that when the w; /w,, ratio is small (Fig. 3, left
column), sequences are extremely sparse, with more than
one sequence being entirely devoid of flashes. As this ratio
increases, the frequency of flashing increases, and the length
of flashes may increase as well (Fig. 3, right column).

We emphasize that we do not enforce the sequences to be
periodic; they are initialized to random strings of bits and
mutated in a bit-by-bit manner (Fig. 2A). Nevertheless, we
observe that the resulting sequences (Fig. 3) demonstrate an
emergent periodicity. We also observe both singly-periodic
and doubly-periodic sequences; moreover, we observe that
the lengths of individual flashes in a sequence generally do
not vary.

We repeatedly run the vocabulary generator to perform a
more extensive parameter sweep over values of the w;/w,
weight ratio that range from 0.2 to 3 in increments of 0.2,
and over system sizes ranging between 2 and 7 species
(Fig. 4). We quantify the periodicity in the resulting gen-
erated sequences by examining the variance in the spaces,
or gaps, between flashes. A sequence is classified as singly
periodic if the standard deviation of the gap size is less than
0.2 times the mean gap size of that sequence, and doubly pe-
riodic if it is greater. Fig. 4A shows the standard deviation in
gap sizes as a function of the number of species and the ratio
of the similarity and predation weights. For singly periodic
sequences, simply the standard deviation of gap sizes, nor-
malized by the mean gap size, is shown. For doubly periodic
sequences, the gap sizes are partitioned into two clusters us-
ing k-means clustering, and the standard deviation for each
cluster, normalized to the mean of that cluster, is computed;
these two values are then averaged and shown in Fig. 4A.
We observe that the higher the w;/w),, ratio, the higher the
variation in the gap size, and thus the lower the periodicity.

The cost function (Eq. 1) captures a tradeoff between pre-
dation risk and similarity. When the similarity term is more
strongly weighted, i.e., when w; is larger relative to w),
we observe that sequences include more flashes in order
to differentiate themselves, but also become more complex,
containing more sequences with flash bursts. We also ob-
serve that for a small number of species, most simulated se-
quences are singly periodic. For higher numbers of species,
along with increased values of the w,/w),, ratio, the higher
the prevalence of doubly periodic sequences (Fig. 4B). In-
creasing the number of flashes in a burst can help to reduce
the similarity with other sequences when more species are
present.

Brute force validation

To validate our observation of emergent periodicity, we take
a brute-force approach by exploring the set of all possible
binary sequences for a given length. Our objective here is
to determine whether sequences that are periodic like firefly
flash patterns result in a lower cost (Eq. 1) than those that
are not.
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Figure 4: Periodicity in simulated flash sequences. A: Stan-
dard deviation in the size of gaps between flashes as a
function of the number of species and the ratio of weights
ws/wp. The lower the standard deviation in gap size, the
higher the periodicity. B: The fraction of doubly periodic
sequences present in an ensemble of simulated sequences as
a function of the number of species and the ratio of weights
W /Wwp.

First, we generate all sequences of a given length
that are unique under cyclic permutation.  For ex-
ample, (1,0,1,0,0,0) is equivalent to (0,1,0,1,0,0),
(0,0,1,0,1,0), (0,0,0,1,0,1), etc.; and as such only one
of these permutations would need to be included. Then, we
determine how many of these sequences are valid firefly se-
quences, i.e., singly or doubly periodic with flashes of equal
lengths. For example, (1,0,0,1,0,0) is a valid firefly se-
quence, while (1,1, 1,0, 1,0) is not a valid firefly sequence.

As a specific example, we focus on sequences that are 10
bits long: there are 109 unique binary sequences, and 44 of
these are valid firefly sequences (Fig. 5SA). Then, from this
set of unique sequences, we can generate every combina-
tion of 4 sequences representing communities of 4 species,
which mimic the ensembles of sequences generated with the
vocabulary generator (Fig. 5B). For each of these combina-
tions, we compute the average cost with Eq. 3, with Ny = 4,
Ny=1,L=10,ws = 1,and w, = 1.

We observe that in the combinations with the lowest av-
erage cost, a dominant fraction of these are valid sequences
(Fig. 5C). However, for combinations with increasing cost,
the proportion of invalid sequences increases as well. We
note that for very high costs, the majority of sequences in
the combinations are valid sequences, but these contain ex-
tremely long flashes and are thus energetically costly.
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Figure 5: Brute force validation of periodicity. A: 109 10-
bit long sequences can be generated which are unique under
cyclical permutation; 44 of these sequences are valid fire-
fly sequences, while the rest are invalid as they are neither
singly nor doubly periodic. B. Combinations of four se-
quences are sampled from the set of unique sequences, and
the average cost of each combination is computed (Eq. 3,
with Ny = 4, Ny = 1, L = 10, ws = 1, and w, = 1). C.
The fractions of valid and invalid sequences in each combi-
nation is plotted against the cost of that combination. The
blue line (fraction of valid sequences) and orange line (frac-
tion of invalid sequences) sum to a constant value of 1.

Reverse-engineering cost functions

Lastly, we demonstrate a way in which the weights ws and
wy in Eq. 1 can be estimated in order to shed light on
how real firefly species may have evolved under selection
to minimize similarity and predation risk. Our objective is
to use the vocabulary generator to simulate ensembles of se-
quences for various values of the weight ratio w,/w,, and
compare these simulated sequences with known firefly flash
patterns to find the weight ratio which results in simulated
sequences that most resemble the known patterns. In doing
s0, this can shed light on the relative importance of the simi-
larity and predation pressures in shaping real firefly signals.

As an example, we consider six species from the Con-
sangineus clade of Photinus (Fig. 6A) (Stanger-Hall and
Lloyd, 2014). We use the sequences of P. macdermotti and P.
ignitus, which were among the earliest to speciate, as start-
ing “seed sequences” for the vocabulary generator. That is,
we initialize a system of Ny = 3 species and Ny agents. The
sequences (al?)L_, for all ¢ = 1,..., N; are initialized
to all be equivalent to the known sequence for P. macder-
motti, and likewise (a2?)E_, for P. ignitus. The sequences
(a>?)L_, are also all initialized to be that of P. ignitus, the
most recently speciated species of the two. Then, the vocab-
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Procedure 2 Vocabulary generator based on known firefly
phylogeny trees

Input: Initial seed sequence(s) (a%)%_;, number of initial
sequences N, number of agents Ny, length of sequence
L, mutation rate p, epochs to simulate N, total number of
sequences to simulate N,
for iteration = N, + 1 to N;,; do

Ng <+ Ns+1
for  =1to Ny do
(ag=Ne0)poy = (a7 =N b0) 0,

o=Ng,p\L
run Procedure 1 where only (aZ=Ne®)L_ | are

mutable
for ¢ =1to Ny do
(ap*?) 5y < modeg—1.. .~ ((ay?)5_,)

ulary generator (Procedure 1) is run for a specified number

of epochs, where only the sequences (a?)E_, are allowed

to change; the seed sequences ((1%1"2}’¢’),le1 are kept fixed
and only factor into the similarity computations (Eq. 2) of
the cost function (Eq. 3). By the last epoch, the sequences of
species 0 = N, = 3 should have all converged to the same
sequence, but are assigned to the mode of all (a>?)Z_; se-
quences to ensure that they are identical. Then, a simulated
speciation occurs: the number of species in the system is in-
creased by 1, so that Ny = 4. The new species’ sequences
are initialized to those most recently obtained from the vo-
cabulary generator; that is, (alY*?)E_, := (als=19)L_,,
and the sequences (X<~ 1?)L_, are now kept fixed. The vo-
cabulary generator is then run again, the number of species
incremented by 1, and the new sequences initialized to the
recent outputs, which are now kept fixed. This is repeated
until the desired total number of sequences are obtained,
specifically six in our example. The full procedure for sim-
ulating sequences based on known phylogeny trees is de-
scribed in Procedure 2.

We repeatedly carry out the above procedure (Proce-
dure 2), sweeping over the weight ratio w,/w, in the cost
function (Eq. 1) between a range of 0.3 and 1.3 in increments
of 0.04. Then, we compare each set of simulated sequences
and with the known firefly flash patterns. For each of the
known flash patterns, we extract four parameters that de-
scribe the sequences: the number of pulses, pulse duration,
IPI, and FPI (Fig. 1). We also estimate these parameters for
each of the simulated sequences, and compute the average
root mean square error between the known and simulated
parameters (Fig. 6B). We observe that a weight ratio w; /w,,
between 0.4 and 0.5 produces flash sequences that are most
similar to the known firefly patterns (Fig. 6C).

Conclusion and Future Work

In this work, we explore how firefly sequences may have co-
evolved among sympatric species to increase discriminabil-
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Figure 6: Reverse-engineering the cost function by simulat-
ing sequences along the Consangineus clade. A: The phylo-
genetic relationships of six firefly species and their respec-
tive species-specific flash patterns (Stanger-Hall and Lloyd,
2014). B: The logarithm of the average distance between
known and simulated flash sequences, as measured by the
average root mean squared error in the four flash parameters
(number of pulses, pulse duration, IPI, FPI), as a function of
the weight ratio w;/w,. Shaded region indicates one stan-
dard deviation. C: Examples of simulated flash sequences,
obtained following Procedure 2 using ws/w, = 0.46. Note
that the first and last sequence are the two “seed” sequences
and are identical to the known sequences for P. ignitus and
P. macdermotti, respectively.

ity in order to alleviate the “cocktail party problem” faced
by swarms during their flash-mediated mating rituals. We
develop a method, termed the vocabulary generator, to sim-
ulate the co-evolution of firefly sequences under pressure to
minimize both similarity with other species’ signals, and in-
dividual predation risk. The resulting simulated sequences
are periodic or close to periodic, despite the lack of any con-
straints pertaining to periodicity. We also observe that com-
binations of flash sequences that contain periodic sequences
can result in a lower average cost than those that contain
aperiodic sequences.

We also demonstrate a method in which the vocabulary
generator can be used to gauge the relative importance of
the selection pressures in the cost function (Eq. 1) in shap-
ing real firefly flash patterns. While we posit here that pre-
dation risk and distinguishability play the largest roles in
shaping firefly flash patterns, it is possible that other fac-
tors may affect communication signals, such as the nature
of the habitat and, more significantly, female preference
(Lewis and Cratsley, 2008; Stanger-Hall and Lloyd, 2014).
Intraspecies variation in male flash patterns has been ob-
served in some species, along with female preference for
longer flashes, shorter flashes, or a higher flash rate, depend-
ing on the species (Lewis and Cratsley, 2008). Incorporating
female responses and the aforementioned factors into the vo-
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cabulary generator may shed further insight into firefly sig-
nal evolution.

Many other animals, including various species of birds,
frogs, and other insects, encode species information in their
signals, whether visual or acoustic (Ravignani et al., 2014;
Garcia et al., 2020; Hobel and Gerhardt, 2003; Amezquita
et al., 2011; Ryan and Rand, 1993). For example, Garcia
et al. explored the evolution of species-specific woodpecker
drumming patterns and quantified how the mutual informa-
tion content of the signals changed with species radiation,
thereby determining the strength of selection for signal di-
versity (Garcia et al., 2020). Likewise, in future work, a
more extensive analysis of firefly flash patterns could be per-
formed in order to similarly quantify selection pressures on
firefly signals, including signal diversity but also predation
and other factors, by harnessing the known phylogenetic re-
lationships and recorded signals of numerous North Ameri-
can species and more worldwide (Stanger-Hall et al., 2007,
Stanger-Hall and Lloyd, 2014).

In developing the vocabulary generator, we discretize
flash sequences into series of bits, where we define a single
bit to represent the finest temporal resolution achievable by a
firefly’s internal signal processing capabilities. By defining
similarity as the longest common substring, we also assume
that the species information is encoded as a consecutive se-
quence of bits. However, fireflies may determine species
information by measuring properties relating to the timing
of the flash periods or the number of flashes. Moreover, fire-
flies may also encode species information in non-temporal
properties of their signal, such as their movement patterns
during flashing or the wavelength of the light, although these
properties appear to be less important than temporal charac-
teristics in species identification (Lloyd, 1966; Lewis et al.,
2004). Further field experiments can be performed to explic-
itly quantify the spatial and temporal resolution of a firefly’s
signal processing capabilities.

Fireflies, and in particular their synchronization, are in-
creasingly probed as a source of inspiration for swarm
robotics (Christensen et al., 2009; Perez Diaz, 2016). More-
over, visible light communication has been explored as a
cost-effective method for local, decentralized communica-
tion between agents, and firefly signals have also been cred-
ited as a source of inspiration in the design of such systems
(Maxseiner et al., 2021; Murai et al., 2012; Ito et al., 2018).
For instance, an individual robot can be equipped with an
LED that can flash according to a pattern similar to that of a
firefly’s. We propose that the vocabulary generator method
can be adapted to generate different sequences for robotic
agents. We note that in the cost function (Eq. 1), preda-
tion risk is interchangeable with energetic cost, as the corre-
sponding term serves to minimize the total amount of flash-
ing. For example, for a swarm of robots with differentiated
tasks, each group can be programmed to communicate ac-
cording to its own sequence, optimized to be maximally dis-
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similar from the others and individually energetically effi-
cient. If the robots must differentiate their tasks in real time,
the vocabulary generator could be used to generate easily
discriminated sequences rather than using ones that are pre-
programmed.

Fireflies have long been a source of wonder and inspira-
tion, but their populations are increasingly threatened by de-
forestation, urbanization, pesticide use, and climate change
(Lewis et al., 2020). Recent research has shown that light
pollution can interfere with flash signaling, lowering mating
success (Lewis et al., 2020; Firebaugh and Haynes, 2016).
Understanding the mechanisms behind firefly communica-
tion will be invaluable to worldwide conservation efforts.
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Abstract

‘We consider multi-agent reinforcement learning (MARL) for
cooperative communication and coordination tasks. MARL
agents can be brittle because they can overfit their training
partners’ policies. This overfitting can produce agents that
adopt policies that act under the expectation that other agents
will act in a certain way rather than react to their actions. Our
objective is to bias the learning process towards finding reac-
tive strategies towards other agents’ behaviors. Our method,
transfer empowerment, measures the potential influence be-
tween agents’ actions. Results from three simulated coopera-
tion scenarios support our hypothesis that transfer empower-
ment improves MARL performance. We discuss how trans-
fer empowerment could be a useful principle to guide multi-
agent coordination by ensuring reactiveness to one’s partner.

Introduction

In this paper we investigate if and how social intrinsic
motivation can improve Multi-agent reinforcement learning
(MARL). MARL holds considerable promise to help ad-
dress a variety of cooperative multi-agent problems - both
for problem solving and simulation of multi-agent systems.
However, one problem with MARL is that agents develop
strong policies that are overfitted to their partners’ behav-
iors. Specifically, with centralised training, agents can adopt
strategies that expect other agents to act in a certain way
rather than reacting to their actions. Such systems are unde-
sirable as they may fail when their partners alter their strate-
gies or have to collaborate with novel partners, either during
the learning or deployment phase. Our aim is to avoid this
specific lack of robustness and find a guiding principle that
makes agents stay reactive to other agents’ policy changes.
‘We want to introduce an additional reward to bias learning
towards socially reactive strategies which should fulfil the
following constraints: 1) it should, with minimal adaptation,
apply to a wide range of problems with different sensor-
actuator configurations to preserve the universality of the RL
framework, and 2) it should not negatively affect the perfor-
mance, i.e., once good policies are found, it should not harm
exploitation. Fulfilling the above criteria would provide a
general-purpose multi-agent learning algorithm for various
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cooperative tasks - as well as provide insights into general
principles that would enable and improve the development
of various forms of social interaction.

To address this challenge, we turn towards the idea of us-
ing Intrinsic motivation (IM) - a school of computational
models (Oudeyer and Kaplan, 2009) that try to capture the
essential motivations behind the behavior of (biological)
agents - and then use them for behavior generation to ob-
tain plausible and beneficial behavior. The core idea here is
to ask if the principles that create single agent behavior can
also be used to enhance multi-agent behavior. In this paper
specifically, we look at Empowerment, an IM that captures
how much an agent is able to affect the world it can itself
perceive. Its information-theoretic formulation as the chan-
nel capacity between an agent’s actions and its own sensors
makes it a versatile measure that can be applied to a wide
range of models where agent’s are defined - satisfying con-
straint 1. Existing work on coupled empowerment maximi-
sation (Salge and Polani, 2017; Guckelsberger et al., 2018)
extends the formalism to a multi-agent setting. In this pa-
per, we focus specifically on the idea of Transfer Empower-
ment (TE), introduced in those papers, which tries to capture
how much one agent can potentially influence the actions of
another. We use a slightly modified version of TE, which
considers the channel capacity from one agent’s actions to
another agent’s actions, rather than to their sensors, as in
traditional TE.

Keeping the TE high between two agents means they are
in a state were one of them is reliably reacting to the other.
Adding this as an additional reward mechanism during train-
ing should help to avoid the brittleness of over-fitting we
outlined before. We provide here quantitative evidence for
our hypothesis that adding transfer empowerment as an addi-
tional reward increases upon the performance of state-of-the
art MARL methods. Constraint 2 will be evaluated empir-
ically. We also compare this approach to a similar idea of
social influence by Jaques et al. (2019). First, we will in-
troduce the concepts of MARL and IM in more detail. We
will then define the specific formalism for TE used, and then
simulate three increasingly harder, multi-agent, cooperation

#20z Atenuer Lg uo Jesn O LNIHL 1A VLISHIAINN Aq 4pd° 26500 € 1eSI/6G7SE0Z/L/vE/2Z0zIes!ypd-sBulpaadoid)les)/npajiw-joalip//:diy woly papeojumoq



scenarios. We will also look at how the better reward was
obtained, and discuss the difficult switch from a indexical to
an action oriented communication strategy.

Related work
Multi-Agent Reinforcement Learning

There is a large body of research on constructing agents that
are robust to their partners. In self-play, for example, agents
train against themselves rather than a fixed opponent strat-
egy to prevent developing exploitable strategies (Tesauro,
1994). Population based-training goes one step further by
training agents to play against a population of other agents
rather than only a copy of itself. For instance, some methods
train an ensemble of policies with a variety of collaborators
and competitors (Jaderberg et al., 2018; Lowe et al., 2017).
By using a whole population rather than only a copy of itself,
the agent is forced to deal with a wide variety of potential
strategies instead of a single strategy. However, it requires
a great deal of engineering because the policy parameters
suitable for the previous environment are not necessarily the
next stage’s best initialization.

Some works combine the minimax framework and
MARL to find policies that are robust to opponents with dif-
ferent strategies. Minimax is a concept in game theory that
can be applied to find an approach that minimizes the possi-
ble loss in a worst-case scenario (Osborne et al., 2004). Li
et al. (2019) use it during training to optimize the reward for
each agent under the assumption that all other agents act ad-
versarial. We are interested in methods that can deal with
perturbations in the training partners’ behavior, which dif-
fers from dealing with partners with various strategies.

Recent works look at settings in which one RL agent, that
is trained separately, must join a group of new agents (Lerer
and Peysakhovich, 2018; Tucker et al., 2020; Carroll et al.,
2019). For example, Carroll et al. (2019) build a model of
the other agents which can be used to learn an approximate
best response using RL. Lupu et al. (2021) propose to gener-
ate a large number of diverse strategies and then train agents
that can adapt to other agents’ strategies quickly using meta-
learning. A related problem is zero-shot coordination (Hu
et al., 2020) in which agents need to cooperate with unseen
partners at test time. The focus of our paper is not to perform
well with novel partners at test-time or build complex oppo-
nent models. Our aim is to train agents together to remain
attentive and reactive towards their partners’ policies.

Intrinsic Social Motivation

Due to centralized training in MARL, agents might adopt
non-reactive strategies that may struggle with other agents’
changing behaviors. Social intrinsic motivation can give an
additional incentive to find reactive policies towards other
agents.

IM in Reinforcement learning (RL) refers to reward func-
tions that allow agents to learn interesting behavior, some-
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times in the absence of an environmental reward (Chen-
tanez et al., 2005). Computational models of IM are gener-
ally separated into two categories (Baldassarre and Mirolli,
2013), those that focus on curiosity (Burda et al., 2018;
Pathak et al., 2017) and exploration (Gregor et al., 2016;
Eysenbach et al., 2018), and those that focus on competence
and control (Oudeyer and Kaplan, 2009; Karl et al., 2017).
The information-theoretic Empowerment formalism (Klyu-
bin et al., 2005) is in the latter category, trying to capture
how much an agent is in control of the world it can per-
ceive. Empowerment has produced robust behavior linked to
controllability, operationality and self-preservation - in both
robots (van der Heiden et al., 2020; Karl et al., 2017; Leu
et al., 2013) and simulations (Guckelsberger et al., 2016),
with (de Abril and Kanai, 2018) and without (Guckelsberger
et al., 2018) reinforcement learning and neural network ap-
proximations (Karl et al., 2017).

Empowerment has also been applied to multi-agent simu-
lations, under the term of coupled empowerment maximiza-
tion (Guckelsberger et al., 2016), in which it was used to
produce supportive and antagonistic behavior. Of particu-
lar interest is the idea of transfer empowerment - introduced
in those two papers - a measure that quantifies concepts
such as operational proximity and social influence, and led
to behaviours such as collaboration, coordination, and lead-
taking (Salge and Polani, 2017).

Similar techniques quantify the interaction between
agents for improving coordination between agents. Bar-
ton et al. (2018) analyze the degree of dependence between
two agents’ policies to measure coordination, specifically by
using Convergence Cross Mapping (CCM). Strouse et al.
(2018) show how agents can share (or hide) intentions by
maximizing the mutual information between actions and a
categorical goal. One notably relevant work is by Jaques
et al. (2019) called social influence, which is the influence
of one agent on the policies of other agents, measured by the
mutual information between action pairs of distinct agents.
Similarly, Mahajan et al. (2019), compute the mutual in-
formation between agents’ trajectories and a latent variable
that captures the joint behavior. Wang et al. (2019) compute
the mutual information between the transition dynamics of
agents.

In contrast to social influence (SI), transfer empowerment
considers the potential mutual information or channel ca-
pacity. When optimizing for actual mutual information, its
value is bounded from above by the lowest entropy of both
agent’s action variables. SI might easily interfere with an ex-
ploitation strategy and may need regularization once a good
strategy is found. On the other hand, empowerment does
not have this limitation and the action sets could have very
narrow distributions, while still being reactive.
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Model

First, let us define a general model that captures multi-agent
scenarios and lets use define transfer empowerment. Let
us consider a Dec-POMDP, an extension of the MDP for
multi-agent systems, being both decentralized and partially
observable (Nair et al.,, 2003). This means that each of
the NV agents conditions the choice of its action on its par-
tial observation of the world. It is defined by the follow-
ing tuple: (S, A, T,0,0,R,N). S is the set of states and
A = Xie[,.m A’ the set of joint actions. At each time
step, the state transition function P(s;+1]|s:, @) maps the
joint action and state to a new state. As the game is par-
tially observable, we have a set of joint local observations,
O = xi€[17,_7n10i and an observation function‘O.‘ Each
agent 7 selects an action using their local policy 7*(a}|o}).
We consider fully cooperative tasks, so agents share a
reward 7(s;, at) which conditions on the joint action and

state. The goal is to maximise the expected discounted re-
turn J(mw) = Er oy [R(T)] = Erorr [ZtT:O vtrt} , with dis-
count factor v € [0,1] and horizon T. The expectation is
taken w.r.t. the joint policy = = [r!,...,7"] and trajectory
7 = (00, ag,-..,0r).

Methodology

This section describes an additional heuristic that biases the
learning process in obtaining policies that are reactive to
other agents’ actions. First, we introduce our specific ver-
sion of transfer empowerment, which rewards the idea of an
agent being responsive to adaptations in the other’s policy.
Then we explain how to train agents in a multi-agent envi-
ronment.

Transfer Empowerment

Consider two agents, j and k, both taking actions and chang-
ing the overall state. Each time agent k acts, the state of
agent j is modified, and j’s policy indirectly conditions on
k’s actions. The objective of coordination is that by chang-
ing the actions of agent k, agent, j also reliably adapts its
actions. Here we look at transfer empowerment, namely the
potential causal influence that one agent has on another. It
is defined for pairs of agents by the channel capacity be-
tween one agent’s action a¥ and another agent’s action a; 11
at subsequent time steps and conditioned on the current state
s¢, which can be computed by maximizing the mutual infor-
mation Z between those values, with regards to wk

EF(sy) = max z (A{_H, Aflst) . ey

Here, w*(a¥|s;) is the hypothetical policy of agent k, that
takes an action al after observing state s; and influencing
aj,, at a later time step. Note that the policy w*(af]s;) that
maximises the mutual information is not necessarily used for
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action generation, but simply to compute the channel capac-
ity by looking at all potential policies for the one with the
highest mutual information Z .

Our version of transfer empowerment differs slightly from
the one introduced by Salge and Polani (2017), as we con-
sider the potential information flow, or channel capacity,
from one agent’s actions to another agent’s actions in subse-
quent time steps. Salge and Polani (2017) on the other hand,
consider the transfer empowerment between one agent’s ac-
tion and another agent’s sensor state. We make this modi-
fication to address to challenges already discussed in those
earlier papers.

One issues is that transfer empowerment to another
agent’s sensory state captures the direct influence on the
other agent’s environment. This influence, or information
flow can take two pathways. The influence can either act
directly on the world the other agent perceives, or alterna-
tively, the other agent can perceive the action’s of the first
agent, and react to them, modifying their own Umwelt. The
difference is that in the second case the information flows
through the second agent, and requires a degree of attention
to, and reactivity to the first agent’s actions. In the first case,
the second agent can be fully passive and just have its per-
ceived world changed by the first agent. Since we wanted
to create a motivation for more reactivity, we used action-to-
action TE, because the only way to influence another agent’s
actions is by having them react to what you do, i.e. have in-
formation flow through the other agent.

The other challenge of TE is the necessity to define dis-
tinct sensor states for both agents - otherwise TE is identical
to self-empowerment. If every agent only has sensor access
to a limited part of the world, this is straight forward. But
in many simpler models the access to the world is absolute
for both agents, or limitations end up being somewhat ar-
bitrary, or design choices that influence the final behaviour.
Looking at the actions, rather then the sensor states, offers a
principled alternative, as action’s of different agent are usu-
ally distinct.

Transfer empowerment has ties with, but is different from,
social influence (Jaques et al., 2019). Social influence is the
mutual information between agents’ actions. It is high when
both action variables have a particular entropy, e.g., policies
taking different actions. However, towards the end of the
training, a high entropy policy distribution might be subop-
timal. Our method, on the other hand, considers the poten-
tial and not actual information flow, so agents only calcu-
late how they could influence and react to each other, rather
than carrying out its potential. As such, action sets can have
very narrow distributions; as long as the system would still
be reactive if, those actions change. Therefore it does not
interfere with obtaining optimal policies.
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Multi-Agent Training

Training with transfer empowerment results in joint poli-
cies that are reactive to their partner’s actions, because for
the value to be high, it requires considering the decisions
of others. As such, transfer empowerment rewards a very
general idea of coordination that requires paying attention
to each other, and reliably reacting to a variation in their
actions. While empowerment does not measure how this re-
action looks, or even if it is good, combined with the actual
reward should lead to the selection of a strategy that both
solves the problem while also avoiding the brittleness that
comes from not being reactive to the information from other
agents’ policies. Specifically, we will modify the agents’
reward function so that it becomes:

N
F(s0:as) = (st ap)+ ) Plseri|seas) Y 77 (s041),

j=1

2

where —j means all agents excluding agent j. To simplify

notation, we will use j instead of —j — 7 in the superscript.
The new RL objective becomes:

T
E Sf, CLt .

St41

J(mw) =
t=0

This new return motivates the potential influence of infor-
mation between agents’ actions, thereby stimulating them to
act informatively and react reliably.

Efficient Implementation

We now introduce an efficient implementation to estimate
empowerment. We use a for agent k’s action at time ¢ and
a’ for agent j’s action at time ¢ + 1. Mutual information is
defined as:

(A, A'ls) = KL(p(a,a'|)|p(a|)p(a’]s))
B o oy 2019
=22 padls) sy

where KL is the KL divergence. We can substitute p(a, a’|s)
and cancel out terms:

oy padl)
22 v s
*2?”(7 R
B o oy P01
Zzp “plals)

204

By choosing a variational approximator g(ala’, s), with
the property KL(p(ala', s)||q(ala’,s)) > 0, we obtain a
lower bound on the mutual information:

(A, A'|s) > T(A, A'ls)

_ ooy 20109
=2 2 eI

= ZZp a,a’'|s) (Ing(ala’, s) — Inp(als))

= ]Ep(a,a’\s) [IHQ(ala 78) - lnp(a|s)] :

The gradient of the lower bound can be approximated by
Monte-Carlo sampling. Furthermore, the overall training
procedure can be implemented efficiently when represent-
ing the distributions by neural networks and using gradient
ascent. So the gradient computed over S samples:

VoZo(A, A'|s) = VoEp(a.arjs) I go(ala’, s) — Inwg(als)]

S
1
N5 Z Vo (Ingg(amlal,,s) — Inws(amls)),
m=1

where we substituted p(a|s) with wg(a|s) and ¢(a|a’, s) with
go(ald’, s), to denote functions parametrized by 6.

Partial Observable

The objective in the previous section was to estimate the em-
powerment value for a particular state s. However, our main
goal is to train policies to be reactive towards the actions of
their partners. Let a policy for agent j be 771 with parameters
X- As each policy is conditioned on its local observations,
the lower bound on mutual information for agent j becomes:

o) —
Iy (A, Allo) =
E

o' ~py,ai ~m ak ~owh Ingg(alo,0’,a”) —Inw, j(

3)

where samples are generated by a learned transition
model o' ~ p,(0'|o,a). The actions are selected by the
target policy a/ ~ 7J(a’|o’) and behavior policy a* ~
wh (a*|0*) and the joint action is @ = (a', . .. Ny
where a7 ~ 7, a¥ ~ wp and k # j.

Notice that the actions come from wy and 7. The former
is the joint behavior policy and the latter is the target policy
of agent j. The behavioral policy is only used to train agent
J’s policy with empowerment but will not generate extrinsic
environmental rewards.

This training procedure has two interesting properties.
First, it estimates a state’s empowerment value. This is done
by increasing the diversity of agents’ actions while ensur-
ing that these are retrievable from agent j’s actions. Actions

,al, ..., a

—J o™
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that affect j's policy, e.g., informative, are chosen more of-
ten than those with a lower effect. Second, it trains agent j's
policy to be reactive towards the actions of its partners, be-
cause we compute the gradient of mutual information w.r.t,
i to directly optimize 7. We provide the description of the
full algorithm in the Appendix, which also describes how
our method applies to settings with more than 2 agents.

Altogether, empowerment prefers states that allow for in-
formation flow between agents, altering policies to be more
responsive. We will experimentally verify this in the next
section,

Experimental Results

We adopt the simulator developed for testing multi-agent re-
inforcement learning algorithms ! that allows creating coop-
erative and competitive environments. Agents have a con-
tinuous observation space and a discrete actions space.

Scenarios

We use a cooperative two-dimensional environment consist-
ing of two agents. The (disembodied) speaker agent can,
each time step, choose a communication action that is broad-
cast to the listener. The listener can choose from 5 physical
actions, moving up, down, left and right, or doing nothing.
The environment contains a series of L, randomly placed,
landmarks. Only the speaker has a signal informing it which
of the L landmarks is the target. The objective for the ran-
domly placed listener is to reach the target landmark by de-
coding the speaker’s message, The speaker can send a sym-
bol chosen from a set of O distinet symbols, The team re-
ward is the negative squared distance between the listener
and the target landmark, which is given out every time step,
The game ends after 100 time steps. To perform well the lis-
tener has to quickly move onto the landmarks. We developed

"hups: Feithub.comiopenai/multiagent-particle-envs

three tasks in the environment with increasing difficulty. Fig.
2 visualises the tasks.

Simple Challenging Hard
L g o o L ¥ ‘
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Figure 2: Visualizations of the three tasks. Small dark cir-
cles indicate landmarks and obstacles, and the big circles
are the listener and speaker. The listener observes the rela-
tive distance to the landmarks indicated by the arrows. The
speaker’s massages are one-hot vectors displayed by the

speaker boxes.

Simple The number of symbols K = || = 3 equals the
number of landmarks L = 3. The speaker observes the color
of the target landmark, while the listener sees a distance vec-
tor pointing to each colored landmark.

This scenario could be solved well by an indexical com-
munication strategy, where the speaker simply has to con-
sistently assign a symbol to each landmark color, and then
simply relay the information to the speaker, who then has to
minimise the distance o the landmark of that color.

Challenging The second task involves more landmarks
L = 6 than distinet symbols K = || = 5. The speaker
observes the target position and the listener’s position, while
the listener observes the landmarks” positions and the mes-
sages sent by the speaker. Here, an action-oriented strai-
egy, e.g. indicating movement direction, is likely optimal
because the speaker cannot use each symbol for a landmark

Simple Challenging Hard
1 1 1
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o { — social o { — social 04 - social
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Figure 1: Learning curves for the the three tasks. The rewards are averaged over the steps in an episode to obtain the return.

The returns are averaged over three training runs.
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uniquely, nor do the landmarks have any identifying features
that are easy to community, i.e. they are not colored any-
more. Using symbols to direct the listener now requires the
speaker to observe and react to the listener’s position with
an updated signal, and put more cognitive demands on the
speaker, who could simply relay its internal signal in the
simple scenario.

Hard The last task adds M = 6 obstacles, and the reward
includes a penalty if the listener hits an obstacle. Further-
more, the landmarks’ positions are now unobserved by the
listener. These two features increase the difficulty because a
higher precision is required. First, the listener has to avoid
obstacles, and second, the listener is even more dependent
on the speaker because it does not see the landmarks.

Reward The reward function is determined from the po-
sition, p = [ps,py), of the listener (agent 1) p!, tar-
get pY and obstacles p°. The state is defined as s; =
[pt, my, p?,pt, ..., p>M pbl ... p“F] for M obsta-
cles, and L landmarks. The reward function is:

(s, ar) = _Hp%-ﬂ — p?|| + penalty )
-1 if dj 1,....M]: L pod 0.15
penalty = e (1, Mt [Py — P <
0 otherwise

&)

The observation for the speaker and listener of =

[pt,p?, pbt, ..., p "] and o} = [v}, m?], respectively. v
is the velocity and m the message, represented by a one-hot
vector. The listener’s action is a force vector a' = [f., f,]
while the speaker’s action is a message a® = [c°,...,c¥]
with vocabulary size K. The listener’s position is updated

according to the following equation:

p p+ vAt
v = |Cv + DAL (6)
v t+1 m’:ss t

with damping coefficient ( = 0.5 and mass = 1. The

speaker’s messages, will be added to the state at the next
time-step: m; = aY_ ;. As is common when working
with policies parameterised by neural networks, the actions
are one-hot vectors, obtained by Gumbel-Softmax function
(Murphy, 2022). For example, the actions of the speaker are
converted into

one-hot(a®) = [[(ad = max(a?)),...,I(a% = max(a?))].

Comparison and Implementation details

We compare our method with MADDPG (Lowe et al., 2017)
(baseline) and social influence (Jaques et al., 2019) (so-
cial infl.). Our method (empowerment) is built on top
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of the MADDPG, a centralized actor-critic method. So-
cial influence is a decentralized method. The agents’ poli-
cies are parameterized by a two-layer ReLU MLP with 64
units per layer. The messages sent between agents are
soft approximations to discrete messages, calculated using
the Gumbel Softmax estimator. All models are trained for
10k episodes, of which an episode consists of 25 inter-
actions. Source code can be found at https://github.com/
tessavdheiden/social_empowerment.

Results and Discussion
Learning Curves

Our two main hypothesis are that adding TE to MARL
produces faster adaptation (needs less training steps), and
achieves better, overall results. To answer both of the ques-
tions, we compare the learning curves, over 10k training
steps, averaged over three runs, for both the MARL base-
line, and with the addition of TE (empowerment) and Social
influence (SI) (social). Figure 1 shows the averaged return
after a given number of training steps. A higher score is bet-
ter, it shows that the listener is closer to the target. Since the
listener starts away from the target a score of 0 is impossible,
all scores are negative.

The learning speed seems to be comparable between mod-
els in difference scenarios, i.e. it takes about the same time
for the different algorithm to reach their peak, final perfor-
mance. Only SI seems to learn slower in both the simple
and challenging task. Performances seem to mostly stabilise
after some point, so we can also take a closer look at the
performances of the trained agents after 10k training steps.

Final Scores

Details of the results are presented in Table 1. It shows the
average distance and the percentage of collisions with an
obstacle for the final agents, computed for 100 episodes.
The baseline obtains the top performance, with lowest
distance of 0.221, in the simple task, requiring a simple,
lexical strategy. Here empowerment performs worse with
0.414, with social influence performing even worse with

Table 1: The values show the average distance between the
listener and target landmark and the percentage of collisions
with obstacles. The results are computed for 100 episodes
after training with 10k episodes.

Simple  Challenging Hard

Average Average Average Obstacle

distance distance distance hit
basel.  0.221 0.440 0.520 0.603
SI 0.716 0.949 1.076 0.220
TE 0.414 0.460 0.440 0.266
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Freguency
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Figure 3: The action distributions for the listener in the hard
task for both the baseline and empowerment. The colors
indicate each a different episode. (0is the wait action, 1 - 4
are cardinal accelerations.

0.716. This is an indication of the idea that an added in-
centive might get in the way of exploiting an easy to find,
simple strategy.

In the challenging task, which requires an action-oriented
strategy empowerment seems to perform similar to the base-
line, while it clearly outperforms the baseline for the hard
task, both in terms of average distance, and in terms of obsta-
cles hit. The difference in hit obstacles is particularly large,
indicating that TE helps with the higher reactivity required
within an episode o navigate around the obstacles, Social
influence seems to struggle with both tasks, again likely due
to an interference between the added reward and the best
exploitation strategy.

In contrast, the better performance of empowerment in
the hard challenge, compared to the baseline, must be due to
empowerment helping to discover a better overall strategy
- as the baseline implementation would be fully capable of
producing a strategy identical to the one performance by the
TE framework, had it discovered it,

To illuminate this difference, we can take a look at the ac-
tion distribution for the speaker and listener agents over sev-
cral episodes, using the agents after 10k training episodes.
Fig. 3 shows how often the five available actions were used,
Action O for the listener is the waiting action - and we see
that this one is not used by the baseline, We speculate that
it might be difficult for the listener to learn when to use this
action, as it is detrimental in most cases. The bias towards
reactivity induced by TE might help to keep this rare action
as an option - following a symbol by the speaker that might
become a “stop” signal.

We can also take three trained listener agents and compare
what they will do when we provide them with a fixed speaker
signal over several time steps, to figure out what those sym-
bols directed them o do. Fig. 4 shows the trajectonies re-
sulting from this, with each color denoting a different forces
symbol by the speaker. The baseline has a relatively good
separation into cardinal actions, but transfer empowerment
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Figure 4: The listener’s positions plotted for 10 time steps,
given a speaker’s message ', a one-hot vector. The sub-
seript denotes the component in m” that is equal o a 1.

leads to nearly perfect control by the speaker over the ac-
tions of the listener. Note that one signal results in the wait
action, leading to no visible trajectory for empowerment

Conclusions and Future Work

Overall, adding transfer empowerment to MARL seems to
improve the overall performance level of cooperative agents
- particularly for harder tasks that rely on an action-oriented
communication strategy. This seems to indicate that TE
helps the learning process to find better solutions to converge
on - which remain undiscovered by the baseline MARL with
similar training time - while also not getting in the way of
exploitation o much., An immediate open question, a di-
rection for future work, is of course the question of gen-
eralizability of this approach 1o different scenarios. Other
exciting research directions are scenarios with partners un-
seen al training time, moving in the direction of one-shot
adaptation to partners, and scenarios with competitive, or
cooperative-competitive mixed scenarios, Using TE 1o bias
systems towards control, or information hiding to find opti-
mal solutions,

We also showed how an efficient computation of empow-
erment could be combined with RL for the MARL frame-
work, opening the door for more complex scenarios such as
humans interacting with robots. In general, the results in
this study are promising for the overall agenda w develop
a framework of social intrinsic motivations based on em-
powerment (or similar measures) 1o bias an agent towards
general social concepts, such as reliable reactivity, or lead-
following. The fact that it is based on similar, single-agent
intrinsic motivations is also interesting, as it might offer in-
sights into how to transition from single to social agent be-
havior with only gradual adaptation.
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Appendix

Algorithm 1 explains how we train with empowerment. We omit super- and subscripts denoting time, agent and batch indices
whenever clear from the context.

Algorithm 1 Training joint policy ¢ with empowerment

Require: Initialisation of networks 7, , Qw, wy, qp and p,,, and target networks 7, QC'
for each episode do
for each time step do
o=0(s),a ~m(alo),s ~ f(s,a)
T=71U {(o,a,o’,r,i’,y)}
end for
D=DUrT
for each agent i do
sample minibatch with S tuples from D

Z,i9i(0) = computeLowerBound(o,mTy, W, gs, Pv) > Equation 3
y=r+Ly0:(0) +1Qi(0,a)
LW = 3y —Qyo),a5))*
L(x") = _% Zj pr(oj’ a;)
updateCritic([ﬁ(W), YY) > See (Lowe et al., 2017)
updateActor(L(x"), x*)

gradientAscent(Z,i gi, 0, x*)

at~ml
J 4

i i
a] Nﬂ-X

maxLogLikelihood(v, o, a, 0') > See (Karl et al., 2016)
updateTargets(¢’, (¢, ¥, x)
end for
end for

Ly Joint policy with N components [r!,... 7]
O(s) Deterministic observation function o = (o', ...,0") = O(s).
a,o Joint action and observation (a',...,a"), (o',...,0N).
a~% 0" | Joint action and observation excluding those of agent 3.
Ji(m) Expected return of agent ¢ induced by joint policy 7.

Q%(0,a) | Centralised critic of local policy 7.

g Transfer empowerment from all agents’ actions, excluding agent ¢, towards agent ¢’s action.
& Lower bound on empowerment by employing variational approximation.
Ty Lower bound on mutual information computed by 6-parameterized neural networks.

Table 2: Notation
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Introduction

Understanding the mechanisms that create open-ended evo-
lution is considered a grand challenge and a key task in the
field of artificial life (Bedau et al., 2000). The source of
creating open-endedness is the continuous creation of novel
forms. Novel forms are created and evolve as they gain pop-
ulation - understanding this mechanism is key to understand-
ing open-ended evolution. In several models of artificial
life, “novelty” has been considered a mutation and has of-
ten been assumed to occur randomly. However, recent stud-
ies have proposed a model in which novelty does not occur
randomly, but rather toward adjacent possible spaces (Tria
et al., 2014). The effectiveness of the model is confirmed by
the fact that the model simulates the behavior of people with
a high degree of accuracy when compared to empirical data
constituted from behavioral data on the Internet. The model
reveals that the balance between exploration, exploitation,
and the search strategy for possible adjacent spaces deter-
mines how the network grows.

In this study, we use this agent-based model to ana-
lyze how network characteristics differ depending on explo-
ration, exploitation, as well as the search strategy for pos-
sible adjacent spaces. The objective is to identify the in-
teractions between nodes that are necessary for the novelty
to gain attention and population when they are added to the
network.

Agent-based model based on adjacent possible

The idea of Adjacent Possible was originally theorized by
Stuart Kauffman to explain the evolution of molecules and
organisms (Kauffman, 1993). Adjacent possible space refers
to the space of possibilities that are one step away from what
actually exists and will become reality in the near future. A
similar concept can be found in the protein space theory pro-
posed in Smith (1970). The protein space theory argues that
gene evolution occurs through the accumulation of minute
changes in existing genes and the changes must occur under
the restriction that genes can form phenotypes. Kauffman
extended and generalized this theory to apply not only to the
evolution of genes but also to the evolution of human rela-
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tionships and many other areas.

Ubaldi et al. (2021) extended Polya’s urn model, which
incorporates the concept of an adjacency possible space, to
an agent-based model to generate a social network. The
model generates a network in which agents interact based
on two parameters, p and v, and a strategy s, where p deter-
mines the strength of exploitation, v determines the strength
of exploration, and s is a strategy for exploring Adjacent
Possible space.

Each agent has its own urn and is assigned an ID. We se-
lect one agent from the environment according to the size of
the agent’s urn. This agent is the starting point of the inter-
action, the caller agent. Next, one agent (the called agent) is
drawn from the caller agent’s urn to be the interaction part-
ner, and the caller agent’s ID is added to the called agent’s
urn by p. This operation gives the model the property of
preferential attachment. p indicates the strength of exploita-
tion, as it increases the probability of interacting again with
a partner with whom one has already interacted.

Next, v + 1 number of agents are selected from the caller
agent’s urn according to strategy s and added to the called
agent’s urn. The operation is performed for called agents.
The task of selecting v 4 1 agents from the opponent’s agent
implies a search for possible adjacent spaces. v indicates the
strength of exploration. How v + 1 number of agents are se-
lected from the interacting partner agents is defined by the
strategy s. Various strategies can be specified, such as se-
lecting randomly (s = RND), selecting randomly according
to population (s = WSW) or exchanging the most recently
interacted agents (s = SSW or ASW). See the original paper
for details on the model (Ubaldi et al., 2021).

It has been reported that this model can reproduce real-
world data with high accuracy when the parameters are set
appropriately. For example, the Twitter mention network has
p =5, v =) and strategy s = WSW can successfully repro-
duce its dynamics. Similarly, the American physical society
co-authorship network has p = 6, v = 15 and strategy s =
SSW. The mobile phone network has p = 21, v = 7 and
strategy s = ASW.
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a
Figure 1: Network size according to different p, v and strat-
egy s.

gl |

Figure 2: Network cluster according to different p, v and
strategy s.

Experiment

We simulated the agent-based model described above and
analyzed how the network changes when p, v, and strategy
s are changed.

Figure 1 shows the results of how the network size
changes. Here, SSW, ASW is the strategy of exchanging
the most recently interacted agents, W SW is the strategy
of randomly selecting weights on previously chosen agents,
RND is the strategy of exchanging agents completely at ran-
dom. If R = p/v, we observe the property that the smaller
R is, the larger the size of the network. Observing by strat-
egy, RND tends to increase the size of the network compared
to other strategies.

Figure 2 shows how the cluster coefficients change. It is
observed that the cluster coefficients also correlate with R
similar to the network size, but the correlation seems to be
smaller. It is also observed that the cluster coefficients in
strategy RND are very small.

The higher the number of agents randomly selected from
the possible adjacency space, the higher the probability of
selecting previously less selected agents. Thereby, the net-
work size increases because it acquires many nodes with a
small number of edges and the cluster coefficients become
smaller. Given open-ended evolution, it is suggested that
the value of exploration (v) is greater than the value of ex-
ploitation (p) and that randomly selecting agents from the
adjacency possible space is important.

Next, with p and v fixed at constant values, we analyzed
how the frequency of selection of new nodes (novelty) as
they appear differs for different strategies. Figure 3 shows
the results for different strategies (ASW, SSW, WWS, RND)
in the Twitter mentions network (p = 5,v = 5). The selec-
tion count of nodes, born at the time signified by the x-axis,
is selected at the time on the y-axis. A brighter color indi-
cates a higher selection count. In the figure, a blank space
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Figure 3: Selection count of nodes, born at the time signified
by the x-axis, selected at the time on the y-axis. A brighter
color indicates a higher selection count. Twitter mention
network (p = 5, v = 5) with four different strategies.

indicates a zero selection. The entire trend is that nodes that
have been present since the early steps of network growth
are selected more frequently, indicating preferential selec-
tion. Compared to WWS and RND, ASW and SSW have
a stronger preferential attachment effect, and it can be ob-
served that the newer the node is, the less often it is selected.
The result that randomly selecting agents to recommend in-
teraction partners contributes to network development is in-
teresting because it is the antithesis of the common social
networking service recommendation system, which tends to
recommend well-known users.

Conclusion

In this study, we analyzed the nature of interactions to
achieve an open-ended network using an agent-based model
that incorporates the concept of Adjacency Possible space.
The results show that in terms of open-ended evolution, the
value of exploration is greater than exploitation and that the
more random the search for possible adjacent spaces, the
more likely new nodes will be accessed.

It was assumed that all the nodes take the same strategy;
however, this is unrealistic. It is common for users to have
different ideas about who to recommend to other users. In
our future work, we will explore how the obtained popu-
lation differs when each node has a different strategy, and
what kind of network growth will be observed when each
node evolves its strategy when obtaining the population.
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Abstract

A domain-independent problem-solving system based on prin-
ciples of Artificial Life is introduced. In this system, DIAS,
the input and output dimensions of the domain are laid out in a
spatial medium. A population of actors, each seeing only part
of this medium, solves problems collectively in it. The process
is independent of the domain and can be implemented through
different kinds of actors. Through a set of experiments on var-
ious problem domains, DIAS is shown able to solve problems
with different dimensionality and complexity, to require no hy-
perparameter tuning for new problems, and to exhibit lifelong
learning, i.e. adapt rapidly to run-time changes in the prob-
lem domain, and do it better than a standard non-collective ap-
proach. DIAS therefore demonstrates a role for Alife in build-
ing scalable, general, and adaptive problem-solving systems.

Introduction

Ecosystems in nature consist of diverse organisms each with a
generic goal to survive. Survival may require different strate-
gies and actions at different times. Emergent behavior from
the collective actions of these organisms then makes it possi-
ble for the ecosystem as a whole to adapt to a changing world,
i.e. solve new problems as they appear.

Such continual adaptation is often necessary for artificial
agents in the real world as well. As a matter of fact, the field of
reinforcement learning was initially motivated by such prob-
lems: The agent needs to learn while performing the task.
While many offline extensions now exist, minimizing regret
and finding solutions in one continuous run makes sense in
many domains. For instance, there are domains where the
fundamentals of the domain are subject to rapid and unex-
pected change, such as trading in the stock market, and con-
trol systems for functions that exhibit chaotic behavior. Simi-
larly in many game-playing domains opponents improve and
change their strategies as they play. There are also domains
where numerous similar problems need to be solved and there
is little time to adapt to each one, such as trading systems with
a changing portfolio of instruments, financial predictions for
multiple businesses/units, optimizing multiple industrial pro-
duction systems, optimizing growth recipes for multiple dif-
ferent plants, and optimizing designs of multiple websites.

However, current Artificial Intelligence (Al) systems are
not adaptive in this manner. They are strongly tuned to each
particular problem, and adapting to changes in it and to new
problems requires much domain-specific tuning and tailoring.
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The natural ecosystem approach suggests a possible solu-
tion: Separate the Al from the domain. A number of benefits
could result: First, the Al may be improved in the abstract;
it is possible to compare versions of it independently of do-
mains. Second, the Al may more easily be designed to be ro-
bust against changes in the domain, or even switches between
domains. Third, it may be designed to transfer knowledge
from one domain to the next. Fourth, it may be easier to make
it robust to noise, task variation, and unexpected effects, and
to changes to the action space and state space.

This paper aims at designing such a problem-solving sys-
tem and demonstrating its feasibility in a number of bench-
mark examples. In this Domain Independent Alife-based
Problem Solving System (DIAS), a population of actors co-
operate in a spatial medium to solve the current problem, and
continue doing so over the span of several changing problems.
The experiments will demonstrate that

* The behaviors of each actor are independent from the prob-
lem definition;

* Solutions emerge continually from collective behavior of
the actors;

* The actor behavior and algorithms can be improved inde-
pendently of the domains;

» DIAS scales to problems with different dimensionality and
complexity;

* Very little or no hyperparameter tuning is required between
problems;

* DIAS can adapt to a changing problem domain, imple-
menting lifelong learning; and

* Collective problem-solving provides an advantage in scal-
ing and adaptation.

DIAS can thus be seen as a promising starting point for scal-
able, general, and adaptive problem solving, based on princi-
ples of Artificial Life.

Related Work

In most population-based problem-solving approaches, such
as Genetic Algorithms (GA; Mitchell, 1996; Eiben and Smith,
2015), Particle Swarm Optimization (Sengupta et al., 2018;
Rodriguez and Reggia, 2004), and Estimation of Distribution
Algorithms (Krejca and Witt, 2020), each population member

#20z Atenuer Lg uo Jesn O LNIHL 1A VLISHIAINN Aq 4pd° 26500 € 1eSI/6G7SE0Z/L/vE/2Z0zIes!ypd-sBulpaadoid)les)/npajiw-joalip//:diy woly papeojumoq



is itself a candidate solution to the problem. In contrast in
DIAS, the entire population together represents the solution.

Much recent work in Artificial Life concentrates on explor-
ing how fundamentals of biological life, such as reproduction
functions, hyper-structures, and higher order species, evolved
(Gershenson et al., 2018). However, some Alife work also fo-
cuses on potential robustness in problem solving (Hodjat and
Shahrzad, 1994). For instance, in Robust First Computing as
defined by Ackley and Small (2014), there is no global syn-
chronization, perfect reliability, free communication, or ex-
cess dimensionality. DIAS complies to these principles as
well. While it does impose periodic boundary conditions,
these boundaries can expand or retract depending on the di-
mensionality of the problem.

This approach is most closely related to Swarm Intelligence
systems (Bansal et al., 2019), such as Ant Colony Optimiza-
tion (Deng et al., 2019). The main difference is that the prob-
lem domain is independent from the environment in which
the actors survive, i.e. the ecosystem, and a common map-
ping is provided from the problem domain to the ecosystem.
This approach allows for any change in the problem domain
to be transparent to the DIAS process, which makes it possi-
ble to change and switch domains without reprogramming or
restarting the actor population.

Several other differences from prior work result from this
separation between actors and problem domains. First, the
algorithms that the actors run can be selected and improved
independently of the domain and need not be determined a
priori. Second, the fitness function for the actors, as well
as the mapping between the domain reward function and the
actors’ reward function, is predefined and standardized, and
need not be modified to suit a given problem domain. Third,
the actors’ state and action spaces are fixed regardless of the
problem domain. Fourth, there is no enforced communica-
tion mechanism among the actors. While the actors do have
the facility to communicate point-to-point and communica-
tion might emerge if needed, it is not a precondition to prob-
lem solving.

In terms of prior work in the broader field of Universal Al
and Domain Independence (Hutter, 2000), most approaches
are limited to search heuristics, such as extensions to the A*
algorithm (Stern, 2019). Such approaches still require domain
knowledge such as the goal state, state transition operators,
and costs. While efficient, these approaches lack robustness,
and are designed to work on a single domain at a time. They
do not do well if the domain changes during the optimization
process. In the case of domain-independent planning systems
(Della Penna et al., 2009), the elaborate step of modeling the
problem domain is still required. Depending on the manner
by which such modeling is done, the system will have differ-
ent performance. In this sense DIAS aims at more general
domain-independent problem solving than prior approaches.
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Figure 1: General design of a DIAS system. Actors exist on
a three-dimensional grid where x-locations represent the ele-
ments of the domain-action vector and y-locations represent
the elements of the domain-state vector. The z-locations form
a space that the actors can occupy and use for messaging.
The grid thus maps the domain space to an actor space where
problems can be solved in a domain-independent manner.

Method

A population of independent actors is set up with the goal of
surviving in a common environment called a geo. The input
and output dimensions of the domain are laid out across the
geo. Each actor sees only part of the geo, which requires that
they cooperate in discovering collective solutions. This de-
sign separates the problem-solving process from the domain,
allowing different kinds of actors to implement it, and makes
it scalable and general. The population adapts to new prob-
lems through evolutionary optimization, driven by credit as-
signment through a contribution measure.

Geo

Actors are placed on a grid called geo (Fig. 1). The dimen-
sions of the grid correspond to the dimensions of the domain-
action space (along the z-axis) and the domain-state space
(along the y-axis). More specifically, domain action is a vec-
tor A; each element A, of this vector is mapped to a differ-
ent xz-location. Similarly, domain state is a vector S, and its
elements .S, are mapped to different y-locations in the geo.
There can be multiple actors for each (x,y)-location of the
grid. These actors live in different locations of the z dimen-
sion. Each (z,y, z) location may contain an actor, as well as
a domain-action suggestion and a message, both of which can
be overwritten by the actor in that location.

Actors

An actor is a decision-making unit taking an actor-state vec-
tor o as its input and issuing an actor-action vector « as its
output at each domain time step. All actors operate in the
same actor-state and actor-action spaces, regardless of the do-
main. Each actor is located in a particular (x, y, z) location in
the geo grid and can move to a geographically adjacent loca-
tion. Each actor is also linked to a linked location (z',y', )
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elsewhere in the geo. This link allows an actor to take into ac-
count relationships between two domain-action elements (A,
and A,) and two domain-state elements (.S, and S;) and to
communicate with other actors via messages. Thus, it focuses
on a part of the domain, and constitutes a part of a collective
solution.

The actor-action vectors c consist of the following actions:

* Write a domain-action suggestion a,. in the current location
in the geo;

* Write a message in the current location in the geo;

» Write actor’s reproduction eligibility;

* Move to a geographically adjacent geo location;

* Change the coordinates of the linked location.

* NOP

The actor-state vectors o consist of the following data:
* Energy e: real > 0;
* Age: integer > 0;
* Reproduction eligibility: True/False;
* Coordinates in the current location: integer z,y, z > 0;
* Message in the current location: [0..1];
* Domain-action suggestion a, in current location: [0..1];
* Domain-state value .S, in the current location: [0..1];
« Coordinates in the linked location: integer z’,y’, 2’ > 0;
* Message in the linked location: [0..1];
* Domain-action suggestion a,- in linked location: [0..1];
» Domain-state value .S/ in the linked location: [0..1].

Depending on the actor type, actors may choose to keep a
history of actor states and refer to it in their decision making.

Problem-solving Process

Algorithm 1 outlines the DIAS problem-solving process. It
proceeds through time intervals (in the main while loop).
Each interval is one attempt to solve the problem, i.e. a fitness
evaluation of the current system. Each attempt consists of a
number of interactions with the domain (in the inner while
loop) until the domain issues a terminate signal and returns a
domain fitness. The credit for this fitness is assigned to indi-
vidual actors and used to remove bad actors from the popula-
tion and to create new ones through reproduction.

More specifically, during each domain time step ¢, the cur-
rent domain-state vector S is first loaded into the geo (Step
2.1): Each (x,y, z) location is updated with the domain-state
element S,. Each actor then takes its current actor state o
as input and issues an actor action « as its output (Step 2.2).
As a result of this process, some actors will write a domain-
action suggestion a,, in their location. A domain-action vector
A is then created (Step 2.3): The suggestions a,, are averaged
across all locations with the same x to form its elements A,.
If no a, were written, A, (¢t — 1) is used (with A, (—1) = 0).
The resulting action vector A is passed to the domain, which
executes it, resulting in a new domain state (Step 2.4).
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Algorithm 1: The DIAS problem-solving process

Initialize_population; solved=False; interval=0

while interval < maxinterval & — solved do
1. Initialize_domain; terminated=False; t=0

2. while t < maxt & — terminated do
2.1 Load S

2.2 for each actor do
nput o
L output
2.3 for each x do
| Average a;
2.4 Execute A
L 2.5 t++
. Obtain I
. if = solved then
4.1 for each actor do
Calculate f
Calculate Ae
if ¢ = 0 then
| Remove_from_population

&~ W

4.2 Reproduce
L 4.3 interval++

Actors start the problem-solving process with an initial al-
lotment of energy. After each interval (i.e. domain evalua-
tion), this energy is updated based on how well the actor con-
tributed to the performance of the system during the evalua-
tion (Step 4.1). First, the domain fitness F' is converted into
domain impact M, i.e. normalized within [0..1] based on max
and min fitness values observed in the past R evaluations:

_FminR)- (1)

Thus, even though F is likely to increase significantly during
the problem-solving process, the entire range [0..1] is utilized
for M, making it easier to identify promising behavior.

Second, the contribution of the actor to M is measured
as the alignment of the actor’s domain-action suggestions a,
with the actual action elements A, issued to the domain dur-
ing the entire time interval. In the current implementation,
this contribution c is

M = (F - FminR)/(FrnaxR

c=1- min (|4,() - as(0)]), @
where T is the termination time; thus ¢ € [0..1]. The energy
update Ae, consists of a fixed cost h and a reward that de-
pends on the impact and the actor’s contribution to it. If none
of the actor’s actions were ’write a,(t)’, i.e. the actor did not
contribute to the impact,

Ae=h(M —1), 3)

that is, the energy will decrease inversely proportional to im-
pact. In contrast, if the actor issues one or more such *write’
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actions during the interval,
Ae=h(cM(1—c¢)(1—M)—1). 4)

In this case, the energy will also decrease (unless M and c
are both either O or 1) but the relationship is more complex:
It decreases less for actors that contribute to good outcomes
(i.e. M and c are both high), and for actors that do not con-
tribute to bad outcomes (i.e. the M and c are both low). Thus,
regardless of outcomes, each actor receives proper credit for
the impact. Overall, energy is a measure of the credit each
actor deserves for both leading the system to success as well
as keeping it away from failure. If an actor’s energy drops to
or below zero, the actor is removed from the geo.

For example, if the domain is a reinforcement learning
game, like CartPole, each time interval consists of a num-
ber of left and right domain actions until the pole drops, or
the time limit is reached (e.g. 200 domain time steps). At this
point, the domain issues a termination signal, and the fitness
F'is returned as the number of time steps the pole stayed up.
That fitness is scaled to M € [0..1] using the max and min F
during the R = 60, 000 previous attempts. If M is high, ac-
tors that wrote a, values consistently with A,, i.e. suggested
left or right at least once when those actions were actually is-
sued to the domain, have a high contribution ¢, and therefore
a small decrease Ae. Similarly, if the system did not perform
well, actors that suggested left(right) when the system issued
right(left), have a low contribution ¢ and receive a small de-
crease Ae. Otherwise the Ae is large; such actors lose energy
fast and are soon eliminated.

After each time interval, a number of new actors are gen-
erated through reproduction (Step 4.2). Two parents are se-
lected from the existing population within each (x, i) column,
assuming the total energy in the column is below a threshold
Fax. If it is not, the agents are already very good, and evo-
Iution focuses on columns elsewhere where progress can still
be made, or alternative solutions can be found. In addition, a
parent actor needs to meet a maturity age requirement, i.e. it
must have been in the system for more than V' time intervals
and not reproduced for V' time intervals. The actor also needs
to have reproduction eligibility in its state set to True.

Provided all the above conditions are met, a proportionate
selection process is carried out based on actor fitness f, cal-
culated as follows. First, the impact variable M is discretized
into L levels: M = {bg,b1..,br.—1}. Then, for each of these
levels b;, the probability p; that the actor’s action suggestions
align with the actual actions when M = b; is estimated as

where ¢ measures this alignment according to Eq. 2. The
same window of R past intervals is used for this estimation
as for determining the max and min M for scaling the im-
pact values. Finally, actor fitness f is calculated as alignment-
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weighted average of the different impact levels b;:

f=> pibs. (6)

Thus, f is the assignment of credit for M to individual actors.
Note that while energy measures consistent performance, ac-
tor fitness measures average performance. Energy is thus
most useful in discarding actors and actor fitness in selecting
parents.

Once the parents are selected, crossover and mutation are
used to generate offspring actors. What is crossed over and
mutated depends on the encoding of the actor type; regard-
less, each offspring’s behavior, as well as its linked-location
coordinates, is a result of crossover and mutation. Each pair
of parents generates two offspring, whose location is deter-
mined randomly in the same (z, y) column as the parents.

Note that the parents are not removed from the population
during reproduction, but instead, energy is used as basis for
removal. In this manner, the population can shrink and grow,
which is useful for lifelong learning. It allows reproduction to
focus on solving the current problem, while removal retains
individuals that are useful in the long term. Such populations
can better adapt to new problems and re-adapt to old ones.

Energy, age, and actor fitness for all actors in an (z, y) col-
umn need to be available before reproduction can be done, so
computations within the column must be synchronized in Step
4.2. However, the system is otherwise asynchronous across
the = and y dimensions, making it possible to parallelize the
computations in Steps 2 and 4. Thereby, the system scales to
high-dimensional domains in constant time.

Actor Types

The current version of DIAS employs five different actor
types:

* Random: Selects its next action randomly, providing a
baseline for the comparisons;

* Robot: Selects its next action based on human-defined pre-
programmed rules designed for specific problem domains,
providing a performance ceiling;

* Bandit: Selects its next action using a basic multi-armed
bandit algorithm (not including o as context);

* Q-Learning: Learns to select its next action using temporal
differences; and

* Rule-set Evolution: Evolves a set of rules to select its next
action.

Simple Q-learning (Watkins and Dayan, 1992) was imple-
mented based on the actor’s state/action history, with the ac-
tor’s energy difference from the prior time interval taken as
the reward for the current interval. Because the dimensional-
ity of the state/action space is limited by design, this method
is a possible reinforcement learning approach.
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Rule-set evolution (Hodjat et al., 2018) was implemented
based on rule sets that consist of a default rule and at least one
conditioned rule. Each conditioned rule consists of a conjunc-
tion of one or more conditions, and an action that is returned
if the conditions are satisfied. Conditions consist of a first and
second term being compared, each with a coefficient that is
evolved. An argument is also evolved for the action. Evo-
Iution selects the terms in the conditions from the actor-state
space, and the action from the actor-action space. Rules are
evaluated in order, and shortcut upon reaching the first to be
satisfied. If none of the rules are satisfied, the default action
is returned.

These actor types were evaluated in several standard bench-
marks tasks experimentally, as will be described next.

Experiments

DIAS was evaluated in a number of benchmark problems to
demonstrate the unique aspects of the approach. The system
was shown scalable, general, and adaptable. The dynamics of
the problem-solving process were characterized and shown to
be the source of these abilities.

Test Domains

In the n-XOR domain, the outputs of n independent XOR
gates, each receiving their own input, need to be predicted si-
multaneously. In order to make the domain a realistic proxy
for real-world problems, 10% noise is added to the XOR out-
puts. While a single XOR (or 1-XOR) problem can be solved
by a single actor, solving n > 1 of them simultaneously re-
quires a division of labor over the population. The different
XOR input elements are in different y-locations and the dif-
ferent predicted outputs in different z-locations. With n > 1,
no actor can see or act upon the entire problem. Instead,
emergent coordination is required to find behaviors that col-
lectively solve all XORs. Increasing n makes the problems
exponentially more difficult (i.e. the chance of solving all n
XORs by luck is reduced exponentially with n).

The first set of experiments in the n-XOR domain show that
the DIAS design scales to problems of different dimension-
ality and complexity. The second set shows that DIAS can
adapt to the different n-XOR problems online, i.e. to exhibit
lifelong learning.

Experiments were also run on a number of OpenAl Gym
games, including CartPole, MountainCar, Acrobot, and Lu-
narLander. The same experimental setup was used across
all of them without any hyperparameter tuning. The Ope-
nAI Gym domains thus show that DIAS is a general problem-
solving approach, requiring little or no parameter tuning when
applied to new problems.

Experimental Setup

Each experiment consists of 10 independent runs of up to
200,000 time intervals. For each domain, the number of z-
locations is set to the number of domain actions, and the num-
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ber of y-locations to the number of domain states (1, 2 for 1-
XOR; 2, 4 for 2-XOR; 3, 6 for 3-XOR; 2, 4 for CartPole; 3,
2 for MountainCar; 3, 6 for Acrobot; and 3, 6 for LunarLan-
der). The number of z-locations is constant at 100 in all ex-
periments. The initial population for each (x,y) location is
set to 20 actors, placed randomly in z. Each Q-learning actor
is initialized with random Q-values, and each rule-set actor
with a random default rule. The robot and bandit actors have
no random parameters, i.e. they are all identical.

The range R used for scaling domain fitnesses to impact
values was 60,000 intervals, and the impact M was dis-
cretized into 21 levels {0, 0.05, .., 0.95, 1} in calculating actor
fitness. Each actor started with an initial energy of 100 units,
with a fixed cost h = 2 units at each time interval. The energy
threshold Ey,.x for reproduction in each (x,y) column was
set to the initial energy, i.e. 20 * 100 = 2000 (note that while
each actor’s energy decreases over time, population growth
can increase total energy). Reproduction eligibility was set to
True at birth, and the reproduction maturity requirement V' to
20. Small variations to this setup lead to similar results. In
contrast, each of the main design choices of DIAS is impor-
tant for its performance, as verified in extensive preliminary
experiments.

Each experiment can result in one of three end states: (1)
the actor population solves the problem; (2) all actors run out
of energy before solving the problem and the actor population
goes extinct; and (3) the actor population survives but has not
solved the problem within the maximum number of time in-
tervals. In practice, it is possible to restart the population if
it goes extinct or does not make progress in F' after a certain
period of time. Restarts were not implemented in the experi-
ments in order to evaluate performance more clearly.

For comparison, direct evolution of rule sets (DE) was also
implemented in the DIAS framework. The setup is otherwise
identical, but a DE actor receives the entire domain state vec-
tor S as its input and generates the entire domain action vector
A as its output. DE therefore does not take advantage of col-
lective problem solving. A population of 100 DE actors is
evolved for up to 100,000 time intervals through a GA with F'
as the individual fitness, tournament selection, 25% elitism,
and the same crossover and mutation operators as in DIAS.

Comparing Actor Types

The five actor types described above were each tested in pre-
liminary experiments on 1-XOR, using the same settings.
These results demonstrate that collective behavior resulting
from the DIAS framework can successfully solve these do-
mains.

The Robot actor specifically written for 1-XOR solves it
from the first time interval. Similarly, a custom-designed
Robot actor is always successful in the CartPole domain. On
the other hand, Random, Bandit, and Simple Q-Learning were
not able to solve 1-XOR at all: Each attempt leads to extinc-
tion in under 350 time intervals. While it is possible that these
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Figure 2: Number of time intervals needed to solve the 1-XOR (left), 2-XOR (middle) and 3-XOR (right) problems in 10
independent runs. No runs lead to extinction (they would have been shown with red bars), though some do not completely solve
the problem within the allotted 200,000 time intervals (these runs are shown with blue bars). These experiments show that the
DIAS framework scales naturally to problems with increasing dimensionality and complexity.

ancestor_count=1065

action counts={decrease_linked_location_y:

total_potential_contribution_count=19

total_contribution_count=19

impact_contribution_probabilities=1.0:1.0

state={energy: 66.0; age: 74;
reproduction_eligibility: True;
own_location_coordinates 0, 1, 18;
own_location_message: 0;
own_location_domain_action: None;
own_location_domain_state: 0;
linked_location_coordinates: 0, 1, 19;
linked_location_message: 0;
linked_location_domain_action: None;
linked_location_domain_state: 0;

Rulel<49>: (0.21xy <= 0.62xlinked_location_domain_state)

—--> decrease_linked_location_y(0.10)

(0.9+«own_location_domain_state

> 0.15xreproduction_eligibility) &

(0.21%y <= 0.62xlinked_location_domain_state)&

(0.21xy < 0.62xlinked_location_domain_state)

——> decrease_linked_location_y (0.10)

(0.90*own_location_domain_state

> 0.15xreproduction_eligibility)

——> decrease_linked_location_y (0.10)

(0.21xy < 0.62xlinked_location_domain_state)

—--> decrease_linked_location_y(0.10)

--> write (0.93)

55, write: 19}

Rule2<0>:

Rule3<6>:

Rule4<0>:
Deflt<19>:

Figure 3: An example actor that solves the 1-XOR prob-
lem, consisting of a number of metrics, current state, and
a set of rules. The ’write’ action writes its argument in the
own_location_domain_action field as the actor’s suggested
domain action a,. Even though the rules explicitly describe
the actor’s behavior, it is not possible to tell from this one
actor what the solution to the complete problem is. The actor
does not see the whole problem or determine the outcome
alone: The population as a whole collectively solves it.

actors could solve simpler problems, the search space for 1-
XOR is apparently already too large for them. Therefore, the
main experiments focus on the Rule-set Evolution actor type.

Scaling to Problems of Varying Complexity

The first set of main experiments showed that the DIAS pop-
ulation solves n-XOR with n =1, 2, and 3 reliably (Fig. 2).
Even with 10 percent reward noise, the system is resilient and
the population collectively achieves the best possible reward,
even if it is not constant over time. In comparison, while DE
solved the 1-XOR in less than 10,000 time intervals in nine of
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10 runs, only three runs solved the 2-XOR and none solved
the 3-XOR within 100,000 time intervals. These results show
that DIAS provides an advantage in scaling to problems with
higher dimensionality and complexity.

The success was due to emergent collaborative behavior of
the actor population. This result can be seen by analyzing the
rule sets that evolved, for example that of the actor from a
population that solved the 1-XOR problem, shown in Fig. 3.
This actor is number 1065 in its lineage. It has contributed to
the domain action 19 times, and all 19 times, its contribution
has been in line with the domain action issued. Therefore, the
vector of alignment probabilities p; at each impact level ¢ has
only one element: The probability is 1.0 for the impact level
of 1.0. Its current state is high in energy for its age, suggesting
that it has contributed well. Its current linked location has null
values in message, domain-action, and domain-state fields.

In terms of rules, the second and fourth are redundant, and
never fired (redundancy is common in evolution because it
makes the search more robust). Rule 1 fired 49 times, Rule 3
six times, and the default rule 19 times. Rules 1 and 3 perform
a search for a linked location that has a large enough domain-
state value: They decrease the y-coordinate of the linked lo-
cation whenever they fire. If such a location is found (Rule 1),
and its own domain-state value is high enough (Rule 3), 0.93
is written as its suggested domain action a, (Default rule).
An a, > 0.5 denotes a prediction that the XOR output is 1,
while a, < 0.5 suggests that it is O; therefore, this actor con-
tributes to predicting XOR output 1. Other actors are required
to generate the proper domain actions in other cases. Thus,
problem solving is collective: Several actors need to perform
compatible subtasks in order to form the whole solution.

Solving Different Kinds of Problems

The second set of main experiments was designed to demon-
strate the generality of DIAS, i.e. that it can solve a number
of different problems out of the box, with no change to its set-
tings. CartPole, MountainCar, Acrobot, and LunarLander of
OpenAl Gym were used in this role because they represent a
variety of well-known reinforcement-learning problems.
DIAS was indeed able to solve each of these problems
without any customization, and with the same settings as the

d-sBuipaaoold/jes)/npajiwioallp//:dpy wouy papeojumoq

€ |esl/6G¥SE0C/ L/¥E/TT0TIes!/3p!

20z Atenuer Lg uo Jesn O LNIYL 1A VLISHIAINN Aq ypd’ 26500



MountainCar LunarLander
00

= solved

o 1 2 3 4 5 & 7 8 9 o 1 2 3 4 5 & 71 &8 9
Trials Trials

Cartpole Acrobot

o 1 2 3 4 s & 71 8 9 o 1 2 3 4 s 6 71 & 9
Trials Trials

Figure 4: Solving different kinds of problems in the OpenAIGym domain. Results of 10 runs in the MountainCar (left),
LunarLander (second from left), CartPole (second from right), and Acrobot (right) problems are shown. Again, no runs resulted
in extinction, although some MountainCar and Cartpole runs did not completely solve the problem within the allotted maximum
number of time intervals. Notably, DIAS solves all these problems, as well as all other domains in the paper, with the same
hyperparameter and experimental settings, demonstrating the generality of the approach.
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Figure 5: Population dynamics in a sample run of the
CartPole problem, showing progression of domain fitness F'
(the number of time steps the pole stays upright; top), number
of live actors (middle), and the number of reproductions
(bottom) at each time interval. The reproductions drop and
the population becomes relatively stable during periods when
the ecosystem finds a peak in F'; however, these peaks are
unstable and the population eventually moves on to explore
other solutions. Such dynamics make it possible to not only
find solutions to the current problem, but to also adapt rapidly
to changing domains and new problems.

n-XOR problems (Fig. 4). A histogram of the population dy-
namics as the ecosystem evolves to a solution is shown in Fig.

for the CartPole problem. The system gradually finds higher
domain fitness peaks, and every time it does so, the number of
reproductions drop and the population stabilizes. In this man-
ner, DIAS is trying out different equilibria, eventually finding
one that implements the best solution.

Adapting to Changing Problems

A third set of experiments were run in the n-XOR domain to
demonstrate the system’s ability to switch between domains
mid-run. The run starts by solving the 1-XOR problem; then
the problem switches to 2-XOR, 3-XOR, and back to 1-XOR
again. Note that the max domain fitness level also changes
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mid-run as problems are switched. These switches require the
geo to expand and retract, as the dimension of  (i.e. number
of domain actions) and y (number of domain states) are differ-
ent between problems. This change, however, does not affect
the actors, whose action and state spaces remain the same.
When retracting, actors in locations that no longer exist are
removed from the system. When expanding, new actors are
created in locations (3, j, k) with ¢ > x and/or j > y by du-
plicating the actor in location (¢ mod x, j mod y, k), if any.

The results of 10 such runs are shown in Fig. 6. In seven
of these runs, DIAS was able to solve the entire sequence of
problems. Most interestingly, the time it needed for subse-
quent problems often became shorter. For example Run 1
took 55,574 time intervals to solve the 1-XOR problem, an-
other 35,363 to solve the 2-XOR, and 36,690 more to solve
the 3-XOR. Then, switching back to the 1-XOR problem, a
solution was found within a mere 51 time intervals. These re-
sults demonstrate that DIAS is able to adapt to new problems
quickly, retain information from earlier problems, and utilize
it in later problems.

In contrast, while DE solved the 1-XOR fast in the begin-
ning and end of each sequence, none of its 10 runs were able
to adapt to 2-XOR and 3-XOR mid-run. Also, it did not solve
the second 1-XOR any faster than the first one.

These experiments thus show that the collective problem
solving in DIAS is essential for solving new problems con-
tinuously as they appear, and for retaining the ability to solve
earlier problems. In this sense, it demonstrates an essential
ability for continual, or lifelong, learning. It also demon-
strates the potential for curriculum learning for more complex
problems: The same population can be set to solve domains
that get more complex with time. Such an approach may have
a better chance of solving the most complex problems than
one where they are tackled directly from the beginning.

Discussion and Future Work

The experimental results with DIAS are promising: They
demonstrate that the same system, with no hyperparameter
tuning or domain-dependent tweaks, can solve a variety of
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Figure 6: Adapting to changing problems. Ten runs of DIAS (left) and DE (right) are shown where the problem switched from
1-XOR 10 2-XOR, 3-XOR, and back to the 1-XOR as soon as the problem was solved or 100,000 time intervals passed (dashed
line). DIAS was able to adapt 1o new problems guickly, solve new problems quicker. and particularly guickly when returning to
1-XOR. In contrast, while DE solved the first 1-XOR guickly, it was not able to adapt to 2-XOR nor 3-XOR mid-run. and it did
not solve the second 1-XOR fuster than the first. Thus, collective problem solving in DIAS provides a significant advantage in

adapting to new problems, i.e. in lifelong learning.

domains, ranging from classification to reinforcement learn-
ing. The results also demonstrate ability o switch domains in
the middle of the problem-solving process, and potential ben-
efits of doing so as part of curriculum learning. The system is
robust to noise, as well as changes o its domain-action space
and domain-state space mid-run.

The most important contribution of this work is the in-
troduction of a common mapping between a domain and an
ecosystem of actors. This mapping includes a translation of
the state and action spaces, as well as a translation of domain
rewdards 1o the actors contributing (or not contributing) o a
solution. It 1s this mapping that makes collective problem
solving effective in DIAS. With this mapping, changes to the
domain have no effect on the survival task that the actors in
the ecosystem are solving. As a result, the same DIAS system
can solve problems of varying dimensionality and complex-
ity, solve different kinds of problems. and solve new problems
as they appear, and do it better than DE can.

In this process, interesting collective behavior analogous
1o biological ecosystems can be observed. Most problems are
being solved through emergent cooperation among actors (i.e.
when @ andfor y-dimensionality = 1). Problem solving is also
continuous: The system regulates its population, stabilizing
it as betier solutions are found, Because of this cooperative
and continual adaptation, it is difficult to compare the exper-
imental results o those of other learning systems, Solving
problems of varying scales, different problems, and tracking
changes in the domain generally requires domain-dependent
set up, discovered through manual trial and error. A com-
pelling direction for the future is to design benchmarks for
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domain-independent learning, making such comparisons pos-
sible and encouraging further work in this area,

In the future, a parallel implementation of DIAS should
speed up and scale up problem-solving. It would be possible
to run DIAS with larger search spaces in reasonable time. For
high-dimensional domain-state and domain-action spaces, it
may also be possible o fold the axes of the geo so that a sin-
gle (., ) location can refer to more than one state or action in
the domain space. This generalization. of course, would come
at the expense of larger actor-action and sctor-state space be-
cause each location would now have more than one value for
domain state and action, but it could make it Faster with high-
dimensional domains. Another potential improvement is 1o
design more actor types. While rule-set evolution performed
well, itis a very general method, and it may be possible 1o de-
sign other methods that more rapidly and consistently adapt
to specific problem domains as part of the DIAS framework,

Conclusion

DIAS is a domain-independent problem-solving system that
can address problems with varying dimensionality and com-
plexity, solve different problems with little or no hyperparam-
eter tuning, and adapt to changes in the domain, thus im-
plementing lifelong learning. These abilities are based on
artificial-life principles, i.e. collective behavior of a popula-
tion of actors in a spatially organized geo, which forms a
domain-independent problem-solving medium. Experiments
with DIAS demonstrate an advantage over a direct problem-
solving approach, thus providing a promising foundation for
scalable, general, and adaptive problem solving in the future.
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Abstract

Congestion control algorithms are used to help prevent con-
gestion from occurring on the Internet. However, a defini-
tive congestion control algorithm has yet to be developed.
There are three reasons for this: First, the environment and
usage of the Internet continue to evolve over time. Second, it
is not clear what congestion control algorithms will be re-
quired as the environment evolves. Third, there is a limit
to the number of the congestion control algorithms that can
be developed by researchers. This paper proposes a method
for automatically generating diverse congestion control algo-
rithms and optimizing them in various environments by co-
evolving network simulations as environments and conges-
tion control algorithms as agents. In experiments conducted
using co-evolution, although the algorithms generated were
not on par with conventional practical congestion control al-
gorithms, the intent of the procedures in the algorithms was
interpretable from a human perspective. Furthermore, our re-
sults verify that it is possible to automatically discover a suit-
able environment for the evolution of a congestion control
algorithm.

Introduction

Congestion is the excessive temporal flow of data over a net-
work. On the Internet, many users constantly compete for
communication bandwidth. This causes congestion, which
may result in reduced communication speed and connection
problems for the service. To prevent Internet congestion,
congestion control algorithms are used to adjust the data
transmission rate.

A congestion control algorithm determines whether con-
gestion is occurring and accordingly decides whether to in-
crease or decrease the amount of data sent. The two main
types of congestion control algorithms are loss-based and
delay-based algorithms (Al-Saadi et al., 2019). Loss-based
algorithms determine whether congestion is occurring based
on the packet loss, whereas delay-based algorithms make the
determination based on the round-trip time of packets.

Research on congestion control algorithms has been on-
going for over 40 years; however, no definitive congestion
control algorithm has yet been developed. This is because
Internet usage and connection patterns change over time,
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and it is unclear what algorithms are necessary when the In-
ternet structure or bandwidth drastically changes. Existing
congestion control algorithms are built using a rule-based
approach, which makes it difficult for them to respond to
changes in the environment (Li et al., 2019). In addition, the
number of the congestion control algorithms that can be de-
veloped by researchers and the number of environments in
which they can be tested are limited.

One possible approach to address these issues is to use
program synthesis to automatically build algorithms with-
out human intervention (Gulwani et al., 2017). In this re-
gard, an interesting study was conducted by Lones (2020),
who used genetic programming to automatically generate an
optimization algorithm. The study highlights the possibility
that only a limited portion of the design space of optimiza-
tion algorithms has been explored because of biases in hu-
man thinking. In fact, by using genetic programming, they
succeeded in generating an algorithm that has both supe-
rior performance and different characteristics from existing
human-made optimization algorithms. A similar challenge
exists for congestion control algorithms.

In machine learning, which has made remarkable progress
as represented by deep learning, a method called AutoML-
Zero has been proposed to build algorithms from scratch
using evolutionary methods (Real et al., 2020). Although
AutoML-Zero has not yet discovered any new valuable al-
gorithms, it has rediscovered useful machine learning meth-
ods, such as backpropagation. This result, which automati-
cally builds on existing methods from scratch, suggests the
possibility of automatically discovering useful undiscovered
algorithms in the future.

This attempt to automatically generate algorithms using
evolutionary methods without human intervention has the
potential to devise algorithms that have not yet been dis-
covered. This indicates that there may be useful algorithms
existing outside the space already heuristically explored by
humans. Adding diversity to the solution, rather than sim-
ply searching for a single optimal solution, will lead to the
discovery of a global optimal solution. Recently, an algo-
rithm called the quality—diversity algorithm, which attempts
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to improve both the quality of the solution (the fitness of the
solution) and the diversity of the solution (the types of solu-
tions), has been studied (Pugh et al., 2016). The results show
that improving the diversity of solutions rather than search-
ing for a single optimal value can lead to the discovery of
better solutions.

The paired open-ended trailblazer (POET) (Wang et al.,
2019), which co-evolves the agent and environment, has
been attracting attention as a further development of the
quality—diversity algorithm. POET learns by pairing an
agent with an environment generated by mutation, and op-
timizes the agent for each paired environment. In addi-
tion, high-performance agents are transferred to other en-
vironments. In this manner, a new environment is auto-
matically generated at the appropriate time, and agents are
optimized in the new environment as well to discover so-
lutions (agents) to unknown problems (environments). By
co-evolving agents and environments, we can obtain use-
ful environments and agents that cannot be obtained without
co-evolution. However, most applications of the quality—
diversity algorithm are in games and robotics. Therefore,
further development can be expected by demonstrating that
it can be applied to other fields.

Therefore, this study examines congestion control algo-
rithms as a new application of the quality—diversity algo-
rithm and agent—environment co-evolution. As no attempt
has been made to automatically generate congestion control
algorithms using evolutionary algorithms, it is hoped that
the application of the quality—diversity algorithm and POET
to the automatic generation of congestion control algorithms
will lead to the discovery of new and useful congestion con-
trol algorithms. Specifically, we aim to automatically con-
struct a variety of congestion control algorithms and simula-
tion environments without human intervention.

Agent and Environment

In this study, the congestion control algorithms are the
agents, and the network simulations are the environments.
This section describes how the congestion control algo-
rithms are generated and how the environments are con-
trolled.

Controlling the environments

To co-evolve environments and agents, it is necessary to
control the difficulty of the environments. In this study, the
throughput is used as an indicator of the difficulty of the en-
vironment. It is necessary to design parameters such that the
higher the throughput, the lower the difficulty; conversely,
the lower the throughput, the higher the difficulty. There-
fore, we use two types of parameters to control the difficulty
level: the amount of cross-traffic generated and the packet
loss rate.

Cross-traffic is traffic that interferes with the main com-
munication. For example, it communicates on a communi-
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cation path that overlaps with the communication path be-
tween the main server and clients. When the communica-
tion paths overlap, it puts pressure on the bandwidth. In
such a case, if the communication data are not properly con-
trolled, congestion will occur and throughput will decrease.
Therefore, the amount of cross-traffic generated is varied to
control the difficulty of the environment.

There are two ways to control the amount of cross-traffic
generated. The first is to vary the amount of data communi-
cation between the server and client that generates the cross-
traffic, and the second is to vary the number of nodes that
generate the cross-traffic.

Figure 1 is a conceptual diagram of a network topology in
which cross-traffic can occur. There are three types of nodes:
servers, clients, and relay nodes. Relay nodes only relay data
between main traffic and cross-traffic, and do not generate
any traffic. The red nodes indicate nodes that generate main
traffic, and the blue nodes indicate nodes that generate cross-
traffic. The server that measures the throughput is called the
main server. The client that sends data to the main server is
called the main client.

When the second parameter, packet loss, occurs, data
must be retransmitted and received. Consequently, it
takes time to retransmit packets, resulting in a decrease in
throughput. Packet loss can be caused by disconnection in
the case of wired networks or radio interference in the case
of wireless networks. This is particularly likely to occur in
wireless applications. Therefore, packet loss rate is consid-
ered an effective parameter for controlling the difficulty of
the environment. Packet loss during an experiment occurs at
all nodes in the network topology.

Figure 1: A network topology in which cross-traffic can oc-
cur.

We use ns3gym (Gawlowicz and Zubow, 2019) for net-
work simulation, which is our environment. ns3gym is
a framework that enables ns3 !, a network simulator of-
ten used in network research, to be used in OpenAl
Gym (Brockman et al., 2016), which is a library that pro-
vides an environment for reinforcement learning.

Basic congestion control algorithms

To automatically generate a congestion control algorithm,
it is necessary to determine the base of the generated al-
gorithm. We use the additive increase and multiplicative

"https://www.nsnam.org/
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decrease (AIMD) algorithm, a relatively simple but widely
used classical congestion control algorithm, as a reference
to create the base algorithm (Peterson and Davie, 2011).

The AIMD algorithm can be implemented in a relatively
simple manner. Therefore, instead of using complex con-
gestion control algorithms, this research also uses simple ba-
sic arithmetic operations and conditional branching, such as
AIMD, as the basis for the design of the algorithms.

For AIMD, the congestion window size is determined by
Equation 1.

x(t—i—l)—{ iggiz

where z(t) represents the congestion window size at time t.
AIMD is a very simple method that increases the congestion
window size by addition and decreases it by multiplication.
If congestion is not detected, the congestion window size
is increased via parameter a (¢ > 0). If congestion is de-
tected, the congestion window size is decreased via parame-
terb (0 <b<1).

Many algorithms using the AIMD scheme have been pro-
posed, but one of the most popular is NewReno (Gurtov
et al.,, 2012). NewReno increases the congestion window
size linearly if no congestion is detected and halves the con-
gestion window size if congestion is detected. The formula
for updating the congestion window size for NewReno is
given by Equation 2.

x(t+1)—{ “féf))“

(no congestion detected)
(congestion detected),

)

(no congestion detected) @)
(congestion detected)
Automatic generation of congestion control
algorithms

We use grammatical evolution (O’Neill and Ryan, 2001)
to generate the congestion control algorithms. Grammati-
cal evolution allows for a relatively free design of the gen-
erated code and functions, and because the generated code
is grammatically guaranteed, it can be naturally applied to
implementations that require conditional branching, such as
congestion control algorithms. To run the grammatical evo-
lution, we use PonyGE2 (Fenton et al., 2017), a Python 3
implementation.

The fitness is defined by the average throughput, as shown
in Equation 3.

. 1
Fitness = N ; throughput;, 3)

where throughput; represents the throughput measured at
time ¢ and N represents the number of times the throughput
is measured. The throughput is measured using the main
traffic server at regular intervals. The server records the
amount of data received at regular intervals and calculates
it using Equation 4.

(Bt - Bt—interval) x 8
interval

throughput; = [bps], @)
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where B; indicates the number of bytes received by the
server at time ¢ and interval indicates the interval in sec-
onds at which the server records the amount of data received.
It is multiplied by eight to convert the byte unit to bit unit.
By maximizing the fitness, it is possible to develop the con-
gestion control algorithm with a higher throughput.

Figure 2 illustrates the grammar used to generate the con-
gestion control algorithm. The grammar is defined such that
it can generate an algorithm that can be implemented using
four arithmetic operations and conditional branching, such
as AIMD. The “obs” in the grammar indicates the informa-
tion observed during the simulation. The ’OPEN,” "DISOR-
DER,” ’RECOVER,” and "LOSS” in lines 1 through 7 of the
grammar represent the following four congestion states:

* OPEN: Normal state
* DISORDER: State in which a duplicate ACK is received

* RECOVER: Duplicate ACK 1is received three times
(stronger suspicion of congestion occurring)

¢ LOSS: State in which ACK timeout is detected (transmis-
sion is lost owing to congestion)

”OPEN” indicates that congestion is not present, "DISOR-
DER” and "RECOVER?” indicate that congestion may be
present, and "LOSS” indicates that communication has been
lost owing to congestion. In addition, ACK is a packet that
indicates to the data sender that the data were received cor-
rectly. The grammar shown in Figure 2 defines four meth-
ods for updating the congestion window size (new_cwnd) for
the four different congestion states. These update methods
are defined by the observational information of the environ-
ment, the four arithmetic operators, and conditional branch-
ing. The larger the value of the congestion window size, the
more data that can be transmitted. To improve the fitness, we
need to evolve the algorithm to adjust the congestion win-
dow size to prevent congestion and communicate more data.

Co-evolution of simulation environments and
algorithms

Our aim is to automatically generate congestion control al-
gorithms in a variety of simulation environments through
co-evolution. We use POET to co-evolve the simulation
environments and congestion control algorithms. POET is
characterized by the fact that it generates new environments
that are appropriate for the evolution of individuals. In ad-
dition to the automatic generation of new algorithms, POET
is expected to automatically generate environments that are
optimal for evolution, and discover environments that will
generate interesting individuals.

To use POET, we need to determine the minimum and
maximum values of the fitness that will be used as a cri-
terion to decide whether or not to perform mutation of the
environment. It is necessary to set a criterion value that is
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<algorithm> ::= if state == OPEN:
<codel>
elif state == DISORDER:
<codez2>
elif state == RECOVER:
<code2>
elif state == LOSS:
<code2>
else:
<codez2>
<codel> ::= new_cwnd = <update>
| if <condition>:
new_cwnd = <update>
else:
new_cwnd = <update>
<code2> ::= new_cwnd = <update>
new_ssthresh = <update>
| if <condition>:
new_cwnd = <update>
new_ssthresh = <update>
else:
new_cwnd = <update>
new_ssthresh = <update>

<condition> = obs[<obs_index>]<comp_op>obs
[<obs_index>]
<update> ::= <update><arith_op><update>

| obs[<obs_index>]
| <num>
<obs_index> ::=
0111213141516171819110]111113]
<comp_op> ::= <|[>[<=|>=
<arith_op> ::= +|—-[*|/1%
<num> ::= 1|2|31415/6|718]9

Figure 2: A grammar for generating congestion control al-
gorithms in Grammatical Evolution

neither too easy nor too difficult for the agent. However, it is
difficult to determine criterion values in advance. Therefore,
we set 10% of the bandwidth in the experiment as the mini-
mum value and 80% as the maximum value. In addition, the
search space for combinations of algorithms that can be gen-
erated by grammatical evolution and environments that can
be generated by network simulation is huge. To reduce the
search space, we first evolve a congestion control algorithm
using a quality—diversity algorithm and use it in the initial
population set of POET.

For the quality—diversity algorithm, we use CMA-
ME (Fontaine et al., 2020), coupled with an improvement
emitter to improve the fitness of the individuals. Thus, indi-
viduals are generated by CMA-ME, and the genetic informa-
tion of the generated individuals is replaced with code using
the grammar defined by BNF. In the quality—diversity algo-
rithm, it is necessary to define a behavior descriptor (BD)
that represents the characteristics of the solution. We use
the mean and standard deviation of the congestion window
size as the BDs. The mean value of the congestion window
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size is an indicator of the trend in the size of the conges-
tion window set by the algorithm. The standard deviation
of the congestion window size is an indicator of the degree
of variation in the congestion window size. For example, if
the mean value of the congestion window size is high and
the standard deviation is low, the algorithm is considered to
be a congestion control algorithm with the characteristic of
selecting a consistently large congestion window size. We
used the pyribs (Tjanaka et al., 2021) library to run CMA-
ME.

Experimental Evaluation

We conducted two experiments to evaluate the feasibility of
the proposed method.

First, we evolved congestion control algorithms using the
quality—diversity algorithm for use as the initial population
set for co-evolution. We analyzed the generated set of al-
gorithms, the characteristics of the algorithms with a high
degree of fitness, and the algorithms that are frequently gen-
erated. Next, we examined whether useful simulation envi-
ronments and congestion control algorithms could be gener-
ated automatically through co-evolution using POET.

Automatic generation experiments using the
Quality-Diversity algorithm

We automatically generated congestion control algorithms
by combining CMA-ME and grammatical evolution. The
simulation environment was configured as follows: a
dumbbell-shaped network topology with two nodes at each
end, as shown in Figure 1; a packet loss rate of 0.0; a band-
width of 10 Mbps; a delay of 45 s; and a cross-traffic data
transmission rate of 6 Mbps. The simulation time was set to
30s.

The mean (hereinafter referred to as BD1) and standard
deviation (denoted BD2) of the congestion window size
were used as the BD for CMA-ME. Because BD needs to be
discretized in CMA-ME, the minimum and maximum val-
ues of BD1 were set to 0 and 3 x 10°, the maximum and
minimum values of BD2 were set to 0 and 1.5 x 10°, and
BD1 and BD2 were divided into 50 equally spaced parts. In
the experiment, 48 individuals were generated in each itera-
tion of CMA-ME, and 5600 iterations were performed.

Analysis of the relationship between behavior
descriptor and fitness

We analyzed the relationship between the BDs and fitness
to determine which features of the algorithm adapted to the
environment. A heat map showing the relationship between
the BDs and fitness is given in Figure 3. The horizontal axis
shows the mean value of the congestion window size, which
is the first BD, and the vertical axis shows the standard de-
viation of the congestion window size, which is the second
BD. The fitness is expressed by the brightness of the color,
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Figure 3: Heat map showing the relationship between BD
and fitness (horizontal axis (BD1): mean value of the
congestion window size; vertical axis (BD2): standard
deviation of the congestion window size).

with lighter colors indicating higher adaptation and darker
colors indicating lower adaptation.

Considering the regions with high adaptability, we find
that algorithms with high adaptability are distributed on the
lower righthand side of the heat map and the upper center
of the heat map. The lower righthand side of the heat map
shows the area where the congestion window size tends to be
always large. The upper center of the heat map is a region
where the value of the congestion window size frequently
switches between the upper limit of the congestion window
size and zero. This indicates that in the environment, setting
the congestion window size to a large value results in high
throughput.

Analysis of the number of updates for each cell in
the archive

Next, we visualized the relationship between the number of
updates of each cell in the archive and BDs and analyzed
the characteristics of the individuals that were likely to be
generated. A heat map showing the relationship between
the number of updates for each cell and the BDs is shown
in Figure 4. The horizontal and vertical axes are the same
as those shown in Figure 3. The number of updates is rep-
resented by the brightness of the color, with brighter colors
indicating fewer updates and darker colors indicating more
updates.

The regions with the highest number of updates are iden-
tified in the lower right and lower left of the heat map. These
are the areas where algorithms that barely change the size of
the congestion window are distributed. In other words, the
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Figure 4: Heat map showing the relationship between
BDs and the number of updates for each cell (horizontal
axis (BD1): mean value of the congestion window size;
vertical axis (BD2): standard deviation of the congestion
window size).
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most frequent updates were for simple algorithms that did
not significantly change the congestion window size. This
result indicates that relatively simple algorithms tend to be
generated.

Analysis of generated algorithms

We investigated how algorithms with a high fitness value
control congestion window size. First, we visualized the
time variation of the congestion window size using the gen-
erated algorithms. Among the generated algorithms, the top
three individuals with the highest fitness were Algorithms 1,
2, and 3, and the time variation of their congestion window
size is shown in Figures 5a, 5b, and 5c, respectively.

Note that the fitness of all of these algorithms was 7,928
kbps. Algorithm 1 (Figure 5a) sets the congestion window
size alternately between the upper limit and zero within a
very short time interval. Algorithm 2 (Figure 5b) sets the up-
per limit and zero for the congestion window size to longer
time intervals than those in Algorithm 1. Algorithm 3 (Fig-
ure 5c) varies the congestion window size between 250,000
and 300,000, while alternating between the upper limit and
Zero.

We verified in detail the control method of Algorithm 3
(Fig. 5c¢) from the generated code because it had a more
complicated control method than the other two algorithms.
Part of the code for Algorithm 3 is shown in Figure 6. There
are two noteworthy points. The first is the setting of the con-
gestion window size when a duplicate ACK is received in
Line 2. Here, the congestion window size was set to the cur-
rent slow-start threshold (obs[4] in the code). The second is
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(a) Algorithm 1
T — .|

(b) Algorithm 2

(c) Algorithm 3

Figure 5: Time variation of congestion window size for the
three algorithms with the highest fitness value.

the setting of the slow-start threshold when a duplicate ACK
is received three times in Line 6. Here, the new slow-start
threshold was set to a value that was manipulated from the
current slow-start threshold. Such processing has also been
observed in existing algorithms. From these findings, it is
clear that part of the operation of the congestion control al-
gorithm in Algorithm 3 is processed in a human-explainable
manner. Therefore, we decided to include Algorithm 3 in
the initial population set of the co-evolution.

Co-evolution of simulation environments and
congestion control algorithms

We used POET to co-evolve a network simulation environ-
ment and a congestion control algorithm to verify whether
a useful simulation environment and congestion control al-
gorithm can be generated automatically. To increase the ef-
ficiency of evolution, we initialized half of the individuals
using Algorithm 3 (Figure 5c) and the other half randomly.

A dumbbell network topology was used for the network
simulation environment, similar to the experiments with the
quality—diversity algorithm. We used the number of dumb-
bell node pairs, packet loss rate, and cross-traffic data trans-
mission rate as three parameters to control the environment.
The possible values to be selected for each parameter are as
follows: 2, 3, 4, or 5 number of node pairs, packet loss rates
at 0.0, 0.001, 0.01, or 0.1, and data transmission rates 6, 7, 8,
or 9 Mbps. We set the number of dumbbell node pairs in the
initial environment to two, the packet loss ratio to 0.0, and
the cross-traffic data transmission rate to 6 Mbps. As param-
eters common to all environments, we set the bandwidth to
10 Mbps and delay to 45 ms. Environmental mutations were
performed every 30 iterations and individual transfers every
10 iterations, for a final total of 303 iterations.

[ Y N T
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elif state == DISORDER:

new_cWnd = obs[4]

new_ssThresh = 5
elif state == RECOVER:

new_cWnd = obs[8]

new_ssThresh = 5 % obs[4]

Figure 6: Part of the code for Algorithm 3.

Results of co-evolution experiments

Fourteen pairs of network simulator environments and con-
gestion control algorithms were generated. Among the en-
vironments, we found an environment that appeared to have
prompted the evolution of the congestion control algorithm.
The environment was generated during the 239th POET it-
eration and had the following parameters: packet loss rate,
0.001; dumbbell node pair count, 4; cross-traffic data trans-
mission rate, 8§ Mbps (this environment is referred to as En-
vironment A). A graph showing the highest fitness of the
algorithm for each generation is represented by the blue line
in Figure 7. It can be observed that the fitness gradually in-
creased with each generation. However, except for the pair
of Environment A, no increase in fitness was observed and
the fitness was constant from the initial generation. These
results suggest that an environment with a packet loss rate of
0.001, dumbbell node pair count of 4, and cross-traffic data
transmission rate of 8 Mbps is conducive to the evolution of
congestion control algorithms.

However, we had to ascertain whether the set of algo-
rithms in environment A changed fitness in other environ-
ments. Therefore, we evaluated the algorithms generated in
Environment A in other environments to verify whether En-
vironment A promoted evolution. The evaluation environ-
ment was not the 10 Mbps bandwidth used up to this point,
but a bandwidth of 1 Gbps, assuming the current Internet en-
vironment. The other environmental parameters were identi-
cal to those of Environment A. Owing to the time constraints
of the experiment, we evaluated the algorithms for the gen-
erations (1, 2, 11, 12,57, 58, 61, and 62) in which there were
changes in fitness in the 10 Mbps environment. Another pur-
pose of the evaluation in a 1 Gbps bandwidth environment
was to verify that the generated algorithms have high fitness
in a modern environment.

Looking at the change in the highest value of the fitness
of the algorithm generated in environment A at 1 Gbps, as
shown by the orange line in Figure 7, there was no change in
the fitness observed in environment A in the 1 Gbps environ-
ment. In other words, the differences in congestion control
algorithms as captured in Environment A were not captured
in the 1 Gbps environment. An environment in which dif-
ferences in algorithms cannot be evaluated is inappropriate
for algorithm evolution. This suggests that environment A
is suitable for the evolution of paired algorithms.
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Figure 7: Change in maximum fitness for each generation in
environments with bandwidths of 10 Mbps (blue line) and
1 Gbps (orange line). The environmental parameter settings
were as follows: packet loss ratio of 0.001, 4 pairs of dumb-
bell nodes, and cross-traffic data transfer rate of 8§ Mbps.
(Owing to experimental time constraints, only the genera-
tion of algorithms that showed a change in fitness at 10 Mbps
was evaluated at 1 Gbps.)

However, no congestion control algorithm was generated
in Environment A, which performed interesting processing.
The generated congestion control algorithm is a congestion
control algorithm with very simple control, similar to the
algorithm generated using CMA-ME. For example, algo-
rithms that alternately select an upper limit and zero for the
congestion window size (Figure5a, 5b) or algorithms that
only set a small congestion window size. However, from
Figure7, it is possible that further evolution would produce
a congestion control algorithm that performs interesting pro-
cessing, because the fitness increase was observed even after
the last 60 generations.

Discussion

In this study, we were not able to automatically generate a
useful congestion control algorithm that is as good as or bet-
ter than existing algorithms. There are two possible chal-
lenges in this approach.

The first is the need to re-examine grammar. In the current
grammar, using the quality—diversity algorithm and POET,
many of the algorithms generated were very simple. As can
be seen in Figure 4, which shows the number of updates for
each cell in the BD space in the quality—diversity algorithm,
many congestion control algorithms were generated that set
very small or large values for the congestion window size.
From this, it can be said that the current grammar easily gen-
erates simple congestion control algorithms. By improving
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the grammar, we believe that it will be possible to generate
useful congestion control algorithms with a higher probabil-
ity. One way to improve the grammar is to make the patterns
of programs that can be generated more limited than they are
now.

Another issue is that the fitness used in this study may
be insufficient for evaluating the performance of the algo-
rithm. It is clear from the results that Algorithms 1, 2, and 3
each perform different congestion control. However, the av-
erage throughput, which indicates the fitness of these three
algorithms, was 7,928 kbps for all three algorithms. Given
that the bandwidth of the experimental environment was 10
Mbps, this means that all algorithms performed very well.
In other words, it is unlikely that the fitness could be im-
proved further. This is undesirable from the perspective of
the objective of this study, which is the automatic genera-
tion of new congestion control algorithms. This is because
the current index shows high fitness for simple algorithms,
which may have a negative impact on the evolution of more
complex algorithms, such as existing congestion control al-
gorithms. We believe that it is possible to facilitate the gen-
eration of algorithms with the same complexity as existing
congestion control algorithms by defining adaptations that
can differentiate Algorithm 3, which is a relatively complex
control compared to Algorithms 1 and 2.

Conclusion

Using the quality—diversity algorithm, we generated an algo-
rithm that, while not as good as existing congestion control
algorithms, can be interpreted by a human observer as to
the intent of the process. This provides a foundation for the
automatic generation of new and useful congestion control
algorithms.

We also showed that by co-evolving the congestion con-
trol algorithm and the network simulation environment, it is
possible to automatically discover useful environments for
evolving the congestion control algorithm. This result indi-
cates that a single environment alone is insufficient to pro-
mote evolution and suggests the effectiveness of the agent—
environment co-evolution method.

In future work, we will examine the definition of fitness
and improve the grammar used to generate congestion con-
trol algorithms. Then, we will perform automatic generation
of congestion control algorithms to verify whether useful al-
gorithms can be generated. Moreover, one of the advantages
of environment generation in co-evolution is the possibil-
ity of automatically discovering environments that can yield
useful insights. One environmental control parameter that
may provide useful insights is network topology. The dumb-
bell network topology has been used frequently for many
years in congestion control research because it is a simplified
representation of a real-world situation where congestion is
likely to occur. However, the dumbbell network topology is
designed by humans, and there is no guarantee that there is
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no network topology that can provide useful knowledge that
has not yet been discovered. Therefore, we believe that the
use of various automatically generated network topologies
as environments may provide new insights.
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Abstract

The success of deep learning is to some degree based on our
ability to train models quickly using GPU or TPU hardware
accelerators. Markov Brains, which are also a form of neu-
ral networks, could benefit from such an acceleration as well.
However, Markov Brains are optimized using genetic algo-
rithms, which present an even higher demand on the acceler-
ation hardware: Not only inputs to the network and its out-
puts need to be communicated but new network configura-
tions have to be loaded and tested repeatedly in large num-
bers. FPGAs are a natural substrate to implement Markov
Brains, who are already made from deterministic logic gates.
Here a Markov Brain hardware accelerator is implemented
and tested, showing that Markov Brains can be computed
within a single clock cycle, the ultimate hardware acceler-
ation. However, how current FPGA design and supporting
development toolchains are limiting factors, and if there is a
future size speed trade-off are explored here as well.

Introduction

Deep neural networks (DNN) together with deep learning
are the most common technologies for the study and im-
plementation of complex automation in the field of artificial
intelligence. A DNN is usually optimized using backprop-
agation, but DNN have a predefined network structure. A
more flexible option is neuroevolution that has been shown
to be competitive to deep learning (Such et al., 2018; Real
et al., 2020). A specific architecture amenable to neuroevo-
lution is Markov Brains (MBs) (Marstaller et al., 2013) that
is a form of recurrent neural network — similar to Cartesian
Genetic Programming (Miller and Harding, 2009) — where
computational units read from inputs and hidden states, and
write their computational results into hidden states and out-
puts. Even the computational functions of MBs are not pre-
defined, but optimized using a genetic algorithm (Hintze
etal., 2017) . Markov Brains are particularly well-suited for
embodied agent-based control and navigation tasks (Kvam
et al., 2015; Edlund et al., 2011; Schossau et al., 2015;
Marstaller et al., 2013) producing efficient digital logic cir-
cuitry tractable for information and representation analysis
(Kirkpatrick and Hintze, 2020, 2019; Hintze et al., 2018; Al-
bantakis et al., 2014) . Markov Brain technology remains
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yet underutilized compared to the widespread popularity of
DNNs, despite a history of utility for research and having
promising industrial application because of its ability to in-
clude arbitrary computational substrates (Hintze et al., 2019)
(the Evolutionary Buffet Method), and for its natural result-
ing efficient circuit design. The use of Markov Brains is
even well-supported by the Modular Agent Based Evolu-
tion Framework (MABE) (Bohm et al., 2017), which allows
practitioners to easily implement high-performance agent-
based tasks and other plugin modules. Even this convenient
framework has only a modest worldwide user community.
We assume that a key factor responsible for the lack of trac-
tion is the requirement of a genetic algorithm (GA), because
any GA-based algorithm comes with numerous limitations
that cannot be changed (Sivanandam and Deepa, 2008).
Similar arguments were also made about training neural net-
works, but they are now one of the key technologies in the
artificial intelligence domain (Soria-Frisch, 2017). So, we
have to ask “what made deep learning so successful?” and
“can this be applied to Markov Brain technology?”

Deep learning benefited from various technical improve-
ments specific to neural networks and their training (Le-
Cun et al., 2015; Wason, 2018). While those advancements
are technology-specific, there were four other improvements
that launched DNNs to popularity that could be applied to
Markov Brains:

1. Cross-platform Support
2. Educational Resources
3. Large Free Datasets

4. Parallelization

TensorFlow (Abadi et al., 2016) provides the back-end
for other end user-friendly Python libraries such as Py-
Torch (Paszke et al., 2019) and Keras (Chollet et al., 2015).
Next, we detail the advancements of these enabling tech-
nologies for DNNs in each of the 4 areas above, and how
and if MABE for Markov Brains can or has made these ad-
vancements.
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Cross-Platform Support TensorFlow et al. are available
for all major operating systems: Windows, Linux, and OSX.
The MABE framework also supports these systems, and var-
ious build environments and integrated development envi-
ronments each system might provide.

Educational Resources The DNN python tooling efforts
provide quality educational resources through excellent doc-
umentation and numerous free tutorials. In the same venue,
but of course on a much smaller scale, MABE provides doc-
umentation and user support. The extension of this effort is
ongoing (ALIFE Conference 2018 Discussion on common
research software, ALIFE Conference 2020 MABE Tuto-
rial).

Large Free Datasets ImageNet (Deng et al., 2009) is only
one of many examples how vast data sets for training deep
learning have been made accessible. Similarly, websites like
Kaggle.com even provide deep learning challenges fur-
ther disseminating deep learning technology. MABE uses
genetic algorithms, and in this domain of GAs we find
similar endeavors. OpenAl Gym (Brockman et al., 2016)
— while primarily a tool for reinforcement learning, pro-
vides tasks for neuroevolution. The annual GECCO Humies
awards is another competitive event — Human-Competitive
Results Produced by Genetic and Evolutionary Computa-
tion.

Parallelization GPU computing has been a necessary
boon to DNN technology, enabling large-scale paral-
lelization using Single Instruction, Multiple Data process-
ing (Takizawa et al., 2009; Lahabar et al., 2008). The area
of parallelization is ripe for Markov Brain advancement, to
mitigate limitations of the GA and to capitalize on the dig-
ital logic gate intrinsics of the default substrate. The next
section will discuss this in more detail.

For Markov Brains, the first three topics are already ad-
dressed by the community. This leaves parallelization as
a fourth possible option for improvement. GPU comput-
ing plays a critical role in training deep neural networks as
they can perform the required matrix operations in parallel.
While a linear algorithm performing a matrix multiplication
of a vector scales with O(n®) (with o > 2) doing the same
in parallel reduces this to a linear complexity O(na) (with
a > 1.0). Itis this complexity reduction that leads to a much
faster computation of deep learning algorithms when using
GPU or TPU hardware. A Markov Brain uses a state vec-
tor, which is comprised of new sensor inputs, hidden states,
and motor outputs. A set of computational operations now
defines the next state of this vector (see Figure 1). While
in most implementations (known to the authors) the oper-
ations of this set are computed sequentially, they are still
applied in parallel. This is easiest imagined when consid-
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ering the case where deterministic logic gates are used as
computational operators. When two operators write into the
same node their input is summed using a logical OR oper-
ation. An alternative is to have each computational opera-
tor to write into only one node, which allows also for more
complex operators, such as they are found in genetic pro-
gramming (Koza and Poli, 2005) to work in parallel. For
that reason, a Markov Brain architecture where only deter-
ministic logic operators each writing into separate nodes is
considered here.

state buffer ¢t

S

OO0 state buffer  t+1

Figure 1: Illustration of a Markov Brain. Logic Gates, here
depicted as and LookUp Table (LUT) gates with two inputs,
can read from any node (bit) from the state buffer at time
point ¢. Each gate then updates one state of the buffer at
time point ¢ 4+ 1. For an implementation in an FPGA it is
not only crucial to define the logic of each gate, but to also
in principle allow each gate to connect to each state.

In this configuration, the computational complexity is
constant regardless of the size of the Markov Brain O = a.
In other words, the time it needs to compute a single update
of a Markov Brain — when using a parallel implementation
— is theoretically independent of its size. While this might
be obvious, there is currently no hardware that allows us to
run a Markov Brain in such a way that its computation takes
only a single clock cycle. Theoretically, because other com-
putational constraints might limit the efficiency gain due to
parallel execution, such as Amdahl’s Law (Amdahl, 1967;
Gustafson, 1988). Those issues can stem from computa-
tional overhead required to coordinate parallel execution of
code. Regardless, it should thus be possible to take advan-
tage of parallel processing to accelerate Markov Brain eval-
uation. Field Programmable Gate Arrays (FPGA) seem like
the perfect solution. After all, a Markov Brain made from
deterministic logic gates is nothing else than a network of
logic gates, and so an FPGA should be the ideal solution
(see Figure 1, the Markov Brain is already essentially an
FPGA). Consequently, here we survey how current FPGA
hardware supports building a Markov Brain accelerator, and
how contemporary hardware solutions limit this endeavor.

GPU vs. FPGA One obvious alternative to an FPGA
might be a GPU, where one could take advantage of its many
parallel kernels allowing each one to compute a logic gate
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of the Markov Brain. One argument against this approach is
the better scalability and power-efficiency of the FPGA (Qa-
saimeh et al., 2019). Another problem arises from the strict
scalar mapping of memory to kernels. Kernels can in princi-
ple perform random memory access, meaning for a Markov
Brain implementation that the inputs for each gate can be ac-
cessed from any kernel. However, the design of a GPU pro-
hibits true random access, and our experience using a GPU
in this way shows that throughput is indeed significantly re-
duced due to cache localization and synchronization . Lastly,
using a GPU would not provide the great ratio of transistors
to Markov Brain logic gates that an FPGA would provide.
For the FPGA a single LUT can be used to implement a sin-
gle logic gate from the Markov Brain. In the case of the
GPU, thousands of logic gates are needed for each of the
kernels to compute a single logic function, which is ineffi-
cient. However, this allows each kernel to compute any of
the other possible more complex functions Markov Brains
can take advantage of (Hintze et al., 2019). Regardless, here
we will focus on a possible solution using FPGAs.

In the following, the process of implementing an FPGA
hardware accelerator parallelizing the execution for Markov
Brains will be described and evaluated. However, we do
not consider just any solution, but only those that follow the
above introduced requirements for open science and acces-
sibility to the three major compute platforms. Furthermore,
it is not enough to attain speed of execution, but we must
also be able to quickly interface with a GA to allow timely
evaluation of candidate solutions. In the following Materials
and Methods section, the technological choices will not only
be reported, but the criteria that lead to them discussed.

Materials and Methods
General Structure

The typical domain of Markov Brains is agent-based control
tasks in virtual environments, even though other applications
can easily be imagined. MABE and other software that seeks
to optimize Markov Brains using a genetic algorithm, thus
needs to implement a perception-action cycle. This schema
assumes a separation between world and brain. Input en-
ters the brain via sensors, computation based on this sensor
data and hidden states is performed, updating hidden states
and creating output signals. Those output signals lead to ac-
tions in the environment, which in turn generate new sensor
inputs, and so forth.

In a computational evolutionary model the performance
of each individual of a population of agent controllers needs
to be evaluated. Sometimes even in the presence of each
other (Olson et al., 2013). There are numerous strategies to
accelerate this process. First of all, if agents do not need to
interact, their evaluation can be run in parallel using simple
multi-threading. Physics, if needed, can be accelerated using
modern physics libraries who take advantage of GPUs or
other hardware accelerators. Lastly, in the case where the
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brain of the agent is, for example, a recurrent neural network
again Tensorflow run on a GPU or TPU can be used. Even
the selection and mutation of solutions can be accelerated
using FPGAs Torquato and Fernandes (2019).

Assuming the above, any hardware accelerator regard-
less of computational neural substrate needs to communicate
three types of data: the network structure (once), inputs, and
outputs. While the network structure only needs to be con-
veyed at the very beginning of evaluation, every iteration
the sensor inputs need to be relayed from the host (CPU) to
the accelerator device, and the computational results of mo-
tor outputs need to be relayed back from the device to the
host. There are a variety of proposals in ongoing research
to solve the communications aspect of these issues for DNN
systems with GPU devices (Espeholt et al., 2020; Lan et al.,
2021; Dalton et al., 2020; Petrenko et al., 2021; Makoviy-
chuk et al., 2021). However, these problems apply to all op-
timization problems of this nature with accelerator devices,
so we will focus specifically on the acceleration of Markov
Brains and not the communication aspects or how all of the
previous technologies might interact (see Figure 2).

device
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Figure 2: Illustration of the computational evolutionary
modeling process. On the left side of the figure all steps
that are generic to evolving any computational controller,
including the communication part between host and device,
and on the right side only the Markov Brain acceleration that
is specifically studied here.

It is important to mention that all communication as-
pects can be further accelerated by merging host and device.
For example, systems on a Chip (SoC) devices can provide
such capabilities — assuming they solve the acceleration of
Markov Brains.

Limitation of Existing FPGAs: Operating Systems
& Encrypted Configuration

The two largest FPGA manufacturers are AMD (formerly
Xilinx) and Intel (formerly Altera), and each provides a
plethora of FPGAs together with proprietary design soft-
ware (Vivado and Quartus) running only on Windows and
Linux (Wikipedia, 2022). Neither development software nor
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FPGA hardware seems to be produced for OSX on Apple
hardware. Both comparies fail to meet our requirements be-
cause they provide only proprietary development software,
and enterprise solutions cost a licensing fee. Furthermore,
the proprietary nature of the software makes the bit-stream
packages that ultimately program the FPGA effectively en-
crypted — meaning it is not clear how they actually encode
the FPGA configuration, only that the bit stream implements
the previously described logic but not exactly how. While
this is irrelevant for most industry applications, it matters
when it comes to evaluating the actual configuration of the
FPGA, as well as in the context of transparent Al (Castelvec-
chi, 2016).

The above considerations leave Yosys (Wolf et al., 2013)
as the only development toolchain to run on all three operat-
ing systems. It is also open source, and the translation from
Verilog to bitstream is known. This limits the number of FP-
GAs that can be programmed in this fashion to only a small
few, mostly from Lattice Semiconductors. Here, an Icestick
40 HX1K (Evaluation Kit) was used. The Icestudio visual
programming environment (icestudio.io) based on the Yosys
development toolchain was used to design and program the
FPGA.

One cannot avoid wondering “why are both major FPGA
manufacturers using proprietary designs, especially if this
increases the time it takes to compile the bitstream?” Aside
from selling the FPGA hardware, there are recurring licens-
ing fees for enterprise-only features of the development soft-
ware. Revenue from licensing might be why FPGAs do not
find a wider application. At the same time, this model allows
companies to sell more than the relatively cheap hardware,
especially if this hardware can be reconfigured into any other
hardware.

Limitations of Existing FPGAs: Reprogramming
Speed

The typical design flow for an FPGA starts with the user
defining the desired logic layout. This is done using script-
ing languages such as Verilog or VHDL (Bailey, 2003),
or using even higher level syntax such as C. Alternatively,
graphical user interfaces (such as Vivado, Quartus, or Ices-
tudio) allow an easier arrangement of modular components
and how they connect to the FPGAs pins, clocks, or other
devices such as memory controllers. Then a synthesis step
is needed to create a bitstream file which carries the infor-
mation necessary to configure the FPGA according to the
previously defined layout. This bitstream is then transferred
to the FPGA effectively reprogramming the device.

This process is a serious limitation when it comes to us-
ing FPGAs to accelerate a genetic algorithm. In a typi-
cal evolutionary run, a minimum of 100 solutions is tested
over many generations. This would mean that the synthesis
and reprogramming step, which takes seconds to minutes, is
run 10 million times for a single experiment taking 100.000
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generations. It is obvious that adding 100 CPU days (as-
suming around 1 second for synthesis and reprogramming)
is preventative costly. The alternative would be to synthe-
size or optimize the bitstream directly, which for the most
modern FPGAs is impossible because this synthesis step is
proprietary. This problem is already known in other con-
texts (Leong et al., 2001; Skliarova and de Brito Ferrari,
2004; Chakraborty et al., 2013). Even if the bitstream is syn-
thesized directly, it also does not remove the reprogramming
step.

First generation FPGAs used fuses which were “burnt”
during programming, effectively soldering them and allow-
ing only for a single programming step. Then came EPROM
and EEPROM-based configuration, where the bitstream is
loaded into the EPROM, which in turn defines the FPGA’s
logic. This is a very tedious and time-consuming process,
mostly replaced by SRAM-based configuration (Cofer and
Harding, 2006). Here, an external none volatile memory
storage like flash memory or an SD-card is used that config-
ures on board SRAM, but technically allows fast reprogram-
ming. While this two-step process is convenient because the
bitstream is stored persistently on flash memory and could
be used to configure the FPGA, it also prevents this config-
uration from being used for a GA. Non-volatile flash mem-
ory can only be reprogrammed up to a million times: an in-
sufficient quantity for this application. Interfacing with the
SRAM directly from the host may present an alternative, but
the authors could not find such an FPGA, perhaps because
such SRAM is distributed across the FPGA making access
inconvenient.

A promising alternative could be partially repro-
grammable FPGAs. An early version of this allowed the
FPGA 10 pins to connect back to its own JTAG program-
mer (Paulsson et al., 2007). While a creative solution, it
seems that it did not find widespread application. A more
modern version allowing the FPGA to be reprogrammed
from within the FPGA is via an Internal Configuration Ac-
cess Port (ICAP) (Maxfield, 2015), such as in a Xilinx
virtex-4 (Ebrahim et al., 2014). This can be done reasonably
quickly (800 Mhz) (Duhem et al., 2011), and also on a SoC
(System on a Chip) (Al Kadi et al., 2013), allowing further
speed improvements by also moving the GA and possible
physics calculations all onto the same chip. In both cases
the bitstreams were designed beforehand, and this disallows
dynamically generated bitstreams during the application as
would be required in a GA. Fortunately, a similar discussion
is found in the context of fault tolerance of reconfigurable
hardware (Garcia et al., 2006). Here, the idea is to recon-
figure (reroute) a section of a chip that experienced a fault
— a promising line of research, but such technology is not
available yet.

With all the above, we find that a fast and quickly repro-
grammable FPGA satisfying our design requirements does
not exist, but that there have been small steps to solve some
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of the intermediary problems. The best candidate at time of
writing is a Zynq 7000 SoC chip, and one could configure
it to support Markov Brains. However, this would not al-
low changing the configuration easily or in a transparent and
open fashion. Furthermore, this would create a standalone
system requiring a unique set of assembly instructions, in-
stead of interacting with the three major operating systems
(Win, *nix, OSX) and their well-developed software tooling.

Ironically, we must conclude that even though FPGAs are
theoretically a great solution, practically, a different FPGA
design optimized for open and fast reprogrammability would
be needed. Consequently, here we use an FPGA to imple-
ment such a fast reprogrammable FPGA. In one sense this is
incredibly wasteful, because we use universal logic gates to
implement universal logic gates on a higher level'!. However,
this trade-off allows us to implement a fast reprogrammable
FPGA using existing hardware options.

Reprogrammable Markov Brain implementation

The architecture of this implementation focuses on fast eval-
uation of Markov Brains together with the necessary code
to load the data to configure the Markov Brain, to get in-
put states from the host, and to return outputs to the host.
This host-device communication can be implemented using
a wide array of channels, such as a network adapter, SPI,
PCI, or UART/USB. In a SoC one could even map the mem-
ory of the embedded host directly to the memory configuring
the Markov Brain. Here, due to the hardware limitations of
the IceStick-40 HX1K, the UART is the only choice. Ob-
serve, that the communication channel between host and de-
vice is not the focus of this investigation and could be sepa-
rately optimized.

Since communication is in most cases serial, the Markov
Brain can be configured while the data for that configura-
tion arrives sequentially. Once the Markov Brain has been
configured, only data for inputs needs to be received, and
outputs returned. See Figure 3 for the general layout of this
implementation, consisting of a Communication Controller
(that also programs the Markov Brain), UART for 10, and
the reprogrammable universal logic gates for the Markov
Brain.

The part that implements the Markov Brain is a set of uni-
versal logic gates — equivalent to LookUp Tables in circuit
design nomenclature (LUTs). Each of them is created as
a block storing its own logic and which of the specific bits
from the state buffer each gate needs to read. The outputs of
all LUTs are pooled and returned to the communication con-
troller. This implementation allows the configured Markov
Brain to perform the computation updating the state buffer
from ¢t — ¢ + 1 within a single clock tick. If hidden states
should be made persistent, then only the new input states are
updated by the Communication Controller. Similarly, only

'Tt also reminds us of Christopher Nolan’s 2010 movie Incep-
tion
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Figure 3: Schematic of the FPGA solution for a fast repro-
grammable Markov Brain. In orange all necessary commu-
nication and configuration logic, in blue the actual Markov
Brain.

output states can be communicated back to the host, again
reducing the bandwidth for the communication. Here the
entire buffer is communicated back and forth for verification
purposes.

The current implementation allows Markov Brains with
16 LUTs and consequently a state buffer of 16 binary nodes
to be implemented. This implementation also assumes that
each node of the state buffer is updated by a single logic
gate. If for writing, gates should arbitrarily be connected to
states at ¢ + 1, then their addresses need to be stored as well.
Outputs of gates will then not be single bits but a bus as wide
as the state buffer. Performing an OR operation on all gate
outputs would then be applied. While, without optimizing
this process, requiring a serious amount of additional logic
gates, it would not slow the computation because only an
OR operation is needed. This kind of mapping has not been
evaluated here.

Active Categorical Perception Task

An Active Categorical Perception Task (ACP) is one of the
most-used tasks when evolving of artificial agents controlled
by Markov Brains (Marstaller et al., 2013; Schossau et al.,
2015; Hintze et al., 2018). In this task an agent with 4 sen-
sors arranged as pairs of 2 separated by a wide gap (equiv-
alent to 2 sensors) must catch or avoid blocks that are al-
ways moving roughly towards it. This “game” is played on
a toroidal grid, 16 steps wide and 20 high. Blocks have a
size of 2 or 4 and move to the left or right 1 step every
time they advance lower. When blocks reach the bottom,
the 6 blocks wide agent needs to intercept the 2 wide blocks
to catch them, while blocks of size 4 need to be avoided.
Agents are evaluated on all 64 combinations of blocks, di-
rections, and possible start locations of the block while start-
ing the agent always at column 0. The toroidal shape of the
grid allows the agent leaving to either side to return from the
other.

The fitness (see Equation 1 for the agent depends on the
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number of properly caught and avoided blocks (‘C” for cor-
rect outcomes, ‘I’ for incorrect ones):

W =1.10¢"D, (1)

A standard Genetic Algorithm was used, starting with
a randomly generated population of 100 agents. Markov
Brains were encoded as a set of 16 binary logic gates, with
each logic gate having two input wires and four bits defin-
ing the output of all possible computations. When agents
were selected by roulette wheel selection to propagate into
the next generation each logic gate had a 1% chance to
change its wiring and logic. Furthermore, each gate had a
1% chance to randomly copy the wiring and logic of another
randomly selected gate, effectively implementing a gene du-
plication. This evolutionary optimization was carried out in
MABE (Bohm et al., 2017).

Results

The accuracy of the implementation was evaluated by us-
ing a previously evolved agent with perfect performance
on the active categorical perception task. The FPGA per-
formed flawlessly. A python wrapper communicating with
the FPGA also allows simple continual reprogramming dur-
ing an entire evolutionary run. However, the FPGA used
here runs at 12Mhz and is so slow that such a run would have
taken too long. However, the proof of principle of evaluating
a few generations on the FPGA by evaluating each Markov
Brain on the ACP task worked flawlessly.

Next, we evaluate the speed of the FPGA. Both UART
Rx and Tx (input and output communication between host
and device) was run at 2 million baud, that is 6 clock cycles
(c1k in circuit design) per transferred bit. One whole round
of communication starts with sending the character ‘P’ (for
programming) and sets the FPGA into a mode that the next
32 bytes are read and used to configure the 16 LUTs com-
prising the Markov Brain (see Figure 4 command and bytes
sent). That is followed by sending the character ‘T’ (for
transfer) and sets the FPGA into a mode to receive 2 more
bytes (16 bit) defining the state the Markov Brain should use
to compute the next state. Once that is done, the letter ‘R’
(for read) is sent setting the FPGA into a mode that sends
back the 2 bytes defining the computed ¢ + 1 state. Sending
a single byte, means sending 10 bits, one leading and one
trailing 0. Each bit, at that baud rate requires 6 c1k ticks.
Consequently, we expect 32 times 60 clk (1,920 in total)
ticks for that transmission (see Figure 4 interval and mea-
surements). When measuring, we find this to take 1,921
clk in over 90% of the 1,000 measurements performed.
The extra c1k is used to clean up the state of the finite state
machine of the communication controller. We measure more
ticks (up to 4,500) in the remaining 10% that we attribute
to synchronization issues of the UART communication be-
tween the host and the device. This is followed by sending
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a character ‘T’ that sets the FPGA into the state to receive
two more bytes (16 bits) defining the current state of the
Markov Brain. This should take 3 times 20 c1k ticks (180).
As above, this happens in 90% of 1, 000 measurements. Be-
cause the Markov Brain updates the t 41 buffer at every tick,
once the ¢ state buffer is loaded, the update is complete. This
update is specified in Verilog as wires to not require addi-
tional c1k. To receive the newly updated state, the character
‘R’ is sent taking another 60 c1k. As above, this can be con-
firmed in 90% of the 1, 000 measurements. Then, the FPGA
sends back the updated state. Taking all c1k together we ex-
pect this to take 32+3+1 times 60 (2, 160) c1ks. The extra
clk for cleaning up the finite state machine in this case is
executed in parallel to the next state and does not contribute.
If the Markov Brain update would take additional c1ks, we
would measure more before the next state is returned. Alter-
natively, the signal might be returned, but the Markov Brain
did not have a chance to complete the update. Since this
does not happen, and we indeed find this process to actually
take 2,160 c1k ticks in 90% of 1,000 measurements, then
we analytically confirm that this implementation allows the
entire Markov Brain to be updated in a single c1k. Any de-
lays, measured in 10% of the cases must be attributed to the
communication channel.

command: ‘ uploading brain data ‘ first brain update ‘ second brain update ‘
sender: W device W device
sender: ‘ host ‘ ‘ host ‘
P 11111
pytesent: P[0 1]2] . [si]T[o[1]r[o[1][T[o]1]R][o]1].
interval: F +
A A A A
measurements: @ @ @

Figure 4: Illustration of the implementation timing. The host
sends a ‘P’ as the signal to encode the Markov Brain on the
FPGA using the next 32 bytes. That is followed by a ‘T’ and
two more bytes to specify the first state buffer. At the end,
the Markov Brain performs the proper update (inverted tri-
angle with ‘MB’). Technically, these updates happen every
clk, but only now are they using the intended data. Typi-
cally the host then requests the ¢ + 1 state by sending an ‘R’,
which is answered with 2 bytes returning the ¢+ 1 buffer. Af-
ter that more data is sent from the host. The clock symbols
depict where clk counters were reset to time the FPGA.
The arrows show the measured intervals.

Technically, it is possible that chaining very many logic
gates — as it could happen within the LUTs encoding the
Markov Brain — leads to signals that need an initial stabi-
lization period. This, and similar phenomena, are summa-
rized under the term “instability” in the FPGA engineering
field. This could theoretically lead to faulty signals, and also
cause a delay exceeding a single c1k. FPGAs generally run
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slower than modern CPUs thereby mitigating this problem.
Additionally, our implementation does not relay the newly
computed state back to the host, but waits at least 60 c1k
cycles for a signal from the host to do so. This is more
then enough time to account for any instability that may oc-
cur. This 60 c1k delay is of course a constant runtime cost
and could be better optimized using different communica-
tion channels obviating the need for a delay.

Removing any of the LUTs up to the point where only 1
gate remains did not change the already maximal speed, as
we are at the limit fitting on the FPGA used here ( 900 of
the 1, 280 available logic cells). Obviously, removing gates
is removing functionality.

Discussion

We showed that an FPGA can be configured such that it uses
a single clock cycle (c1k) to compute the ¢ to ¢ + 1 update
for a Markov Brain using deterministic logic gates. Further-
more, the implementation allows the proper computation of
Markov Brains even when integrated into an evolutionary
model. However, due to the extremely slow clock of the
FPGA (12 Mhz) and the slow UART communication, this
implementation does not provide a speed increase compared
to the 3.5 Ghz Intel Core i5 host system the device was con-
nected to and compared with.

The first question now is if there would be a benefit by
economy of scale, that much larger Markov Brains imple-
mented in this way would still update within a constant sin-
gle c1k? The largest currently (2022) available FPGAs have
10 million logic cells (LC), which can all update their out-
puts within a single c1k. Speeds of these chips are of-
ten lower than that of contemporary CPUs, but speeds of
5Ghz haven been achieved in prototypes already 20 years
ago (Clarke, 2001). However, these FPGAs require the
conventional toolchain and are not designed to be quickly
reprogrammable as defined within this context. Assuming
the FPGAs were designed to be quickly reprogrammable —
ideally following the design principles laid out here — then
they would be able to perform the Markov Brain computa-
tion in a single c1k.

Such reasoning about massively parallel computation in a
single c1k assumes that there is some scaling between the
size of the Markov Brain and the required number of logic
gates (or transistors needed). So, how does the use of logic
cells scale with the size of Markov Brains?

The requirement that needs to be fulfilled here is to allow
every logic gate to be able to read from arbitrary locations
from the state buffer. Within modern FPGAs the wiring of
logic cells to each other is not only proprietary, but also pre-
sumably optimized for processing speed, and likely not for
reprogrammability. As discussed before, FPGAs are often
only reprogrammed during testing and development. The
method of implementing this feature, that each logic cell of
the Markov Brain can connect to every possible bit in the
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m xi6

Figure 5: Examples of Demux circuits as they are used here
to get the right bit from the current state buffer (D). Depend-
ing on the width NV of the buffer, log, N signal wires labeled
here Sy to S3 are needed. For each of the N wires, a set of
AND gates is needed shown in the dashed box. The schema
is shown for three different sizes of Markov Brains.

state buffer, was achieved using a structure similar to a de-
multiplexer (see Figure 5). Depending on the size of the
state buffer N a set of bits (Sg — Siog, v)is needed for ad-
dressing. These bits specify which bit from the state buffer
(D) needs to be selected. The equation to calculate the num-
ber of logic gates (L) scales exponentially with the number
of bits necessary for addressing:

L=252%+5. )

For Markov Brains with N = 256 gates, this would re-
sult in 500, 000 logic gates needed. While that sounds rea-
sonable, and exceeds what has been used so far, the largest
Markov Brain that could be currently supported would be
N = 65,536, requiring about 70 million logic gates, as
much as the largest available CPUs have these days. Ob-
serve that under perfect conditions a single CPU perform-
ing the same computation would need to retrieve the states
from memory, evaluate the logic, and then update the ¢ + 1
state buffer, each requiring already many clks. Which in
serial computation would then be multiplied by N. How-
ever, this assumes the above described, and very wasteful
use of such a de-multiplexer like arrangement. Fortunately,
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there are alternatives for this design, such as transmission
gates or combinations and stacking of de-multiplexers. Shift
registers could be used for the same purpose, and while they
reduce the gate footprint drastically, the require additional
clks.

An interesting question is, how FPGAs solve the same
problem? After all, are FPGAs not able to connect logic
cells arbitrarily? The answer is that FPGAs typically use
switch boxes for interconnections, putting a limit on the pos-
sible configurations. Configuring these switch boxes is part
of the synthesis step of the supporting software. It optimizes
the layout of the FPGA. Often gates are not connected in
a massive parallel fashion as done here, but in a linear se-
quence, which hides what is a shortcoming with respect to
our requirements.

However, a combination of these methods could be imag-
ined. What remains is that even extremely large Markov
Brains can still be accelerated using FPGA technology up
to a point. While a different chip design might allow us to
to avoid speed/size trade-offs that stem from stereotypical
FPGA designs. It seems that the current design, that makes
FPGAs great at what they do right now, prevents them from
being the perfect Markov Brain accelerator.

A common alternative idea is to use a GPU instead of an
FPGA. This approach assumes that one uses each core of
the GPU to perform the computation of each computational
unit of the Markov Brain. From experience, GPUs work
well, when data and processing is aligned. Whereas here,
each core must be able to arbitrarily read from a shared state
buffer, which drastically slows GPU performance. Secondly,
if the Markov Brain is made from deterministic logic gates, a
single universal logic gate would be needed to compute this
function. Doing the same using a GPU kernel that uses hun-
dreds or thousands of logic gates seems extremely wasteful.
However, a GPU kernel could allow the implementation of
much more complex computational units. Since GPUs are
not optimized for arbitrary random memory access for each
kernel in parallel, one could consider a hybrid: Using an
FPGA to implement a GPU but with a different data access
and pooling architecture, optimized for Markov Brain accel-
eration — an option we will explore in the future.

Conclusion

Exploring the implementation of a Markov Brain as an
FPGA resulted in many interesting insights. First of all one
can perform the computation of a Markov Brain made from
deterministic logic gates in a single clk using an FPGA.
However, the fast reprogrammability of such an FPGA was
identified as the most important feature when it comes to
an actual use within a genetic algorithm. This presents two
major shortcomings of current technology: FPGAs are not
optimized for the fast and repeated reprogramming that is
needed here, and their usually proprietary for-profit devel-
opment toolchains do not support the spirit of open source or
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open access. This severely limits the choice of FPGAs and
toolchains, and limits a wider application of Markov Brain
technology for the major operating systems.

This leaves us with three options: The use of an SoC
FPGA, which would allow us to accelerate all computations
including the GA and the physics calculation at the same
time. However, instead of an accelerator, this would be a
“standalone” solution, dependent on current toolchains, lim-
ited in the ways described above. It would also not solve
the wiring problem discussed above and instead use valu-
able logic cells to create the inter-connectivity between all
gates and the state buffer. Deploying the current solution on
a larger FPGA and taking advantage of better host-device
communication (for example, a Lattice ECP5 that has an
open toolchain) is another viable option. This would also
be the simplest way to explore larger Markov Brains, and
could answer the question “how long can one maintain a
single c1k update for the entire Markov Brain before speed
trade-offs need to be considered?” Lastly, one could ex-
plore new FPGA designs that are directly optimized for fast
and repeated reprogrammability. They might even only sup-
port the Markov Brain paradigm. After all, updating a state
buffer using arbitrary logic also allows a user to implement
any finite state machine; only limited by the size of the
buffer. Instead of running the Markov Brain algorithm on an
FPGA, one could run an FPGA on a Markov Brain acceler-
ator — a compelling thought worthy of further exploration.
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Introduction. A central challenge in biological, com-
putational and social sciences is to understand the evolu-
tion of cooperation within populations of self-regarding in-
dividuals and mechanisms that promote it (Perc et al., 2017,
Yang et al., 2018; Han, 2013). To this extent, various
mechanisms have been revealed and studied using methods
from evolutionary game theory, statistical physics and agent-
based modelling and simulations (Maynard-Smith, 1982;
Hofbauer and Sigmund, 1998; Perc et al., 2017). They in-
clude both endogenous and exogenous mechanisms such
as kin and group selection, direct and indirect reciprocity,
spatial networks (Nowak, 2006b), reward and punishment
(Sigmund et al., 2001), and pre-commitments (Han et al.,
2015). Institutional incentives, positive (reward) and neg-
ative (punishment), are among of the most important ones
(Sigmund et al., 2001; Van Lange et al., 2014). In institu-
tional incentives, an external decision maker (e.g. institu-
tions such as the United Nations and the European Union)
who has a budget to interfere in the population in order to
achieve a desirable outcome, for instance to ensure a desired
level of cooperation. Providing incentives for promoting co-
operation is costly and it is thus important to optimize the
cost while ensuring a sufficient level of cooperation (Os-
trom, 1990; Chen et al., 2015; Cimpeanu et al., 2021). In
the literature, evolution of populations can be studied us-
ing either a deterministic approach, which utilizes the con-
tinuous replicator dynamics assuming infinite populations,
or a stochastic approach, which employs Markov chain for
modelling finite populations. For infinite populations, Wang
et al. (2019) has recently exploited optimal control theory to
provide an analytical solution for cost optimization of insti-
tutional incentives. This work therefore does not take into
account various stochastic effects of evolutionary dynamics
such as mutation and those resulting from behavioural up-
date (Nowak et al., 2004). This might be problematic since
undesired behaviours can reoccur over time, via mutation
or when incentives were not strong or effective enough in
the past. Moreover, a key factor in behavioural update, the
intensity of selection (Sigmund, 2010)—which determines
how strongly an individual bases her decision to copy an-
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other individual’s strategy on fitness difference and is ab-
sent in the continuous approach—might influence the incen-
tivisation strategy and its cost efficiency as well. For fi-
nite populations, so far this problem has been investigated
primarily based on agent-based and numerical simulations
(Sasaki et al., 2012; Han and Tran-Thanh, 2018; Cimpeanu
et al., 2019). In this extended abstract, starting from a finite
population framework in (Han and Tran-Thanh, 2018), we
summarize a recent publication (Duong and Han, 2021) that
provides a rigorous analysis, supported by numerical simu-
lations, for this problem and discuss open problems in this
emerging research direction.

Models and Methods. We consider a well-mixed, finite
population of N self-regarding individuals or players, who
interact with each other using one of the following coop-
eration dilemmas, namely the Donation Game (DG) and the
Public Goods Game (PGG). We adopt here the finite popula-
tion dynamics with the Fermi strategy update rule (Traulsen
et al., 2006), stating that a player A with fitness f4 adopts
the strategy of another player B with fitness fp with a prob-
ability given by, Pap = (1+ e fUs=f)7" where 8
represents the intensity of selection. To reward a coopera-
tor (resp., punish a defector), the institution has to pay (fine)
an amount 6 (resp., #) so that the cooperator’s (defector’s)
payoff increases (decreases) by 6. The population dynamics
are modelled using an absorbing Markov chain consisting
of (N + 1) states, {Sp, ..., Sv }, where S; represents a pop-
ulation with ¢ C players. Sy and Sy are absorbing states.
Let U = {u,;j}?fj_:ll denote the transition matrix between
the N — 1 transient states, {51, ..., Sxy—1}. The transition
probabilities can be defined as follows, for 1 <¢ < N — 1:

Uit =0 forall j > 2,
N-ii : PR
Ui 41 = TN (1 + 6:F5[HC(’L)—HD(7,)+9]) ’

Ui = 1 — Uy 01 — U1,

)

where IIo(7) and IIp(7) represent the average payoffs of
a C and D player, respectively, in a population with ¢ C
players and (N — ) D players. In the DG and the PGG,
Il (i) — Hp(4) is always a negative constant, which is de-
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Figure 1: The expected total cost of investment F for reward and punishment, for varying 6 and different values of 5. Donation
game: b =2, c = 1; N = 50. When 0 < —4, punishment is more costly than reward, which is reversed when 6 > —4.

noted by 6 < 0. The entries n;; of the so-called fundamen-
tal matrix N' = (ng;)),_y = (I — U)~" of the absorbing
Markov chain gives the expected number of times the popu-
lation is in the state S if it is started in the transient state S;
(Kemeny and Snell, 1976). As a mutant can randomly occur
either at Sy or Sy, the expected number of visits at state .S;
is: %(nh + ny—1,;). The frequency of cooperation is given
by pDZDf’g&M where pc p (resp. pp,¢) is the fixation prob-
abilities of a C (respectively, D) player in a (homogeneous)
population of D (respectively, C) players. Hence, this fre-
quency of cooperation can be maximised by maximising

max (pp,c/pc.p) = max ePIN-D(+0)

where the equality is obtained by simplifying the ratio
pp,c/pc,p following an established procedure (Nowak,
2006a). More generally, assuming that we desire to ob-
tain at least an w € [0,1] fraction of cooperation, i.e.
mg’ﬁ > w, then 0 needs to satisfy the following lower

bound (Han and Tran-Thanh, 2018)

1 w
0 >0y = (N—1)510g<1—w>_6'

Optimization problems. The expected total cost of inter-
ference for institutional reward and institutional punishment
are respectively

g N-1
E.(0) = 3 (n1s + nv—1,4)%,
=1
g N-1
Ep(e) = 3 (Tlli + nN—l,i)(N —1).
i=1

In summary, we obtain the following cost-optimization
problems of institutional incentives in stochastic finite pop-
ulations: ming>g, £(¢), where E is either E, or E,,.

Main results. The main results of Duong and Han (2021)
can be summarized as follows.

1. (infinite population limit)

, B(6) {1 + e B0l for DG,
lim

N=too 201y N )~ | 14 e Pl0—e=5)]

for PGG,
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where v = 0.5772... is the Euler—Mascheroni constant.
2. (weak selection limits) él_)m0 E(0) = NZ20Hy, where
Hy = Ef\:ll % is the harmonic number.
3. (strong selection limit of F,., F,, is similar)

Nie($ + HN) for 6 < —,

2 -1
N?0Hy for 6= —¢,

80(1+ Hy) for 6> 0.

lim E,(6) =
hm B (0)

4. There exists a threshold value $* such that 6 — FE(0)
is non-decreasing for all 5 < (* and is non-monotonic
when § > §*. As a consequence, for 8 < g*

in E£(60) = E(6y).
min E(0) = E(0)
For g > p* and N is not too large (N < Ny for some
Np), there exist 6; < 605 such that, F(6) is increasing
when 6 < 61, decreasing when 6 < 6 < 6 and increas-
ing when 6 > 5. Thus, for N < Nj,

anéior; E(9) = min{E(by), E(62)}.

5. E.(0) < Ep(f) for § < —0,E,(0) = E,(0) for 0 =
—d0 and E,.(6) > E, () for 6 > —0.

Figure 1 demonstrates the behaviour of the cost function in
different regimes of intensities of selection, when institu-
tional reward is more or less costly than institutional pun-
ishment, as well as the phase transitions that occur when /3
is sufficiently large.

Summary and Outlook. We have summarized a recent
theoretical analysis of the problem of optimizing cost of
institutional incentives (for both reward and punishment)
while guaranteeing a minimum amount of cooperation, in
stochastic finite populations. In this context, institutional
approaches have been widely adopted to study biological
and artificial life systems (Andras et al., 2018; Jones et al.,
2013; Smaldino and Lubell, 2014; Perret et al., 2019; An-
dras, 2020). This analysis provides new, fundamental in-
sights into a cost-efficient design of institution-based solu-
tions for promoting pro-social behaviours in social and arti-
ficial systems.
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Abstract

In this extended abstract two novel concepts are defined in the
study of Random Boolean Networks, i.e. those of “pseudo-
attractors” and ‘“common sea”, and it is shown how their
analogues can be measured in experimental data on gene
expression in single cells.

Introduction

Random Boolean Networks (RBNs for short, see [1] for a
recent review) have been widely studied as abstract models of
complex systems, thanks to the possibility of tuning their
behaviors from ordered to pseudo-chaotic. They are generic
models, which can however be used also to describe important
biological phenomena, in particular those concerning gene
expression (indeed, RBNs were originally introduced [2] as
strongly simplified models of gene regulatory networks).

A RBN is a time-discrete, Boolean deterministic dynamical
system where the overall state of a given network of N nodes,
X(t+1)e {0,1}Y, is uniquely determined by the previous state
X(t), given the connection topology and the transition
functions at each node. Both connections and transitions
functions are chosen at random according to some probability
distribution. While the success of this model led to the
introduction of several variants, here we will consider the
“classical” case, where updating is synchronous: dynamical
attractors of finite networks of this kind can be either fixed
points or limit cycles, but the oscillations of the latter are
largely due to the choice of synchronous updating. While this
is a clear choice, it limits the biological plausibility of RBNs
to describe gene regulatory networks, since it requires
simultaneous forgetting of the previous states of all the nodes.
Different updating schemes (e.g. asynchronous) have been
proposed [1,3,4], but none can claim undisputed plausibility.
In particular, cyclic attractors are fragile if the updating
scheme is changed, while on the other hand point attractors
are conserved. Moreover, cyclic attractors do not seem to be
the analogue of the cell cycle, so experimental data on gene
expression do not show this type of time dependence.

While different alternatives have been proposed, the usual
recipe to interpret the biological significance in multicellular
organisms of RBNs’ attractors is that of regarding them as the
analogue of cell types. We therefore generalize this approach
to pseudo-attractors. In real cells, the analogue of the CS is
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then the set of genes which take the same value in every cell
type.

Pseudo-attractors and common sea

As anticipated, the identification of which genes “take the
same value” in different cyclic attractors requires some care,
since cycles in RBNs depend to a large extent upon the choice
of synchronous updating, which does not have a sound
biological basis [5]. Synchronous RBNs are Markovian
systems, whose state X(t+1) depends upon X(t), forgetting the
previous states of all the nodes of the network. The action of a
gene on the activation of other genes takes place through the
action of its corresponding protein; therefore, the notion of a
single time step corresponds to assuming a common decay
time of the different regulatory proteins, which is not
supported by biological data.

By following [6] we therefore define, for each N-dimensional
attractor, a corresponding constant N-dimensional “pseudo-
attractor”, in which each component assumes the value 1 if its
time average in the dynamic attractor is >0 (in the following
we suppose 6=0.5) and take the value O otherwise. As a
consequence, the relationship between dynamical attractors
and pseudo-attractors is not injective, and it qualitatively
corresponds to a kind of coarse graining in phase space.

The “common sea” (CS) is then defined as the set of nodes
which take the same value in all the pseudo-attractors of a
given network realization, while the set of all the other nodes
is called the “specific part” (SP). Note that the concept of CS
differs from existing ones like the “frozen sea” [7] in that it is
based on pseudo-attractors (so that also oscillating nodes can
belong to it) and it requires that the nodes take the same value
in all the pseudo-attractors.

We studied the properties of the CS and the SP by
simulating RBNs which belong to different ensembles,
generated with different parameter values. The following
results have been presented in [6], so we will avoid to
continuously refer to it. Most simulations concern
dynamically critical networks (i.e. those whose parameters
take values which separate the regions of ordered behaviors
from the pseudo chaotic ones) which are particularly
interesting, for reasons discussed at length in the literature
[7,8], which will not be reviewed in this extended abstract.

It turns out that the fraction of nodes belonging to the CS of
critical networks increases as the overall size of the network
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(N) is increased, and that it comprises the majority of the
nodes. This may look surprising but a simplified mean-field
calculation shows that it should indeed be expected. An
interesting result comes from the comparison of dynamically
critical networks with different average number of
connections per node (k) and different biases (b) of the
Boolean functions. Indeed, dynamical criticality imposes a
relationship between k and b, so it is possible to consider
ensembles of networks with different pairs of values. Perhaps
surprisingly, simulations show that the criticality condition
does not suffice to determine the size of the CS. It appears that
the larger the bias, the larger the CS.

It is also interesting to observe the internal organization of
the common sea and of the specific part. For example, once
the CS of a given network realization is identified, we can
look at the topology of the network that is composed of its
nodes only. If we identify the subparts of the CS with its
weakly connected components (WCCs), then there is often (in
70% of the cases) only one subpart per network realization,
but in other cases, there are more than one, although one
usually finds a dominant subpart that comprises many more
nodes than the others. If we perform a similar analysis on the
specific part, we often find a more evenly distributed
situation, with more fragments of similar size. It should be
emphasized that these are not completely independent parts,
and that some changes in one WCC (for example, the knock-
out of a gene) can affect the values of nodes in other WCCs.

The presence of a large CS obviously limits the maximum
possible distance between pairs of attractors, whose
distribution turns out to be unimodal.

A Preliminary Look at Single-Cell Data

While we do not aim at an in-depth comparison of the
behavior of the models with experimental data, we suggest
that looking at experimental data through the lenses of our
models can lead to new insights and new questions. To show
how this might work, we have performed a preliminary
analysis of an important experimental data set concerning the
expression levels of human single cells [9]. Although these
data are very noisy, since many different exemplars of each
type are available, it is possible to aggregate all the
contributions into a single profile that then constitutes the
“average profile” of the cell type. Since these averages are
real valued, binarization is necessary to compare them with
pseudo-attractors: a simple way in which binarization can be
achieved is by rescaling the values for each gene so to match
the [0,1] interval, and by comparing the rescaled values with a
fixed threshold &

The approach is simple and it could certainly be refined:
however, it is very interesting to observe that the notions of a
common sea and specific parts, which have been defined here
in a model system, can also be applied to experimental data,
as shown e.g. in fig.1.

It remains to investigate possible independent criteria to
determine the correct threshold values (possibly different for
different genes [10]), an activity that we leave for future work.
Here we can note that the approach potentially allows to
identify new constraints that simulation models must satisfy in
order to correctly interpret experimental data.
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Figure 1 (a) Size of the common part in the Human Cell
Landscape data, as the threshold ¢ varies. (b) Fraction of
active ("Ones") and inactive ("Zeros") genes out of the total of
genes belonging to the common sea (in the insert the threshold
{reaches the value 0.1).

0.01
Threshold

Moreover, the rescaled profiles can be used to compute the
distribution of distances (Hamming distances) between cell
types — a quantity which can be computed also for our
simulated models.

We believe that this kind of comparisons will prove really
fruitful to improve both theory and experiment, as it provides
new constraints on the acceptable parameters of the model as
well as new quantities which are worth measuring. A
thorough quantitative comparison between theoretical models
and experimental data will be the subject of further work.
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Abstract

Biological agents possess bodies that are mostly of soft tis-
sues. Researchers have resorted to soft bodies to investi-
gate Artificial Life (ALife)-related questions; similarly, a new
era of soft-bodied robots has just begun. Nevertheless, be-
cause of their infinite degrees of freedom, soft bodies pose
unique challenges in terms of simulation, control, and opti-
mization. Here we propose a novel soft-bodied agents for-
malism, namely Pressure-based Soft Agents (PSAs): they are
bodies of gas enveloped by a chain of springs and masses,
with pressure pushing on the masses from inside the body.
Pressure endows the agents with structure, while springs and
masses simulate softness and allow the agents to assume a
large gamut of shapes. Actuation takes place by changing
the length of springs or modulating global pressure. We op-
timize the controller of PSAs for a locomotion task on hilly
terrain and an escape task from a cage; the latter is particu-
larly suitable for soft-bodied agents, as it requires the agent
to contort itself to squeeze through a small aperture. Our re-
sults suggest that PSAs are indeed effective at those tasks and
that controlling pressure is fundamental for shape-changing.
Looking forward, we envision PSAs to play a role in the mod-
eling of soft-bodied agents, including soft robots and biolog-
ical cells.!

Introduction and related works

Softness is arguably one of the greatest gifts of mother na-
ture. Every living creature on Earth possesses a body that
is mostly made of soft tissues. Soft bodies can continuously
bend, stretch, and twist, achieving adaptation to the environ-
ment; evolution keeps illuminating new ways to exploit soft-
ness, from the amazing manipulation feats of cephalopods
(Hochner, 2012), to the protozoans of the genus Lacrymaria
(Mast, 1911), that can contort their soft flagellum to grasp
hard-to-reach preys, allowing for complex hunting dynamics
to emerge. It is not surprising that researchers have adopted
soft materials to fabricate a new generation of soft robots
(Rus and Tolley, 2015), that promises to leverage shape
change to recover from damages (Kriegman et al., 2019) and
adapt to novel environments (Shah et al., 2021b). In simula-
tion, soft bodies are suitable to investigate virtual creatures

'Videos of evolved agents are available at https://
pressuresoftagents.github.io.
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for Artificial Life (ALife)-related questions (Joachimczak
et al., 2016; Kriegman et al., 2018), including evolutionary
robotics (Cheney et al., 2014).

At the same time, the simulation and optimization of soft
agents pose unique challenges. No analytical methods exist,
as soft bodies have infinite degrees of freedom and entail,
in general, hard-to-simulate dynamics (Laschi et al., 2016).
Moreover, softness of bodies reinforces the paradigm known
as embodied cognition (Pfeifer and Bongard, 2006), which
posits a deep entanglement between the “brain” of an agent
and the “body” that carries it (Pigozzi, 2022). While promis-
ing in terms of morphological computation (Nakajima et al.,
2015), i.e., the brain offloading part of the computation to
the body, such entanglement makes any co-optimization of
brain and soft body arduous (Lipson et al., 2016). Finally,
how to effectively achieve shape change remains an open
issue in the literature (Shah et al., 2021a).

We propose a novel formalism to study soft-bodied
agents, namely Pressure-based Soft Agents (PSAs). They
are bodies of gas enveloped by a chain of springs and
masses, with pressure pushing on the masses from inside
the body. Pressure endows the agent with structure, while
springs and masses simulate softness and allow the agent
morphology to assume a large gamut of shapes, modelling
the many degrees of freedom of soft bodies. Actuation takes
place by changing the resting length of springs and modu-
lating global pressure. We thoroughly describe the mechan-
ical model and how to simulate it. We also equip the agent
with sensing abilities and a closed-loop controller that per-
forms actuation by contracting or expanding the springs and
changing global pressure. See Figure la for a snapshot of
simulation.

Other soft agents formalisms do exist for virtual crea-
tures, in particular, Voxel-based Soft Agents (VSAs) (Hiller
and Lipson, 2012; Medvet et al., 2020; Bhatia et al., 2021),
which achieve softness by means of a spring-and-masses
system, and Tensegrity-based Soft Agents (TSAs) (Rieffel
et al., 2009; Zappetti et al., 2017), which achieve softness
by connecting cables that are constantly in tension with rods
that are constantly under compression. Albeit far-reaching
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{a)a PSA

(b} escaping from a cage

Figure 1: (Left) Pressure-based Soft Agents (PSAs) are bod-
ies of gas enveloped by a chain of springs and masses, with
internal pressure endowing them with structure, Red squares
are masses, white strings are springs, and blue shapes are
environment bodies. (Right) PSAs can effectively achieve
shape change to escape from a cage.

they might be, they still rely on an internal structure of rigid
elements for the sake of modelling softness, severely limit-
ing their ability to change shape. Computer graphics, on the
other side, employs also pressure-based soft bodies (Matyka
and Ollila, 2003), that rely on internal pressure to maintain
structure and can thus stretch and bend in any possible con-
figuration. As a result, we ask ourselves whether it is pos-
sible to (a) attain PSAs by endowing pressure-based soft
bodies with a robotic controller, and (b} effectively exploit
shape change for PSAs.

We experiment with a two-dimensional simulation of
P5As and carry oul an extensive experimental campaign
aimed at validating PSAs on two different tasks: a classic
locomotion task on hilly terrain to answer (a), and an escape
task from within a cage to answer (b). The latter is par-
ticularly suitable to this work as it forces the agent to rad-
ically shape-shift in order to escape through an aperture in
the cage. We experiment with PSAs of three different sizes
and optimize their controller with an established numerical
optimizer (Hansen and Ostermeier, 2001).

Our results suggest that PSAs are indeed proficient at
solving both traditional tasks—locomotion—and tasks that
require changing shape—escape. Moreover, we also show
that preventing the controller from modulating pressure (i.e.,
pressure is the result of only physical interactions) makes it
impossible for PSAS to solve the tasks.

Looking forward, we believe PSAs can play a role in the
simulation of soft-bodied agents, Indeed, many existing soft
robots rely on pressure to shape change, by means of pumps
(Kriegman et al., 2021; Shah et al., 202 1b) or inflatable tubes
(Usevitch et al., 2020; Drotman et al., 2021). Finally, we en-
vision many exciting ALife applications, including the mod-
clling of biological cells that, similarly to PSAs, consist in a
fluid, the cytoplasm, enveloped by a flexible membrane.

Proposed agent model
We propose a simple, vet expressive model of soft agents,

namely Pressure-based Soft Agents (PSAs), They are bod-
ies of gas contained within an envelope (a chain) of springs
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Figure 2: The building blocks of a PSA morphology of ra-
dius r: yellow squares are masses, black strings are springs.

and masses, with pressure pushing on the masses from in-
side the body: actuation takes place by (a) contracting or
expanding the springs. and (b) changing pressure. The har-
monious execution of these two allows the PSA to assume

a large gamut of shapes. By virtue of their many degrees of

freedom, PSAs are both 1. expressive, and 2. challenging to
control,

We take inspiration from the work of Matyka and Ollila
(2003) on pressure-based soft bodies for computer graphics.
Such model is particularly suitable for bodies that can bend
and twist in arbitrary shapes, as balloons and cloth; as a re-
sult, we introduce 1t o soft agents. To ease modelling, we
work with a two-dimensional simulation in discrete time and
continuous space. However, we remark that the representa-
tions and algorithms of this work are easily portable to the
three-dimensional setting.

We define a PSA as the combination of an embodiment,
which obeys a mechanical model and possesses sensing ca-
pacities, and a brain, which we implement with a conteoller,

Mechanical model

Morphology A PSA morphology is a body of gas con-
tained within an envelope. We define an envelope from
a circle of radius ; for simplicity, let us assume its cen-
ter is the origin, We place npg,. masses of rigid ma-
terial equispaced along the circumference, ie.. at points
r 4 eos ?f—'“ r + sin 27, and fix their rotation. We join
each mass with the previous and the next masses along the
circumference with distance joints of frequency f, damping
ratio d, maximum length I,,,.. minimum length 1,;,. More-
over, there exisis an internal pressure p (in Pa) that acts on
the masses; with no pressure, the envelope would collapse
because of gravity. Pressure thus endows the body with
structure. We remark p is global, in the sense that it is the
same for all masses, We summanze the building blocks of a
PSA morphology in Figure 2.

The masses define the boundaries of the morphology and
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collide with external bodies. The joints, by choosing appro-
priate values for f and d, act as springs: they contract and
expand in response to forces acting on the masses they join.
As a result, the envelope is not rigid but soft, and the mor-
phology deforms under forces acting on the masses, either
exogenous, e.g., contact with other bodies, or endogenous,
i.e., changes in p.

We remark that, indeed, spring-and-damper systems are
at the heart of other soft agents simulators, including VSAs
(Hiller and Lipson, 2012; Medvet et al., 2020) and TSAs
(Zappetti et al., 2017). Moreover, springs allow masses
to change their relative position, endowing the mechanical
model with many degrees of freedom; in fact, the envelope
can stretch and bend, and the body can contract or expand
in limitless configurations. By virtue of such freedom, our
model is suitable for modelling the infinite degrees of free-
dom of soft bodies, including soft robots. At the same time,
such freedom entails that computing the area of the mor-
phology is not tractable: with PSAs, we solve this problem
by indirectly updating the area with p, in a way that we detail
in the next paragraph.

As an aside, PSAs can be seen not only as robotic agents,
but also as a minimal model of a cell: the envelope con-
stitutes the cellular membrane (Singleton et al., 2004), with
masses playing the role of membrane proteins and springs
the role of lipids. Being fluid, the gas effectively models the
cytoplasm (Shepherd, 2006). Finally, p closely resembles
turgor pressure acting on the membrane (Pritchard, 2001).

Simulation Area a (in m?) alters according to pressure p;
p, in turn, can be the output of a controller or change accord-
ing to physical laws. Since pressure is what endows PSAs
with structure, we treat the latter as an ablation study in the
Results section, and focus on PSAs that control Ap (thus
affecting p).

At every time step of simulation, we compute the total
pressure acting on the side of a joint, and distribute it over
the masses. In detail, we:

(1) query the controller for Ap, and sum it to p.

(2) for every i-th joint, compute the total pressure acting on
its side as p; = I;p, where [; is the length of the joint, and
the normalized normal vector 7i; € [—1,1]? pointing to
the interior of the morphology.

(3) forevery j-th mass, leti~ and i " be the joints joining it to
the previous and next masses in the envelope, respectively.
We transform scalar pressure into directed pressure forces
Pji- = pg’ n;- and p; ;4 = p%ﬁﬁ acting on the two
joints. We divide by 2 to equally distribute pressure on
the the masses that anchor a joint.

(4) for every j-th mass, we compute p; = p; ;- + p, ;+ and
apply it as a force to the mass center. We remark that p;

is indeed in N, as 7 is dimensionless, /; is in m, and p is
in Pa, with 1Pa = 1 Nm ™.

(5) step the physics engine.

Thus, a is not a free parameter (as p), but we affect it
through pressure, as higher pressure on the masses implies
larger area, and vice versa. Finally, the overall shape of the
PSA morphology, i.e., the arrangement and relative posi-
tions of the masses, depends on contacts with other bodies,
and changes in the resting length of springs dictated by the
controller.

Parameters Masses are squares of side 1 m and density
2500 kg m_2; we found results to be consistent also with
other sizes and densities. After preliminary experiments and
relying on our previous knowledge, we set f = 8Hz, d =
0.3, lmax = 1.250, and [, = 0.751, where [ is the resting
length of a spring. As far as 7 and 7y, are concerned, they
vary according to the morphology to simulate, as we shall
see in the next section.

Sensing

In order to implement a closed-loop controller, we equip
PSAs with sensors. Indeed, sensing is an important prop-
erty for agents that interact with an environment (Talamini
et al., 2019). In this work, we employ touch, pressure, posi-
tion, and velocity sensors. Touch sensors perceive whether
masses are touching other bodies (e.g., the ground) or not,
and, for each mass, return 1 if yes, O otherwise. The pres-
sure sensor perceives the current internal pressure p, and is
thus a proprioceptor. Position sensors perceive the relative
z- and y-position of each mass from the center of mass of
the morphology. Finally, velocity sensors perceive the x-
and y-velocity of the center of mass of the body.

We normalize every sensor reading into [0, 1], and, to in-
troduce sensory memory, compute its average over the last
t time steps (using the normalized values). We then con-
catenate all the sensor readings into an observation vector
o € [0,1]3mms+3_ After preliminary experiments, we set
t = 25.

Controller

At every time step of simulation, we feed the current ob-
servation vector o to a controller that decides two sets of ac-
tions: (a) the resting length of the springs, and (b) the change
in pressure Ap.

As far as the former is concerned, given a control value
s € [—1,1], we instantaneously modify the resting length !
of a spring as:

I—s(l—lmn) ifs>0
=<1 ifs=0 (1)
[ = $(lmax — 1) ifs <0
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Thus, s = —1 corresponds to the maximum expansion, and
s = 1 corresponds to the maximum contraction, all other
values lying in between. This is the same model of actuation
of other soft robotics simulators, e.g., (Medvet et al., 2020;
Bhatia et al., 2021).

Change in pressure, on the other side, requires a different
domain, as [—1,1] is not morphology-agnostic, given that
different morphologies require different pressure ranges. As
a result, we split the controller into a pressure controller m,
and a springs controller 7. The former takes as input o and
outputs Ap, that we clip tO [Pmin, Pmax] in order to remain
within meaningful boundaries; the latter takes as input o and
outputs s € [—1,1]"m=+1 (ie., one control value for every
spring).

After preliminary experiments, we implemented , as a
linear model of the form:

Ap=W,o+b, @)

with weights W, € R'*I°l and bias b, € R. As a result,
Ap € R and the model can choose the output most appro-
priate to its morphology. Similarly, we implemented 7, with
a non-linearity to ensure the output lies in [—1, 1]:

s = tanh(W o0 + by) 3)

with weight matrix W, € RmstDxlel and bias vector
by € Rmast1,

We focus on optimizing the controller of a PSA for a task.
Thus, the parameters we optimize are the controller param-
eters @ = [0, 6], where 8, = [W, b,] are the pressure
controller parameters, and 8, = [W bg] are the springs
controller parameters.

Experimental procedure

We performed an experimental campaign aimed at answer-
ing the following research questions:

RQ1 Is the mechanical model valid to simulate pressure-
based soft bodies?

RQ2 Can we control PSAs? In other words, are PSAs ca-
pable of solving a classic locomotion task on hilly
terrain?

RQ3 Can we effectively exploit shape change for PSAs?

We design a specific task for each question; we detail the
tasks in the next sub-section.

For all tasks, we evaluate three different PSA morpholo-
gies, in order to get a sense of the effectiveness of PSAs
across a wide array of morphological conditions. For the
large morphology, we set np,s = 20 and r = 10m; for
the medium morphology, we set npm,ss = 15 and » = 7.5 m;
finally, for the small morphology, we set nm,s = 10 and
r = 5m. For the three morphologies, the input size is 33,
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48, and 63, respectively. As a result, the size of the parame-
ter space |0 is 408, 833, and 1408, respectively.

Since pressure is what endows PSAs with structure, we
investigate whether it is really necessary or not to accom-
plish the tasks and conduct the following ablation study in
RQ2 and RQ3.

Ablation

As an ablation study, we experiment with a configuration
without pressure control, in contrast to the configuration
with pressure control considered so far. To this end, we dis-
pense with the pressure controller 7, and let p be the result
of physical laws. The pressure of an ideal gas changes ac-
cording to the ideal gas law of Clapeyron (1834):

pa = nRT )

where p (in Pa) is the pressure value, n is the amount
of substance (in mol), R is the ideal gas constant (in
m?Pamol K1), and T is temperature (in K). We re-
mark that many real gases do behave as ideal under various
temperature and pressure conditions (Cengel et al., 2011).
By fixing 7', the right-hand side of Equation (4) is constant:
then, p must change to accommodate changes in a and bal-
ance the equation. At every time step, we compute a by
triangulation and plug it into Equation (4) to compute p.

We set T = 288.15K = 15°C to simulate room tem-
perature, and the gas (the PSA is filled with) to be Ny (ni-
trogen), a cheap and common gas. n is the ratio between
the gas mass m (in kg) and the molar mass (in kg molfl),
that is 0.028 031 4kg mol ™! for Ny. We set m = 0.1kg,
m = 0.075 kg, and m = 0.05 kg for the three morphologies
respectively. As usual, R = 8.314 562 6 m?>Pa mol 'K ~!
is the ideal gas constant.

For this configuration, the size of the parameter space ||
is 374, 784, and 1334, respectively for the three morpholo-
gies; thus, disabling pressure control results not only in sim-
pler actuation, but also in a smaller search space that might
benefit optimization.

Finally, for the configuration with pressure control, we
set Pmax = ’ﬁ;, where 712 is the area of a perfect circle
of radius 7 and Ppin = 0.2pmax to prevent the PSA from
collapsing.

Tasks

We evaluate our method on two tasks: locomotion and es-
cape. See Figure 3 for sample frames from these tasks.

Locomotion Locomotion is a classic task in evolutionary
robotics (Sims, 1994; Nolfi and Floreano, 2000), and pro-
vides a benchmark of basic control skills. It consists in walk-
ing as fast as possible over a terrain along the z direction,
over an amount of simulated time t¢5,,. The fitness function
is the velocity 7, of the center of mass of the PSA over the
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(a) locomotion

(b} escape

Figure 3: The tasks considered in our experiments.

simulation. We set {5,y = 308, While the terrain 1s usu-
ally a fat surface, we here consider a more challenging hilly
terrain, with bumps of different heights and distances. For
a given seed. we randomly procedurally generate the bumps
with an average height of 1m, 2m, and 3 m for the three
morphology sizes, and an average distance of 10 m.

Escape Escape is particularly suitable for soft agents (Ch-
eney et al., 2015), as it forces the agent to radically change
its shape 1o pass through an aperture, At the onset of each
simulation, we place the PSA within a cage. The cage
amounts (o a roof and two walls, with one small aperure
per side. The task consists in escaping as fast as possible
in any direction over 8 maximum amount of simulated time
thinat- 1he fitness function is the average velocity 7 of the
center of mass of the PSA over the simulation, regardless of
the direction. We set ty,y = 30s. The cage is rigid, im-
mobile, and indestructible, forcing the PSA o contort itsell
and squeeze through one of the apertures. After preliminary
expeniments, for a PSA of radivs r, we set the roof height 1o
2r + 1, the walls 3r apart from each other, and the apertures
one third of the roof height, Escape differs from locomotion
in that there is a clear-cut condition for “solving™ it, namely
when all of the PSA masses are outside of the cage: if this is
the case, we terminate the simulation.

Optimization
We optimize the controller parameters 8 with Covariance
Martrix Adaptation Evolution Straregy (CMA-ES) (Hansen
and Ostermeier, 2001 ; Hansen. 2001 6). an established numer-
ical optimizer. While it is possible o use any oplimization
algorithm. we found CMA-ES to be stable across the differ-
ent tasks, also thanks to the small size of the search space
(Miiller and Glasmachers, 2018), CMA-ES neratively opti-
mizes the solution in the form of & multivariate normal distri-
bution, against a given fitness function. At each iteration, it
samples the distribution obtaining a population of solutions
and then updates the parameters of the distribution based
on the best hall of the populaton. CMA-ES employs non-
trivial hewristics while updating the distribution—we refer
the reader to Hansen and Ostermeier (2001) for more de-
tails.

We use the defaull parameters suggested in (Hansen,
2006), namely the initial step size & = (0.5 and the popu-
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lation size A = 3| log [ |. We set the initial vector of means
by sampling uniformly the interval [—1, 1] for each vector
element. We let CMA-ES iterate until 100000 fitness evalua-
tions have been done,

Settings

For each experiment, we performed 5 evolutionary runs by
varying the random seed for CMA-ES and the terrain gener-
ation in locomotion. We carried out all statistical tests with
the Mann-Whitney U rank test for independent samples. We
employ as physics engine the Python wrapper' to Box2D
{Catto, 201 1), a popular 21 physics library written in C4+.
We set the simulation [requency to G0 Hz and left all other
parameters unchanged. We remark that, for a given seed and
controller, all simulations are deterministic. For CMA-ES,
we used the implementation of Ha (2017}, that is a wrap-
per arcund the pycma library (Hansen et al., 20019, and. at
a given iteration, parallelize fitness evaluations using mul-
hprocessing.  Each run took approxmmately 1 h on an Ap-
ple M1 MacBook Pro at 3.2 GHz with 5GBE RAM and 8
cores, We made the code publicly avalable at httpa: //
github.com/pigozzif/Pressureiofthgents,

Results
ROQ1: validation of the mechanical model

We validate whether the proposed mechanical model is suit-
able for simulating pressure-based soft bodies. In particular,
for a PSA of radius v, we verify if there exists a p such that
a 15 that of a perlect circle of radius r; in this way, we as-
sess whether our model can correctly simulate a balloon—an
ideal pressure-based soft body,

Tov this end, we conduct the following experiment:

(1) We define a controller that, for a morphology of ri.
masses and radius v, outputs 8 € 0"="! and Ap = Lo
at every time step. In other words, it does not alter the
resting length of springs, while constantly increasing the

pressure.,

For each of the morphologies, we run a simulation on flat
terrain using the aforementioned controller, setting p =
Phmin = (1 at the beginning,

For each time step of simulation, we record pressure pand
p = -2 as performance indexes, 7r° being the area of a
perfect circle of radius r.

lc

If cur proposed mechanical model correctly  simulates
pressure-based soft bodies, there must exist a value p such
that o = 1.

We report the resulis in Figure 4. According 1o the figure,
the results are qualitatively similar for the three morpholo-
gies, Area starts off just above (), since p = (1 and there

“https://github.com/pyboxZd/pybox2d
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Figure 4: Ratio p between the PSA area a and the area of a
perfect circle of the same radius, together with relative pres-
sure -, obtained with three sizes. Our proposed mechan-
ical model effectively simulates pressure-based soft bodies,
as p approaches 1 by constantly increasing pressure.

is no pressure supporting the envelope; it then smoothly in-
creases throughout the simulation, before plateauing at 1 af-
ter P = Pmax-

Through that evidence, we can answer positively to RQ1:
our proposed mechanical model is suitable for simulating
pressure-based soft bodies.

RQ2: can we control PSAs?

In order to validate the effectiveness of our proposed agent
model, we measure the performance of PSAs in a classic
locomotion task, in two different settings: with and without
pressure control. In both cases, we use U, as performance
index.

We summarize the results in Figure 5, which plots ¥, in
terms of median £ standard deviation for the best individu-
als over the course of evolution. Moreover, Figure 6 reports
boxplots for the distribution of v, of the best individuals.
For every morphology, we also show the p-value for the sta-
tistical test against the null hypothesis of equality between
the medians with and without pressure control.

From the figures, we see that our proposed agent model is
effective at the task of locomotion and succeeds in master-
ing it, regardless of the morphology. We visually inspected
the behaviors and found them to be highly adapted for a lo-
comotion task on hilly terrain. PSAs evolve to “roll” over
the ground, sliding the masses one after the other, and mod-
ulating pressure in order to have the right shape to overcome
bumps: in fact, we found that decreasing pressure right be-
fore a bump allows the PSA to lower its center of gravity and
generate enough momentum to walk over it. On the other
side, increasing pressure on flat portions of terrain allows
the PSA to bounce over it and generate enough momentum
to walk faster. Interestingly, we found some individuals to
show life-like behaviors: as a matter of example, when ap-
proaching bumps, some stretched out their front (masses and
joints) to reach over the tip of the bump, grasp it, and finally
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Figure 5: Median + standard deviation (solid line and
shaded area) of the average velocity of locomotion for the
best individuals found during each evolutionary run, ob-
tained with three sizes and with or without pressure control.
Our agent model is effective at locomotion on hilly terrain.

Locomotion

10 r T T I ]
- < 0.001 < 0.001 < 0.001 :
N / \ l \ ! \ 1
s 51 ;
= L __ .
0 } ‘ \ \ E

Large Medium Small

I w/ pressure control Il w/o pressure control

Figure 6: Distribution of the average velocity of locomotion
for the best individuals found for each evolutionary run, ob-
tained with three sizes and with or without pressure control.
Dispensing with pressure control generally hampers perfor-
mance in locomotion on hilly terrain. Numbers are p-values.
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walk over it. Others appeared to adopt the same strategy to
“probe” the terrain in front of them, and plan future actions
accordingly. We made videos with pressure control available
athttps://pressuresoftagents.github.io.

According to the figures, PSAs evolved without pressure
control were not as effective. In two morphologies out of
three, v, does not even depart from its initial value, mean-
ing that no adaptation takes place; surprisingly, the same is
not true for the Small morphology, which even succeeds in
outperforming its counterpart with pressure control. We re-
mark that, as shown in Figure 6, p-values are significant for
all three comparisons. To gain further insights into this phe-
nomenon, we visually inspected the evolved behaviors with-
out pressure control. We found them to be not adapted to a
locomotion task on hilly terrain. In particular, Medium and
Large PSAs often get stuck in hollows of the terrain; other
times, they unsuccessfully struggle to walk over a bump. We
believe the reason to be the lack of pressure control: as men-
tioned before, modulating pressure allows the PSA to de-
form according to the terrain at hand. This fact also hints at
why Small PSAs are effective even without pressure control:
thanks to their small size, contacts with the terrain body are
relatively enough to allow for sufficient deformation.

Through that evidence, we can answer positively to RQ2:
we can conclude that, after optimization, it is possible to
control PSAs for a task requiring a decent level of cogni-
tion, considering the challenging nature of the hilly terrain.
Moreover, ablating the pressure control component of the
controller results in much worse performance, especially for
bigger (and, we believe, more realistic) morphologies, sug-
gesting that pressure control is an inextricable part of our
proposed agent model.

RQ3: can we effectively exploit shape change?

In order to assess the shape-changing abilities of our pro-
posed agent model, we measure the performance of PSAs in
an escape task, in two different settings: with and without
pressure control. In both cases, we use v as performance
index.

We summarize the results in Figure 7, which plots v in
terms of median £ standard deviation for the best individu-
als over the course of evolution. Moreover, Figure 8 reports
boxplots for the distribution of v of the best individuals. For
every morphology, we also show the p-value for the statis-
tical test against the null hypothesis of equality between the
medians with and without pressure control.

We remark that we say the task “solved” once all of the
masses of a PSA are out of the cage; that happens when
v ~ 1.0 for Large, v ~ 0.75 for Medium, and v ~ 0.5 for
Small. From this consideration and the figures, we see that
our proposed agent model effectively solves the task of es-
cape from a cage. We visually inspected the behaviors and
found them to be highly adapted for an escape task. Effec-
tive individuals decreased their internal pressure to reduce
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Figure 7: Median + standard deviation (solid line and
shaded area) of the average velocity of escape for the best in-
dividuals found during each evolutionary run, obtained with
three sizes and with or without pressure control. Our agent
model is effective at shape-changing to escape from a cage.
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Figure 8: Distribution of the average velocity of escape for
the best individuals found for each evolutionary run, ob-
tained with three sizes and with or without pressure control.
Dispensing with pressure control makes it impossible to es-
cape from a cage. Numbers are p-values.
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their area, almost flattening on the ground (see Figure 1b for
a snapshot); then, they slithered through one of the apertures
to successfully exit the cage (we remark that agents cannot
evolve their initial pressure). Albeit this turned out to be a
recurring pattern, we observed some variations. Some indi-
viduals, for example, evolved a repulsion for the walls: as
soon as any of their touch sensors perceived a wall, they
would contract themselves in the opposite direction. The
evolution of this trait might be due to the fact that, early in
the optimization, we found many individuals to become tan-
gled up as one of the walls wedged between two of their
masses (joints, having no mass, cannot oppose to penetra-
tion). Other individuals, when flattened, would literally
crawl as big cats do when approaching preys, cautiously
stretching out one mass after the other.

At the same time, evolution without pressure control did
not find effective individuals. From the right plot of Fig-
ure 7, we see that v barely departs from its initial value. We
visually inspected the evolved individuals, and found them
to be not adapted at all for an escape task: all of them ap-
proached the walls to gain a little ¥, but made no attempt
at squeezing through the apertures. Intuitively, the reason
is their inability to control pressure, as they cannot shape
change to effectively solve the task. Figure 8 corroborates
these findings by showing that p-values are significant for
all three comparisons.

Through that evidence, we can answer positively to RQ3:
PSAs can effectively leverage shape change to solve a task
that requires squeezing through a small aperture, after op-
timization. Moreover, ablating the pressure control compo-
nent of the controller results in no adaptation. To the best of
our knowledge, other works on soft robots solve this task by
joint optimization of morphology and control (Zardini et al.,
2021; Bhatia et al., 2021), which is complex, or morphol-
ogy alone (Cheney et al., 2015), that might be less feasible
than control alone in a real-world setting. In the future, we
envision such escape task to be the starting point of more in-
teresting scenarios, like crawling inside caves with challeng-
ing terrain, as well as navigating “claustrophobic” mazes as
cephalopods can do (Moriyama and Gunji, 1997).

Conclusion

Because of their infinite degrees of freedom, soft bodies
pose unique challenges in terms of simulation, control, and
optimization. Here we propose a novel soft-bodied agents
formalism, namely Pressure-based Soft Agents (PSAs): they
are bodies of gas enveloped by a chain of springs and masses
that simulates softness, with pressure pushing from inside
the body and endowing the agent with structure. Actuation
takes place by changing the length of springs or modulat-
ing global pressure. By virtue of such a mechanical model,
PSAs can assume a large gamut of shapes.

We experimentally investigate whether it is possible to
control PSAs and exploit their shape change potential. That
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is what the paper demonstrates:

(a) we can control PSAs, as optimization finds effective con-
trollers for a locomotion task on hilly terrain, a task that
requires a decent degree of cognition to be solved;

(b) we can effectively exploit shape change for PSAs, as op-
timization finds effective controllers for the task of escape
from a cage, a task that requires the agent to contort itself
and squeeze through a small aperture.

Among the limitations of this work, it is worth mention-
ing that, having a low density, PSAs might not be suitable
for object manipulation tasks. At the same time, while we
believe the model to be promising, as many real soft robots
do rely on pressure to achieve shape change (Usevitch et al.,
2020; Kriegman et al., 2021), the manufacturability of PSAs
is yet to be proven. Future work will address these issues;
for the moment, we agree with Kriegman (2019) that vir-
tual creatures can be “as beautiful and complex as life it-
self”. Indeed, we believe PSAs advance reality by provid-
ing a unified framework for soft-bodied agents that rely on
shape change, so that several aspects can be tested prior to
experimental implementation. Other future directions in-
clude three-dimensional simulation, distributed controllers,
the joint optimization of morphology and control (as already
done for other soft agents (Medvet et al., 2021; Zardini et al.,
2021)), as well as the simulation of phenomena related to
biological cells, such as phagocytosis and mitosis. Opportu-
nities are indeed many, and we have open-sourced our code
with a gym (Brockman et al., 2016) interface to encourage
usage by other researchers.
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Abstract

The higgest open problems in the life sciences concern the
algorithms by which competent subunits (cells) could coop-
erate to form large-scale structures with new, system-level
properties. In synthetic bioengineering, multiple cells of di-
verse origin can be included in chimeric constructs. To fa-
cilitate progress in this field, we sought an understanding
of multi-scale decision-making by diverse subumits beyomd
those observed in frozen accidents of biological phylogeny:
abstract models of life-as-it-can-be.  Newral Cellular Au-
tomata (MCA) are a very good inspiration for understanding
current and possible living organisms: researchers managed
to create NC A that are able to converge to any morphology. In
order o simulate a more dynamic situation, we ok the NCA
model and generalized it 1o consider multiple NCA rules. We
then used this generalized model to change the behavior of a
NCA by injecting other types of cells (adversaries) and let-
ting them take over the entire organism o solve a different
task. Next we demonstrate that it is possible (o stop aging in
an existing NCA by injecting adversaries that follow a differ-
ent rule. Finally, we quantify a distance between NCAs and
develop a procedure that allows us to find adversaries close to
the onginal cells.

Introduction

Biology operates in a multiscale competency architecture:
cells follow local rules in ways that result in interesting and
robust large-scale patterns. Major knowledge gaps, despite
progress in molecular genetics, include the policies guiding
individual cell behaviors toward body-level anatomical
structures. This especially concerns the algorithms needed
to reliably reach a consistent form under a range of chang-
ing conditions, Cellular behavior is guided in part by
gene-regulatory networks inside cells, and coordinated by
biochemical and bioelectrical networks at the tissue level.
Both of these can be represented as neural networks that
guide the mechanisms determining the cell’s activity Moore
et al. (2018); Biswas 5 (2016).

Neural Cellular Automata (NCA) represent a recent de-
velopment of Cellular Automata, where the underlying rule
is represented as a neural network and is learned using
gradient-based optimization Mordvintsev et al. (2020); the
NCA starts from a seed state and is trained to reach a target
state (figure 1).
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Figure 1: Example of seed and target state, left: the seed
state, right: the target state.

In recent advances in this field, scientists have managed
to change the global properties of a NCA by adding some
cells that follow a different rule Randazzo et al. (2021); this
corresponds o biological situations when cells of diverse
genetics are assembled into chimeras MNanos V' (2021).
However these cells remain fixed and can’t expand in space.

This 1s a problem, because the number of new cells (aka.
adversaries ) required must be relatively high in order to steer
the behavior of the whole organism, however, substituting
a high number of cells in a biological organism could be
difficult. In general, one task in biomedical interventions
and in guided self-assembly (bioengineering) contexts is to
find the minimal intervention that achieves a given oulcome,

One way to minimize the intervention is to generalize
NMCA 1o multiple rules, allowing us to simulate what hap-
pens when one type of cell overtakes the other. This way
we can inject very few adversaries and let them take over
other types of cells (figure 2). Furthermore, this model is a
generalization of the NCA model' that is more biologically
plausible, since it can simulate the growth of a group of cells
al the expense of another,

Figure 2: In orange we indicate the original cells while in
blue the adversarial cells. The adversaries take over the orig-
inal cells and change the behavior of the whole organism.

'"Because, if all the rules are the same, the model behaves like
evolving with a single rule.
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We then apply the model to two different scenarios:

* Changing static properties of a NCA: Examples of such
properties are changing the color of an organism (figure
3), adding or removing a limb, making the tail longer, and
so on. All of these properties can be observed with a be-
forefafter photo of the organism.

* Changing dynamical properties of a NCA: Examples
of these properties are altering the lifespan of an organ-
ism, or the ability to regenerate damage. These properties
are much more interesting from an aging and regenerative
medicine point of view, however, as we will see, they are
much harder to train than the static ones.

Figure 3: Example of changing a static property, the lizard
color turns from green to red.

Lastly, the parameters of the adversaries can become dras-
tically different from the original cells they replace, which
presents biologists with the challenge of identifying DNA or
pharmacological reagents that change some of the cells’ be-
haviors in the necessary fashion. This gives rise to an impor-
tant inverse problem Lobo D (2004): what can be tweaked
at the lowest level (e.g., DNA mutations) to give rise to de-
sired changes at the system level {anatomy)? The difficulty
of solving this problem is what prevents true Lamarckian in-
heritance, and also limits regenerative medicine applications
of modern technologies such as CRISPR.

Therefore, we explore ways to make the parameters of the
adversarial cells as similar as possible 1o the original cells,
while still being able to accomplish the given task, demon-
strating that only a small change in the parameters is suffi-
cient to turn an original cell into an adversarial one.

Figures in video form and the code is available here®.

The model
NCA model

Before diving into the generalization of NCA, we summa-
rize how the NCA model works; a better explanation can be
found in the original paper Mordvintsey et al. (2020).

A Cellular Automata (CA) consists of a grid of cells that
is iteratively updated using the same update rule at each step
Neumann and Burks ( 1966), the only requirement is that the

zllttps i/ fletteraunica.github. io/neural _
cellular_automata/sextra
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next state of each cell depends only on its previous state, »,
and the state of its neighbors, N{x, ).

Figr = flre, N{ze))

Wewral Cellular Automata (NCA) use a neural network to
model the function f and consider the states x; to be contin-
uous, this allows training f using gradient-based optimiza-
tion. The cell state x, is represented by a vector where the
first 4 components represent the RGBA channels of the pixel
and the remaining are hidden channels that allow the NCA
o pass information between its cells (figure 5 left).

The o channel (iransparency) has an imporiant role: if
a cell has o = 0.1 it means that the cell is mature, other-
wise it's dead. This distinction is essential because a cell
can change its state if at least one of its immediate neigh-
bors?, or itself, is mature (figure 4), if this is not the case its
state is set to (. The evolution starts with only one mature
cell in the center of the canvas, then the cells are evolved and
reach the target image (figure 1),

Figure 4: Hlustration of mature, growing and empty cells,
growing cells are in the immediate neighborhood of ma-
ture ones. Image adapted from Mordvintsev et al. (2020,
licensed under CC BY 4.0.

Multiple NCA model

We call our new model Multiple NCA because it generalizes
a single NCA to multiple update rules. For ease of explana-
tion, we are going to consider the case of only 2 rules, f
and f'z.

Masking Since the « channel tells whether a cell is alive
or dead, if we have two different types of cells we need two
alpha channels, o) and ao. In this new model we decided to

put the alpha channels at the end of the state vector (figure
5).

"We consider a Moore neighborhood,
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Figure 5: left: location of the channels in the NCA model,
right: channels location in the Multiple NCA model.

To make the model more realistic we added some con-
strainits:

1. A cell can be mature in only one channel, this means that
no cell can have both alphas = 0.1. We do this because
we consider the two cells as having different DNA, so they
must have different rules and there is no in-between,

2. 'We impose that new cells can only grow near mature ones
of the same type, example: cells of type 2 can only grow
near mature cells of type 2.

3. When both alphas are in 0 < o < 0.1, and the cell is near
a mature one of both f; and fi. the cell evolves follow-
ing the average of both rules (figure 6). Biologically this
means that two kinds of cells are fighting for the control of
one spot. Mathematically, we did this because otherwise
we would have a privileged rule. This also implies that, if
the two rules are the same, the system acts identically o
what it did if it was evolved with only one rule.

B /i Mature
" Growing
B / Mature
B f Growing
W A+S

Figure 6: Representation of two different rules evolving
toghether in the Multiple NCA model. Magenta cells are
growing cells of both f; and fs, so they evolve following
the average of both rules.

Furthermore, we change the perception stage and the out-
put of the NCA as follows.
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Perception The Multiple NCA model perceives only the
sum of all alpha channels®, and not the individual channels,
we do it for two main reasons:

* Computational: we have 2 alpha channels, however, the
NCA model uses only one alpha channel, which means
that we need to find a function that reduces the number of
alpha channels before passing the state to the NCA model
to be evolved; summing up the two alpha is one of the
simplest ways to do this without having a privileged rule.

* Biological: Summing up the two alpha has a nice biolog-
ical interpretation, it assumes that a cell is aware of its
surroundings but can’t distinguish the type of the neigh-
boring cells trivially, since it doesn't have access to oy
and cvz; this encourages a NCA to take advantage of the
hidden channels to be able to distinguish itself from the
other NCAs,

From an implementation standpoint we only need a func-
tion that takes a state x, sums the alpha, and places the sum
right after the RGB components (figure 7). this new state
can now be passed to the NCA 1o be evolved.

R
G
B

B1E1 B E

2

Figure 7: Before passing the state 1o fy or f3 to be evolved,
we sum up ;) and o then place the sum in the right location
in the state vector.

Output  We impose that each NCA can only update its al-
pha channel and not the other ones (figure 8). This makes
sense because we don’t want a cell of type 1 to edit the al-
pha channel of a cell of type 2 and therefore kill it trivially.

*Other possible functions could have been:

1. Weighted sum of the alphas. However, this implies that there is
a privileged mle,

2. Randomly choose an alpha channel to be perceived, However,
this doesn't have a mice biological interpretation like summing
up the alpha channels.
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Instead, if the adversaries want to take over, they must rely
on changing their internal state in such a way that makes the
original cells undergo the process of apoptosis.

R R]
B B

Figure 8: After f; computes the update we take o, and put
it at the end of the state vector, leaving vz unchanged.

The whole update step can be seen in figure 9.

Training technique

One of the first issues we encountered, was that the adver-
sarial cells never tried to overtake the original cells, so they
never took over the organism. We solved this problem by
penalizing the percentage of old cells still present, like so:

L = L‘Ir.ll'_r.ll'?‘ + -’h"l'.nl'd

Where Li,,q0¢ is the distance to the target image, NV, is
the number of old cells®, and A is a hyperparameter.
Considering a loss function like this, nevertheless, leads to
another problem: when we first introduce the new cells N
is very high, which in turn makes the loss very high, This
means that the adversaries will trade some of the image gual-
ity in favor of a faster cell replacement. A solution could be
to give the NCA plenty of time before evaluating the loss,
however, the NCA might learn to destroy the image at the
start, just to rebuild it before the loss evaluation. To address
both these problems we made a custom loss function that is
dependent on the number of steps n.

LESTTR

3" Ai(n)Liarger(n) + Az(n) Nota(n)

LT

I =

Now the hyperparameters Ay and Ag are functions that
depend on the number of steps n, while Ly, ,q. and Nyig
represent respectively the distance from the targel image and
the number of old cells at the n-th step.

*This is slighily wrong since N4 is not differentiable, so in
practice we used the sum of the oy channel over the entire image.
However, it is more intuitive to think about penalizing NV..q rather
tham oy .
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Experiments
Changing static properties
As we stated in the introduction, static properties include
changing the color of an organism, adding or removing a

limb, making the tail longer, and so on. We decided to apply
our model to 3 cases of increasing difficulty (figure 10):

1. Twming the lizard from green to red: the shape remains
fixed but the color of the organism changes.

2. Removing the tail of the lizard: the shape of the organism

changes but the color remains the same®.

3. Tuming a bug into a butterfly: both the shape and the color

pattern change dramatically.

In every case we starl with a pre-trained Persistent NCA
{which means it reaches the final image and keeps it for an
infinite amount of time) and inject a small percentage of ad-
versaries in it, then we only train the adversaries in order to
change the appearance of the entire organism.

o

m—

Figure 10: Iustration of the three static experiments.

“We found that altering the shape is harder because the adver-
saries have to learn (o overtake the organism first, and, once the
original cells are gone, they have o remove the tail,
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Figure 9: Hlustration of the entire forward pass of the Multiple NCA model. f, and f3 represent the two NCA rules, while
masking refers to the 3 operations described in the Masking subsection.

t=100

=150 t=200 t=500

Results  In figure 12 we plotted the evolution of the NCAs,
the time indicates the number of steps since the adversanes
are first injected, we always inject the adversaries in a 2x2
square randomly located inside the organism. As you can
see, the adversaries learn to influence the original cells to
undergo the process of apoptosis, thus taking over the whaole
organism. Furthermore, as they are expanding, they try to
match the color and target shape.

From a biological point of view, we think that adding the
adversaries in a small square is more interesting than using,
for example, a spray pattern (figure 11), because it shows
that we can edit the cells in a single location then the change
propagates throughout the body.

IR

Figure 11: Examples of spray patterns with different per-
centages of adversaries, in blue, of respectively, 5%, 25%
and 505,

KW Y%

Figure 12: Results of the static experiments, first we plot
the evolution of the organism, and right below it the cell
mask. which tells where the original (orange) and the
adversarial (blue) cells are located. t refers to the number
however, models that are able to take over starting from of ﬁll..‘FlH .SII.:II:.‘L‘ the !:n;:gmmnf__' of lt::: evolution, we inject the
small square generalize well to spray patterns, while the op- adversaries always u.l step 60. H_'.m encotirage the reader 1o

take a look at the videos of this evolution at https: //

osile 15n°0 true, these results can be found here, . , ) L
P letteraunica.github.ie/neural_cellular_

automatasextra#static-properties

From a practical perspective, we noticed that training a
model with adversaries that start from a small square 15 much
harder than training starting from a spray pattern (figure 11),
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Changing dynamic properties

Changing a dynamic property means to change the whole
NCA evolution, for example avoiding the decayment of a
Growing NCA (figure 13). In this part we focus on turning
3 Growing NCA into Persistent ones, this is much harder
than the previous experiment because the organism remains
in the final state only for a limited amount of time, so the
adversaries have to take over the whole organism before it
decays,

Results  In figure 13 we plot the evolution of 3 Growing
NCA before we turn them into Persisting ones, in all cases
we perform the adversarial injection at step =60, which cor-
responds 1o the time the Growing NCA reaches the target
state,

t=60

t=80 t=120

o e 5

t=240
LA

Figore 13: Growing NCA rules that we used in the dynamic
experiment. After some steps they degenerate.

The Growing lizard was the easiest 1o turn into Persistent,
because it decays at about step 200, This leaves about 140
steps for the adversaries (o take over the organism, which
are sufficient even when injecting the adversaries in a small
323 square seed (figure 14).

The butterfly was a little harder. In this case the organ-
ism decays by vanishing at about step 120. 'We see that the
adversaries exploit this feature and take over the organism
exactly when it vanishes. We weren't able to train this NCA
with a square seed, which indicates the difficulty of the task.
Still, we managed to reduce the initial number of adversaries
to o very low number, only 3% of the total cells,

Finally, to turn a Growing NCA of the firework into a
Persistent one, we needed about 50% of cells substituted,
much higher than the lizard and the butterfly. We think this
is due to 2 factors:
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|. Unlike the butterfly, the firework decays by exploding
rather than vanishing (figure 13).

s

Unlike the lizard, the firework decays at about step 140
(figure 13), since we perform the adversarial injection at
step 6, this leaves only 80 steps for the adversaries to
like over.

These two factors combined mean that the adversaries
miust take over before the growing cells explode. However,
this time is very limited. which leads to a high initial number
of adversaries,

From these experiments we can hypothesize that the more
time it takes for the organism to decay the lower the initial
percentage of adversaries is needed.

=60 t=100

%% %K K
LA A s

t=200 t=500

Figure 14: Results of the dynamic experiments, as before,
first we plot the evolution of the organism, and right below
it the cell mask, which tells where the original {orange) and
the adversarial (blue) cells are located. t refers to the number
of steps since the beginning of the evolution, we inject the
adversaries always ot step 60, We encourage the reader (o
take a look at the videos of this evolution at https://
letteraunica.github.io/neural_cellular_
automatasextraddynamic-propertias

d-sBuipaadoid/|esi/npajiw-joauip//:dpy woly papeojumoq

0 € 1esl/6SySE0T/ L/¥E/2Z0TIEs!/Ip

20z Atenuep Lg uo Jesn O LNIHL 1A VLISHIAINN Aq ypd° 2G50



Adding a perturbation

Iterated maps, like cellular automata and differential equa-
tions, oftentimes lead to chaotic systems. This implies that
small changes to the initial conditions or to the function pa-
rameters, will lead to completely different results after some
time Berto and Tagliabue (2022),

This is a double-edged sword:

* Onone hand, chaotic systems, by definition, are very hard
to predict and understand.

* (On the other hand, Iving at the edge of chaos gives us the
power of influencing the system by a lot, with very lit-
tle changes (o its parameters Berto and Tagliabue (2022).
Maother nature knows this very well, for example, humans
have 995 of the DNA in common with chimpanzees, vel
we are very different from them.

In the previous paragraphs, when training the adversaries,
oftentimes the parameters become widely different from the
ones of the original cells. This is a problem, because in a
real organism we would like to edit the cells as little as pos-
sible. In this section we try to fix this problem by finding
adversaries with parameters close to the original NCA pa-
rameters.

The model

As we said, we'd like to have adversaries with weights that
are only a little perturbation off the original ones:

Whew = Wald + Aw

To be sure that the perturbation Aw remains as small as pos-
sible, we added an additional term in the loss, which penal-
izes the L* norm of the perturbation | Aw|,, so the total loss
will be:

L= Lrur::,lﬂ + A Noa + Az aﬁ“‘|z

Where Linrge is the distance to the target image and Ay,
Az are hyperparameters, We used two different metrics o
evaluate the results, the norm of the perturbation | Aw| and
the the cosine similarity between wy,pg and wy ..

\
'::Hlul'rl" Wy}

oS [ Wapg, Weey ) = m

Results

In figure 15 you can see the metrics for turning a green Per-
sistent lizard into a red Persistent lizard for lower and lower
initial percentage of adversaries and for the following train-
ing regimes.

I. When training the adversaries starting from a random ini-
tialization of the weights and set Az = (.01
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2. When training the adversaries starting from the same

weights of the original cells, wy., = gy and set
Asx = 0.01

3, When training the adversares starting from the same
weights of the original cells, wyew = Wy, and set
Az =10

4, When training the adversaries starting from a random ini-
tialization of the weights and set As = 0

We train each model until it has a loss < (.01, which
we found was an appropriate value to have visually indistin-
guishable images.

Random initialization, with perturbation
| . Same initialization, with perturbation
I Same initialization, no perturbation

H FRandom initialization, mo perturbation

0.30 <

0.20 -

0.15 -

|Aw]

0.10 -

0.05 <

0.00

cos I: Wrew, Wu-ld}
2 2 o Ly
Y ) o o

=2
b

B0% 50% 25% 5%

Figure 15: |Aw| and cosine similarity measures in different
training regimes, By penalizing | &w| we manage o find ad-
versaries close to the original cells even when starting from a
random initialization. Furthermore, as we decrease the num-
ber of initial cells, | Aw| increases and the cosine similarity
decreases.
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Related Work

The paper Adversarial Reprogramming of Neural Cellular
Automata Randazzo et al. (2021) laid the foundations for
this work, while the talk given by Michael Levin at NeurIPS
2018 Levin (2018) provided biological insight and ideas for
multiple experiments.

The field of Neural Cellular Automata is already vast, NCAs
have been used in texture generation Niklasson et al. (2021),
image classification Randazzo et al. (2020), and image seg-
mentation Sandler et al. (2020). Furthermore, researchers
managed to find the NCA that converges to a given image
without training the NCA Chen and Wang (2020), in other
words, the authors use a neural net to encode an image in
the weights of a NCA. Other relevant works include the ap-
plication of NCA to reaction-diffusion systems Mordvintsev
et al. (2021), in this case the learned rule is more general
because it doesn’t depend on the structure of the grid, this
allows a NCA trained on a 2D grid to be used on different
geometries.

The kinds of adversarial attacks shown in this paper stem
from the Generative Advesarial Networks Goodfellow et al.
(2014) area of research and in particular Adversarial Repro-
gramming of Neural Netowrks Elsayed et al. (2018), where
a target model is kept frozen while ad-hoc inputs are used to
change the functional behaviour of the original model.
Additionally, computer-to-in-vivo experiments were con-
ducted in which organisms were developed from scratch to
perform specific tasks Kriegman et al. (2020). Other exam-
ples of significantly modifying anatomical outcomes with-
out altering the genome include lines of flatworms that re-
generate with two heads following alteration of bioelectric
signaling Durant F (2016).

Conclusion

We demonstrated that it is possible to change global prop-
erties of a Neural Cellular Automata, by injecting very few
adversaries that gradually take over the entire organism. For
some tasks, where the time is a major factor, a larger injec-
tion of adversaries will be needed; for example, if we want
to make a mortal organism immortal, the adversaries must
be able to take over before the organism dies. Finally, we
showed that the parameters of the adversaries can be chosen
to be close to the original cells that they replace.

The many similarities between Neural Cellular Automata
and real biological organisms, may indicate that a more re-
fined technique could be used to bioengineer already living
organisms.
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Abstract

Typically, collective behaviour research has tended to focus
on behaviour arising in populations of homogeneous agents.
However, humans, animals, robots and software agents typi-
cally exhibit various forms of heterogeneity. In natural sys-
tems, this heterogeneity has often been associated with im-
proved performance. In this work, we ask whether spatial in-
terference within a population of co-operating mobile agents
can be managed effectively via conflict resolution mecha-
nisms that exploit the population’s intrinsic heterogeneity. An
idealised model of foraging is presented in which a popu-
lation of simulated ant-like agents is tasked with making as
many journeys as possible back and forth along a route that
includes tunnels that are wide enough for only one agent.
Four conflict resolution schemes are used for determining
which agent has priority when two or more meet within a
tunnel. These schemes are tested in the context of heteroge-
neous populations of varying size. The findings demonstrate
that a conflict resolution mechanism that exploits agent het-
erogeneity can achieve a significant reduction in the impact
of spatial interference. However, whether or not a particular
scheme is successful depends on how the heterogeneity that
it exploits is implicated in the population-wide dynamics that
underpin system-level performance.

Introduction

Alife has explored collective behaviour in populations of
simple agents. Often these agents are homogeneous in order
to keep models tractable. However, in nature heterogeneity
is a key property of many systems that exhibit interesting or
sophisticated collective behaviour. For example, biodiver-
sity has been linked to increased stability and productivity
of an ecosystem by improving its resilience to environmental
effects (Tilman et al., 2006; Hooper et al., 2005). Individual
differences in a group can improve collective problem solv-
ing in humans (Page, 2008) and behavioural differences, to-
gether with social connectivity, can change the attack speed
of social spiders (Hunt et al., 2019).

This paper explores one particular aspect of this wide
ranging topic by taking the concepts of functional diversity
and fitness and asking if they can be exploited to create a
better engineered system. Specifically we consider whether
linking the “fitness” of an agent to its priority (status) in the
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system produces better overall system performance. How do
different schemes for assigning priority affect the results?
And, how does increased functional diversity (heterogene-
ity) in the system change the behaviour?

Asking these questions in this specific case contributes
to the wider aim of finding design rules for exploiting the
right kind of heterogeneity in multi-agent systems, thereby
moving away from the view that regards all heterogeneity as
a potential problem in engineered systems.

We begin with a brief discussion of interference in multi-
agent systems, followed by an ecological definition of fit-
ness as arising from a combination of extrinsic and intrinsic
traits, and consider the hypothesis that giving priority to the
fittest agent during local interference interactions will im-
prove system level performance. To test these concepts, four
different mechanisms for assigning priority are described.
These are then evaluated within a simple simulation environ-
ment in which a population of heterogeneous ant-like agents
are tasked with repeatedly navigating to a source of food and
carrying the food home along a route with narrow tunnels.
The findings show that the performance achieved using each
mechanism is sensitive to both the environment and the het-
erogeneous traits of the population.

Interference

Interactions between agents co-operating on a task can be
broadly classified as being either beneficial or detrimen-
tal to the overall function of the group. Here, we focus
on “same place, same time” interference (Goldberg and
Matari¢, 1997) where two or more agents are not able to
access the same limited resource at the same time. This
form of interference is present in a wide range of scenar-
ios including organisms foraging for food (Vahl et al., 2005)
and robots navigating cluttered environments (Trautman and
Krause, 2010). The specific question addressed in this paper
is how best to resolve same place, same time interference
between two or more agents that may differ in some of their
intrinsic characteristics.

One approach is to limit or avoid spatial interference com-
pletely by suitably partitioning the environment (and task),
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for instance via the use of a hand over area to avoid foraging
agents crowding the “nest” (Pini et al., 2009) or dividing the
space and assigning a single agent to operate in each spatial
zone (Schneider-Fontan and Matari¢, 1998). This is compa-
rable to the approach taken by territorial animals (Bullock,
2016). However, avoiding other agents is not always possi-
ble, and in these scenarios, a strategy is needed for deciding
which agent has priority.

Agents that are obstructing one another could engage in
agonistic interactions in order to determine which should
back down. However, it is likely to be less costly to resolve
the impasse by employing a conflict resolution mechanism
that avoids direct combat. One approach to deciding pri-
ority is to base it on a trait of the individual which can be
attributed to the likely future success of the population. In
nature, this trait may be based on physical characteristics
such as body size and success described quantitatively as
the fitness of the individual (Blanckenhorn, 2000).

When we create artificial systems, for example a team
of robots, the concepts of fitness and traits are no less rel-
evant but can be harder to define. When the goal is to max-
imise team performance then an analogy to functional traits
may be appropriate (Petchey and Gaston, 2006). These are
a subset of the agent’s traits which affect the performance
of the ecosystem. While fitness may not be directly ap-
plicable without a mechanism for reproduction, researchers
have developed proxies for it in robotic systems by relat-
ing a robot’s current state to its contribution to a task. In
Mayya et al. (2019), a swarm distribution task algorithm is
proposed which is designed to reduce spatial interference by
enabling robots in densely packed regions to judge when it
is more beneficial to move away and make space than it is to
stay and participate in the task. Alternatively, in Brown et al.
(2005) the amount an agent has invested in the task is used
to assign higher priority to an agent if it has more to lose by
giving way to another agent. In both these approaches, the
proxy for the fitness of each agent is a function of its current
state. All agents are intrinsically identical - they only differ
in terms of some transient properties related to their current
circumstances or history of interactions with the world.

Contrasting these perspectives from ecology and engi-
neering highlights that a fitness proxy may either be re-
lated to intrinsic properties of the individual (weight, height,
speed...) or extrinsic properties (task investment, personal
space, level of aggression..). Previous work in the multi-
agent literature on agent interference has often used phys-
ically homogeneous agents. In Vaughan et al. (2000), two
homogeneous robots would attempt to pass though the same
narrow opening. It was found that a proxy for “agression”
was effective at resolving interference and increased the col-
lective performance of the population. Surprisingly, there
was no significant difference between assigning a robot’s
“aggression” at random vs a fixed hierarchy. The authors
speculated that if a functional difference between the robots

265

- '

Home|
poo4

<«130px-><«—300px—><«——300pX-——><—300pX—><«230px>

Figure 1: The experimental environment showing two tun-
nels and five ant-like agents foraging for food. Green agents
are currently in the Navigating state, the yellow agent cur-
rently is Afraid and the Red agent currently is Brave.

had existed (i.e., the population had been heterogeneous),
then some mechanisms for assigning priority, based on a
proxy for fitness, would be more beneficial than others.

Here, we build on these prior works via two experiments
using heterogeneous populations which test the utility of dif-
ferent intrinsic properties for resolving interference. The hy-
pothesis is that for the purposes of resolving “same place,
same time” interference, the overall performance of the
group is improved when the conflict resolution is informed
by a proxy for fitness that determines an agent’s priority.
In the first experiment, speed is taken as the proxy since it
directly affects how much food an agent can transport in a
given time. In experiment two, the proxy is based on the
maximum sensor range within which an ant can detect other
ants that it is in conflict with. Through these two experi-
ments, we explore the way in which the nature of some het-
erogeneity in an agent’s intrinsic properties impacts the ef-
ficacy of conflict resolution mechanisms intended to reduce
the impact of inter-agent interference.

Experimental Approach

Foraging is a popular scenario in the multi-agent and swarm
literature because it can be implemented using simple be-
haviours for each agent while still creating interesting results
relevant to the real-world (Brambilla et al., 2013; Liu and
Winfield, 2010; Dugatkin, 2002; Pitonakova et al., 2018).
Here, we simulate a small population of ant-like organisms
tasked with transporting food from one location to another
along a route that includes a narrow tunnel (fig. 1). The
virtual ants can pass each other without penalty outside the
tunnel, but inside the tunnel interference occurs, preventing
one agent from overtaking a slower agent or moving past an
agent that is approaching from the opposite direction. The
tunnel is only a single lane wide and therefore the ants must
decide who will back up and give way to avoid a deadlock.
Note that when a faster ant approaches a slower ant and both
are travelling in the same direction, both ants continue along
their current path at the speed of the slower ant.

If two ants are identical, then it can be presumed they
would take the same action when they meet travelling in op-
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posite directions. That is, either both back up or both go
forward. To avoid a deadlock, there needs to be some sym-
metry breaking (or diversity) between the agents. In the fol-
lowing we consider two situations in which agents differ in
terms of their priority and their functional traits.

Assigning Priority
Four simple mechanisms for assigning priority are as fol-
lows:

¢ Arbitrary (Transient): Each agent is assigned a unique
random value when it enters a conflict. This value is lost
when the conflict is resolved. During a conflict, the agent
with the highest value assumes priority.

* Arbitrary (Fixed): Each agent is assigned a unique ran-
dom value at the start of the simulation. In a conflict, the
agent with the highest value assumes priority.

« Fittest First: Each agent is assigned a value based on a
proxy for fitness. In a conflict, the agent with the highest
value assumes priority.

* Fittest Last: Each agent is assigned a value based on a
proxy for fitness. In a conflict, the agent with the lowest
value assumes priority.

Assigning Functional Traits

From an ecological perspective, a functional trait is a mea-
surable characteristic of an organism that can be linked to
the overall function of the ecosystem (Petchey and Gaston,
2006). Here we take a simplified approach and assign each
ant a unique set of traits. In experiment one, the trait is
speed and there is an implicit assumption that a faster ant
will be “fitter” since it has the potential to transport more
food over a given time period. In each simulation, speeds
were assigned to agents such that the mean population speed
remains constant across all scenarios. This avoids skewing
the results to favour populations containing agents with a
higher average speed. In the idealised case where no spatial
interference occurs, this causes the total food collected to
increase (linearly) with the number of ants, but the average
food collected per ant to remain constant (see fig. 2).

Ecosystem Concepts of Diversity

The experiment uses heterogeneous populations and there-
fore a workable definition of diversity is needed. The diver-
sity of a population can be defined based on species rich-
ness (the number of types present), evenness (how many
of each type are present) and divergence (the difference be-
tween types) (Mason et al., 2005). An agent type is defined
via its traits. In each simulation, each agent has a unique
set of traits and therefore richness is varied by changing the
number of ants present with evenness remaining constant.
Divergence is a measure of how different two agents are.
Metrics that address this for two individuals are often based
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Figure 2: Boxplots of the total food transported in experi-
ment 1 with no interference. This is a maximum under ide-
alised conditions. Mean Speed is 50. Speed range is 10.
Left: total food. Right: total food normalised by the number
of agents. Note, speeds are chosen such that the average re-
mains constant for all population sizes.

on some form of difference norm. Compound metrics ex-
tend this measure of divergence by combining it with rich-
ness and evenness, to give a single number representing how
diverse (heterogeneous) a population is. A discussion of
the different classifications, norms and metrics together with
their relative merits is given by Daly et al. (2018) with par-
ticular examples given in Balch (2000); Twu et al. (2014).
Here, divergence is varied primarily by changing the sepa-
ration of speed values within a population. For example in a
population of 3 agents with velocities V' = {35, 40, 45}, the
mean velocity is ¥ = 40 and the separation is Av = 5. If the
velocities were V' = {30, 40, 50} the mean velocity remains
© = 40 and the separation is now Av = 10. In the experi-
ments reported here, we keep the number of different speeds
equal to the number of agents and manipulate only the range
of speeds, keeping the mean speed constant. (fig. 2).

Simulation Environment

The simulation environment was written in python and is
available for download from the University of Bristol’s data
repository (Bennett et al., 2022)'.

Finite State Machine A FSM is used to control the be-
haviour of an ant transitioning between transporting food
(Navigating), backing up (Afraid) and advancing with pri-
ority over any afraid ants ahead (Brave). The transitions be-
tween the states are described by the state machine and table
shown in figure 3.

When entering the Afraid state, the ant calculates its pri-
ority according to the conflict resolution mechanism being
implemented. An ant A maintains a list of other ants that it
is currently in conflict with and will transition to Brave if it
has the highest priority. New ants are added to A’s list if they
move within conflict range of A, are in the tunnel, and are
on a collision course with A. An ant is removed from A’s
conflict list if either 1) if is outside the passive range of A, 2)
it is outside the tunnel and A is Brave, or 3) A is Afraid and

"https://doi.org/10.5523/bris.30ta45j8tbx332daufr3vp35ad
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to-N
N-to-A
B- to N Ato-B
| Transition | Conditions \
N-to-A not isEmpty(conflict_list)
A-to-N not in tunnel
and isEmpty(conflict_list)

A-to-B my_priority > max(conflict_list)
B-to-A* my_priority < max(conflict_list)
B-to-N isEmpty(conflict_list) or not in tunnel

Figure 3: State machine used by an ant to transport food,
back away from another agent when afraid and move for-
ward after winning a contest and becoming brave. *An
agent does not re-calculate its priority when it transitions
from state Brave to Afraid

more than 20px outside the tunnel. The list is cleared when
the agent transitions to the Navigate state.

The condition for transitioning from Afraid to Navigate
is designed to ensure an Afraid ant reverses far enough to
enable other ants to clear the tunnel and allow a Brave ant
to exit. Similarly, the passive range is always larger than the
conflict range to prevent an agent being rapidly added to and
removed from the conflict list.

Collision Avoidance A simple mechanism is used to pre-
vent two or more ants occupying the same space while in a
tunnel. An ant will move at u(t) « max_speed x dt pro-
vided reaching the position at p(t + dt) = p(t) + u(t) does
not collide with, or pass through, another ant. If it does then
u(t) < 0 and the ant doesn’t move.

Simulation Parameters

The fixed parameters are given in table 1. The independent
variables are the number of ants ([2, 9]), the functional diver-
sity (set to either a speed separation of Av = 5 or Av = 10)
and the scenario for assigning priority.

Conflict Range The visible range of an ant is divided into
three segments determining: when ants are visible (Detec-
tion Range), when they are close enough to cause a con-
flict (Conflict Range), and when they are far enough away to
be removed from a conflict (Passive Range). If the conflict
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] Parameter | Value [ Units |

Time Limit 75000 sec
Step Size (dt 0.1 sec/tick
Number of repeats 50 -
Detection Range [min,max] | [50,350] pXx
Conflict Range [min,max] [20,350] px
Passive Range [min,max] [40,350] px
Range Growth Rate +5 px/tick
Range Decay Rate -2 px/tick
Average Population Speed 50 px/tick
Speed Difference (Av) {5.10} px/tick
Number of Repeats 50 -
Arena Size 1280 pxwide
Agent Size 10 wide px

Table 1: Simulation parameters. Agents move along a fixed
line parallel with the x-axis. Measurements in pixels (px).
The range of speeds in a population of N is AvN.

range is too small then unrecoverable deadlocks can occur
(see figure 4). Such deadlocks are resolved by gradually
increasing an ant’s Conflict, Passive and Detection ranges
by +5 for each tick during which the ant is stationary. The
ranges then decrease by -2 for each tick during which the
ant is moving. A minimum and maximum for these ranges
was set and is given in table 1. Agents are initialised at their
minimum range values. In the first experiment these limits
are the same for the all agents, but in the second experiment
each agent has different maximum ranges.

Update Method Attt = 0, the ants are distributed along
the route and assigned a random direction of travel. Up-
dates are performed asynchronously (all agents take a turn
to sense and move) and the turn order is randomised at the
start of each time step to avoid the possibility of introducing
a systematic “first mover advantage”.

Step Size The simulation step size was found to have a
significant effect on the results with large step sizes (greater
than 0.5) creating the possibility of artefacts caused by
agents moving too far in a single step. These occurred more
frequently when faster agents (and also larger numbers of
agents) were present, and they could not be resolved by the
combination of priority, state machine and heterogeneity in
the population. This is a consequence of the rudimentary
collision mechanics which allows a slower agent to move
closer to other agents than a faster one. A step size of 0.1
was found to be a good compromise between preventing
these artefacts and enabling the simulation to complete in
a reasonable time. It is worth stressing that the simulation is
designed to investigate heterogeneity and fitness rather than
provide an accurate model of robot locomotion.
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Figure 4: The conflict range is an important parameter for
preventing deadlocks. In this example, the conflict range of
4 and 5 is too small so neither considers the other a source
of interference and both agents assume priority.
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Figure 5: The total food collected for different population
sizes with Av = 5. The plots show the results from 50 sim-
ulation replicates per population size. The heterogeneous
trait was speed. Outliers are denoted with a red cross, the
box extends from the 25th to 75th percentiles and the red
line represents the median. Whiskers extended to the most
extreme data point that is not an outlier.

Experimental Results

Two experiments were undertaken with the aim of estab-
lishing whether prioritising agents based on a fitness-proxy
could be an effective mechanism for resolving spatial inter-
ference. The first experiment uses a population with dif-
ferent speeds, the second experiment adds maximum sensor
range as an additional heterogeneous trait which affects how
many other agents an ant may consider during a conflict.

Experiment One: Heterogeneous Speeds

In the first experiment, the speed of each agent was unique to
create a population that was heterogeneous in one intrinsic
trait (speed). The average speed was maintained at 50 for
each population size.

268

Fittest Last

500
B 400
s
2 300f _
3 - _
§200 - -
5 100
2 3 4 5 6 7 8 9
#ant
Figure 6: Av =

Fittest First

200

#food col

o

g

2 3 4 5 6 7 8 9
#ant

5. The food collected by each agent in

the population averaged over 50 independent simulations per
population size. The heterogeneous trait was speed. Left:
each ant in the population collected a similar amount of food
when slower ants had priority. Right: prioritising faster ants
produced a greater spread in the amounts collected across a
population.
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Figure 7: Av = 10, The total food collected for different

population sizes. The plots show the results from 50 inde-
pendent simulations per population size. The heterogeneous
trait was speed.

Results As the number of agents in the population is in-
creased from 2 to 9, the total amount of food collected ini-
tially increases but at a slowing rate, with performance even-
tually deteriorating (and becoming more variable) beyond a
certain population size (fig. 5). It might be expected that
prioritising the fastest agent (Fittest First) would produce
a population that collects substantially more food but this
was not the case. Instead, the performance curves of the
four scenarios tested were very similar, The performance,
P;, across the range of population sizes can be summarised
as P, = Y0, F! where F is the total food collected for
population size n during simulation replicate ¢ € [1,50].
Taking the median of P; for each priority-mechanism shows
that Arbitrary Fixed (8807) collected the most food on av-
erage over the range of population sizes tested, followed by
Fittest Last (8314), Fittest First (8185) and Arbitrary Tran-
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sient (7635). A Wilcoxon rank test on the values of P; re-
vealed some subtleties. Firstly, the Arbitrary Transient re-
sults were significant (p < 0.05) in pair-wise tests with the
other 3 scenarios indicating that a transient hierarchy col-
lects less food on average than a fixed one. Of the fixed hier-
archies, Arbitrary Fixed performed better than either Fittest
First or Fittest Last (p < 0.05), and there was no differ-
ence between Fittest First and Fittest Last (p > 0.05). Col-
lectively these results suggest a subtle benefit to not always
prioritising either the faster or slower agent and to an agent
maintaining the same priority over time.

Despite a faster agent having the potential to transport
more food in a given time, prioritising speed as a proxy
for fitness did not produce the expected gain in performance
when resolving interference. This can be seen in the results
obtained with 5 ants for Fittest First and Fittest Last where
the fastest ant had the potential to move 1.5X faster than the
slowest ant, but giving faster ants priority only resulted in
12% more food being collected by the population.

One reason for this is that using speed as a proxy for fit-
ness results in a near zero-sum scenario. This can be seen
by plotting the average food collected by each ant in the
population (fig. 6). Prioritising slower agents (Fittest Last)
resulted in each ant collecting a similar amount of food.
Slower agents were enabled to maximise their individual
performance levels, but faster agents were penalised by be-
ing forced to move at the speed of slower agents. A greater
range of individual performance levels was seen when prior-
ity was given to faster agents (Fittest First), but the over-
all population performance remained roughly similar be-
cause improvements for faster agents were almost entirely
compensated for by reduced performance levels for slower
agents.

Increasing the diversity of the population by doubling the
separation between agent speeds within the population de-
creased performance in all scenarios (fig. 7) which suggests
the conflict resolution mechanisms do not scale well to in-
creasing heterogeneity of speed. Calculating the median of
the P; values for each priority mechanism showed Fittest
First (6432) now collected more food than the other mech-
anisms (Wilcoxon rank test on P;, p < 0.05). There was
no difference (p > 0.05) between Arbitrary Fixed (4470)
and Arbitrary Transient (4796), and both these performed
worse than Fittest Last (5208). This suggests that there is a
benefit to prioritising an agent based on its speed when the
range of speeds in the population increases above a thresh-
old, and that benefit is greater when priority is given to the
faster agent.

It is also interesting to compare the shape of figures 5
and 7 to the hypothetical curve proposed by Vaughan et al.
(2000) and reproduced in fig. 8. Doubling the diversity re-
duced the height of the peak performance and it occurred
at smaller population sizes. Also, the performance did not
roll off smoothly as the population size increased. Instead
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Figure 8: Hypothetical relationship between the size of a
population and its performance in the presence of inter-agent
interference.

there is a large drop in performance at a population size in
the range [7, 9] depending on the priority-mechanism. The
curves with lower diversity (fig. 5) suggest a similar shape
to the hypothetical curve in figure 8 but the drop in perfor-
mance did not occur below nine agents.

Experiment Two: Heterogeneous Ranges

Similar to the findings for homogeneous robots reported in
Vaughan et al. (2000), the mechanisms for assigning prior-
ity gave similar results when speed was used as a proxy for
fitness and diversity in the population was low. One possible
reason for this is that although agent speed would appear to
have a positive effect on task performance, the nature of the
task and environment ensured that interference damped the
benefit of one agent being faster than another. The signifi-
cance of a functional trait being dependent on the environ-
ment has been seen in the natural world where researchers
have compiled lists of which functional traits are significant
for particular ecosystems (see Stubbs and Wilson (2004)).
In experiment two, maximum sensor range was chosen as
anew trait and proxy for fitness because it is closely coupled
to the conflict resolution mechanic. Its effect is to change
the maximum number of other agents that an ant can con-
sider during conflict resolution. Ants with a higher maxi-
mum have the potential to appreciate the full range of an-
tagonists within larger conflicts. The assumption was that
overall system performance would be more sensitive to con-
flict resolution mechanisms that prioritised this property.
When an ant joins a contest, its sensing range is 10px en-
suring that the ant will only be in conflict with its immediate
neighbours. This range increases by Spx for every tick the
agent remains stationary and decreases by 2px per tick that
the agent is moving (down to a minimum of 10px). There-
fore, the longer an ant remains stationary, the more ants it
can include in its conflict list up to a maximum determined
by its assigned maximum sensor range. Figure 4 shows that
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population sizes where priority is assigned based only on
maximum sensing range. The plots show the results aver-
aged over 50 repeats of the simulation. Speed is randomised.

if this maximum sensor range is too small then agents may
be unable to “see” other antagonists involved in a conflict,
resulting in multiple agents becoming Brave and causing a
deadlock. In experiment one, the maximum range was the
same for all agents (350px) whereas in experiment two each
agent was assigned a unique integer value from the range
(20, 10(n 4 1)] where n is the population size. This created
a total of two functional traits in experiment two: speed and
maximum sensor range.

Results Figure 9 shows the results of assigning priority
based on sensor range as a proxy for fitness. The allocation
of a unique speed to each agent is randomised in each sim-
ulation. Each of the four scenarios gave a very different set
of results, both in terms of the population size for which the
most food was collected and the number of ants at which the
performance deteriorated. This indicates that performance is
more sensitive to sensor range than speed as a fitness-proxy.

Calculating the median of the 50 P; values for each
priority-mechanism and performing a significance test
(Wilcoxon rank test on P;, p < 0.05) showed that Biggest
First (3910) was the highest performing followed by Biggest
Range Last (2617), Arbitrary Transient (2049) and Arbitrary
Fixed (1995). The difference between Arbitrary Transient
and Arbitrary Fixed was not significant (p > 0.05). This in-
dicates that there was a clear advantage to resolving interfer-
ence using an ordered hierarchy based on maximum sensor
range, and there was a further advantage if the hierarchy pri-
oritised agents that could consider more (rather than fewer)
agents during a conflict. Interestingly, the significance and
ordering of the priority-mechanisms was the same as seen
in the Av = 10 case for experiment one. This may indi-
cate that a low sensitivity trait (e.g. speed) can display the

270

#food collected

#food collected

Slowest With Smallest Range First
2000

a1
=}
o

1000

o
=)
o

Slowest With Biggest Range First
2000

1500

1000

o
o
o

++ H

N
w
IN
*WD—H—H»
> |
~+
©}

ants

2 3 4 56 7 8 9
#ants

#food collected

#food collected

Fastest With Smallest Fange First
2000

a1
o
o

1000

ol
o
o

Fastest With Biggest Range First
2000 99 9

1500

1000

o
o
o

o HI-+H +

+
=
9

Figure 10: Av = 10, The total food collected for different

population sizes where priority is assigned based on maxi-
mum sensing range and speed. The plots show the results
averaged over 50 repeats of the simulation.

same priority-behaviour as a high sensitivity trait when the
diversity in the population passes a threshold.

Figure 10 considers scenarios in which speed and max-
imum sensor range are related together in the population,
e.g., agents with longer sensor range are also faster or agents
with longer sensor range are also slower.

Again, ordering the scenarios based on the median of
the P; values showed that Fastest With Biggest Range
First (4300) collected the most food on average across the
range of [2, 9] agents. This was followed by Slowest With
Biggest Range First (3686), Fastest With Smallest Range
First (3061), and Slowest With Smallest Range First (1988).
Each pairing of these results was significant at p < 0.05.
These results show a positive benefit to prioritising maxi-
mum sensor range and speed. The results for Slowest with
Biggest Range First are the second best performing which
adds further evidence to the observation that the mechanism
for assigning priority is more sensitive to maximum sensor
range than speed.

Summary

In this work, we aimed to test an approach to resolving
“same place, same time” spatial interference based on the
fitness of an agent. The hypothesis was that assigning pri-
ority to an agent that was “fitter” (i.e., higher performing) at
the task would produce the best system-level performance.
The results demonstrated that this was possible but required
an understanding of the environment and inter-agent dynam-
ics. In particular, performance was found to be more sensi-
tive to certain traits, which mirrors how functional traits in
natural systems are related to the specific ecosystem that a
species inhabits. For the foraging problem presented, the re-
sults showed that sensing range (a trait that determined the
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maximum number of agents that could be considered within
a contest), was more significant as a conflict resolution me-
diator than the speed of an agent. Assigning priority based
on a positive correlation between sensing range and speed
was found to amplify the effect, demonstrating that a less
significant intrinsic trait can amplify the effect of a signif-
icant one. Finally, prioritising the “fitter” individual was
found to have a greater relative benefit when the diversity
(heterogeneity) in the population increased.

Further Work

This work focused on two traits (speed and sensing range)
that are intrinsic to the agent. Previous work has consid-
ered either similarly intrinsic properties (Hunt et al., 2019)
or more extrinsic properties (Jacyno et al., 2009). Future
work should consider how the combination of heterogene-
ity in both extrinsic and intrinsic agent properties might be
exploited within the same multi-agent population.
Increasing the diversity of the population decreased the
total amount of food collected for larger population sizes.
This raises the issue of relating the way in which a system
scales with population size to the way that it scales with pop-
ulation diversity. What design and analysis tools and tech-
niques could be used to predict and potentially exploit this
kind of dynamic variability in a population’s heterogeneity?
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Abstract

Indirect reciprocity (IR) is an important mechanism for pro-
moting cooperation among self-interested agents, Simplified,
it means: “you help me, therefore somebody else will help
you" (in contrast to direct reciprocity: “you help me; there-
fore | will help vou™). IR can be achieved via reputation and
norms. However, it was often argeed that TR only works if
reputations are public and does not do so under private assess-
ment (PriAl, Yet, recent papers suggest that IR under Pri s
feasible, and that it hias more vanety and ways o improve,
than have been considered before.

Indirect reciprocity is usually modeled using self-
interested agents playing the donation game (Sigmund,
2016): a random agent {donor) is selected to pay a personal
cost e to grant benefit b (b = ¢} to another random agent (re-
cipient). Hence, for the population as a whole, it is best if ev-
ery agent decides 1o pay the cost (i.e. cooperate). However,
the individually preferred choice for each agent is 1o avoid
the cost (i.e. defect), making the game a social dilemma. To
muaintain cooperation and prevent defection, agents may use
strategies that are based on reputations and norms {Nowak
and Sigmund, 1998a; Ohtsuki and [wasa, 2006).

The reputation of the recipient determines how the poten-
tial donor should act (pay the cost or not). Norms determine
what reputations. the acting agent will earm. A simple ver-
sion of such a strategy may state: If the reputation of the
recipient is good, then donate, otherwise defect; and: if an
agent donates, he carns a good reputation, otherwise a bad
one. This strategy was named “scoring™ (Nowak and Sig-
mund, 1998b). Tt was shown that such simple strategics,
whose norms only consider actions, cannot maintain stable
cooperalion. With these norms, agents will earn a bad rep-
utation if they do not donate to those with a bad reputation.
This is known as the problem of justified punishmem (Pan-
chanathan and Boyd, 2003).

This problem can be solved using norms that also con-
sider the current reputation of the recipient (so-called 2-
order norms) or even the reputation of the donor itself (3%-
order norms). For any strategy to work, defection against
bad individuals should not worsen a player's reputation,
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This holds for the so-called "leading-eight” strategies (Oht-
suki and Iwasa, 2006), which were discovered by a pio-
neering exhaustive analytical search (Ohtsuki and Iwasa,
206}, They include L1 “standing™ (Leimar and Hammer-
stein, 2001 ) and LT “staying™ (Sasaki et al., 2017).

Yet, most previous studies on the subject assumed a sim-
plified condition: public assessment {for an excellent review
see Okada (2020a)). It means, that every agent has a sin-
gle reputation value (good or bad), which is agreed upon by
all. Imagine a scenario where a single agent observes the
interaction and then shares its perception with all others. It
may commit an error, e.g. perceiving a cooperation as a de-
fection, causing an undeserved bad reputation. But, all still
agree on a single reputation value. If however, at least two
agenis observe the interaction and may commit perception
errors independently. they may disagree on the donor's repu-
tation afterwards, Thus, instead of a single public reputation,
there are private opinions. This causes severe problems to
the reputation based system since the current opinions influ-
ence the assessment of future interactions {problem of PriA).
Two agents with different opinions may assess the same sit-
vation differently, even if no further errors occur (Figure 1),
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Figure |: Disagreement about the recipient (re) between ob-
server | (o) and observer 2 (o) causes new disagreement
about the donor (do).
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This way, bad opinions can wrongly cascade through the
population, even to the point where no one will cooper-
ate any longer. Strategies which assess cooperation against
bad individuals as bad seem especially struck (Okada et al.,
2017; Brandt and Sigmund, 2004), but this is a problem for
all leading-eight strategies (Hilbe et al., 2018).

We will discuss recent developments in three directions.
First, two new alterations of indirect reciprocity strategies
have been introduced. The first of which was “pleasing”
(Krellner and Han, 2020, 2021). A pleasing agent acts in
accordance with others’ expectations of its behavior (i.e. it
pleases them), instead of being guided by its own assess-
ment. As such, a pleasing agent can achieve a better rep-
utation than previously considered strategies when there is
disagreement in the population. It was shown that most
leading-eight strategies can overcome the problem of PriA
by applying pleasing. Especially L1, L6 & L7 have excel-
lent results. Pleasing is effective even if the opinions of only
a few other individuals are considered and when it bears ad-
ditional costs. Pleasing is a selfish strategy, but since it in-
creases the player’s pay-off and also leads to more coopera-
tion in the population, it causes no further dilemmas.

Another newly introduced alteration were zero-
determinant strategies of IR (Schmid et al., 2021a).
Such strategies can assess actions probabilistically and can
therefore show some lenience. For example, instead of
assessing every defection as bad, they assess 10% of them
as good. This could help dealing with unintentional errors,
and indeed the principle works in the strategy of ”generous
scoring”. It is based on ”scoring” (Nowak and Sigmund,
1998b), a strategy simpler than the leading-eight but that
was shown to be unstable in public assessment (Leimar
and Hammerstein, 2001). The zero-determinant approach
revives this idea. ”Generous scoring” can prevail in noisy IR
under PriA, in striking analogy how “generous tit-for-tat”
can prevail in noisy direct reciprocity. Sadly, this kind of
probabilistic generousity seems not to help leading-eight
strategies under PriA, neither applied to assessment nor
action (Schmid et al., 2021b).

The second direction of recent developments were reeval-
uations whether the leading-eight are not successful under
PriA. Depending on the evolutionary parameters of mutation
rate and selection strength, there can be substantial amount
of cooperation (Krellner and Han, 2021), because leading-
eight tend to coexist with unconditional cooperators (All-C)
(Okada et al., 2017). The more All-C are in the popula-
tion, the easier unconditional defectors (All-D) can spread.
However, the more All-D there are, the more some leading-
eight can outperform AlI-C (and spread since they outper-
form All-D anyway). This feedback causes a stable state of
cooperation. Although this is not true for all leading-eight,
considerable cooperation occurs for L1 “’standing”, L2 & L7
”staying”, and somewhat for L3 & L4.

In the last direction, two investigations were able to ex-
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haustively search for successful strategies, as was done for
strategies under public assessment almost two decades ago
(Ohtsuki and Iwasa, 2004). Conveniently, they differ in
their approach. The first (Okada, 2020b) generalized pre-
vious work on replicator dynamics in populations with three
strategies: the IR strategy of interest together with All-C and
All-D. They found that only two groups of strategies were
successful. First, a group of four, the leading-eight strate-
gies: L1, L7, L3 & L4. Second, a group of eight, novel
strategies, which all ignore defections against cooperators.
This was a surprising result, and the authors dubbed it a sec-
ond way to overcome the problem of justified punishment
(by not letting it be an issue in the first place). However, L1
& L7 seem strictly better than any of these new strategies.

The second paper conducted an exhaustive search for
evolutionarily stable strategies (ESS) (Perret et al., 2021)
This approach pitches all strategies together, considering the
states of single mutants in populations of infinite residents.
There was no cooperative ESS in the presence of errors. This
may not surprise, because being ESS, i.e. having at least
the same fitness as 257 possible invading strategies, is much
harder than competing against just All-C and All-D. Espe-
cially, since the state of stable coexistence with All-C can-
not be considered. If errors were excluded however, three
groups of cooperative strategies were found to be ESS. The
most successful group contained only L1, 1.2, L3 & L4. The
other strategies were novel, with no overlap to the strategies
found for replicator dynamics (Okada, 2020b).

The implications of both exhaustive searches are limited.
They rely on deterministic evolutionary dynamics and the
assumption of solitary observations (Okada et al., 2018).
Yet, it is striking how some leading-eight emerge again in
both of them. And, there is also overlap with results of
probabilistic dynamics (Hilbe et al., 2018; Krellner and Han,
2021). Some strategies reappear in several studies: L2, L3,
L4 & L7. Only L1 ”standing” did so in all four (although,
since no strategy is ESS in the presence of errors, L7 “stay-
ing” not being ESS should be taken with a grain of salt).
L1 was actually the first strategy ever proposed to solve the
problem of justified punishment (Leimar and Hammerstein,
2001). And, it should be considered a 2"-order strategy
(and so should L4, L7 & L8), because it does not use 3"-
order information (the donor’s reputation). Instead, it simply
ignores defections against bad recipients by all donors (the
same as “keep” in Okada (2020b)). This does not require an
opinion about the donor, it does not even require knowing
the donor’s identity. So, is L1 the last one ... standing?

Given the current findings, L1 but also L2, L3, L4 and
especially L7 should be considered as potentially capable
of indirect reciprocity under private assessment. And there
might be more strategies, which were formerly not discov-
ered under public assessment. In addition, new approaches
such as pleasing and generous scoring give even more cre-
dentials to the validity of IR under PriA.
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Abstract

Before embarking on a new collective venture, it is important
to understand partners’ preferences and intentions and how
strongly they commit to a common goal. Arranging prior
commitments of future actions has been shown to be an evo-
lutionary viable strategy in the context of social dilemmas.
Previous works have focused on simple well-mixed popula-
tion settings, for ease of analysis. Here, starting from a base-
line model of a coordination game with asymmetric benefits
for technology adoption in the well-mixed setting, we exam-
ine the impact of different population structures, including
square lattice and scale-free (SF) networks, capturing typi-
cal homogeneous and heterogeneous network structures, on
the dynamics of decision-making in the context of coordinat-
ing technology adoption. We show that, similarly to previ-
ous well-mixed analyses, prior commitments enhance coor-
dination and the overall population payoff in structured pop-
ulations, especially when the cost of commitment is justified
against the benefit of coordination, and when the technology
market is highly competitive. When commitments are absent,
slightly higher levels of coordination and population welfare
are obtained in SF than lattice. In the presence of commit-
ments and when the market is very competitive, the overall
population welfare is similar in both lattice and heteroge-
neous networks; though it is slightly lower in SF when the
market competition is low, while social welfare suffers in a
monopolistic setting. Overall, we observe that commitments
can improve coordination and population welfare in struc-
tured populations, but in its presence, the outcome of evo-
lutionary dynamics is, interestingly, not sensitive to changes
in the network structure.

Introduction

In a variety of societies and contexts, achieving a collec-
tive effort among individuals with their own personal inter-
ests is a significant social and economic problem. Bringing
agents with different individual interests together to achieve
a common goal is a social challenge that is often encoun-
tered in socio-economic, biological as well as artificial life
system settings (Ostrom, 1990; Pitt et al., 2012; Sigmund,
2010; Han et al., 2012; Sayama, 2011; Bedau, 2003). So-
cial dilemmas are among the problems encountered in bi-
ological and social sciences, and these are typically used
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as general metaphors for studying the evolution of coop-
eration or coordination by describing the conflicts between
the self-interests of individuals and the common goals or in-
terests of the community. Researchers from different fields
of study, such as Economics, Evolutionary Biology, Math-
ematics and Computer Science have made efforts towards
developing mechanisms to tackle social dilemma problems
(Nowak, 2006b; Sigmund, 2010; West et al., 2007; Han,
2013; Andras et al., 2018; Pereira et al., 2021; Han et al.,
2020).

In the study of evolution of collective behaviours such as
cooperation, coordination and fairness, several mechanisms
that can enhance collective behaviours among agents have
been explored. They include kin selection, direct reciprocity,
indirect reciprocity, group selection, reward and punish-
ment, and spatial networks (Nowak, 2006a; Sigmund, 2010;
Uchida et al., 2019; Perc et al., 2017; Perret et al., 2021).

Another mechanism that has been explored recently in
tackling these kinds of social dilemma problems is pre-
commitments (or prior commitments), whereby players can
choose to make a prior agreement before commencing an in-
teraction (Nesse, 2001b; Frank, 1988; Han et al., 2017; Han,
2022; Akdeniz and van Veelen, 2021). Commitment has
been proposed as an evolutionarily viable strategy inducing
cooperative behaviour in the context of cooperation dilem-
mas; namely, the Prisoner’s Dilemma (PD) (Han et al., 2013)
and the Public Goods Game (PGG) (Han et al., 2017). Com-
mitment serves as a different means of incentivizing against
inappropriate behaviours, while simultaneously stimulating
cooperative acts in the population (Martinez-Vaquero et al.,
2015; Sasaki et al., 2015; Powers et al., 2012). Previous
works have mostly focused on utilizing commitment for
the purpose of promoting mutual cooperation among self-
interested individuals. Comparatively, few studies have in-
vestigated ways in which commitments could be applied to
promote other desirable collective behaviours, such as co-
ordination, fairness and the safe adoption of technologies
(Ogbo et al., 2022; Nesse, 2001b; Ostrom, 1990; Barrett,
2016; Akdeniz and van Veelen, 2021; Han et al., 2022).

Considering today’s technology-driven economy, man-
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agers often face challenging decisions regarding the adop-
tion of innovative technology. Often, companies might
choose to invest in new technologies in order to gain a com-
petitive advantage over their peers (Parsons, 1983; Clemons,
1991; Zhu and Weyant, 2003). These selfish executive pri-
orities may lead to a coordination problem. Ensuring higher
social welfare by providing several technological solutions
is ignored if newer technology promises larger profits (Zhu
and Weyant, 2003; Sachs, 2000). In this setting, commit-
ments have already been shown to promote coordination in
the face of technology adoption in homogeneous (namely,
well-mixed) populations (Ogbo et al., 2022). However, real-
world firms and their interactions are far from homogeneous.
Some developers are more influential than others, or can
play a more impactful role in the adoption of innovative
technologies. These economies are shaped by complex net-
works of exchange, influence and competition where diver-
sity is ubiquitous. Particular networks of contacts have been
shown to promote the evolution of positive behaviours in set-
tings such as cooperation (Ohtsuki et al., 2006; Santos et al.,
2008; Perc et al., 2017; Chen et al., 2015; Perc and Szol-
noki, 2010), fairness (Page et al., 2000; Szolnoki et al., 2012;
Wu et al., 2013; Santos et al., 2017; Cimpeanu et al., 2021)
and trust (Kumar et al., 2020). In the present work, we pay
heed to the divide between the previous research and the di-
versity observed in real-world interactions, and ask whether
network topology plays an important role in the coordination
of beneficial technology adoption.

Technology innovation and collaboration networks (e.g.
among firms and stakeholders) are highly heterogeneous
(Schilling and Phelps, 2007; Newman, 2004). Firms inter-
act more frequently within their spheres than outside them,
forming alliances and networks of followers and collabora-
tors (Barabasi, 2014; Ahuja, 2000). Developers may com-
pete in numerous markets, while others might choose only
to invest in a few, and their positions in inter-organisational
networks strongly influence not only their behaviours (such
as information and resource sharing), but also innovation
outcomes (Ahuja, 2000; Shipilov and Gawer, 2020). There-
fore, it is paramount to comprehend the roles that spatiality
and diversity in the network of contacts play in the forma-
tion and stability of commitment-based strategies and the
resulting coordination outcome. Therefore, here we depart
from well-mixed settings (Ogbo et al., 2022) and examine
how network structures shape the dynamics of adoption de-
cisions and commitments.

Related Work

A large body of literature has explored the mechanisms driv-
ing the emergence and stability of collective, pro-social be-
haviours (Nowak, 2006a; Santos et al., 2006; Perc et al.,
2017; West et al., 2007). Closely related to our work is
the study of cooperative behaviours and pre-commitment in
cooperation dilemmas, for both two-player and multiplayer
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games (Han et al., 2013, 2017). Works on collective be-
haviour have proven, through theoretical analysis and be-
havioural experiments, that to enhance cooperation among
agents, arranging commitments requires enforcement. Fur-
thermore, it has been shown that the benefits achieved from
engaging in a commitment deal justify the cost of arranging
a commitment (Ostrom, 1990; Cherry and McEvoy, 2013).
Pre-commitment has also been investigated experimentally
in Public Good Games (Chen and Komorita, 1994), show-
ing that arranging an agreement between members of the
group before the interaction enhances cooperation because
their intentions are clarified. These results indicate that a
pledge enhances cooperation among members of a group,
although the degree of commitment required in the pledge
deferentially affected the cooperation rate (Chen and Ko-
morita, 1994). These results are in accordance to previous
works exploring how coordination and cooperation can be
improved by using prior commitment deals in the case of
two-player and multi-player games in well-mixed popula-
tions, most especially when there exists a particular market
demand (Bianca and Han, 2019; Ogbo et al., 2022). How-
ever, there exist no prior works studying pre-commitment
decision-making in the context of spatial settings (i.e. be-
yond well-mixed, complete graph populations).

Highly relevant to our work, Santos et al. (2006) in-
vestigated the effect of population structures on different
types of two player social dilemmas including the Prisoner’s
Dilemma, Stag Hunt and Snowdrift games. Cooperation is
shown to be more prevalent in heterogeneous networks than
homogeneous ones (such as square lattice and well-mixed
populations). Similarly, Cimpeanu et al. (2022) have shown
that safety adoption in the development of Al technology
can be enhanced by heterogeneous network structures. This
is also in line with what is explored in (Di Stefano et al.,
2015, 2020) where it has been shown how highly hetero-
geneous networks, such as SF, constitute the most suitable
network topology for the emergence and sustainability of
cooperation in a multilayer network. This is even more
marked in the presence of homophily (i.e., the tendency to
associate and interact more frequently with similar people),
increasing the speed and size of the formation of coopera-
tive groups, and allowing the network to quickly converge to
cooperation. Our coordination setting is different from the
aforementioned models, as they focus on symmetric games,
whereas we address the context in which players need to
coordinate to choose different actions (i.e. an asymmetric
game) (Ogbo et al., 2022). Our analysis below shows that,
surprisingly, the outcomes of our model differ from (Santos
et al., 2006; Cimpeanu et al., 2022) insomuch that hetero-
geneous networks have little positive impact on, or are even
detrimental to coordination and social welfare, compared to
homogeneous settings.

Moreover, this observation is partially coherent with other
previous works (Gracia-Lazaro et al., 2012b,a) where it has
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been shown how the population structure has little rele-
vance as a cooperation promoter, and where the presence
of a structured population does not promote or inhibit co-
operation with respect to well mixed populations. Our re-
sults are also in line with (Pena et al., 2009), where au-
thors, by introducing conformity, namely the tendency of
humans to imitate locally common behaviours, have shown
that when fair quantities of conformity are added in the
imitation rules of the players, SF networks are no longer
powerful amplifiers of cooperation. Such weakening of the
cooperation-promoting abilities of SF networks is the result
of aless biased flow of information in SF topologies, making
hubs more susceptible to being influenced by less-connected
neighbours.

Model and Methods

We first recall the models describing technology adoption
decision-making as a coordination game (with asymmetric
benefits), in the absence or presence of pre-commitments, as
described by Ogbo et al. (2022). We introduce a two-player
technology adoption game and extend it to accommodate
the formation of pre-commitment arrangements before the
game. We then describe our models and methods for study-
ing the impact of population structures.

Technology Adoption (TD) game

The technology adoption (TD) game consists of two firms
competing in a common market, making a decision on in-
vesting in a technology (Ogbo et al., 2022). These firms
either invest in innovative technology which promises the
highest profits (i.e. high technology, denoted by H), or to
invest in less sophisticated products, resulting in a lower po-
tential benefit (i.e. low technology, L). The interaction be-
tween these firms is described in terms of costs and benefits
of the investments by the following payoff matrix (for row
player):

H L H L
H<abHcH bHCH>:H(CL b) (1)
L abr, —cp, L c d)’
where ¢y, cgy and by, by (br, < byy) represent the costs and
benefits of choosing L and H, respectively. The parameter
a € (0,1) describes the fraction of the total market bene-
fit when two firms choose to invest in the same technology.
It indicates the (reversed) competitive level of the product
market. That is, the smaller « is (i.e. the higher the mar-
ket competitiveness), the more important that the firms co-
ordinate to choose different technologies. The entries of the
payoff matrix are simplified and denoted by a, b, ¢, d, as
above, for easy of referencing. Without loss of generality,

we assume that H would generate a greater net benefit than
L,ie.c=bp —cr < by —cyg = b(0Ogbo et al., 2022).

br, —cr,
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It is noteworthy that the payoff matrix for this technology
adoption model can be generally applied to several other co-
ordination problems, see details in (Ogbo et al., 2022).

Technology adoption game in presence of
pre-commitments

In the technology adoption model with prior commitments
(Ogbo et al., 2022), players are able to arrange a commit-
ment deal before an interaction. In this game, a player who
is a commitment proposer asks the other player to adopt a
different technology. This means a commitment proposer
(HP or LP) intending to invest in high technology (H), asks
the co-player to invest in low technology (L). We have de-
scribed our model such that H will always lead to a high ben-
efit technology and L to a low benefit technology. Similarly
to previous models of commitments (for PD and PGG) (Han
et al., 2013, 2015; Ogbo et al., 2022), to make the commit-
ment deal reliable, a proposer pays an arrangement cost €. If
the co-player is satisfied and agrees to the proposal, then the
proposer assumes that their competitor will adopt the agreed
choice. Yet, there exists no guarantee that this will actually
be the case. Thus, whenever a co-player refuses to com-
mit, HP and LP would both play H in the game. Failure to
comply with an agreed deal will result in a penalty, i.e. the
player dishonouring the agreement has to pay a compensa-
tion cost 4 to the co-player. Differently from previous mod-
els on PD and PGG, where an agreed outcome leads to the
same payoff for all parties in the agreement (mutual cooper-
ation benefit) (Han et al., 2013), in the current model such an
outcome would lead to different payoffs for those involved.
Therefore, as part of the agreement, HP would compensate
after the game an amount ¢, to the player which honours the
agreement; while LP would request a compensation ¢ from
their co-player. Besides HP and LP, we consider a minimal
model with the following (basic) strategies in this commit-
ment version:

* Non-proposing acceptors, HC and LC, who always com-
mit when being proposed a commitment deal, wherein
they are willing to adopt any technology proposed (even
when it is different from their intended choice), honour
the adopted agreement, but do not propose a commitment
themselves. They play their intended choice, i.e. H and
L, respectively, when there is no agreement in place;

* Non-acceptors, HN and LN, who do not accept commit-
ment, play their intended choice during the game, and do
not propose commitments;

» Fake committers, HF and LF, who accept a commitment
proposal, yet play the choice opposite to what has been
agreed whenever the game takes place. These players
assume that they can exploit the commitment proposing
players without suffering any consequences;
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Altogether, the model consists of eight strategies that de-
fine the following payoff matrix, capturing the average pay-
offs that each strategy will receive upon interacting with
one of the other strategies (where we denote A = 6, + 65,
)\1 = b—e—Hl, )\2 = C—€+92,)\3 = a—e+5and
Ay = d — € + 6, just for the sake of clear representation)

HP LP HN LN HC LC HF LF
HP [ be=e 2022 g p A A A3 As
LP [ 2e=ck2  bie—e g p Xy A2 As M
HN a a a b a b a b
LN c c c d c d c d
HC c+ 01 b— 0> a b a b a b
LC c+60; b—02 c d c d c d
HF a—9 d—9 a b a b a b
LF a—9 d—9 c d c d c d

2

Note that when two commitment proposers interact only
one of them will need to pay the cost of setting up the com-
mitment. Yet, as either one of them can take this action, they
pay this cost only half of the time (on average). In addition,
the average payoff of HP when interacting with LP is given
by 2(b—e—01+b—0>) = $(2b— e — 6 — 0). When two
HP players interact, each receives £ (b— e — 61 +c+6;) =
1(b+c—e).

Network Topology

Real-world networks are not static and inherently heteroge-
neous (Barabdsi and Albert, 1999; Dorogovtsev, 2010; New-
man, 2003). Networks evolve with new nodes entering and
creating connections to already existing nodes (Dall’ Asta
et al., 2006). Several works have unveiled how structural
heterogeneity plays a key role in both the evolution of coop-
eration (Poncela et al., 2007; Dercole et al., 2019; Cimpeanu
et al., 2019; Di Stefano et al., 2020, 2015) or emergence of
fairness (Sinatra et al., 2009; Cimpeanu et al., 2021). To
study the effects of heterogeneity on the evolution of co-
ordination and prior commitments, we will study spatially
structured populations, as well as a growing network model
characterized by preferential attachment.

Links in the networks describe both proximity for the
purposes of interactions (i.e. whom the agents can interact
with), but also for the purposes of social learning (whom the
agents can imitate). Thus, the network of interactions coin-
cides with the network of imitation (Ohtsuki et al., 2007).
Structured populations converge more readily than hetero-
geneous populations, and our choice of population sizes and
maximum number of generations reflects on these differ-
ences.

We model spatially structured populations using a square
lattice graph (SL) of size Z = L x L with periodic boundary
conditions— a widely adopted population structure in pop-
ulation dynamics and evolutionary games (for a survey, see
(Szab6 and Fath, 2007)). This network adds spatial struc-
ture, but each agent can only interact with its four immediate
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edge neighbours; thus, we can say it is homogeneous in the
number of neighbours, unlike real-world networks of firms
(Schilling and Phelps, 2007; Newman, 2004). For all of our
experiments with this network type, we choose L = 30 (i.e.
Z =900).

In an effort to introduce a more realistic interaction
setting, we turn to SF networks, specifically the popu-
lar Barabdasi and Albert (BA) model (Barabasi and Albert,
1999). SF networks constructed using the BA model follow
a preferential attachment rule, leading to a typical power-
law degree distribution. To construct such a network, we
start from a small complete graph of size m( and gradu-
ally introduce new nodes. Each new node selects m other
nodes according to a probability proportional to their degree
(how connected they are in the network), creating a new link
with each of these nodes. This procedure repeats until a
network of size Z is obtained. The resultant network fol-
lows a power-law degree distribution, which is skewed with
a long tail. There are few hubs in the network, which grad-
ually increase in size (number of connections) as the size
of the network increases, in a classic rich-get-richer setting.
The obtained network has average degree h = 2m, small
clustering (of order 1/N) and a power-law degree distribu-
tion P(k) ~ k=7, with v = 3. For all of our experiments
with this network type, we seed 10 different networks of size
Z = 1000, with an average connectivity of h = 4. The lat-
ter is chosen for ease of comparison against the square lattice
graph.

Population Dynamics

We consider a population of agents distributed on a network
(see below for different topologies), randomly assigning one
of the eight strategies. At each time step or generation, each
agent plays the game with its immediate neighbours. The
success of each agent (i.e., its fitness) is the sum of the pay-
offs in all these encounters. Each individual fitness, as de-
tailed below, defines the time-evolution of strategies, as suc-
cessful choices will tend to be imitated by their peers.

At the end of each generation, a randomly selected agent
A with a fitness f4 chooses to copy the strategy of a ran-
domly selected neighbour, agent B, with fitness fp with
a probability p that increases with their fitness difference.
Here we adopt the well-studied Fermi update or pairwise
comparison rule, where (Traulsen et al., 2006):

p= (1+65(fA*fB))*1. 3)

In this case, 5 conveniently describes the selection intensity
—1i.e., the importance of individual success in the imitations
process: 5 = 0 represents neutral drift while 5 — oo rep-
resents increasingly deterministic imitation (Traulsen et al.,
2006). Varying /3 allows capturing a wide range of update
rules and levels of stochasticity, including those used by hu-
mans, as measured in lab experiments (Zisis et al., 2015;
Rand et al., 2013; Gruji¢ and Lenaerts, 2020). In line with
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previous works and lab experiments, we set @ = 1 in our
simulations, ensuring a high intensity of selection (Pinheiro
et al,, 2012), This update rule implicitly assumes an asyn-
chronous update rule, where at most one imitation oeeurs at
each time-step. With a given probability yi., this process is
replaced instead by a randomly occurring mutation. A mu-
tation is equivalent to behavioural exploration, whereby the
individual makes a stochastic decision switch to one of the
eight available strategies.

We simulate this evolutionary process until a stationary
state or a cyclic pattern is reached. As network topology
and the number of available strategies affects rales of con-
vergence, we select different maximum numbers of runs for
each network type, for robustness, The simulations have
been conducted for 15000 generations in the case of lattice
and the results are averaged over the final 1000 steps, For
BA networks, we run the simulations for 250000 generations
(for 8 strategies, with commitment) and 50000 generations
ifor 2 strategies, no commitment). averaging over the final
25000 steps.  Furthermore, to improve accuracy, for each
set of parameter values and pre-seeded network {in the case
of BA networks), the final results are obtained from averag-
ing 5 independent realizations (replicates). When shown in
figures, the error bars represent the standard deviation of the
mean between replicates,

Results

In absence of pre-commitments

To begin with, we study evolutionary outcomes in the tech-
nology adoption (TD) game when arranging commitments is
not available as an option, Figure | shows that for all values
of a, Le. regardless of market competition, players dom-
inantly choose to adopt high technology (i.e. playing H in
the TD game). This observation is applied to both lattice and
SF networks, with L having a slightly higher frequency in
the SF network than lattice when o is sufficiently small (i.e.,
highly competitive markets). To support the understanding
of this observation, we show in Figure 2 the evolution of
the two strategies H and L over time, for different values of
. We observe that only in SF and when the market com-
petitiveness is high (o = (0.1}, L players have a chance (o
survive the dominance of H players, even though they are
still in minority. This observation differs from previous find-
ings in homogencous networks, but is in line with previous
works studying cooperation dilemmas in structured popula-
tions, where SF networks can lead to higher levels of pro-
social behaviours than in lattice counterparts (Santos et al.,
2008; Perc et al., 2017; Santos et al., 2006).

In the following, unless siated otherwise, we sef o = (1.5,
As such, there is a clear need for armanging prior commit-
ments among players 1o enhance coordination. Otherwise,
this would lead 1o the extinetion of firms that would choose
o adopt low-benefit technologies (i.e., L players) in the pop-
ulation.
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Figure 12 In the absence of commitments: Depicted are fre-
quencies of H and L as a function of o for laitice (lefl panel)
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Figure 2: Time-evolution of frequencies of two strategies H and
L in the absence of commitments, for different levels of compet-
itveness: high (o = 0.1), medium (& = 0.5) and low (a = 0.9),
Only when the market competitiveness 15 high (oo = (0.1) and in
case of SF {first row), L players have a non-negligible (bur sull
rather small) frequency, Other parameters” values are the same as
in Figure 1.
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Figure 3: Frequencies for the eight strategies (HFP, LP HN, LN,
HC, LC, LF, HF) as a function of o for lattice (left paned) and
scale-free (right panel) networks. In both types of network, we
whserve that when o is small, indicating a highly competitive mar-
ket, the commitment propozing strategies (HF and LP} dominate
the population. When e is large, the non-commitment strategies
HMN and HC dominate the population. Comparing the two types
of network, commitment proposers have higher freqoencies in SF
than in lattice when o is sufficiently large. Parameters: in all pan-
elieg =l =10 =2 and by =6, 5 = 1. u = 0001,
£ = (L1, & = 6. Fair agreements are applied, where @ and #4 are
givenbyth =(b—c—¢)2andfy = (b—c+ e} /2
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Figure 4: Time-evalution of freguencies of eight strategies (HP,
LP HN, LN, HC, LC, LF, HF) in the presence of commitments,
for different levels of competitiveness: High (o = 0.1, medium
{ex = 0.5) and low (o = 0.9}, Other parameter values are the same
a5 in Figure 3
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In presence of pre-commitments

We now examine whether arranging pre-commibments can
improve coordination outcomes, and whether these out-
comes change for different population structures (homoge-
neous versus heterogencous networks),  We analyse evo-
lutionary outcomes in a population with eight strategies
(see Model and Methods), for varying different key factors,
Firstly, Figure 3 shows the frequency of these strategies as
a function of a in both lattice and SF networks. In general,
the commitment proposing strategies HP and LP are more
frequent in the population when the market competition is
high (i.e. when ¢ is small). When there is less competition
in the market, HN and HC ke over the population, lead-
ing to a monopolized market. This result is similar in lattice
and SF networks, However, we note & small discrepancy be-
tween them, where commitment proposers have higher fre-
quencies in SF network than in lattice, if o is sufficiently
large. We also observe that the HN strategy has a higher fre-
quency in lattice networks than in heterogeneous networks,
For instance, when o = 1, the fraction of HN strategists is
(1.78 of the total in lattice networks, and (0.4 in SF networks,

Figure 5 studies the frequency of the strategies for vary-
ing the cost of arranging commitments, i.e. e For com-
mitment proposers Lo engage in a commitment arrangement,
the cost of arranging such a commitment needs o be suf-
ficiently small. This observation is in line with previous
works on pre-commitments in cooperation (Han et al., 2013,
2015, 2017: Sasaki et al., 2015; Akdeniz and van Veelen,
2021} and coordination (Ogbo et al.,, 2022) games, in the
well-mixed population settings. That is, our analysis has
again confirmed that prior commitments can provide a path-
way for the evolution of coordination even in the presence
of more complex networks of interaction.

In order 1o determine when commitments can lead to sig-
nificant improvement (in terms of overall population pay-
oft or welfare), in Figure 6 we compare the average pop-
ulation payoff when commitment is present and when it is
absent, as a function of o (which 15 the competitiveness of
the market, left panel) and ¢ (which is the cost of aranging
a commitment, right panel). We observe here that commit-
ments can lead to significant improvements when o and ¢
are sufficiently small, That is, arranging pre-commitments is
highly beneficial whenever the market competitiveness level
is high, and when it is not oo costly to do so, We also ob-
serve that SF and lattice networks lead 1o similar population
payofis for all values of « and «. One small difference is
that SF leads to a slightly higher payoff when commitment
is absent in highly competitive markets (o = (.2}, while this
efficet is reversed when commitments can be initiated. That
is, the heterogeneity of SF networks might be slightly detri-
mental for population welfare when commitment is present.
The main reason for this effect is that when the competi-
tiveness level is low (Le. large a), coordination is not as
important as when the competitiveness level is high (a pop-
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Figure 5: Frequencies for the eight strategies (HF, LP HN, LN,
HC, LC, LF, HF) as a function of the cost of commitment ¢
for lattice (left panel) and scale-free (right panel) networks, In
general, we observe that for both lattice and SF networks, when the
cost of arranging a commitment (€} is sufficiently small (for luttice
network when € = 2 and for SF network when £ = 18, approx-
imately), commitment strategies HP and LP are more abundant in
the population. When € exceeds these points, the non-proposing
strategies HN and HC who do not pay for the cost of commitment
deal dominate the population. Moreover, when ¢ 15 sufficiently
large, commitment proposing strategies are more frequent in SF
than in lamice. Parameters; inall panels ey = 1, e = 1.0 = 2,
and by = 6, 8 = 1; p = 0.001; e« = (L5; § = 6. Fair agreements
are applied, where #; and 2 are given by 8 = (b— ¢ —¢),/2 and
03 = (b—e+€)/2.
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Figure & Average population payofT (welfare) as a function of
o (left panel) and « (right panel), in lattice and scale-free net-
works. We compare these payvolls when commitment is present
(solid lines) vs when it is absent (dashed lines).  We observe
that arranging commitments leads to larger population payolfs than
when il i not an option whenever o and « are sulficiently small
(up o around 0.7 and 2.0, respectively). Thal is, arranging pre-
commitments is highly beneficial whenever the market competi-
tiveness level is high, and when it is not too costly to do 50, We
also observe that, SF and lattice lead to similar population payoffs
for all values of ¢ and o, SF leads to shightly higher payof when
commitment is absence when o is quite small (up to (.23, while it
is reversed when commitment is present. Other parameters in all:
B=Lpu=0001;6=608 ={b—c—e)/2, 0 =(b—c+e]/2
Parameters in panel a3 ¢ = (0.1, and panel b: o = (L5,
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Figure 7: Frequencies for the eight strategies (HF, LP HN, LN,
HC, LC, LF. HF} a8 a function of the mutation rate u (rang-
ing from a small 107" = (.0001 to a high 107"" = (.316
values) for Lattice (left panel) and scale-free (right panel) net-
works. Larger mutation leads to greater levels of randomness in
agents” behaviours, leading 1o strategies” freguencies being closer.
Aldso, Tor the whole range of i, SF leads o higher diversity in terms
of strategic behaviours than in lattice. Parameters: in all panels
ey = Lo = 1, b = 2, and by = 6. Other parameters: 5 = 1;
¢ = 0.1: @ = 0.5; & = 6. Fair agreements are applied, where £,
and #y are given by = (b— e —¢)/2and fa = (b= o+ €)/2.

ulation of H players has a higher welfare when « increases,
see Figure 6), and it is costly 1o armrange commitments, The
evolution of commitment proposing strategies for large n
(see Figures 3 and 4) leads 1o higher spending for arranging
commitments in the population.

We also measure the effects of varying mutation rates in
our work., In particular, we focus on how increasing mu-
tation rates affect the coordination outcome in the popula-
tion, differently from previous works which assume a small
mutation limit {for convenience of theoretical and numerical
analyses) (Ogbo et al., 2022; Han et al., 2013). Indeed, Fig-
ure 7 shows the outcomes for varying mutation rates in both
luttice and SF networks. We observe that a higher mutation
leads to a more balanced siate of the strategy frequencies in
the population. This effect is more notable in SF networks
than in kattice populations. Behavioural exploration aids in
eliminating market monopolies.

Conclusions and Future Work

In this work, we have explored and quantified the effects
of social diversity on the outcomes of lechnology adoption
and coordination dynamics amongst firms, using two popu-
lar spatial structures. Specifically, we have studied the use of
prior commitments (o enhance coordination among agents
making decisions o adopt competing technological solu-
tions. We have discovered that prior commitments enhance
coordination and social welfare in both lattice and scale-free
networks, especially when the market is highly competitive
or the cost of arranging commitments is sufficiently small.
We have also observed that coordination is more achievable
in the absence of commitments in the case of 5F networks,
compared to lattice networks. Correspondingly, the opposite
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is observed if the market is competitive and commitments
are possible. Our results are in line with previous analyses
on well-mixed populations (Ogbo et al., 2022). When com-
mitment is present, the overall population welfare is simi-
lar in SF and lattice networks when the market competition
level is high; it is however slightly lower in SF than lattice
when this competition level is low. Ultimately, we find that
commitments can improve population welfare and coordi-
nation in structured populations, and that these results are
robust across a wide range of network structures, unlike the
case when commitment is absent.

Overall, our analysis has provided further confirmation
and theoretical evidence showing that arranging prior com-
mitments can provide a flexible and efficient pathway to
achieve high levels of collective behaviours (beyond social
dilemmas settings) (Nesse, 2001a; Frank, 1988; Akdeniz
and van Veelen, 2021; Han, 2013). In the future, we aim to
expand this network analysis to study the effects of commit-
ments in the multi-player version of the technology adoption
game (Ogbo et al., 2022), where multiple firms participate in
a technology market competition.
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Social fragmentation and opinion polarization are the ma-
jor social problems these days. While there are many stud-
ies on modeling social fragmentation (Centola et al., 2007,
Kozma and Barrat, 2008; B6hme and Gross, 2011; Sayama,
2020; Blex and Yasseri, 2020), most of the earlier models
typically considered only two societal outcomes: (1) frag-
mented society with many disconnected, incompatible so-
cial clusters and (2) well-connected society in which cul-
tural/opinion states of individuals are homogenized. To
seek the possibility of the third alternative social state that
maintains both social connectivity and cultural/opinion di-
versity, we had proposed an agent-based adaptive social net-
work model that incorporated behavioral diversity of nodes
(agents) (Sayama and Yamanoi, 2020). This model de-
scribed social network evolution in which cultural informa-
tion was shared among agents (nodes) and the weights of
their connections (edges) were updated according to accep-
tance or rejection of shared cultural information (Sayama
et al., 2013; Yamanoi and Sayama, 2013). The model
showed that, when the cultural tolerance levels of agents
were diversified within society, social evolution could lead
to a culturally diverse yet structurally connected state. How-
ever, this model was entirely computational and the simula-
tion experiments were done with relatively small-sized net-
work topologies, and hence it did not provide much theo-
retical insight into how a much larger social network might
behave according to the same model assumptions.

In the current study (Sayama, 2022), we have con-
verted the rather complex, discrete, if-then-rule-based orig-
inal ABM into a smooth, continuous, analytically tractable
equation-based one so that we can gain more theoretical in-
sight into the model dynamics. To make it easier to repre-
sent the configuration of the network that involves hetero-
geneity in behavioral traits of nodes, we have restricted the
attributes and states of each node to one-dimensional con-
tinuous values and have assumed that the size of the net-
work is very large, which allows for continuous representa-
tion. As a result, we have represented the whole system as
a set of partial integro-differential equations (PIDEs) about
just two continuous state functions: population density func-
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tion p(v,d,t)—density of nodes with opinion v and cul-
tural tolerance d at time ¢, and connection density function
c(v,u, dy, dy, t)—density of directed edges from nodes with
opinion v and cultural tolerance d, to nodes with opinion
u and cultural tolerance d,, at time ¢. The resulting set of
equations developed is given below (details of the model as-
sumptions, parameters and derivation process can be found
in (Sayama, 2022)):
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Egs. (1) and (2) collectively represent the continuous dy-
namics of population and connection densities based on the
assumptions used in the original ABM. Both equations have
diffusion terms along the node state axes. The second term
of Eq. (1) represents the aggregated migration of popula-
tions in the opinion space because of the acceptance of opin-
ions shared by neighbors, whose trend is given in Eq. (3).
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Figure 1: Final states of p(v,d) at ¢ = 50, where v is the opinion state and d is the cultural tolerance level. Top: With
low diversity of cultural tolerance (o(d) = 0.1). As the diffusion coefficients varied, the model exhibited typical social
fragmentation transition between two separated clusters (left) and a single unified cluster (right). Bottom: With high diversity
of cultural tolerance (o(d) = 0.5). There appeared a new third state (center; D, = D, = 0.01) in which agents with greater
cultural tolerance (d) approached the center and began connecting the two opinion clusters while agents with smaller d remained

holding their original opinions.

The second term of Eq. (2) represents the decrease/increase
of connection weights (defined in Eq. (6)) due to rejec-
tion/acceptance of neighbors’ opinions. The third term of
Eq. (2) represents the migration of connectivities in the opin-
ion space because of the acceptance of opinions shared by
neighbors, whose trend is given in Eq. (7). Eq. (4) is the nor-
malized probability density function of connectivity from a
node with opinion v and cultural tolerance d,, to a neighbor
with opinion w (irrespective of the neighbor’s cultural tol-
erance). Eq. (5) is the acceptance probability function for
opinion difference |x| and cultural tolerance d. These equa-
tions are a concrete demonstration of how one can convert
rule-based complex ABM rules into continuous mathemati-
cal equations.

We have conducted numerical integrations of the devel-
oped equations using a custom-made numerical integrator
written in Julia (specific details of the methods and param-
eter settings can be found in (Sayama, 2022)). Figure 1
shows the final states of population density function p(v, d)
at t = 50 for low (top) / high (bottom) diversity of cul-
tural tolerance d and three different values of diffusion co-
efficients (D, = D. = 0.003 (left), 0.01 (center), and
0.03 (right)). The diffusion represents the stochastic nature
of agents’ behaviors in this otherwise deterministic PIDE
model. When the diversity of cultural tolerance d is low
(o(d) = 0.1; Fig. 1 top), if diffusion is weak, the network re-
mains separated in the initial two opinion clusters (Fig. 1 top
left). If diffusion is stronger, however, the two initial opin-
ion clusters become blurred and merge into a single cluster
(Fig. 1 top right). This corresponds to the typical social frag-
mentation transition that has been reported in many earlier
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models.

Meanwhile, when the diversity of cultural tolerance d is
high enough (o(d) = 0.5; Fig. 1 bottom), a different so-
cial state emerges. The new social state is observed in the
scenario with intermediate diffusion strength (Fig. 1 bottom
center, D, = D. = 0.01), in which agents with greater
cultural tolerance (d) approached the center and began con-
necting the two opinion clusters while agents with smaller
d remained holding their original opinions. This resulted in
a “frown (—~)”-like shape of the p(v, d) distribution, which
represents diverse yet connected social networks. Such so-
cial states were not reported in conventional social fragmen-
tation studies.

The main finding consistently obtained in both ABM and
PIDE models is that, when the cultural tolerance levels of
constituents are diverse enough (o(d) > 0.3), the adap-
tive social network can self-organize into a configuration
with multiple well-established opinion clusters together with
bridges that connect them (Sayama, 2022). This is a possi-
ble alternative third state of society that goes beyond com-
plete fragmentation or complete homogenization, the two
only possible outcomes studied in typical social fragmen-
tation models. This third state may be a more desirable state
of society-as-it-could-be, since it maintains informational
diversity and information exchange simultaneously, possi-
bly generating more innovation. Additional insights gained
from the PIDE model include the role of stochasticity (dif-
fusion) as the main factor of social fragmentation transition
and the overall “phase space” structure of social evolution
outcomes that depend on the agents’ stochasticity and be-
havioral diversity (Sayama, 2022).
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