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Abstract

The aim of this paper is to delineate the computational complexity
of propositional multi-context systems. We establish NP-completeness
by translating multi-context systems into bounded modal K,,, and ob-
tain more refined complexity results by achieving the so-called bounded
model property: the number of local models needed to satisfy a set
of formulas in a multi-context system is bounded by the number of
formulas in that set plus the number of bridge rules of the system.

Exploiting this property of multi-context systems, we are able to
encode contextual satisfiability problems into propositional ones, pro-
viding for the implementation of contextual reasoners based on spe-
cialized SAT solvers.

We apply our results to improve on complexity bounds for Mc-
Carthy’s propositional logic of context — we show that satisfiability in
this framework can be settled in non-deterministic polynomial time

O(lel?)-

Content areas: Contextual reasoning, computational complexity.



1 Introduction

The establishment of a solid paradigm for contextual knowledge representa-
tion and contextual reasoning is of paramount importance for the develop-
ment of sophisticated theory and applications in Al

McCarthy [?] pleaded for a formalization of context as a possible solution
to the problem of generality; Giunchiglia [?] emphasized that reasoning based
on large (common sense) knowledge bases could only be effectively pursued
if confined to a manageable subset (context) of that knowledge base.

Contextual knowledge representation has been formalized in several ways.
Most notable are the propositional logic of context (PLC) developed by Mec-
Carthy, Buva¢ and Mason [?, ?], and the multi-context systems (MCS) intro-
duced by Giunchiglia and Serafini [?], which became associated with the local
model semantics (LMS) devised by Giunchiglia and Ghidini [?]. Recently,
MCS/LMS has been proven strictly more general than PLC [?].

Contexts were first implemented as microtheories into the notorious com-
mon sense knowledge base CYC [?, ?]. However, while in CYC the notion
of local microtheories was a choice, in contemporary settings like that of the
semantic web the notion of local, distributed knowledge is a must. Modern
architectures impose highly scattered, heterogeneous knowledge fragments,
which a central reasoner is not able to deal with. This engenders a high
demand for distributed, contextual reasoning procedures.

More recently, the emerging idea of grid computing [?] fostered the de-
velopment of distributed reasoning systems [?, ?]. These approaches show,
from the practical point of view, that implementing a logical reasoner as a
cooperative system of autonomous local reasoners, can improve performance.

The complexity of contextual reasoning, however, has so far received little
attention. Massacci [?] accomplished a tableaux-based decision procedure
for PLC, which establishes NP-completeness but leaves open a substantial
number of efficiency issues. The same goes for a SAT-based procedure for
MCS/LMS, to be provided by the authors of the current paper.

The goal of this paper is exactly this: to characterize the computational
complexity of contextual reasoning. The lion’s share of our analysis regards
reasoning based on MCS/LMS. Towards the end of the paper, however, our
results are shown to be applicable to PLC as well.

We proceed as follows. After defining MCS/LMS and explicating the con-
textual satisfiability problem we establish an equivalence result with bounded
modal K,,, which directly entails NP-completeness. In pursuit of more spe-



cific upper bounds, we subsequently embark upon a more direct analysis of
contextual satisfiability. Next, we encode the contextual satisfiability prob-
lem into a purely propositional one. This encoding paves the way for the
implementation of contextual reasoning systems based on already existing
SAT solvers. At last, we show how our results can be applied to obtain im-
proved complexity results for PLC. We conclude with a concise recapitulation
of our achievements, and some pointers to future research avenues.

2 Multi-Context Systems

A simple illustration of the intuitions underlying MCS/LMS is provided by
the so-called “magic box” example [?], depicted below.

——

Mrl —

Figure 1: The magic box

Example 1 Mr.1 and Mr.2 look at a box, which s called “magic” because
neither of the observers can make out its depth. Both Mr.1 and Mr.2 main-
tain a local representation of what they see. These representations must be
coherent — if Mr.1’s sees a ball, for instance, then Mr.2’s must see some ball
too.

We will now demonstrate how such interrelated local representations can
be captured formally. Our point of departure is a set of indices /. Each index
i € I denotes a context, which is described by a corresponding formal (in
this case standard propositional) language L;. To state that a propositional
formula ¢ in the language L; holds in context i we utilize so-called labeled
formulas of the form i : ¢ (when no ambiguity arises we will simply refer
to labeled formulas as formulas). Formulas that apply to different contexts
may be related by so-called bridge rules. These are expressions of the form:

Bl Gy iy (1)

where 71,...,%,,7 € I and ¢4,..., ¢n, @ are formulas. Note that “—” does
not denote implication (we’ll use “D” for this purpose). Also note that our
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language does not include expressions like =(i : ¢) and (i : @ Aj: ). i:pis
called the consequence and iy : ¢1,1, : ¢, are called premises of bridge rule
(?7?). We write cons(br) and prem(br) for the consequence and the set of all
premises of a bridge rule br, respectively.

Definition 1 (Propositional Multi-Context System) A propositional multi
context system ({L;}icr, BR) over set of indices I consists of a set of propo-
sitional languages {L;}icr and a set of bridge rules BR.

In this paper, we assume I to be (at most) countable and BR to be finite.
Note that the latter assumption does not apply to MCSs with schematic
bridge rules, such as provability - and multi-agent belief systems [?]. The
question whether our results may be generalized to capture these cases as
well is subject to further investigation.

Example 2 The MCS that formalizes the situation in example 7?7 consists
of two contexts 1 and 2, described by Li = L({l,r}) and Ly = L({l,c,7}),
respectively. The constraint that Mr.2 must see a ball if Mr.1 sees one, is
formalized by the following bridge rule:

1:lVvr — 2:lVeVr

Let M, be the class of classical interpretations of L;. An interpretation
m € M, is called a local model of L;. Interpretations of entire MCSs are
called chains. They are constructed from sets of local models.

Definition 2 (Chain) A chain c over a set of indices I is a sequence {c; }icr,
where each ¢; C M; is a set of local models of L;. c is i-consistent if ¢; is
nonempty. It is point-wise if |¢;| < 1 for all i € I; set-wise otherwise.

A chain can be thought of as a set of “epistemic states”, each corresponding
to a certain context (or agent). The fact that ¢; contains more than one
local model amounts to L; being interpretable in more than one unique way.
So, set-wise chains correspond to partial knowledge; point-wise chains to
complete knowledge.

Example 3 Consider the situation depicted in Figure 7?7. Both agents have
complete knowledge, corresponding to a point-wise chain {{{l,r}},{{l,—¢c,—r}}}.
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Figure 2: The partially hidden magic box

We can imagine a scenario however, in which Mr.1 and Mr.2’s views are re-
stricted to the right half and the left-most section of the boz, as depicted in
Figure ?7?.

Now, both Mr.1 and Mr.2 have only partial knowledge; their observations
may be interpreted in different ways. This is reflected by the set-wise chain:

{ {{l7 ﬁT}’{_'la_'r}}: }
{{l,—c,—r} {l,—-c,r} , {l,c,— 1}, {l,e,7}}

The epistemic states that a chain consists of concern one and the same situ-
ation. Therefore, arbitrary sets of local models may not always constitute a
“sensible” chain. The somewhat vague conception of “sensibility” is captured
by the more formal notion of “bridge rule compliance” specified below.

Definition 3 (Compliance and Satisfiability) Let c be a chain, ¢ a for-
mula over L;, and br an element of the set of bridge rules BR of a multi-
context system MS.

1. cEi:¢ifmE @ in a classical sense for all local models m € ¢;. We
say that ¢ satisfies 1 : .

2. ¢ complies with br if either c = cons(br) or c¥ i : & for some i : & €
prem(br). ¢ complies with BR if it complies with every br € BR.

3. ¢ satisfies 1 : ¢ in compliance with BR if ¢ satisfies i : ¢ and complies
with BR.

4. If there is an i-consistent chain c that satisfies i : ¢ in compliance with
BR, we say that @ : ¢ is satisfiable in MS.

The contextual satisfiability problem, then, is to settle whether or not a set
of labeled formulas & is satisfiable in a multi-context system MS.

Example 4 Consider an MCS with contexts 1 and 2, described by L({p})
and L({q}), respectively, and subject to the following bridge rules:

l:p — 2:¢
l:=p = 2:¢q
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The formula 2 : —q is satisfied in this system by the following chain:

(i)

This example reflects that multi-context systems can not be encoded into
propositional logic, simply by indexing propositions — such an encoding of
the above system would be inconsistent.

In the following we will refer to the set of bridge rules of MS as BR, and
to the set of contexts involved by formulas in ® as J.

3 Encoding Into Modal K,

A first insight regarding the complexity of contextual SAT may be obtained
by investigating its encoding into modal K, satisfiability. In this section we
show that any contextual satisfiability problem may be reduced to that of
satisfying some formula in K, whose modal depth is at most equal to one.
This problem is well-known to be NP-complete [?, ?].

We define a translation (.)* of labeled formulas into modal formulas:

(i:9)" =00
For bridge rules we have:

(i1:¢17"'7in:¢n_>i:¢)*:
(11: 1)  ANec i A (it 0n)* D (12 @)

A j-consistency constraint is captured by:
(j-coms)* = -0, L

Theorem 1 There is a kripke model K = (W, m,R) such that K, wy = ¢
for some wy € W and:

= /\ (i:0)* A /\(j—cons)* A /\ (br)*

iped jeJ breBR

if and only if there is a J-consistent chain cX that satisfies ® in compliance
with BR.



Figure 3: A schematic kripke model for 1.

Proof. (=) We show how to construct ¢ from K. Let m,, be the inter-
pretation of | J,.; L; associated to a world w € W for any i € I, let m,,|; be
the restriction of m,, to L; and let ¢ = {m,,|; [woR;w}.

As K, wy = 0O0;¢, we have that w = ¢ for any w with woRw. As ¢ € L;,
we have that m,|; = ¢. This implies that ¢ =i : ¢. Bridge rule compliance
and J-consistency are established likewise.

(<) From cX we obtain a suitable kripke model K. Let W consist of a
world wg plus one world w,,, for each local model m; of every component cX
of cK. Let every w,,, € W/{wy} evaluate L; according to m;, and the rest of
Uier Li to True. Let wy evaluate every atomic proposition to True. For all
1 €1, let:

R; = {{wo, W) | Wy, corresponds to m; € ¢~}

The resulting model is schematically depicted above. One can easily verify
that K, wy = 1. O

Contextual satisfiability clearly subsumes classical SAT, and is therefore
NP-hard [?]. From the above result, and the fact that satisfiability for
bounded modal K, is NP-complete [?], it follows that contextual satisfia-
bility is NP-complete.

Moreover, the syntax of the formula that results from our translation
is highly constrained: we obtain a conjunction of disjunctions of (negated)
boxed formulas. Each disjunction comprises at most one boxed formula that
is not negated, and furthermore, each boxed formula is purely propositional.
This form strongly alludes to the existence of relatively efficient ways to solve
the contextual satisfiability problem. Therefore, to obtain a more nuanced
understanding of its complexity, we proceed with a more direct analysis.



4 Firsthand Analysis

Let us first introduce some notation and terminology. We denote the size
of a labeled formula ¢ : ¢ by |i : ¢|. Let P(i : ¢) and P(®) be the set of
propositional atoms appearing in a formula 7 : ¢ or a set of formulas ®. Let
G; be the number of local models contained by the i component of a chain
¢, and let G be the total number of local models contained by c¢. Let Z(br)
and Z(BR) consist of the premises and the consequence(s) of a bridge rule
br or a set of bridge rules BR. Finally, let N be the total size of the formulas

in ® and Z(BR):
N=> lizol+ > li:¢

i:pED i:6€E(BR)

We first consider the model checking problem, that is, the problem of
determining whether a given chain c satisfies a set of formulas ® in a multi-
context system MS. This task can be split into three sub-tasks:

1. Check whether c satisfies ®;
2. Check whether ¢ complies with BR;
3. Check whether c is J-consistent.

Theorem 2 Model checking can be performed deterministically in time:

O( Y, Gixlgl

1:pe@UE(BR)

Proof. First consider sub-task 1. Checking whether a particular formula
1 : @ € ® is satisfied by ¢ can be done as follows. Let ¢1,..., ¢, be an
ordering of the subformulas of ¢, such that ¢, = ¢ and if ¢; is a subformula
of ¢;, then 7 < j. Since ¢ has at most |¢| subformulas, we have k < |¢|.
By induction on k' we can label each local model m in ¢; with either ¢;
or —p;, for j = 1,...,k', depending on whether or not m = ¢;, in time
O(G; x k'). As a result, checking whether c satisfies ® can be carried out in
time O(Y, yeq Gi x [9]).

Sub-task 2 takes time O(}_; cczgr) Gi % [€]), as in the worst case it involves
checking whether all the consequences and premises of every bridge rule in
BR are satisfied or not. Sub-task 3 merely consists in checking whether c;
is nonempty, for j € J. This can be done in O(|J|) timesteps. The result
follows directly. ]



Next, we consider satisfiability. We first show that MCSs enjoy the so-
called bounded model property. More specifically, we establish that if a chain
satisfies ® in MS, then it can be reduced to a chain that contains at most
|®| + |BR| local models and still satisfies ®. Using this result, we reprove
contextual satisfiability to be NP-complete, and establish an upper bound
for the amount of time it requires.

Theorem 3 (Bounded Model Property) A set of formulas ® is satisfi-
able in a multi-context system MS iff there exists a J-consistent chain that

contains at most |®| + |BR| local models and satisfies ® in compliance with
BR.

Proof. Take any chain ¢ that satisfies ® in compliance with BR. Let BR* C
BR be the set of bridge rules whose consequences are not satisfied by c. Every
br € BR* must have a premise which is not satisfied in some local model
m(br) contained by c¢. On the other hand, every formula i : ¢ € ® must be
satisfied in at least one local model m(i : ¢) in ¢;. The chain ¢* obtained
from c by eliminating all local models except:

U mr)u | m: o)

breBR* 1pEP

satisfies ® in compliance with BR and contains at most |®| + [BR*| < |®| +
IBR | local models. O

Theorem 4 Contextual satisfiability is NP-complete. It requires non-deterministic
time:
O((|®[ + [BR) x N)

Proof. We already observed that contextual satisfiability is NP-hard. Now,

to determine satisfiability we may proceed as follows. First, we non-deterministically
appoint a set Cons of bridge rule consequences, and a set Prem of bridge

rule premises, such that for every br € BR, either br’s consequence is in
Cons, or one of br’s premises is in Prem. Let Iy, Ico,s, and Ip,,, be the set

of contexts involved by ®, Cons, and Prem respectively. Furthermore, let

®;, Cons;, and Prem; be the set of i-formulas contained by ®, C'ons, and
Prem respectively. Without loss of generality, we assume that |®;| = 1 for

all 7 € I. We construct a chain ¢, such that:



For all i € Ipyem, ¢; contains exactly | Prem;| local models;

For all i € Is/Iprem, ¢; contains exactly one local model;

For all i ¢ Is U Iprem, c; is empty;

e For all + € I, each local model in ¢; evaluates the atomic propositions
not appearing in ®; U Cons; U Prem; to True.

The only “guessing” involved in constructing c is the choice of Cons and
Prem, and the truth values to which each local model in ¢; evaluates the
atomic propositions in P(®;UCons;UPrem;). Notice that ¢ contains at most
|®| + |Prem| < |®| 4+ BR| local models. These local models are distributed
over those components ¢; of ¢ with ¢ € I UIpyen,. All the other components of
c are empty. Consider a local model m contained in ¢; for some i € I U Ip,ep,.
The number of atomic propositions |P(®; U Cons; U Prem;)| that m should
“explicitly” evaluate is in any case smaller than |P(®;)|+|P(Cons;UPrem;)|,
which, in turn, is bounded by

max |P(i: o) + brem’*f%%) [P(i: & <N
We need to choose at most |®| + |BR| such “explicit” valuations (one for
each model in ¢), so ¢ can be constructed in non-deterministic time O((|®|+
IBR|) X N).

It remains to check whether c is J-consistent, satisfies ®, and complies
with BR. By theorem ?7? this can be done in deterministic time O((|®| +
IBR|) x N).

Theorem ?7? assures that, if ® is satisfiable in M S, then guessing a chain
as described above is bound to result in a suitable one. Thus, satisfiability of
® in M S can be determined in non-deterministic polynomial time O((|®| +
IBR|) x N). d

5 Encoding Into Propositional Sat
As contextual satisfiability is NP-complete, it must be tractably reducible

to purely propositional SAT. In this section we provide such a reduction.
In doing so we may loose the particular structure of our problem, but do
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lay the groundwork for an implementation of a purely SAT-based contextual
reasoner, which could benefit from already existing well-advanced techniques.

To obtain a purely propositional representation of multi-contextual sat-
isfiability problems, we exploit the understanding we obtained while estab-
lishing the bounded model property in the previous section. The key insight
there was that a set of formulas ® is satisfied by a chain c iff it is satisfied
by chain ¢® such that:

e For every formula i : ¢ € ®, ¢ contains at least one local model m that
satisfies (.

e For every bridge rule br € BR whose consequence is not satisfied by ¢,
there is at least one premise j : £ of br, such that cg’- contains at least
one local model m that satisfies —&.

Notice that to meet these requirements, the number of local models in each
component of ¢® can be kept down to |BR| (we assume that |BR| > 1). Also,
if a non-empty component of ¢® contains less than [BR| local models it can
be extended to comprise exactly [ BR| models, simply by adding duplicates
of already existing models. So we may say that ® is satisfiable in MS iff it is
satisfied by a chain ¢* all of whose components are either empty or contain
exactly |BR| local models.

Now, we construct a propositional formula 1, which is satisfiable iff such
a chain c* exists. We express this formula in a language which contains an
atomic proposition p¥ for each p € L;, and each k = 1,...,|BR|. Intuitively,
the truth value assigned to p¥ by a propositional model of 1 corresponds to
the truth value assigned to p by the k*" local model in ¢}. The language also
contains an atomic proposition e; for each index ¢ € I. Intuitively, e; being
assigned T'rue corresponds to ¢; being empty.

Let us write K = {1,...,|BR|}. For any formula ¢, i € [ and k €
K let ¢f denote the formula that results from substituting every atomic
proposition p in ¢ with p¥. Furthermore, let us write ¢ = A, x ¢F. Now,
the translation of a labeled formula reads:

() =e Ve
For bridge rules we have:

(111 Q1ye eyl i op =0 ) =
(i12¢1)*/\.../\(in;¢n)*3(i:qs)*
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A j-consistency constraint is captured by:
(j-cons)* = —e;

Theorem 5 There is an assignment V to the propositions {p%li € I and k =
1,..., BR[|} U{e;|i € I} that satisfies:

= /\ (i:0)* A /\(j—cons)* A /\ (br)*

iped jeJ breBR

if and only if there is a J-consistent chain c¥ that satisfies ® in compliance
with BR.

Proof (=) From V construct a chain ¢", such that each component ¢} is

empty if V(e;) = True and contains exactly |BR| local models otherwise. In
the latter case, let the k™ local model of ¢} evaluate each atomic proposition
p € L; to True iff V(pF) = True. Tt is easy to see that ¢” is J-consistent
and satisfies ® in compliance with BR.

(<) If there is a J-consistent chain ¢ that satisfies ® in compliance with
BR, there must also be a J-consistent chain ¢* each of whose components is
either empty or contains exactly [BR| local models, and which still satisfies
® in compliance with BR.

From ¢* we obtain an assignment V' as follows. To an atomic proposition
e;, V assigns True iff ¢ is empty. To an atomic proposition pf, V assigns
True iff the k™ local model of ¢! satisfies p, and any truth value iff ¢} is
empty. It is easy to see that V satisfies 1. O

6 Application to PLC

In this section, we apply the results presented so far to improve current com-
plexity bounds for McCarthy’s propositional logic of context. The best result
so far is due to Massacci [?]. He described a tableaux-based decision proce-
dure, which determines satisfiability of a PLC formula ¢ in non-deterministic
time O(|p[*).

We translate a PLC formula ¢ into a labeled formula € : ¢ and a multi-
context system MCS(¢), so that ¢ is satisfiable in PLC iff € : ¢ is satisfiable
in MCS(y). Furthermore, we show that determining whether or not € : ¢
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is satisfiable in MCS(y) can be done in non-deterministic polynomial time
O(lel).

We proceed as follows. For each nesting pattern ist(ki, ... ist(kn,v)...)
in ¢, let MCS(y) contain a context labeled with the sequence k; ...k,. Let
the language of context k; ...k, consist of all the atomic propositions in 1/,
plus a new atomic proposition for each formula of the form ist(k, x) occurring
in 1. At last, equip MCS(¢p) with the following bridge rules':

kk :op — k : ist(k, )
k:ist(k,v) — kk =9
k : —ist(k, ist(h, 1)) — kk : —ist(h, )
k : —ist(k, —ist(h,v)) — kk : ist(h, )

where k = ki ... k, refers to any context of MCS(y), whose language contains
ist(k, ) or ist(k, ist(h, x))-

Example 5 Consider ¢ = pV ist(k,q D (ist(h,r A s) D ist(j,q))). MCS(p)
consists of four contexts labeled € (the empty sequence), k, kh, and kj. The
language of €, L, contains two propositions, p and ist(k,q D (ist(h,r V s) D
ist(4,q))); Ly contains two proposition, q and ist(h,r As); Ly, = L{r,s} and
Ly; = L{q}. The bridge rules of MCS(y) are as stated above.

Theorem 6 ([?], 2003) ¢ is satisfiable in PLC if and only if € : ¢ is satis-
fiable in MCS(p).

Theorem 7 Satisfiability of ¢ in PLC can be computed in non-deterministic
polynomial time O(|p[?).

Proof. By theorem 77 any satisfiability problem in PLC can be trans-
formed into a satisfiability problem in MCS. This transformation can be
established in linear time.

Every bridge rule MCS(¢p) involves at least one proposition of the form
ist(k,v). Every such proposition is involved in at most four bridge rules.
Every subformula of ¢ of the form ist(k, ) (and nothing else) results in a
proposition of the form ist(k,v) in the language of exactly one context in
MCS(p). The number of subformulas of ¢ of the form ist(k, ) is bounded

L The first two bridge rules correspond to the notions of entering and eziting contexts
[?], while the last two bridge rules correspond to the A axiom introduced in [?].
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by |¢|. From these observations, we may conclude that the number of bridge
rules [BR| in MCS(¢p) is bounded by 4 X |¢|. Furthermore, by construction,
the sum of the lengths of the formulas involved in any bridge rule of MCS(¢p)
is at most four.

By theorem ?7?, satisfiability of € : ¢ in MCS(y) can be determined in

time:
O(( @]+ BR) x (Y fizol+ ¥ Z

1:pED breBR :6€=(

In the light of the above observations, and keeping in mind that ® merely
consists of € : ¢, we may rewrite this in terms of ¢ as:

O(l¢*)

7 Conclusion

We have characterized the complexity of contextual reasoning based on propo-
sitional multi-context systems with finite sets of bridge rules.

A first insight was obtained by establishing an encoding of contextual
satisfiability into satisfiability in multi-modal K,,, which is known to be NP-
complete.

Next, we accomplished a more fine-grained upper bound for the com-
plexity of contextual satisfiability by a direct investigation of its semantical
properties. Herein we observed that multi-context systems enjoy the bounded
model property.

Also, we provided a tractable encoding of contextual satisfiability prob-
lems into purely propositional ones. In doing so, we laid the groundwork for
a SAT-based implementation of contextual reasoning systems.

Finally, we obtained improved complexity results for the satisfiability
problem in McCarthy’s propositional logic of context, by translating it into
the satisfiability problem that we have considered in this paper.

Future work will encompass experimenting with both native and SAT-
based contextual reasoning systems. Also, we are interested to what extent
our results may be generalized so as to apply to multi-context systems with
schematic bridge rules as well.
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