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Abstract. We propose a compartmental model for a disease with temporary immunity and
secondary infections. From our assumptions on the parameters involved in the model, the system
naturally evolves in three time scales. We characterize the equilibria of the system and analyze their
stability. We find conditions for the existence of two endemic equilibria for some cases in which
\scrR 0 < 1. Then, we unravel the interplay of the three time scales, providing conditions to foresee
whether the system evolves in all three scales, or only in the fast and the intermediate ones. We
conclude with numerical simulations and bifurcation analysis to complement our analytical results.
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1. Introduction. The foundation of the mathematical epidemics modelling
based on compartmental models goes back to the 20th century, on the basis of the
pioneering work by Kermack and McKendrick [30]. Since then, several generalizations
have been proposed as attempts to develop more realistic models that take several
other factors into account.

A fundamental distinction in epidemic models is between the SIR (Susceptible -
Infected - Recovered) and SIS (Susceptible - Infected - Susceptible) models [24], with
the former modelling infections providing complete immunity, and the latter those
not providing any immunity. In reality, immunity may be only partial, making infec-
tions less likely but not impossible, or protecting from some consequences of infection
(disease) but not from infection itself. Partial immunity may be due to immunity wan-
ing with time since recovery to a secondary infection caused by a pathogen similar
but not identical to that of the primary infection, or simply to the limited immunity
induced by the primary infection.

Partial immunity and reinfections have drawn strong interest during the COVID-
19 pandemic, but its causes are being debated [16, 22], and the pattern is cer-
tainly very complex [46]. Several mathematical models have been devoted to partial
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662 KAKLAMANOS, PUGLIESE, SENSI, AND SOTTILE

immunity caused by infection waning, with the additional possibility of immunity
boosting [15, 25, 35, 42], or to partial cross-immunity to a heterologous strain [14, 7,
41, 34].

Few epidemic models have instead been devoted to the case where more that
one infection episode is needed to provide complete immunity, although this is a
mechanism recognized in the immunological literature [43, 52] and is indeed consistent
with the practice of performing vaccination in two doses. One may refer to [38] in
which the authors analyze data on Norovirus prevalence, assuming that individuals
can be infected any number of times, but only the first infection is symptomatic; or
to [36] in which the impact of different assumptions about infection-derived immunity
on disease dynamics is assessed.

In this paper, we consider an SIR epidemic model with secondary infections; af-
ter a primary infection, individuals have a strong transient immunity, at the end of
which they become partially immune (i.e., partially susceptible) and may contract the
disease again. A secondary infection provides a complete immunity, which, however,
decays with time to partial immunity; this too decays with time to complete suscep-
tibility. The model is described in detail in section 2. Here it suffices to say that the
model involves three different time scales: a fast time-scale (of the order of days) for
the infections, an intermediate time-scale (of the order of months) for the transient
immunity after a primary infection, and a slow time-scale (of the order of years) in
which complete or partial immunity are lost. Two important parameters determining
the epidemic dynamics are \nu , the relative susceptibility of partially immune individ-
uals, and \alpha the relative infectiousness of secondary infections. If \nu = 0, secondary
infections are impossible and the model reduces to an SIRS (Susceptible - Infected -
Recovered - Susceptible) model (with gamma-distributed immune period); if \alpha = 0,
secondary infections do not contribute to the force of infection, and the model reduces
to an SIRWS (Susceptible - Infected - Recovered - Waning immunity - Susceptible)
with immunity waning and boosting, except that after a primary infection, individuals
are only weakly immune.

In a recent paper [49], the authors consider a model allowing for secondary infec-
tions, with assumptions very similar to ours. The differences in the assumptions are
that in [49] \nu is equal to 1 (no difference in susceptibility between susceptible and par-
tial immune individuals) and immunity does not wane; on the other hand, the authors
consider host demography (which we neglect for the sake of simplicity). Especially,
the main focus of [49] is the numerical exploration of model solutions, and numerical
bifurcation analysis. The focus of the present paper is instead on exploiting the dif-
ferences in time-scales to gather an analytical understanding of the model dynamics.

It has to be noted that primary and secondary infections are usually considered
in models with multiple strains [3, 1, 31], which, under conditions of symmetry reduce
to models very similar to the one we consider here.

The presence of very different time-scales is typical of epidemic models. Consider,
for instance, models which include both disease and demographic dynamics: typically,
infectious periods have a much shorter duration than the average lifespan of the
individuals in the population (weeks versus years) [5, 25, 26]. Individuals behavior
or mobility may also evolve much faster than epidemics; several papers focus on this,
both in continuous [13, 19, 48] and discrete time [10, 11]. As a further example, in
vector-borne diseases the time scale associated with the vector dynamics is typically
faster than host dynamics; this difference is taken into account in some recent papers
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GEOMETRIC ANALYSIS OF SIRS WITH SECONDARY INFECTIONS 663

[2, 44, 45] in which the authors perform the analysis using both the Quasi-Steady-State
Approximation (QSSA) and Geometric Singular Perturbation Theory (GSPT).

The existence of different time scales is exploited, in a context somewhat similar
to the present paper, in [44]; there a two-strain host-vector model is considered,
leading (under some simplifying assumptions, such as the irrelevance of the order of
infections) to a very high-dimensional system ([44], 11 equations); a dimensionality
reduction is then obtained through a quasi-steady state approximation, exploiting a
natural difference in time scales between host and vector dynamics.

In this paper, we focus on the interplay between the three time scales involved in
the system, using techniques from GSPT. A thorough description of the techniques
we use can be found in [27, 32]; for a concise introduction, we refer to the introductory
sections of [25]. As far as we know, this is the first epidemic model in which three time-
scales are identified and exploited in the analysis. This made it possible to identify
regions of the state space in which a second epidemic follows a first one over a time
scale of months, because of the loss of temporary immunity, and others in which a
longer interval (of the order of years) is expected before a second epidemic, since loss
of long-term immunity is required in that region.

This paper is organized as follows. In section 2, we introduce and describe a
compartmental model for SIRS diseases with secondary infections. In section 3, we
first study the (local and global) stability of the Disease-Free Equilibrium (DFE) in
terms of the Basic Reproduction Number \scrR 0, appropriately defined. Then, we discuss
the existence of endemic equilibria of the system, finding the conditions under which
the system admits either a unique positive equilibrium or two. In section 4 we study
the fast, intermediate, and slow dynamics of the model, respectively, in the context of
GSPT. In particular, in section 4.4 we introduce the entry-exit function and we give
conditions under which the system enters the slow time scale or re-enters the fast scale
from the intermediate one. In section 5 we define two discrete maps which summarize
the behavior of the system. The first describes the fast scale, the second describes
only the intermediate or the intermediate and the slow scales, depending on the cases.
Section 6 is devoted to numerical explorations. In particular, in section 6.1 we carry
out the numerical bifurcation analysis on the system and in section 6.2 we perform
numerical simulations in the case in which the systems admits both the Disease-Free
Equilibrium and two endemic equilibria to illustrate the basins of attactions of the
equilibria. We conclude the paper with a discussion in section 7.

2. The model. In this section, we propose a novel compartmental model for
SIRS infections with secondary infections. We partition the total population in six
compartments, with respect to an ongoing epidemic:

\bullet S represents the totally susceptible individuals;
\bullet I represents individuals with a primary infection;
\bullet T represents the temporarily immune individuals, who recently recovered

from a primary infection;
\bullet P represents the partially susceptible individuals, who have already recovered

from a primary infection and lost the transient immunity;
\bullet Y represents individuals with a secondary infection;
\bullet R represents individuals who have recovered from a second infection, and are

completely immune.
For the sake of simplicity, we do not consider demography in our model. We denote
with N = S + I + T +P + Y +R the total population. The model (see Figure 2.1) is
described by the following system of ODEs:

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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664 KAKLAMANOS, PUGLIESE, SENSI, AND SOTTILE

\beta 
S
(I

+
\alpha 
Y
)

\delta \varepsilon \nu \beta P (I + \alpha Y )

\gamma 1
TI

P Y

R

\delta \varepsilon \gamma 2\varepsilon 

S

Fig. 2.1. Flow for system (2.2). Notice that in the lim\varepsilon \rightarrow 0, the SIT (totally Susceptible -
primary Infected - Temporarily immune) and PYR (Partially susceptible - secondary infected -
Recovered and completely immune) groups are decoupled. Indeed, the only way to go from one group
to the other is through \scrO (\varepsilon ) passage, as highlighted by the red parameters.

S\prime (t) =  - \beta 
S(t)

N(t)
(I(t) + \alpha Y (t)) + \eta 1P (t),

I \prime (t) = \beta 
S(t)

N(t)
(I(t) + \alpha Y (t)) - \gamma 1I(t),

T \prime (t) = \gamma 1I(t) - \varepsilon T (t),

P \prime (t) = \varepsilon T (t) - \nu \beta 
P (t)

N(t)
(I(t) + \alpha Y (t)) - \eta 1P (t) + \eta 2R(t),(2.1)

Y \prime (t) = \nu \beta 
P (t)

N(t)
(I(t) + \alpha Y (t)) - \gamma 2Y (t),

R\prime (t) = \gamma 2Y (t) - \eta 2R(t),

where the \prime indicates the derivative with respect to the fast time scale t. The param-
eters of the system are the following:

\bullet \beta is the rate at which the totally susceptible are infected by individuals in a
primary infection;

\bullet \alpha is the relative infectiousness of individuals in a secondary infection, com-
pared to those in a primary infection;

\bullet \nu is the relative susceptibility of partially immune individuals, compared to
susceptibles;

\bullet \gamma 1 is the recovery rate from primary infections, meaning on average a primary
infection lasts 1/\gamma 1;

\bullet \gamma 2 is the recovery rate from secondary infections, which on average last 1/\gamma 2;
\bullet 0< \varepsilon \ll 1 is the loss rate of temporary immunity;
\bullet 0< \eta 1 \ll \varepsilon is the loss rate of partial protection (P \rightarrow S);
\bullet 0< \eta 2 \ll \varepsilon is the loss rate of total protection (R\rightarrow P ).

All the parameters are assumed to be positive. Since the total population remains
constant, as can be seen by observing N \prime (t) = 0, we can divide all variables by N ,
which is equivalent to assuming N = 1.

To present the three time scales involved more clearly, we substitute \eta 1 = \eta 2 = \delta \varepsilon ,
with 0 < \delta , \varepsilon \ll 1, having assumed, for the sake of simplicity, \eta 1 = \eta 2. The system is
now in nonstandard GSPT form with three-time scales, with \varepsilon and \delta representing our
perturbation parameters, and hence the ratios between the time scales involved:

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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GEOMETRIC ANALYSIS OF SIRS WITH SECONDARY INFECTIONS 665

S\prime (t) =  - \beta S(t)(I(t) + \alpha Y (t)) + \delta \varepsilon P (t),

I \prime (t) = \beta S(t)(I(t) + \alpha Y (t)) - \gamma 1I(t),

T \prime (t) = \gamma 1I(t) - \varepsilon T (t),(2.2)

P \prime (t) = \varepsilon T (t) - \nu \beta P (t)(I(t) + \alpha Y (t)) - \delta \varepsilon P (t) + \delta \varepsilon R(t),

Y \prime (t) = \nu \beta P (t)(I(t) + \alpha Y (t)) - \gamma 2Y (t),

R\prime (t) = \gamma 2Y (t) - \delta \varepsilon R(t).

System (2.2) evolves in the biologically relevant region

\~\Delta := \{ (S, I,T,P,Y,R)\in \BbbR 6 | S, I,T,P,Y,R\geq 0, S + I + T + P + Y +R= 1\} ,(2.3)

assuming initial conditions (S0, I0, T0, P0, Y0,R0)\in \~\Delta .
In the following, we drop the dependence of the compartments S, I, T , P , Y , and

R on the time variables for ease of notation. We specify whenever the time variable
is changed as a consequence of time rescaling.

Indeed, one can notice that system (2.1) evolves on three distinct time scales: the
fast time scale t, an intermediate time scale \tau 1 = \varepsilon t, and a slow time scale \tau 2 = \delta \tau 1 =
\delta \varepsilon t.

Since the total population is constant, we can reduce the dimensionality of the
system from 6 to 5; for consistency with [25, 26], we remove the R compartment,
substituting it via R= 1 - S  - I  - T  - P  - Y . System (2.2) then becomes

S\prime =  - \beta S(I + \alpha Y ) + \delta \varepsilon P,

I \prime = \beta S(I + \alpha Y ) - \gamma 1I,

T \prime = \gamma 1I  - \varepsilon T,(2.4)

P \prime = \delta \varepsilon + \varepsilon T (1 - \delta ) - \nu \beta P (I + \alpha Y ) - \delta \varepsilon (S + I + 2P + Y ),

Y \prime = \nu \beta P (I + \alpha Y ) - \gamma 2Y.

System (2.4) evolves in the biologically relevant region

\Delta := \{ (S, I,T,P,Y )\in \BbbR 5 | S, I,T,P,Y \geq 0, S + I + T + P + Y \leq 1\} ,(2.5)

as proven in the following proposition.

Proposition 2.1. The set \Delta (2.5) is forward invariant for orbits of system (2.4).

Proof. It is easy to see that, for X = S, I,T,P,Y , one has

X \prime | X=0 \geq 0.

Moreover, if we write Z = S + I + T + P + Y , we have

Z \prime | Z=1 = - \gamma 2Y \leq 0,

which was to be expected, since the only outwards flow from Z is  - \gamma 2Y from the Y
to the R compartment; recall Figure 2.1. This concludes the proof.

In the following, we almost always work on the 5-dimensional system (2.4); how-
ever, sometimes, e.g., in Theorem 3.4, it will be useful to consider the last equation
of (2.2).
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666 KAKLAMANOS, PUGLIESE, SENSI, AND SOTTILE

3. Equilibria and stability.

3.1. Disease-free equilibrium. The DFE of (2.4), i.e., the equilibrium in
which I = Y = 0, can be computed as x0 = (S0, I0, T 0, P 0, Y 0) = (1,0,0,0,0) from
easy calculations. We now use the Next Generation Matrix method [50] to find the
value of the Basic Reproduction Number, denoted by \scrR 0.

Proposition 3.1. The Basic Reproduction Number of system (2.4) is \scrR 0 =
\beta 
\gamma 1
.

Proof. Recall that system (2.4) has two disease compartments, namely I and Y .
We can write

dI

dt
=\scrF 1(x) - \scrV 1(x),

dY

dt
=\scrF 2(x) - \scrV 2(x),

where x= (S, I,T,P,Y ) and

\scrF 1(x) = \beta S(I + \alpha Y ), \scrV 1(x) = \gamma 1I,

\scrF 2(x) = \nu \beta P (I + \alpha Y ), \scrV 2(x) = \gamma 2Y.

Thus we obtain

F =

\left(     
\partial \scrF 1

\partial I

\bigl( 
x0
\bigr) \partial \scrF 1

\partial Y

\bigl( 
x0
\bigr) 

\partial \scrF 2

\partial I

\bigl( 
x0
\bigr) \partial \scrF 2

\partial Y

\bigl( 
x0
\bigr) 
\right)     =

\biggl( 
\beta \beta \alpha 
0 0

\biggr) 
and V =

\left(     
\partial \scrV 1

\partial I

\bigl( 
x0
\bigr) \partial \scrV 1

\partial Y

\bigl( 
x0
\bigr) 

\partial \scrV 2

\partial I

\bigl( 
x0
\bigr) \partial \scrV 2

\partial Y

\bigl( 
x0
\bigr) 
\right)     

(3.1)

=

\biggl( 
\gamma 1 0
0 \gamma 2

\biggr) 
.

Therefore, the next generation matrix, defined as M := FV  - 1, is

M =

\left(   
\beta 

\gamma 1

\beta \alpha 

\gamma 2

0 0

\right)   ,(3.2)

from which

\scrR 0 := \rho (M) =
\beta 

\gamma 1
,(3.3)

where \rho (\cdot ) denotes the spectral radius of a matrix.

Remark 1. Notice that the expression of the Basic Reproduction Number depends
only on the first S \rightarrow I \rightarrow T flow and not to the second part of the dynamics. However,
as we will see later, in the fast time-scale we identify an expression of a second, ``fast""
Basic Reproduction Number, denoted by \scrR f

0 , which depends also on the second flow
P \rightarrow Y \rightarrow R.

As a direct consequence of Proposition 3.1, we have the following lemma.

Lemma 3.2. The DFE is locally asymptotically stable if \scrR 0 < 1, and unstable if
\scrR 0 > 1.
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GEOMETRIC ANALYSIS OF SIRS WITH SECONDARY INFECTIONS 667

Proof. The Jacobian matrix of (2.4) computed in the DFE x0 is

J| x0
=

\left(      
0  - \beta 0 \delta \varepsilon  - \beta \alpha 
0 \beta  - \gamma 1 0 0 \beta \alpha 
0 \gamma 1  - \varepsilon 0 0

 - \delta \varepsilon  - \delta \varepsilon \varepsilon  - \delta \varepsilon  - 2\delta \varepsilon  - \delta \varepsilon 
0 0 0 0  - \gamma 2

\right)      .

The eigenavalues of J| x0 can be easily computed as

\lambda 1 = - \gamma 2, \lambda 2 = - \gamma 1(1 - \scrR 0), \lambda 3 = - \varepsilon , \lambda 4 = \lambda 5 = - \delta \varepsilon .

Thus, if \scrR 0 < 1, all the eigenvalues are negative and thus the DFE is locally asymp-
totically stable. If, instead, \scrR 0 > 1, \lambda 2 > 0 and the DFE loses local stability.

With an additional condition on the product of the secondary infection parameters
\alpha \nu , we are able to prove the following global stability result for the DFE.

Theorem 3.3. Assume that \gamma 1 \leq \gamma 2, and that \scrR 0 < 1. Then, the DFE is globally
exponentially stable if \alpha \nu < 1

\scrR 0
.

Proof. Clearly, by assumption 1
\scrR 0

> 1. Let us consider

(I + \alpha Y )\prime = \beta (I + \alpha Y ) - \gamma 1I + \alpha \nu \beta P (I + \alpha Y ) - \gamma 2\alpha Y

\leq (I + \alpha Y ) (\beta (S + \alpha \nu P ) - \gamma 1)

= \beta (I + \alpha Y )

\biggl( 
S + \alpha \nu P  - 1

\scrR 0

\biggr) 
.

We now distinguish between two cases.
If \alpha \nu \leq 1, then

S + \alpha \nu P \leq S + P \leq 1.

Thus

(I + \alpha Y )\prime \leq \beta (I + \alpha Y )

\biggl( 
1 - 1

\scrR 0

\biggr) 
,

and

lim
t\rightarrow \infty 

I + \alpha Y = 0 exponentially, since \scrR 0 < 1.

If, instead, \alpha \nu > 1, then

S + \alpha \nu P \leq S + \alpha \nu (1 - S) = S(1 - \alpha \nu ) + \alpha \nu \leq \alpha \nu .

Thus

(I + \alpha Y )\prime \leq \beta (I + \alpha Y )

\biggl( 
\alpha \nu  - 1

\scrR 0

\biggr) 
,

and it follows that

lim
t\rightarrow \infty 

I + \alpha Y = 0 exponentially if \alpha \nu <
1

\scrR 0
.

On the set \{ I = Y = 0\} , T , P and R converge to 0, and S \rightarrow 1. We can conclude that
the DFE is exponentially stable if \alpha \nu < 1

\scrR 0
.

Remark 2. As a consequence of Lemma 3.2, the DFE is always locally stable
when \scrR 0 < 1. However, even limiting ourselves to the case \gamma 1 = \gamma 2, when \alpha \nu > 1 and
1/\alpha \nu \leq \scrR 0 < 1, Theorem 3.3 does not apply. Indeed, it is possible, as shown in the
next section, that in such cases there exist also endemic equilibria. In sections 6.1
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668 KAKLAMANOS, PUGLIESE, SENSI, AND SOTTILE

and 6.2, we will explore how the basins of attraction strongly depend on the product
\alpha \nu , assuming all the other parameters to be fixed.

3.2. Endemic equilibria. We now discuss the existence of Endemic Equilibria
(EE) of system (2.4), i.e., the equilibria in which I,Y > 0.

Theorem 3.4. We distinguish the following cases:
\bullet Assume \scrR 0 > 1. Then the system (2.4) has a unique positive (i.e., endemic)
equilibrium.

\bullet Assume \scrR 0 < 1. Then system (2.4) admits, for \delta \approx 0, two positive equilibria
if and only if the following conditions hold:\left\{         

\alpha \nu >
\gamma 2
\gamma 1

,

\scrR 0 > 2
\gamma 2

\gamma 1\alpha \nu 

\Biggl( 
1

2
 - \gamma 2

\gamma 1\alpha \nu 
+

\sqrt{} 
\nu  - \gamma 2

\gamma 1\alpha 

\biggl( 
1 - \gamma 2

\gamma 1\alpha 

\biggr) \Biggr) 
.

(3.4)

The proof of Theorem 3.4 can be found in the supplementary material (127609 2
supp 551473 s5nxyd sc.pdf [local/web 5.44MB]).

We consider only the limiting case \delta \approx 0; if one wished to consider the case \delta > 0,
the computations in the proof could be changed accordingly, albeit resulting in much
more cumbersome formulas.

Remark 3. Clearly, when there are EE, the DFE cannot be globally attractive.
A natural question is therefore if the conditions of Theorem 3.3 are exactly those
that exclude the existence of EE. If we consider the simple case \gamma 1 = \gamma 2 and \nu = 1,
Theorem 3.3 states that the DFE is globally stable for \scrR 0 < min\{ 1,1/\alpha \} , while
Theorem 3.4 states that there are EE if \alpha > 1 and

\scrR 0 \geq 
1

\alpha 
+

2

\alpha 

\Biggl( \sqrt{} 
1 - 1

\alpha 
+

1

\alpha 2
 - 1

\alpha 

\Biggr) 
.

Since it is not difficult to see that the right-hand side of the above expression is larger
than 1/\alpha (if \alpha > 1), we see there are values of \scrR 0 for which we cannot either prove
or disprove the global stability of the DFE.

4. Multiple-timescale analysis. In this section, we analyze the multiple-
timescale structure of system (2.4). In what follows, we restrict our analysis to the
case where \scrR 0 > 1. Our motivation is to decompose the dynamics to components that
evolve on different timescales, and remark on phenomena of delayed loss of stability
near slow manifolds, on which we elaborate at the end of this section.

4.1. Fast formulation. Expressing system (2.4) as

z\prime =H(z) + \varepsilon G(z;\varepsilon , \delta ),(4.1)

where

z =

\left(      
S
I
T
P
Y

\right)      , H(z) =

\left(      
 - \beta S(I + \alpha Y )

\beta S(I + \alpha Y ) - \gamma 1I
\gamma 1I

 - \nu \beta P (I + \alpha Y )
\nu \beta P (I + \alpha Y ) - \gamma 2Y

\right)      ,

G(z;\varepsilon , \delta ) =

\left(      
\delta P
0

 - T
\delta + T (1 - \delta ) - \delta (S + I + 2P + Y )

0

\right)      ,
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gives a slow-fast system written in the nonstandard form of GSPT; see [21, 51] for
details.

Taking \varepsilon = 0 in system (2.4), or, equivalently, in (4.1), we obtain the fast subsystem

S\prime =  - \beta S(I + \alpha Y ),

I \prime = \beta S(I + \alpha Y ) - \gamma 1I,

T \prime = \gamma 1I,

P \prime =  - \nu \beta P (I + \alpha Y ),

Y \prime = \nu \beta P (I + \alpha Y ) - \gamma 2Y.

(4.2)

The 1-critical manifold of (4.1) is defined as the set of equilibria of (4.2), i.e., it is
given by the set

\scrC 1 := \{ (S, I,T,P,Y )\in \BbbR 5 | I = Y = 0\} .(4.3)

We remark that, away from the 1-critical manifold (4.3) and for S \not \in \scrO (\varepsilon ), the com-
ponent H(z) of (4.1) is \scrO (1).

We emphasize that, since we are analyzing a system which evolves on three time
scales, we adopt the notation used in [12, 29] and call the critical manifold in the fast-
intermediate time scales 1-critical, and the one in the intermediate-slow 2-critical.
From (4.2) and Figure 2.1 it is apparent that, at the limit \varepsilon = 0, there is no flow
between the first three compartments (S, I, T ) and the last two (P , Y ), although the
two resulting subsystems are not decoupled, due to I and Y still playing a role in both.
This implies that the sum S+ I +T remains constant, whereas P +Y decreases over
time, as it can be easily checked by summing the corresponding ODEs from system
(4.2).

In the following, for a given solution of (4.2), we denote by

X\infty = lim
t\rightarrow +\infty 

X(t), X = S, I,T,P,Y,(4.4)

the limit of the corresponding variable on \scrC 1 as t \rightarrow \infty , i.e., under the fast flow
(4.2), when this limit exists. Recall that we denote with X0 the corresponding initial
condition at t= 0, i.e., at the beginning of the fast flow.

Proposition 4.1. Trajectories of system (4.2) converge to \scrC 1 (4.3) as t\rightarrow +\infty .

Proof. We apply strategies similar to [6, 9]. Recall that trajectories of system
(2.4), and hence of system (4.2), evolve on the compact set \Delta , defined in (2.5). Since
S\prime < 0, there exists S\infty \geq 0; similarly from S\prime + I \prime < 0, there exists (S + I)\infty , and
hence I\infty \geq 0.

Now, integrating S\prime + I \prime from system (4.2), we obtain

 - \infty <S\infty + I\infty  - S0  - I0 =

\int +\infty 

0

(S\prime (s) + I \prime (s))ds= - \gamma 1

\int +\infty 

0

I(s)ds < 0;

hence I\infty = 0. Similarly, by integrating P \prime + Y \prime < 0, we can conclude that Y\infty = 0.
Hence, we have

S\infty = S0 exp

\biggl( 
 - \beta 

\int \infty 

0

(I(t) + \alpha Y (t))dt

\biggr) 
> 0;

similarly, P \rightarrow P\infty > 0 and T \rightarrow T0 + S0  - S\infty .

The values of S\infty and P\infty can actually be computed, as in [6]. We do so in the
following lemma.
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670 KAKLAMANOS, PUGLIESE, SENSI, AND SOTTILE

Lemma 4.2. The limit value under the fast flow (4.2) S\infty is the unique solution
in (0, S0) of

log

\biggl( 
S\infty 

S0

\biggr) 
 - \beta 

\left(  S\infty  - S0

\gamma 1
+ \alpha 

P0

\Bigl( 
S\infty 
S0

\Bigr) \nu 
 - P0

\gamma 2

\right)  = - \beta 

\biggl( 
I0
\gamma 1

+ \alpha 
Y0

\gamma 2

\biggr) 
,(4.5)

whereas P\infty is obtained as

P\infty = P0

\biggl( 
S\infty 

S0

\biggr) \nu 

.(4.6)

Proof. Indeed,

\nu 
d

dt
log(S) =

d

dt
log(P ) =\Rightarrow 

\biggl( 
S

S0

\biggr) \nu 

=
P

P0
.

Hence, taking the limit as t\rightarrow +\infty , we obtain (4.6).
Furthermore,

\beta 
d

dt

\biggl( 
S + I

\gamma 1
+ \alpha 

P + Y

\gamma 2

\biggr) 
= - \beta (I + \alpha Y ) =

d

dt
log(S),

which implies

log

\biggl( 
S

S0

\biggr) 
= \beta 

\biggl( 
S + I  - S0  - I0

\gamma 1
+ \alpha 

P + Y  - P0  - Y0

\gamma 2

\biggr) 
.

Taking the limit as t\rightarrow +\infty , recalling that the solutions converge to the manifold \scrC 1,
and using (4.6) we get (4.5).

To show the uniqueness (known from the general result by Andreasen [6]), we
introduce

L(x) = log

\biggl( 
x

S0

\biggr) 
 - \beta 

\left(  x - S0

\gamma 1
+ \alpha 

P0

\Bigl( 
x
S0

\Bigr) \nu 
 - P0

\gamma 2

\right)  .(4.7)

Then,

L\prime (x) =
1

x
 - \beta 

\gamma 1
 - \beta \alpha 

P0\nu x
\nu  - 1

\gamma 2S\nu 
0

=:
1

x
l(x),(4.8)

where

l(x) = 1 - \beta 

\gamma 1
x - \beta 

\gamma 2
\alpha \nu P0

\biggl( 
x

S0

\biggr) \nu 

.(4.9)

It is clear that l is a decreasing function; hence it has a unique 0. From (4.8), we see
that L has a unique extremum in x> 0 that has to be a maximum. From L(0+) = - \infty 
and L(S0) = 0 we conclude that (4.5) has a unique solution in (0, S0).

Notice that

L\prime (S0) =
1

S0

\biggl( 
1 - \beta 

\gamma 1
S0  - 

\beta 

\gamma 2
\alpha \nu P0

\biggr) 
;
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hence

L\prime (S0)\lessgtr 0 \Leftarrow \Rightarrow \scrR f
0 :=

\beta 

\gamma 1
S0 +

\beta 

\gamma 2
\alpha \nu P0 \gtrless 1.(4.10)

Therefore, the equation L(S\infty ) = 0 has a unique solution in (0, S0) if \scrR f
0 > 1, while it

has no solutions in (0, S0) if \scrR f
0 \leq 1.

This means that if we consider the limiting case of (4.2) with I0, Y0 \approx 0 (which
is the typical case both when a new pathogen is introduced in a population and, as
we will see, when the system re-enters the fast time scale), we have S\infty \ll S0 (thus
an epidemic) only if \scrR f

0 > 1.
We can therefore limit ourselves to consider the case in which \scrR f

0 > 1. After the
fast flow, solutions ``land"" on the attracting part of the critical manifold \scrC 1, meaning

\beta 

\gamma 1
S\infty +

\beta 

\gamma 2
\alpha \nu P\infty < 1,(4.11)

as we show in the following section.
Finally, we can rewrite the I,Y equations representing infected individuals of the

fast system (4.2) in vector form:\biggl( 
I
Y

\biggr) \prime 

=

\biggl( 
\beta S  - \gamma 1 \alpha \beta S
\nu \beta P \alpha \nu \beta P  - \gamma 2

\biggr) \biggl( 
I
Y

\biggr) 
=:A

\biggl( 
I
Y

\biggr) 
.

We are only interested in these variables, since the eigenvalues associated to the
remaining three variables will all be 0 on the 1-critical manifold, since we have already
taken the limit \varepsilon \rightarrow 0 [51]. To compute the eigenvalues of the matrix A, we observe
that the characteristic equation of A is as follows:

\lambda 2 + \lambda (\gamma 1 + \gamma 2  - \alpha \nu \beta P  - \beta S) + \gamma 1\gamma 2  - \alpha \nu \beta \gamma 1P  - \beta \gamma 2S = 0.(4.12)

To make the analysis less cumbersome, we will assume in what follows \gamma 1 = \gamma 2 =: \gamma .
Under this assumption, (4.12) reduces to

\lambda 2 + \lambda (2\gamma  - \alpha \nu \beta P  - \beta S) + \gamma 2  - \alpha \nu \beta \gamma P  - \beta \gamma S = 0,

and thus

\lambda 1,2 =
\beta (\alpha \nu P + S) - 2\gamma \pm \beta (\alpha \nu P + S)

2
,

from which we obtain the two eigenvalues

\lambda 1 = - \gamma and \lambda 2 = - \gamma + \beta (\alpha \nu P + S).(4.13)

Notice that \lambda 1 < \lambda 2 for S,P > 0. This separation of eigenvalues will be relevant
in the analysis of phenomena of delayed loss of stability, which are introduced and
described in section 4.4.

4.2. Intermediate formulation. In this subsection, we analyze the evolution
of system (2.4) on the intermediate time scale \tau 1 = \varepsilon t.

Consider (2.4), and assume that a solution reached an \scrO (\varepsilon ) neighborhood of the
1-critical manifold \scrC 1 (4.3). We rescale the infectious compartment by I = \varepsilon m, Y = \varepsilon n,
and obtain
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672 KAKLAMANOS, PUGLIESE, SENSI, AND SOTTILE

S\prime =  - \varepsilon \beta S(m+ \alpha n) + \delta \varepsilon P,

m\prime = \beta S(m+ \alpha n) - \gamma m,

T \prime = \varepsilon \gamma m - \varepsilon T,

P \prime = \varepsilon \delta + \varepsilon T (1 - \delta ) - \varepsilon \nu \beta P (m+ \alpha n) - \delta \varepsilon (S + \varepsilon m+ 2P + \varepsilon n),

n\prime = \nu \beta P (m+ \alpha n) - \gamma n.

We then apply a rescaling to the time coordinate, bringing the system to the inter-
mediate time scale \tau 1 = \varepsilon t:

S\wedge =  - \beta S(m+ \alpha n) + \delta P,

\varepsilon m\wedge = \beta S(m+ \alpha n) - \gamma m,

T\wedge = \gamma m - T,

P\wedge = \delta + T (1 - \delta ) - \nu \beta P (m+ \alpha n) - \delta (S + \varepsilon m+ 2P + \varepsilon n),

\varepsilon n\wedge = \nu \beta P (m+ \alpha n) - \gamma n,

letting \wedge denote the derivative with respect to the intermediate time \tau 1.
If we look at these equations on the 1-critical manifold, now determined by m=

n= 0, we obtain the linear subsystem

S\wedge = \delta P,

T\wedge =  - T,(4.14)

P\wedge = \delta + T (1 - \delta ) - \delta (S + 2P ),

where S is now \delta -slow, and P , T are fast. The eigenvalues of the Jacobian matrix of
(4.14) are 0,  - 1,  - \delta .

We now take \delta = 0:

S\wedge = 0,

T\wedge =  - T,

P\wedge = T.

The 2-critical manifold is then

\scrC 2 := \{ (S, I,T,P,Y )\in \scrC 1 | T = 0\} = \{ (S, I,T,P,Y )\in \BbbR 5 | I = Y = T = 0\} .(4.15)

In the intermediate time scale, T and P evolve according to the following formulas:

T (\tau 1) = T\infty e - \tau 1 ,

P (\tau 1) = P\infty + T\infty (1 - e - \tau 1).
(4.16)

Hence, we have T \rightarrow 0, P \rightarrow P\infty + T0 + S0  - S\infty = P\infty + T\infty as \tau 1 \rightarrow \infty . Moreover, I
and Y (or, equivalently, m and n) remain 0, whereas S remains at its limit value S\infty 
from the fast time scale.

4.3. Slow formulation. By introducing the new variables \delta \varepsilon v = I, \delta \varepsilon w = Y ,
and \delta u= T , system (2.4) becomes

S\prime = \delta \varepsilon ( - \beta S(v+ \alpha w) + P ) ,

\delta \varepsilon v\prime = \delta \varepsilon \beta S(v+ \alpha w) - \delta \varepsilon \gamma 1v,

\delta u\prime = \delta \varepsilon (\gamma 1v - u),(4.17)

P \prime = \delta \varepsilon (1 + u(1 - \delta ) - \nu \beta P (v+ \alpha w) - (S + \delta \varepsilon v+ 2P + \delta \varepsilon w)),

\delta \varepsilon w\prime = \delta \varepsilon \nu \beta P (v+ \alpha w) - \delta \varepsilon \gamma 2w,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

05
/1

7/
24

 to
 1

93
.2

05
.2

10
.7

7 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



GEOMETRIC ANALYSIS OF SIRS WITH SECONDARY INFECTIONS 673

with S,P slow, v,w fast, and u intermediate. Rescaling to a slow time variable
\tau 2 = \delta \varepsilon t, we obtain

\.S = ( - \beta S(v+ \alpha w) + P ) ,

\delta \varepsilon \.v= \beta S(v+ \alpha w) - \gamma 1v,

\varepsilon \.u= (\varepsilon \gamma 1v - u),(4.18)

\.P = 1+ u(1 - \delta ) - \nu \beta P (v+ \alpha w) - (S + \delta \varepsilon v+ 2P + \delta \varepsilon w),

\delta \varepsilon \.w= \nu \beta P (v+ \alpha w) - \gamma 2w,

where the overdot denotes the derivative with respect to the slow time \tau 2.
The evolution of S and P on 2-critical manifold (4.15) is given by

\.S = P,

\.P = 1 - S  - 2P.(4.19)

System (4.19) is linear and can be solved explicitly, with initial conditions (S,P ) =
(S\infty , P\infty + T\infty ). It is more convenient to perform the computations by including the
variable R (recall system (2.2)), so that

R(\tau 2) =R\infty e - \tau 2 ,

(4.20)

P (\tau 2) = (P\infty + T\infty )e - \tau 2 + \tau 2R\infty e - \tau 2 = (1 - S\infty )\tau 2e
 - \tau 2 + (P\infty + T\infty )(1 - \tau 2)e

 - \tau 2 ,

S(\tau 2) = 1 - (P\infty + T\infty )e - \tau 2  - R\infty (1 + \tau 2)e
 - \tau 2

= 1 - (1 - S\infty )(1 + \tau 2)e
 - \tau 2 + (P\infty + T\infty )\tau 2e

 - \tau 2 .

Hence, in this time scale, S \rightarrow 1, while P,R\rightarrow 0.

4.4. Delayed loss of stability and entry-exit functions. As shown in at
the end of subsection 4.1, there exists a region across which the 1-critical manifold
\scrC 1 switches from being asymptotically stable to being asymptotically unstable with
respect to the fast flow (4.2). It could then be the case that, when trajectories of the
perturbed system (2.4) with \varepsilon , \delta > 0 cross this region, instead of being immediately
repelled away from the vicinity of \scrC 1, they stay ``close"" to the unstable part until
the accumulated contraction has been balanced by the accumulated expansion. This
phenomenon is commonly referred to as delayed loss of stability, while a tool that can
be used to quantify the spatial or temporal point of escape from the vicinity of the
critical manifold is the so-called entry-exit function; see [17, 18, 37, 47] for details.

In this part, we are interested in distinguishing between trajectories that expe-
rience delayed loss of stability along the 1-critical manifold \scrC 1 without ``interacting""
with the 2-critical manifold \scrC 2, and the trajectories that experience delayed loss of sta-
bility along the 1-critical manifold \scrC 1 after ``interacting"" with the 2-critical manifold
\scrC 2; see Figure 4.1.

Below, we briefly outline some details about the phenomenon of delayed loss of
stability in a low-dimensional setting [17, 18]. We consider a planar system of the
form

x\prime = f(x, y, \varepsilon )x,

y\prime = \varepsilon g(x, y, \varepsilon ),
(4.21)

with (x, y) \in \BbbR 2, g(0, y,0) > 0, and sign(f(0, y,0)) = sign(y). Note that for \varepsilon = 0,
the y-axis consists of normally attracting/repelling equilibria if y is negative/positive,
respectively.
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674 KAKLAMANOS, PUGLIESE, SENSI, AND SOTTILE

C1

C2

O(1/ε)

O(1/εδ)

Fig. 4.1. Black plane: 1-critical manifold \scrC 1 = \{ I = Y = 0\} (a 3D manifold in \BbbR 5); red line:
2-critical manifold \scrC 2 = \{ I = Y = T = 0\} (a 2D manifold in \BbbR 5); green line: loss of hyperbolicity
line, where \lambda 2 = 0; blue line: above, condition (4.23) is satisfied, below it is not. We distinguish
between two cases: in the first, the fast flow (triple arrows) lands on \scrC 1, approaches \scrC 2 in a time
t = \scrO (1/\varepsilon ) (intermediate flow, double arrows), then flows along \scrC 2 for a time t = \scrO (1/\varepsilon \delta ) (slow
flow, single arrow), and finally exits a neighborhood of the 1-critical manifold. In the second one,
the fast flow lands close to the green line, and the entry-exit already happens on the intermediate
time scale (see section 4.4 and (4.26) for details).

y

x

x = x0

y0 p\varepsilon (y0)

Fig. 4.2. Visualization of the entry-exit map on the line x= x0.

Consider a horizontal line \{ x = x0\} , close enough to the y-axis to obey the
attraction/repulsion assumed above. An orbit of (4.21) that intersects such a line at
y= y0 < 0 (entry) reintersects it again (exit) at y= p\varepsilon (y0), as sketched in Figure 4.2.

As \varepsilon \rightarrow 0, the return map p\varepsilon (y0) to the horizontal line x= x0 approaches p0(y0)
given implicitly by

\int p0(y0)

y0

f(0, y,0)

g(0, y,0)
dy= 0.(4.22)

This construction can be generalized to higher-dimensional systems, such as the one
we are studying in this paper. For a more precise description of the planar case, we
refer to [17, 18] or the preliminaries of [25]. For more general theorems, we refer the
interested reader to [37, 39, 40, 47].

We remark that in many cases it is only possible to compute the exit time \tau E ,
rather than an exit point [25, 26]. Without delving too far in the precise details,
assume that the system is still (4.21), but with (x, y)\in \BbbR m+n and f(x, y, \varepsilon ) an m\times m
matrix. Assume that only one eigenvalue (let it be \lambda 1(s)) of f(0, y(s;y0),0) changes
its sign as s increases from 0 to \infty ; assume, moreover, that this eigenvalue is separated
from all the other eigenvalues for all values of s \in \BbbR . The exit time \tau E in the slow

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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(a) (b)

Fig. 4.3. A simulation of (2.4) starting from values (S,T,P ) = (0.1667,0.7333,0); panel (a)
shows S, P , and T versus time; panel (b) the solution in the 3-d phase space. We name the initial
values S\infty , P\infty , and T\infty , since they represent values reached at the end of the fast time scale with
I \approx Y \approx 0. The values of the parameters are \beta = 0.9, \alpha = 0.5, \nu = 0.7, \gamma 1 = \gamma 2 = 1/6, \delta = 1/20,
\varepsilon = 1/20. The double arrows indicate that the orbit is evolving on the intermediate time scale.

time scale can be, under some additional conditions, obtained through\int \tau E

0

\lambda 1(s)ds= 0.

Here y(s;y0) is the solution of

\.y= g(0, y,0), y(0) = y0,

and \lambda 1(s) is the principal eigenvalue of f(0, y,0) computed at y = y(s;y0). Finally, a
recent result was achieved in weakening the assumption of the eigenvalue separation,
providing a generalization of the known entry-exit formulae [28].

Below, we give conditions on S\infty , P\infty , and T\infty (recall (4.4)), to determine whether
a trajectory starting \varepsilon -close to the 1-critical manifold from S = S\infty , P = P\infty , and
T = T\infty experiences delayed loss of stability after approaching the 2-critical manifold
\{ I = Y = T = 0\} , entering the slow time scale, or if the corresponding trajectory
``switches back"" to the fast scale directly from the intermediate one. We remark that
if an orbit exhibits a slow passage close to \{ T = 0\} , the corresponding variable T
become exponentially small in \delta (i.e., T \approx e - K/\delta for some K > 0). For a visualization
of when this does not or does happen; see Figures 4.3 and 4.4, respectively.

Proposition 4.3. If

\beta (S\infty + \alpha \nu (P\infty + T\infty ))>\gamma ,(4.23)

then, for \varepsilon and \delta sufficiently small, the entry-exit phenomenon happens on the in-
termediate scale, i.e., T will not become exponentially small in \delta . If, on the other
hand,

\beta (S\infty + \alpha \nu (P\infty + T\infty ))\leq \gamma ,(4.24)

then the corresponding orbit enters a \scrO (\delta ) neighborhood of the 2-critical manifold
\{ I = Y = T = 0\} , T eventually becomes exponentially small in \delta , and the system
enters the slow flow.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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676 KAKLAMANOS, PUGLIESE, SENSI, AND SOTTILE

(a) (b)

Fig. 4.4. Same parameters as in Figure 4.3, except that here the initial values are (S,T,P ) =
(0.033,0.08,0.1). We name the initial values S\infty , P\infty , and T\infty , since they represent values reached
at the end of the fast time scale with I \approx Y \approx 0. The double arrows indicate that the orbit is evolving
on the intermediate time scale, whereas a single arrow indicates the slow time scale.

Proof. Recall that the eigenvalue which gives the change of stability of the 1-
critical manifold \{ I = Y = 0\} is \lambda 2 =  - \gamma + \beta (\alpha \nu P + S). We therefore need to check
whether

\int x

0
\lambda 2(s)ds = 0 has solutions x > 0. Using the explicit expressions with S

constant and P evolving according to (4.16), this implies studying the existence of a
value x> 0 such that\int x

0

( - \gamma + \beta S\infty + \beta \alpha \nu P\infty + \beta \alpha \nu T\infty (1 - e - s))ds= 0.

It is convenient to divide this expression by x and, computing explicitly the integral,
define

\varphi (x) =

\left\{    - \gamma + \beta S\infty + \beta \alpha \nu P\infty + \beta \alpha \nu T\infty  - \beta \alpha \nu T\infty 
(1 - e - x)

x
if x> 0,

 - \gamma + \beta S\infty + \beta \alpha \nu P\infty if x= 0.
(4.25)

We are thus looking for a positive root of \varphi (x) = 0. It is immediate to see that \varphi is
a continuous increasing function. Furthermore, from (4.11) we know that \scrR 0(S\infty +
\alpha \nu P\infty )< 1, i.e., \varphi (0)< 0. Finally, we have

lim
x\rightarrow +\infty 

\varphi (x) = - \gamma + \beta S\infty + \beta \alpha \nu P\infty + \beta \alpha \nu T\infty .

Hence, if (4.23) holds, there exists a unique positive root for \varphi . This implies that, for \varepsilon 
and \delta small enough, the entry-exit phenomenon already happens on the intermediate
scale, and the orbit will not reach a \scrO (\delta ) neighborhood of the 2-critical manifold
\{ I = Y = T = 0\} .

If instead, \beta (S\infty + \alpha \nu (P\infty + T\infty )) \leq \gamma , the equation \varphi (x) = 0 has no positive
solutions; this implies that the corresponding orbit eventually approaches a \scrO (\delta )
neighborhood of the 2-critical manifold \{ I = Y = T = 0\} , and the system enters the
slow flow.

The two cases presented in Proposition 4.3 are illustrated in Figures 4.3 and 4.4,
respectively.

In the former case, the exit from the intermediate time scale occurs at time tE ,
the unique positive root of \varphi , defined in (4.25).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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GEOMETRIC ANALYSIS OF SIRS WITH SECONDARY INFECTIONS 677

In the original time scale, the return time between one epidemic and the next one
is approximately equal, as \delta \rightarrow 0, to tE/\delta , since the time of an epidemic is negligible
in this limit.

In the latter case, as a consequence of analysis carried out in Proposition 4.3, the
exit time TE satisfies the equation

 - \gamma TE + \beta 

\int TE

0

(S(x) + \alpha \nu P (x))dx= 0.(4.26)

To elaborate further on this formula, notice that if the dynamics reach a neighbor-
hood of \scrC 2 in finite time, then the time it took to get there is \scrO (\delta ) with respect
to the time it will spend close to \scrC 2. Hence, assuming \delta is small enough, we can
ignore the intermediate time scale when computing the exit time see Figure 4.1 for a
visualization.

Because of (4.24) during the intermediate flow (4.14), the eigenvalues on the 2-
critical manifold \scrC 2 (4.15) are always negative. Hence, the 2-critical manifold does
not lose stability as part of the 1-critical manifold \scrC 1 (4.3), and orbits may leave the
2-critical manifold only when simultaneously leaving the 1-critical manifold as well.

Moreover, since S \rightarrow 1 on the slow time scale and \scrR 0 > 1 means \beta > \gamma , the
eigenvalue which provides the change of stability of the 1-critical manifold \lambda 2 (4.13)
will eventually become and remain positive under the slow flow, ensuring an exit.

5. The system as a sequence of discrete maps. We can summarize the
behavior of the system for \varepsilon , \delta \approx 0 through two maps, the first one describing the fast
scale, the second one either the intermediate (in case the systems exit from there to
the fast scale) or the intermediate plus slow scales (otherwise).

We assume that the system starts the fast scale at values of I0, Y0 \approx 0 and with
values of S0 and P0 such that \scrR f

0 > 1 (recall (4.10)). This condition can be usefully
rewritten as (S0, P0)\in \Lambda + by introducing the function

H(S,P ) :=
\beta 

\gamma 
(S + \alpha \nu P ) - 1,(5.1)

and the sets

\Lambda + = \{ (S,P )\in \BbbR 2
+ : S + P \leq 1, H(S,P )> 0\} ,

\Lambda  - = \{ (S,P )\in \BbbR 2
+ : S + P \leq 1, H(S,P )< 0\} ,

and \Lambda 0 = \{ (S,P )\in \BbbR 2
+ : S + P \leq 1, H(S,P ) = 0\} .

Under those conditions, the fast system converges to a point (S\infty , P\infty ) \in \Lambda  - ; these
values can be obtained by solving L(S\infty ) = 0, where L is defined in (4.7).

First, we denote by F = (F1, F2) this map from \Lambda + into \Lambda  - . In formulae, we
define F1(S,P ) equal to the smallest positive root of L(S) = 0, with L defined in
(4.7), while

F2(S,P ) = P

\biggl( 
F1(S,P )

S

\biggr) \nu 

.(5.2)
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Although the map F is defined only in \Lambda +, we can extend it with continuity to \Lambda 0

obtaining that all points of \Lambda 0 are fixed points.
Furthermore, during the fast phase T reaches the value T\infty = T0 + S0  - S\infty .
To include this third variable in the discrete map, we extend the sets \Lambda +, \Lambda  - ,

and \Lambda 0 to

\~\Lambda p = \{ (S,P,T )\in \BbbR 3
+ : S + P + T \leq 1, (S,P )\in \Lambda p\} 

with p=+,  - , or 0.
Then we consider the map \~F = ( \~F1, \~F2, \~F3) from \~\Lambda + into \~\Lambda  - defined through

\~F1(S,P,T ) = F1(S,P ), \~F2(S,P,T ) = F2(S,P ), \~F3(S,P,T ) = T + S  - F1(S,P ).

(5.3)

We then define a map \~G from \~\Lambda  - into \~\Lambda + that summarizes the changes in the
variables between the end of one epidemic and the start of the following one. The
function \~G is built through the two cases presented in Proposition 4.3.

Remember that, at the end of an epidemic, the system enters the intermediate
time-scale, during which P would increase towards the value P\infty + T\infty , while S does
not change. There are two possibilities, as noticed in section 4.4: either the system
eventually re-enters the region \Lambda + and exits the 1-critical manifold \scrC 1 at a time
given by the entry-exit map, or the point (S\infty , P\infty + T\infty ) \in \Lambda  - \cup \Lambda 0, in which case
the system will reach the 2-critical manifold \scrC 2. The first case occurs instead when
(S\infty , P\infty + T\infty )\in \Lambda +, which is equivalent to (4.23).

If (S\infty , P\infty , T\infty ) satisfies (4.23), then we can define \~G(S\infty , P\infty , T\infty ) through the
entry-exit map defined in section 4.2. Precisely, the exit time tE will be the root of
\varphi (tE) = 0 where \varphi is defined in (4.25).

Then

\~G1(S\infty , P\infty , T\infty ) = S\infty \~G2(S\infty , P\infty , T\infty )(5.4)

= P\infty + T\infty (1 - e - tE ) \~G3(S\infty , P\infty , T\infty ) = T\infty e - tE .

Note that the map \~G can also be defined if (S\infty , P\infty , T\infty ) \in \~\Lambda 0; in that case
tE = 0, so that all points in \~\Lambda 0 are fixed points of \~G.

On the other hand, if \beta (S\infty +\alpha \nu (P\infty +T\infty ))\leq \gamma , the system enters the slow time
scale close to (S = Sfin = S\infty , P = Pfin = P\infty +T\infty , T = 0) In this time-scale, the system
moves from he point (Sfin, Pfin) \in \Lambda  - to a point (S(TE), P (TE)) \in \Lambda +, where the
functions S(x) and P (x) are shown in (4.20) with P\infty = Pfin and R\infty = 1 - Sfin - Pfin,
while TE is found by solving (4.26).

In this case, the function \~G : \~\Lambda  - \rightarrow \~\Lambda + is defined through

\~G1(S,P,T ) = S(TE), \~G2(S,P,T ) = P (TE), \~G3(S,P,T ) = 0.(5.5)

In summary, we can summarize the behavior of the system between the start of
an epidemic and the start of the next one through a discrete map G \circ F where

\~F : \~\Lambda + \rightarrow \~\Lambda  - 

is defined through (5.3), while

\~G : \~\Lambda  - \rightarrow \~\Lambda +

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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GEOMETRIC ANALYSIS OF SIRS WITH SECONDARY INFECTIONS 679

(a) (b)

Fig. 5.1. (a) Comparison of the discrete mappings (dashed lines, subscript t) with the numerical
integration of system (2.4) (solid lines). Parameter values are \beta = 2, \alpha = 0.8, \gamma 1 = \gamma 2 = 1, \nu = 1.1,
\delta = 10 - 3, \varepsilon = 4.8\times 10 - 5; initial values are (S, I,T,P,Y ) = (0.999,10 - 5,10 - 3,0,10 - 5). The units in
the x-axis correspond to the intermediate time-scale \tau 1. (b) The infectives I and Y in the numerical
solution of system (2.4). Notice a big epidemic dominated by I at \tau 1 \approx 0, followed by two large
epidemics, dominated by Y at times \tau 1 < 5; afterwards, in the discrete approximation, the system
enters the slow time scale until a smaller epidemic at \tau 1 \approx 36, visible in the inset. This epidemic
corresponds to a ``dip"" in the time series of P , enlarged in the inset of (a).

has two possible definitions (see (5.4) or (5.5)) depending on whether (S\infty , P\infty +T\infty )
is in \Lambda + or not.

In Figure 5.1, we compare the singular solutions built through the discrete maps
to the numerical solutions of (2.4) computed with \delta and \varepsilon small. It appears that
indeed the singular solutions approximate well (2.4) for reasonable values of \delta and \varepsilon .

Thus we can see that, for a certain amount of time (which becomes longer as
\delta and \varepsilon get closer to 0), the system behavior can be described as a sequence of
epidemics, whose size and timing can be computed through the entry-exit maps.
Eventually, as the size of each epidemic decreases, the solutions no longer reach an
\scrO (\varepsilon ) neighborhood of the 1-critical manifold \scrC 1, so that the approximation through
discrete maps breaks down, and solutions converge to the endemic equilibrium.

6. Numerical simulations.

6.1. Bifurcation analysis. The bifurcation analysis of system (2.4) was carried
out with MATCONT [20]. We focus on the role of \beta , the infection rate of totally
susceptible individuals by first time infectious individuals, and its interplay with \alpha ,
the multiplicative parameter which distinguishes infectiousness of secondary versus
primary infections. We showcase how \beta influences the stability of the EE, and, in
particular, the value(s) of I at the equilibria.

From the analysis in section 3 we know that if \alpha \nu > 1, we can distinguish between
three parameter regions: for \scrR 0 < R\ast , the only equilibrium is the DFE (which we
proved to be globally stable when \scrR 0 < 1/\alpha \nu ); for R\ast < \scrR 0 < 1, the DFE is still
locally asymptotically stable, but there exist also two EE; for \scrR 0 > 1, the DFE is
unstable and there exists a unique endemic equilibrium.

The bifurcation analysis in Figure 6.1a illustrates these results, and also allows
one to study the stability of the EE. For \scrR 0 > 1 (corresponding to \beta > \beta T =
0.25), the unique endemic equilibrium is always asymptotically stable, while the
DFE is unstable; the DFE becomes asymptotically stable as \beta decreases through
\beta T with a transcritical (backward) bifurcation, giving rise to a branch of (unstable)
EE for \scrR 0 < 1; this branch turns around at \beta = \beta LP through a fold bifurcation.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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β

I

T

H
LP

(a)

β

α BT

BT
C

(b)

Fig. 6.1. Values of the parameters: \beta varying as shown, \alpha = 5 (a), \nu = 0.9, \gamma 1 = \gamma 2 = 0.25,
\delta = 0.05, \varepsilon = 0.05. (a): \beta against values of I at equilibrium, both DFE (I = 0) and EE; solid line:
stable; dashed line: unstable. At \beta = 0.25, \scrR 0 = 1, and the system exhibits a Transcritical biforcation
(T). Inset: zoom-in on the small region containing a subcritical Hopf bifurcation (H), from which
an unstable branch of limit cycles arises, and a Limit Point (LP); (b) two parameter bifurcation
diagram in \beta and \alpha , continuing the LP (red) and the H (cyan) from Figure (a). The cyan curve is
very close to the red one, and it is only clearly visible in the inset.

Hence, for \beta \in (\beta LP, \beta T) there are two EE as proved in section 3.2; the upper endemic
equilibrium arises at \beta LP as an unstable equilibrium and becomes stable (through a
subcritical Hopf bifurcation) at \beta = \beta H. For \beta > \beta H, the upper endemic equilibrium
is asymptotically stable.

From this analysis, we deduce that if \beta belongs to the (very small) interval
(\beta LP, \beta H), both EE are unstable, and presumably all solutions are attracted to the
DFE.

The phenomenon is further investigated in Figure 6.1b, where we present a two
parameter bifurcation diagram in \beta and \alpha . Figure 6.1b shows a curve (in red) of
fold bifurcation (LP) points and another (in cyan) of Hopf bifurcation points; the two
curves are tangent at the two Bogdanov-Takens (BT) points (with two zero eigen-
values) where the Hopf curve terminates, and are close but separate otherwise (see
inset). The LP curve ends in a Cusp point (C), where it joins the DFE at \scrR 0 = 1 and
\alpha \nu = 1. There should exist a curve of homoclinic bifurcation points between the two
BT points, where the unstable periodic solutions arising from the Hopf points disap-
pear (close to each BT point its existence is actually guaranteed [4, 33]); however, we
were not able to compute this through the use of MATCONT.

6.2. Endemic equilibrium with \bfscrR 0 < 1. In Theorem 3.4, we proved the ex-
istence of the endemic equilibrium even when \scrR 0 < 1. However, as a consequence of
Lemma 3.2 and Theorem 3.3, we know that there exists a region of the parameter
space in which \scrR 0 < 1 but there exists an asymptotically stable endemic equilibrium.

In this section, we perform some numerical simulations of the model in order
to illustrate this behavior. We start with 50 different initial conditions, such that
S0+I0 = 1, and we plot the trajectories of the system in the plane (S, I). This means
that we are projecting the full five-dimensional (5D) system (2.4) onto a 2D manifold,
which explains the seemingly overlapping orbits. Varying the value of \scrR 0 and the
product \alpha \nu , we obtain different scenarios.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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(a) \beta = 0.15. (b) \beta = 0.1322.

Fig. 6.2. Trajectories on the plane (S, I) starting from 50 different initial conditions such that
S0 + I0 = 1. Blue trajectories converge to the Disease Free Equilibrium (S, I) = (1,0), red orbits to
the Endemic Equilibrium (black dot in the insets; see corresponding axes for approximate values of
S and I). Insets: zoom in close to the stable endemic equilibrium.

We use the same parameters fixed in the bifurcation analysis and we set \alpha = 5,
while we select two values of \beta , namely \beta = 0.1324 and \beta = 0.15, both in (\beta LP, \beta T)
(see Figure 6.1a).

In Figures 6.2a and 6.2b, we see the solutions converging to one of the equilibria,
depending on the initial conditions. In Figure 6.2a, we observe that the endemic
equilibrium is almost globally asymptotically stable, in the sense that, even though
\scrR 0 = 0.6 < 1, the basin of attraction of the DFE is rather small, compared to the
one of the EE. In Figure 6.2b the basin of attraction of the DFE is much larger, and
we see many trajectories passing close to the EE, before eventually converging to the
DFE. In the supplementary material (127609 2 supp 551473 s5nxyd sc.pdf [local/web
5.44MB]) we include three-dimensional (3D) projections of the 5D system that show,
in a different perspective, the same behavior as the two-dimensional (2D). Clearly,
as the system is 5D, 2D and 3D projections may not represent accurately the actual
basins of attraction of the two equilibria.

6.3. The role of partial immunity. In this section, we analyze the role of
partial immunity by varying the value of the parameter \nu ; for each value of \nu , we
compare the numerical integration of system (2.4) with the discrete mappings de-
scribed in section 5.

All simulations start with the introduction of the infection in an almost completely
susceptible population; hence there is immediately a very big epidemic, represented
through the (almost) vertical lines at the left of each figure, in which S decreases
(in the fast time scale) from 1 to around 0.2 (as \scrR 0 = 2). We then show the three
variables, S, P , and T , evolving in the intermediate time scale \tau 1. If \nu = 0, the
second epidemic occurs at \tau 1 beyond 200 and is very large, as can be seen by the
values (around 40\%) reached by T ; then a third large epidemic occurs after another
long interval, and the system converges very slowly (not shown) towards the endemic
equilibrium. Increasing the value of \nu , the second epidemic occurs sooner and is
smaller, and convergence to the endemic equilibrium, via damped oscillation, occurs
much faster. Figures 6.3a, 6.3b, 6.3c, and 6.3d illustrate the cases of \nu = 0, 0.1, 0.2,
and 0.3, respectively.

It has to be noted that, when the solution is close to the endemic equilib-
rium, the discrete approximation breaks down, as the solutions no longer arrive at

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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(a) \nu = 0. (b) \nu = 0.1.

(c) \nu = 0.2. (d) \nu = 0.3.

Fig. 6.3. Comparison of the discrete mappings (dashed lines, subscript t) with the numerical
integration of system (2.4) (solid lines) at varying of \nu . Parameter values are \beta = 2, \alpha = 0.8,
\gamma 1 = \gamma 2 = 1, \delta = 5\times 10 - 3, \varepsilon = 5\times 10 - 5; initial values are (S, I,T,P,Y ) = (0.999,10 - 5,0,0,10 - 5).

O(\varepsilon )-distance from the critical manifold. This, as well as the fact that \delta is small but
not infinitesimal, can explain some minor disagreements between the system and their
discrete approximations.

7. Conclusions. In this paper, we proposed and analyzed a model which de-
scribes the evolution of a disease with secondary infections. From our assumptions on
the parameters, this system naturally involves three distinct time scales. The inter-
play between multiple time scales creates previously undocumented phenomena, such
as the occurrence of epidemics at different distances in time; for instance, looking at
Figure 5.1, one sees that a large epidemic, occurring with the introduction of infection
in a totally susceptible population, is followed, after a short interval, by a second and
a third epidemic wave; then, there is a very long latent period before the next wave.

The basic reproduction ratio \scrR 0 depends only on the parameters relative to the
primary infection, \beta and \gamma 1. However, the parameters, \alpha , \nu , and \gamma 2, involved in a
secondary infection, contribute to what we called the ``fast"" reproduction ratio, \scrR f

0 ,
which determines the possibility of an epidemic with a certain faction of totally and
partially susceptible individuals.

Moreover, the parameters \alpha , \nu , and \gamma 2, involved in a secondary infection, may
allow for a subthreshold endemic equilibrium; indeed, when \alpha \nu \gamma 1

\gamma 2
> 1 (and \delta , \varepsilon \approx 0),

the bifurcation of the DFE at \scrR 0 = 1 is backwards, giving rise to a branch of positive
equilibria for \scrR 0 < 1, similarly to what is obtained in [49].

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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From a biological point of view, a secondary infection should be milder, so that
one expects \alpha \leq 1, \nu \leq 1, \gamma 2 \geq \gamma 1; under such assumptions, backward bifurcation
cannot occur. However, exactly because a secondary infection is milder, it is possible
that individuals have more contacts during a secondary than in a primary, and isolate
themselves for shorter periods, thus leading to \alpha > 1 and \gamma 1 > \gamma 2. Disease-induced
mortality (neglected in the model for the sake of simplicity), much higher in a primary
than in a secondary infections, would also lead to \gamma 1 becoming larger. Therefore, it
seems reasonable to assume that \alpha \nu \gamma 1

\gamma 2
> 1 in certain cases, leading to bistability in

the system for R\ast <\scrR 0 < 1.
Through Figure 6.3 we study the effect of partial susceptibility; we show that

introducing even a limited susceptibility of individuals recovered from a primary in-
fection has a strong stabilizing effect on infection dynamics. When \nu = 0, the system
goes through a long period with extremely low infection prevalence interspersed with
a few large epidemics, before eventually settling to the endemic equilibrium; if \nu is
increased to 0.1--0.3, the convergence to the endemic equilibrium is much faster and
the epidemic waves, following the first one, are much less intense.

The stabilizing effect of partial immunity can also be seen by comparing the
results shown in the bifurcation analysis, Figure 6.1, with what had been found in the
SIRWS model [15]. In the parameter region that we explored (that includes cases with
\alpha and \nu very different from those of Figure 6.1), the unique (resp., upper) endemic
equilibrium for \scrR 0 > 1 (resp., R\ast <\scrR 0 < 1) is asympotically stable, except for a tiny
interval when \scrR 0 \approx R\ast . On the other hand, Dafilis et al. [15] found supercritical Hopf
bifurcation points for a large interval of \nu values. As mentioned in the introduction,
setting \alpha = 0 the current model becomes very similar to an SIRWS model, except for
the fact that an infection provides only partial immunity, while complete immunity is
reached only after a boosting episode. Hence, we believe that partial immunity after
a primary infection is the main reason why the results obtained on the stability of the
endemic equilibrium differs from those in [15].

From a mathematical point of view, our analysis relied mostly on geometric sin-
gular perturbation theory. Moreover, we made extensive use of the so-called entry-exit
function in a novel setting involving three time scales in order to distinguish between
the cases where the slowest time scale manifests itself in the limiting behavior of the
system or not, using geometric criteria. Using this method makes it possible to obtain
an explicit criterion distinguishing between the cases in which subsequent epidemics
occur in the intermediate time-scale, or in the slow time-scale.

A natural yet burdensome generalization of the model we analyzed here could in-
clude, e.g., additional mortality rate in both infectious compartments. However, this
would significantly increase the complexity of the model. Alternatively, one could
generalize our modelling approach to a compartmental model describing n consecu-
tive infections. This has already been done for systems with no explicit time scale
separation but not, to the best of the authors' knowledge, for a system evolving on
multiple time scales. In [23], for example, the authors assume that an infectious
individual can move both forward and backward on the chain of stages in order to
incorporate both a natural disease progression and the amelioration due to the effects
of treatments. On the other hand, in [8], the authors consider an n strain model, both
without immunity and with immunity for all the strains.

Acknowledgment. The authors thank the reviewers for their insightful feed-
back, which significantly helped improve the final version of this paper.
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