Supplemental materials

Lysobacter enzymogenes **predates soilborne bacteria using the type IV secretion system**

Xi Shen^a, Bingxin Wang^a, Nianda Yang^a, Lulu Zhang^a, Danyu Shen^a, Huijun Wu^a, Ying

Dong^b, Ben Niu^b, Shan-Ho Chou^c, Gerardo Puopolo^{d,e}, Jiaqin Fan^a, Guoliang Qian^{a*}

Containing 4 supplemental tables and 11 supplemental figures.

Table S1 GenBank accession numbers of T4SS components and effectors

Table S2 Contact-dependent killing activity of *L. enzymogenes* **strains against the * indicates** *E. coli* **was LacZ labelled.**

Gene	Mutant	Protein Function	E. coli: mutant*				
			15:1	10:1	7:1	5:1	3:1
tolC	$\Delta tolC$	an outer membrane protein of type I secretion system					
xpsD	$\triangle xpsD$	an outer membrane pathway protein of type II secretion system					
xpsF	$\Delta x p s F$	an inner membrane protein of type II secretion system					
virD4		$\Delta virD4$ a T4SS-specific ATPase					
hcp	Δhcp	an inner tube protein of T6SS					
clpV		$\Delta clpV$ a T6SS-specific ATPase					
waps1		a nonribosomal peptide \triangle <i>wapS1</i> synthetase responsible for antibacterial WAP-8294A2 biosynthesis					
l af B	\triangle <i>lafB</i>	encoding a hybrid PKS/NRPS (polyketide synthase/nonribosomal peptide synthetase) responsible for HSAF biosynthesis					

Strains and plasmids	Characteristics ^a	Source					
Lysobacter enzymogenes							
OH11	Wild type, KmR	Qian et al., 2009					
$\Delta virD4$	In-frame deletion of virD4, KmR	This study					
$\Delta tolC$	In-frame deletion of tolC, KmR	This study					
$\triangle xpsD$	In-frame deletion of xpsD, KmR	This study					
$\Delta x p s F$	In-frame deletion of $xpsF$, KmR	This study					
Δhcp	In-frame deletion of hcp , Km ^R						
$\Delta c l p V$	In-frame deletion of $clpV$, Km ^R	Yang et al., 2020					
Δp ks	Antifungal antibiotic HSAF-deficient mutant, KmR	Lou et al., 2011					
\triangle wap SI	Antibacterial antibiotic WAP8294A2 deficient mutant, Km ^R						
\triangle lafB	In-frame deletion of $lafB$, Km ^R	Wang et al., 2017					
OH11(mCherry)	OH11 harboring plasmid pYC12-mCherry, GmR, KmR	This study					
$\Delta virD4$ (mCherry)	∆virD4 harboring plasmid pYC12-mCherry, GmR, KmR	This study					
AvirD4(virD4)	AvirD4 harboring plasmid pEX18GM-chiA-virD4, GmR,	This study					
	Km ^R						
Escherichia coli							
$DH5\alpha$	Host strain for molecular cloning	Qian et al., 2013					
BL21(DE3)	Host strain for molecular cloning	Su et al., 2017					
E. coli-LacZ	LacZ-labelled E. coli BL21	Wang et al., 2020					
E. coli (GFP)	E. coli harboring pSMC21-GFP vector, KmR	This study					
Fungus							
Valsa pyri SXYL134	A fungal pathogen causing pear Valsa canker	Yin et al., 2018					
Pectobacterium carotovorum							
PccS1	Wild type, Rif ^R						
PccS1 (GFP)	PccS1 harboring pBBR1-MCS5-GFP vector, Rif ^R , Gm ^R	This study					
Pseudomonas fluorescence							
2P24	Wild type, KmR	Wang et al., 2020					

Table S3. Strains and plasmids used in this study

Table S4. Primers used in this study

Figure S1. *L. enzymogenes* **OH11 failed to kill** *E. coli* **through secreting diffusible factors**. OH11 was inoculated on the surface of LB agar plates containing *E. coli*. The results were observed after 3-day incubation. The antibiotic gentamycin (Gm) was used a positive control.

Figure S2. The Δ*virD4* **and Δ***lafBvirD4* **strains exhibited a growth curve similar to the wild-type OH11 of** *L. enzymogenes* **in liquid LB broth**. Δ*virD4*, the OH11 T4SSdefective mutant with in-frame deletion of *virD4*, a T4SS specific ATPase**;** Δ*lafB*Δ*virD4* – an OH11 derivative with double mutations in *lafB* and *virD4*.

Figure S3. The Δ*virD4* **strain displayed a fluorescent signal intensity similar to the wild-type OH11.** Both OH11 and Δ*virD4* were labelled by mCherry. The fluorescence signals were observed after 24-hour incubation. Bars indicate 2 mm.

Prey:E. coli / Killer:OH11 cells

Figure S4. The cell-free supernatant of *L. enzymogenes* **OH11 failed to kill** *E. coli* **when co-culture on LB agar plates in a 1:1 ratio.** OH11 and *E. coli* were labelled with mCherry and GFP, respectively. OH11 cells were used here as a positive control. The fluorescence signals were observed after 24-hour incubation. Bars indicate 2 mm.

Figure S5. *L. enzymogenes* **OH11 failed to kill three soilborne bacteria through secreting diffusible factors**. OH11 was inoculated on the surface of LB agar plates containing the soil pathogenic bacterium, *Pectobacterium carotovorum* PccS1 (left), the soil biocontrol bacteria - *Pseudomonas* (*Ps.*) *fluorescens* 2P24 (middle) and *Ps. protegens* Pf-5 (right). The results were observed after 3-day incubation. The antibiotic gentamycin (Gm) was used a positive control.

.

Figure S6. Membrane separation blocked the cell-cell contact-dependent killing of three soilborne bacteria by *L. enzymogenes* **OH11.** The mCherry-labelled OH11 was co-cultured with each of the GFP-labelled *Pectobacterium carotovorum* PccS1 (**A**), *Pseudomonas* (*Ps.*) *fluorescens* 2P24 (**B**) and *Ps. protegens* Pf-5 (**C**) in a 1:1 ratio. A 0.22-μM filter membrane was used to separate the growth of the mCherry-labelled killer (OH11) and the GFP-labelled preys (PccS1, 2P24 and Pf-5). The fluorescence signals were observed after 24-hour incubation. Bars indicate 2 cm.

Prey:Pf-5 / Killer:OH11 cells

Figure S7. The cell-free supernatant of *L. enzymogenes* **OH11 failed to kill three soilborne bacteria when co-culture on LB agar plates in a 1:1 ratio.** OH11 was mCheery labelled, while *Pectobacterium carotovorum* PccS1 (**A**), *Pseudomonas* (*Ps.*) *fluorescens* 2P24 (**B**) and *Ps. protegens* Pf-5 (**C**) were GFP labelled, respectively. OH11 cells were used here as a positive control. The fluorescence signals were observed after 24-hour incubation. Bars indicate 2 mm.

Prey:Pf-5ΔtssA / Killer:ΔvirD4

Figure S8. **Evidence of the counterattack of** *Pseudomonas protegens* **Pf-5 against** *L. enzymogenes* **OH11 via type VI secretion system (T6SS)**. Compared to the coculture with the GFP-labelled wild-type Pf-5, the mCherry fluorescence in the *L. enzymogenes* wild-type OH11 (**A**) or the T4SS-defective strain, Δ*virD4* (**B**) was visibly increased when they were co-cultured with the GFP-labelled Δ*tssA* that is a T6SSinactive mutant of *Ps. protegens* Pf-5, respectively. The fluorescence signals were observed after 24-hour incubation. Bars indicate 2 mm.

Figure S9. The Δ*lafB***Δ***virD4* **strain displayed a fluorescent signal intensity similar to Δ***virD4***.** Both Δ*lafB*Δ*virD4* and Δ*virD4* were labelled by mCherry. Δ*virD4*, the OH11 T4SS-defective mutant with in-frame deletion of *virD4*; Δ*lafB*Δ*virD4* – an OH11 derivative with double mutations in *lafB* and *virD4*. The fluorescence signals were observed after 24-hour incubation. Bars indicate 2 mm.

Figure S10. Fluorescent observation of the contact-dependent killing of the mCherry-labelled *L. enzymogenes* **OH11 or Δ***virD4* **against the GFP-labelled PccS1 that was co-inoculated on agar plates in a 1:5 ratio**. The fluorescence signals were observed after 24-hour incubation. Bars indicate 2 mm.

Prey:NCD-2 / Killer: AvirD4

Figure S11. The mCherry-labelled *L. enzymogenes* **OH11 was unable to kill the GFP-labelled** *Bacillus subtilis* **NCD-2 when both strains were co-cultured on agar plates in a 1:1 ratio**. NCD-2, a soilboren, gram-positive, biocontrol agent (Guo *et al*., 2019). The fluorescence signals were observed after 24-hour incubation. Bars indicate 2 mm.

References:

Dong, L., Guo, Q., Wang, P., Zhang, X., Su, Z., and Zhao, W. *et al*. (2020) Qualitative and quantitative analyses of the colonization characteristics of *Bacillus subtilis* Strain NCD-2 on Cotton Root. *Curr Microbiol* **77**: 1600-1609.

Guo, S., Zhang, J., Dong, L., Li, X., Asif, M., and Guo, Q. *et al*. (2019) Fengycin produced by *Bacillus subtilis* NCD-2 is involved in suppression of clubroot on Chinese cabbage. *Biol Control* **136**: 104001.

Jiang, F., Waterfield, N.R., Yang, J., Yang, G., and Jin, Q. (2014) A *Pseudomonas aeruginosa* type VI secretion phospholipase D effector targets both prokaryotic and eukaryotic cells. *Cell Host Microbe* **15**: 600-610.

Kovach, M.E., Elzer, P.H., Steven, H.D., Robertson, G.T., Farris, M.A., and Roop, R, M. *et al* (1995) Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. *Gene* **166**: 175-176.

Ling, J., Wang, H., Wu, P., Li, T., Tang, Y., and Naseer, N. *et al*. (2016) Plant nodulation inducers enhance horizontal gene transfer of *Azorhizobium caulinodans* symbiosis island. *Proc Natl Acad Sci U S A* **113**: 13875-13880.

Lou, L., Qian, G., Xie, Y., Hang, J., Chen, H., and Zaleta-Rivera, K. *et al* (2011). Biosynthesis of HSAF, a tetramic acid-containing macrolactam from *Lysobacter enzymogenes*. *J Am Chem Soc* **133**: 643-645.

Qian, G., Hu, B., Jiang, Y., and Liu, F. (2009) Identification and characterization of *Lysobacter enzymogenes* as a biological control agent against some fungal pathogens. *Agr Sci China* **8**: 68-75.

Qian, G., Wang, Y., Liu, Y., Xu, F., He, Y., and Du, L. *et al*. (2013) *Lysobacter enzymogenes* uses two distinct cell-cell signaling systems for differential regulation of secondary-metabolite biosynthesis and colony morphology. *Appl Environ Microbiol* **79**: 6604-6616.

Su, Z., Chen, H., Wang, P., Tombosa, S., Du, L., and Han, Y. *et al* (2017) 4- Hydroxybenzoic acid is a diffusible factor that connects metabolic shikimate pathway to the biosynthesis of a unique antifungal metabolite in *Lysobacter enzymogenes*. *Mol Microbiol* **104**: 163-178.

Wang, C., Pu, T., Lou, W., Wang, Y., Gao, Z., and Hu, B. *et al*. (2018) Hfq, a RNA chaperone, contributes to virulence by regulating plant cell wall-degrading enzyme production, type VI secretion system expression, bacterial competition, and suppressing host defense response in *Pectobacterium carotovorum*. *Mol Plant Microbe Interact* **31**:1166-1178.

Wang, J., Shen, D., Ge, C., Du, Y., Lin, L., and Liu, J. *et al* (2020) Filamentous *Phytophthora* pathogens deploy effectors to interfere with bacterial growth and motility. *Front Microbiol* **11**: 581511

Wang, P., Chen, H., Qian, G., and Liu, F. (2017) LetR is a TetR family transcription factor from *Lysobacter* controlling antifungal antibiotic biosynthesis. *Appl Microbiol Biotechnol* **101**: 3273-3282.

Xia, J., Chen, J., Chen, Y., Qian, G., and Liu. F. (2018) Type IV pilus biogenesis genes and their roles in biofilm formation in the biological control agent *Lysobacter enzymogenes* OH11. *Appl Microbiol Biotechnol* **102**: 833-846.

Xu, G., Han, S., Huo, C., Chin, K., Chou, S., and Gomelsky, M. *et al.* (2018) Signaling specificity in the c-di-GMP-dependent network regulating antibiotic synthesis in *Lysobacter*. *Nucleic Acids Res* **46**: 9276-9288.

Xu, G., Zhao, Y., Du, L., Qian, G., and Liu, F. (2015) Hfq regulates antibacterial antibiotic biosynthesis and extracellular lytic-enzyme production in *Lysobacter enzymogenes* OH11. *Microb Biotechnol* **8**: 499-509.

Yang, M., Ren, S., Shen, D., Yang, N., Wang, B., and Han, S. *et al*. (2020) An intrinsic mechanism for coordinated production of the contact-dependent and contactindependent weapon systems in a soil bacterium. *PLoS Pathog* **16**: e1008967.

Yin, Z., Liu, H., Li, Z., Ke, X., Dou, D., and Gao, X. *et al* (2018) Genome sequence of *Valsa* canker pathogens uncovers a potential adaptation of colonization of woody bark. *New Phytol* **208**:1202-1216.

Zhang, W., Li, Y., Qian, G., Wang, Y., Chen, H., and Li, Y. *et al*. (2011) Identification and characterization of the anti-methicillin-resistant *Staphylococcus aureus* WAP-8294A2 biosynthetic gene cluster from *Lysobacter enzymogenes* OH11. *Antimicrob Agents Chemother* **55**: 5581-5589.