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Abstract
This paper presents the seismic mitigation of typical storage tanks where extreme loading 
conditions are considered by safe shutdown earthquakes. To reproduce the main dynamic 
properties of the superstructure, a standard structural model was considered, where both 
the presence of the impulsive mode and of the convective mode were considered. Thus, 
to protect the tank from strong earthquakes, finite locally resonant multiple-degrees-of-
freedom (MDoFs) metafoundations were designed and developed; and resonator param-
eters together with bistable columns were optimized by means of an improved time domain 
multiobjective optimization procedure. Also, the stochastic nature of the seismic input was 
taken into account. Therefore, it is proposed: (i) a linear metafoundation endowed with one/
two layers and multiple cells, linear springs, and linear viscous dampers; and (ii) a relevant 
foundation equipped with columns operating in an elastic buckled state. With this arrange-
ment, additional flexibility and dissipation against horizontal seismic loadings are acti-
vated. It was shown in both cases, how each metafoundation can be successfully optimized 
via a sensitivity-based parameter technique. Thus, the performance of the optimized meta-
foundations was assessed by means of time history analyses; and results were compared 
with a storage tank endowed with both rigid foundation solutions. Finally, single cells were 
analysed in the frequency domain while finite lattices and periodic metafoundations in the 
linear and bistable regime were characterized by means of dispersion relationships.
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1 Introduction

1.1   Background and motivations

To reveal the fascinating wave dynamics capabilities of nonlinear metamaterials, recent 
years have witnessed many investigations on the topic (Patil and Matlack 2022). Owing to 
nonlinearity, nonlinear metamaterials are sensitive to wave amplitudes; and an increased 
nonlinearity entails different wave phenomena such as amplitude-dependent dispersion 
properties (Hussein and Khajehtourian 2018; Narisetti et  al. 2010; Ganesh and Gonella 
2013), nonreciprocity (Nesterenko et  al. 2005), solitons (Remoissenet 2013), and 
supratransmission (Geniet and Leon 2002; Leon 2003). Over the last few years, bistability 
has attracted great attention due to its intricate but advantageous dynamics. Herein, bista-
bility refers to a system that exhibits two stable equilibrium states which can be observed in 
several systems. In mechanical systems, buckled columns or beams provide a neat example 
of bistable systems (Cazottes et al. 2009; Camescasse et al. 2013); thus, when a bistable 
system is excited, two types of motion are possible: the first one oscillates around one of 
the stable points, i.e. the intrawell motion; the second one, instead, oscillates between or 
around two stable points, the so-called interwell motion (Wang and Harne 2017). In the 
latter case, the fast dynamics from one stable point to the other one, i.e. the snap-through 
buckling, entails the so-called negative stiffness effect, where motion is not restricted but 
assisted. Thus, the advantages of the snap-through motion have been widely adopted in 
various fields, such as energy harvesters (Cohen and Bucher 2014; Li and Kong 2021), 
nonlinear energy sinks and MEMS (Qiu et al. 2018; Sulfridge et al. 2004). Additional key 
features related to the bistable mechanism are the harmonic energy diffusion which simply 
corresponds to the distribution of input energy to multiple harmonics (Wang and Harne 
2017). Owing to the dispersed energy, the entire response amplitude reduces as the wave 
propagates prompting self-adaptivity. In particular, self-adaptivity is a feature that entails a 
different band structure for each cell (Liu et al. 2020; Liu et al. 2022).

One of the complex features of bistable systems is the stochastic resonance which hap-
pens due to snap-through dynamics caused by both low-level noise and low-level periodic 
excitations. Notwithstanding these motion features, they are very beneficial for energy har-
vesting systems (Zheng et  al. 2014; Zhao et  al. 2020). Conversely, both low-level noise 
and periodic excitation may individually be insufficient to trigger interwell dynamics 
which favours high speed and dissipation due to damping. Along these lines, also a chaotic 
response is characterized by wide and rich dynamics. In this respect, although earthquake 
records are characterized by significant randomness, the chaotic response of a system sub-
jected to an earthquake is not a major concern; in fact, hysteretic damping readily cancels 
out chaotic phenomena.

Since periodic systems can be used as acoustic resonant metamaterials (AMs), due 
to their local resonance capabilities, they can exhibit subwavelength band gaps and 
negative material properties (Li et  al. 2004; Carta et  al. 2016). More precisely, the 
combination of periodicity and local resonances can generate low-frequency bandgaps 
and ultra-low band wave attenuations well below Bragg scattering bandgaps (Ma and 
Sheng 2016). In such instances, nonlinear acoustic metamaterials (NAMs) represent 
the necessary extension of the primary work on linear AMs. Based on the source of 
nonlinearity, NAMs can be divided into two classes: i) NAMs where nonlinearities are 
located in primary cells (Zhou et al. 2018; Zivieri et  al. 2019); and ii) NAMs where 
nonlinearities are linked to resonators (Manimala and Sun 2016; Fang et  al. 2017). 
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These studies clearly show that nonlinearities affect band gap characteristics that, if 
properly designed, can be expanded. The bistability phenomenon was also utilized 
in metamaterials. In particular, some studies considered energy dissipation by means 
of snap-back motion (Sun et  al. 2019) whilst Xia et. al. (2019) studied the band-gap 
behaviour of nonlinear metamaterial with bistable attachments. Their findings showed 
that bistable attachments considerably improve the vibration mitigation properties of 
systems.

The use of locally resonant AMs as seismic isolators, the so-called locally resonant 
metafoundations (LRMs), in structural media is a brand new topic, still under develop-
ment. In particular, LRMs aim to attenuate low‐frequency seismic waves and protect 
superstructures by means of unit cells endowed with resonators much smaller than the 
seismic wavelengths present in earthquake-prone regions. A comprehensive review of 
metamaterials for seismic applications can be found in Mu et. al. (2020). Among other 
issues, one of the most pressing problems of LRMs is the excessive size of the meta-
foundation, needed to achieve an effective attenuation.

The pioneering works on LRMs devoted to the seismic protection of process plant 
components showed promising results (La Salandra et al. 2017; Cheng and Shi 2018; 
Basone et  al. 2019). Both the antiresonance phenomena and damping in resonators 
prevented significant vibrations and related damages in storage tanks. Then, improved 
performances were achieved by the inclusion of negative stiffness elements to lower 
the resonant frequency of resonators (Wenzel et al. 2020). Another improvement relied 
on the utilization of resonator bearings with significant hysteresis, such as wire ropes, 
to achieve high dissipative capabilities (Bursi et al. 2021).

Along this main vein, novel LRMs that utilize bistable columns are proposed and 
investigated herein. Although bistability concepts were considered earlier for seismic 
isolation (Plaut et al. 2008; Jeffers et al. 2008), the protection focussed on the vertical 
component of seismic waves. In this respect, metafoundations have also been profit-
ably proposed to mitigate the vertical motion of storage tanks and small modular reac-
tors (Franchini et. al. 2020; Guner et al. 2022). Conversely, the concept of combining 
bistability with LRMs devoted to the seismic isolation of process components against 
the horizontal component of waves is largely unexplored.

Another issue to be considered is redundancy. In fact, and in agreement with 
NUREG/CR-7253 (U.S.NRC, 2019), a seismic isolation system is not redundant 
because it uniquely connects the superstructure to the foundation. Though no specific 
attention will be given to the issue of redundancy in metafoundations, it could be eas-
ily taken into account during columns design in X and Y directions. In particular, only 
half of the columns can be considered to resist earthquake lateral forces coming from 
one horizontal direction or the other. Therefore, if a failure occurs in a specific direc-
tion (X or Y), the columns that are devoted to the orthogonal direction are still avail-
able; though they cannot fully resist lateral forces in the direction of failed columns, 
they can still sustain the weight of the superstructure. Moreover, also the presence of 
the resonators could increase redundancy; in fact, their size and strength naturally rep-
resent a second barrier and can prevent the full collapse of the metafoundation under 
gravity loadings.

Finally, it must be underlined the actual limitation of the European standard on anti-
seismic devices (EN15129 2018), that does not allow for a softening behaviour of their 
force–displacement relationships in the loading phase up to the maximum design dis-
placement or force.
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1.2  Scope and core contributions

In sum, the objective of the paper is to leverage the specific features of bistable systems such 
as harmonic energy diffusion and adaptive bandgaps with the isolation/dissipation properties 
of locally resonant metafoundations (LRMs). Along these veins, the main objectives are pur-
sued herein: i) optimization of the proposed bistable LRM, simply called BM, in the time 
domain, and investigation of its performance by means of the dissipated energy of the LRM; 
ii) use of harmonic energy diffusion, snap-through motions and other phenomena to increase 
damping entailed by the primary cell; iii) determination of the effect of resonators on charac-
teristics of bistable single cells, finite lattices and periodic systems.

Along these lines, the LRMs were designed to remain undamaged at an active seismic site 
at the safe shutdown earthquake (SSE) (ASCE/SEI 2016) located in Priolo Gargallo, Sicily, 
Italy. The optimization of the drift angle of the snap-through column buckling of the main cell, 
frequency and damping parameters of resonators was conducted in the time domain by means 
of nonlinear time-history analyses (THA) based on properly selected natural seismic records. 
The proposed LRMs were then optimized according to the dissipated energy of the LRM with 
respect to the dissipated energy of the whole structure. Both to consider uncertainty and to 
reduce the computational effort, a surrogate response model similar to the one proposed by 
Phan et. al. (2020) was used. More specifically, the central composite design (CCD) method 
was adopted in conjunction with the Kriging approximation to tune a quadratic low-fidelity 
response model of the coupled system. The variation of ground motions was also included by 
considering both design bases earthquakes (DBE) and safe shutdown earthquakes (SSE) in the 
optimization stage. Eventually, the optimized LRMs without and with bistable elements were 
investigated and compared in terms of seismic input energy transfer and dissipated energy.

Then, additional investigations on the bistable LRM cell were conducted on a single cell, a 
finite lattice and a periodic system. Initial disturbances and sinusoidal-driven boundary input 
conditions were supplied to the single cell and dynamical properties were investigated through 
energy flow and velocity response. The periodic system, instead, was investigated both numer-
ically and analytically to define the dispersion relationships.

The paper is organized as follows. Initially, details about the seismic design and modeling 
of the components of the coupled foundation-tank system are provided in Sect. 2. The section 
also provides detailed information about seismic spectra and records. For the sake of compari-
son, also LRMs with linear columns, shortly named LMs were designed. Section 3 explains 
the optimization procedure adopted in the time domain. More precisely, the optimization 
parameters, the details of the low-fidelity model and the optimal design parameters are pro-
vided. Section 4, instead, presents time history analysis (THA) results for the proposed BM. 
The comparison between LMs and BMs, i.e. for one and two layers, is conducted in terms of 
energy transferred to the superstructure. Section 5 deals with the dynamics of a single, finite 
lattice and periodic system that consists of a BM unit cell. Subsection 5.1 investigates the 
characteristic of bistability with and without a resonator. Subsection  5.2 extends the work 
to finite and periodic systems and investigates both wave dispersion and energy propagation 
properties. Finally, conclusions and future developments are presented in Sect. 6.
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2  Description of the coupled system and design of the bistable 
metafoundations

In total, 4 different LRMs were designed with single and double layer configurations as 
well as endowed with linear and bistable columns. For clarity, the single-layer and the 
double-layer LRMs are identified with the prefix 1L- and 2L-, respectively. Along this 
line, the structural details of the 2L-BM are depicted in Fig.  1. Each metafoundation 
cell consists of two parts: (i) the primary cell is composed of four flexible slender steel 
columns and two concrete slabs; (ii) the concrete resonator that is connected to the slab 
with steel wire ropes. The relevant design followed both Eurocode 1993 Part 1-1 (2005) 
and Eurocode 1998 Part 1 (2004). The construction site was selected in Priolo Gargallo 
in Sicily, Italy, and is characterized by soil type B with peak ground acceleration (PGA) 
equal to 0.56 g for a return period of 2475 years. Each layer has a height H = 1 m and 
contains 9 LRM unit cells in a 3 by 3 layout. The superstructure is a slender fuel unan-
chored storage tank that is a part of an existing plant (La Salandra et  al. 2017; Carta 
et al. 2016). To simplify computations, the base uplift of the tank was not considered 
in the study. The resonators were assumed to be connected to the concrete slab by wire 
ropes which allow motion in all three main directions. Moreover, wire ropes can provide 
high and adjustable damping values as required by the optimization process.

In this study, due to the complex nature of the bistable mechanism, the connec-
tion between resonator and primary cell was modelled by means of a linear spring and 
a damper system, i.e. the wire rope was simulated to be in the linear range. In fact, 

Fig. 1  a A bistable LRM with a storage tank; b Top view of the bistable LRM; c Unit cell details; d Weak 
axis view of a buckled column; e Strong axis view of a buckled column
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favourable performances can also be achieved with a linearized model of wire ropes 
(Bursi et al. 2021; Basone et al. 2021).

2.1   Bistable column design

To introduce the bistability effect into the LRMs, pre-buckled steel columns were con-
ceived. In particular, columns were designed to elastically buckle due to gravity loading 
along their weak axis. The weight of the tank was assumed to be constant at its maximum 
capacity for the safe life limit state. The foundation is symmetric in the x and y axes; as a 
result, half of the columns are designed to buckle on the x-axis while the rest buckle on the 
y-axis. One of the critical points of the buckled columns is that once the buckling load is 
reached, the stable region where the column stiffness in the lateral direction is positive is 
comparatively small and sensitive to axial loading. To overcome this issue, the strong axis 
of the buckled columns was used as a restraining mechanism for lateral displacements of 
buckled columns. However, it is not favourable to add the strong axis stiffness of columns 
to the stiffness of the snap-through region. Consequently, the column ends are designed 
such that they allow unrestrained motion in the strong axis up to an amount of allowed 
snap-through buckling distance. In other words, between two stable points of weak axis 
buckled columns, there is no additional stiffness induced from the columns in the strong 
axis. However, in the case of a significant demand, the strong axis of the columns contrib-
utes to the lateral resistance and prevents instability.

Due to the coupled mechanism of buckling where the lateral stiffness is bound with 
axial load, the design of the columns becomes a challenging problem. In the design pro-
cess, two main points were considered. In the weak axis, the columns should be weak 
enough and slender, with a slenderness ratio Le

/
r ≥ 200, to elastically buckle due to the 

superstructure load; but they should exhibit a high moment capacity, in order to remain 
elastic after buckling. Furthermore, in the strong axis, they must resist lateral loads. The 
selection of the steel column section was governed by weak axis limitations. In this respect, 
two parameters are important: the section width b and the flange thickness tf  ; to minimize 
the buckling load, the weak axis moment of inertia must be reduced and depends on b3 and 
tf  ; to maximize the moment capacity, b2 and tf  should be increased. As the effect of b is 
more prominent on the buckling load, tf  should increase to improve the moment capacity. 
Therefore, tf  is maximized, and the favourable section is the rectangular one.

Preliminary analyses carried out with rectangular sections, it has been concluded that 
the allowed post-buckled drift angle �s of the column, significantly influences the system 
response. The �s value can be also defined as the drift angle of snap-through buckling 
range in both directions ( −�s , �s ) or the drift angle that corresponds to half of the distance 
between stable points and reads,

where upb represents the post-buckled displacement and H defines the story height. This 
angle can be adjusted during the design stage by limiting the drift capability of the column 
using the strong axis allowance of the adjacent columns.

The upper boundary for �s is determined by the column elastic moment capacity. There-
fore, it is advantageous to achieve maximum �s values that do not entail column plastic 
deformation. With the pre-buckling condition, the column design becomes an optimization 

(1)�s = arctan

(
u
pb

top − u
pb

bottom

H

)
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problem where the objective reads �S = �max
S

 with the following constraints: i) the critical 
Euler buckling load  Pb must be smaller than the superstructure load  Pss; ii) the column 
must remain elastic after buckling. For a rectangular section, with  Pss =  Pb and the moment 
due to post-buckling deformation equal to the moment capacity, �max

S
 reads,

where L, fy, E represent, length, yield strength, and elastic modulus of the column, respec-
tively. From Eq. (2), one can observe that the section height h is not present for the weak 
axis; conversely in the strong axis, h appears with a cubic power in the moment of inertia. 
Therefore, the height and width of the columns can be separately designed for the weak 
and strong axis directions. In sum, the columns can buckle in the weak direction under the 
superstructure load, but will not plastify under the ground motion design.

To present the benefits of the BM, as anticipated at the beginning of Sect. 2, also LMs 
were designed and analyzed. The corresponding columns were designed to remain elastic 
and undamaged for the considered seismic design level; therefore, the hollow square steel 
sections were considered with a S355 steel material. The dimensions of the designed cross 
sections are gathered in Table 1.

2.2   Seismic input

The optimization of the BM was conducted on the time domain using 16 natural seis-
mic records selected from both Italian and European databases. These seismic records 
were selected and normalized according to the uniform hazard spectrum (UHS) rel-
evant to Priolo Gargallo in Sicily, Italy, with 5% and 2% probability of exceedance in 
50 years, corresponding to design bases earthquakes (DBE) and safe shutdown earth-
quakes (SSE), respectively (ASCE/SEI, 2016). The selection of seismic records was 
carried out as follows: let’s consider s0 the target spectrum vector, i.e. the UHS; and 
let’s evaluate � , i.e., the spectra matrix of the n

a
 selected seismic records; a vector 

of n
a
 selection coefficients, �

s
 , can be defined where each element can take a binary 

value of 1 or 0 and the sum of these elements must equal n
s
 , i.e. the predetermined 

number of seismic records to be selected. Therefore, the optimization problem reads: 
min

(
�∕n

s
− s

2

0

)
 , which can be solved for �

s
 . The selection was performed with all pos-

sible combinations of the n
s
 accelerograms among a set of n

a
 records; and the dis-

persion of the records around the mean spectrum was taken into account. Therefore, 
the selection followed the principle of minimizing the error between both the mean 
spectrum and the mean spectrum plus one standard deviation of the selected records s0 
in a least-square sense within the target period range. Furthermore, the analysis takes 
into account the uncertainties in location, magnitude and fault mechanism, while the 

(2)�max

s
=

144L4f 2
y
− E2b4�4

24EL3bfy�
2

Table 1  Design column 
dimensions and parameters

LM Layer Width Thickness BM Layer Width Depth �
max

S

mm mm mm mm

1L 1 130 30 1L 1 360 16 3
2L 1 160 30 2L 1 425 16 3

2 150 30 2 385 16 3.3
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record-to-record variability, expressed by the distribution of the spectral ordinates, is 
transferred to the fragility functions.

In sum, for each DBE and SSE limit state, eight seismic records were selected to 
assess the performance of the proposed LRMs, respectively. The selected seismic 
records are collected in Table 2 whilst the acceleration spectra, their mean, and mean 
plus one standard variation are plotted in Fig. 2. Further details about the selection of a 
seismic record sample size can be found in the work of Phan et al. (2020).

Table 2  List of selected seismic records and relevant parameters

GM no Location Country Date MW Rjb (km) PGA (g)

DBE events
1 Ano Liosia Greece 07/09/1999 6 14 0.31
2 South Iceland Iceland 17/06/2000 6.5 15 0.48
3 South I. (aftershock) Iceland 21/06/2000 6.4 12 0.39
4 L’Aquila Mainshock Italy 06/04/2009 6.3 5 0.40
5 L’Aquila Mainshock Italy 06/04/2009 6.3 4 0.45
6 L’Aquila Mainshock Italy 06/04/2009 6.3 6 0.33
7 L’Aquila Mainshock Italy 06/04/2009 6.3 5 0.66
8 Northridge-01 USA 17/01/1994 6.7 35 0.32
SSE events
1 Erzincan Turkey 13/03/1992 6.6 13.0 0.39
2 South Iceland Iceland 17/06/2000 6.5 7.0 0.63
3 South Iceland Iceland 21/06/2000 6.4 11.0 0.42
4 L’Aquila Italy 06/04/2009 6.3 4.6 0.44
5 L’Aquila Italy 06/04/2009 6.3 4.4 0.49
6 L’Aquila Italy 06/04/2009 6.3 4.9 0.55
7 Landers USA 28/06/1992 7.3 11.0 0.27
8 Northridge-01 USA 17/01/1994 6.7 20.1 0.57

Fig. 2  Response spectra of the selected seismic records: a DBE limit state; b SSE limit state
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2.3   System modeling

To simplify the resonator optimization and dynamic analysis of the coupled system, a con-
densed mass system shown in Fig.  3a is considered. Since resonator masses and column 
stiffnesses are equal, the dynamic condensation is exact. Along the same vein, the simplified 
hydrodynamic response model suggested by Malhotra et  al. (2000), that entails equivalent 
mechanical models for the correct base shear on the LRM due to impulsive and convective 
masses is implemented. It is worthwhile to underline that the effects of the very low-frequency 
motion of the convective mass, about 0.3 Hz, need to be reduced with other cheap/convenient 
means, e.g. baffles, etc. To reproduce internal friction and material level damping, 3% mass 
proportional damping ratio is considered. Thus, the mechanical properties of the superstruc-
ture are collected in Table 3, where { mi , ci and ki } and { mc , cc , kc } represent mass, stiffness and 
damping coefficients of the impulsive and convective mass of the superstructure, respectively.

The dynamics of the BM can be described with the following system of equations of 
motion,

where M, C, and KL represent mass, damping, and linear stiffness matrices, respectively; 
KNL is the nonlinear stiffness component of the EOMs which is a nonlinear function of 
vector u(t). The vector u(t) indicates the displacement vector, where single and double dots 
represent single and double derivatives with respect to time, respectively. Additionally, 
��(t) represents the external force vector.

(3)𝐌�̈�(t) + 𝐂�̇�(t) +𝐊𝐋𝐮(t) +𝐊𝐍𝐋𝐮(t) = 𝐅𝐄(t)

Fig. 3  Condensed mass system representation of the coupled system: a the 2L-BM with the superstructure; 
b uncoupled periodic system for the BM-1L; c Simplified dynamic model for the periodic system

Table 3  Storage tank parameters
m

i
: 451.7 Tons m

c
: 85.8 Tons

c
i
: 1942.2 kNs/m c

c
: 1.8 kNs/m

k
i
: 835,184.3 kN/m k

c
: 386.5 kN/m
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To accurately analyse the bistable mechanism, the designed columns were modelled by the 
FE ABAQUS software (Smith 2009). Each column was modeled with shell elements and the 
static-Riks method was utilized to compute the post-buckling regime. Consequently, the force-
deformation relationship for each column was determined as depicted in Fig. 4b.

The connection between columns and slabs was realized to be fixed. To visualize the bista-
ble mechanism, the single DoF force-deformation relationship of each column can be repre-
sented by means of a Duffing equation,

where P1 and P3 define the first and third-order stiffness terms, respectively. According to 
the sign of these terms, the Duffing oscillator can simulate three different mechanisms: 
P1 > 0 , P3 > 0 refers to a monostable hardening Duffing oscillator; P1 > 0 , P3 < 0 refers 
to a monostable softening Duffing oscillator; and P1 < 0 , P3 > 0 refers to a bistable Duff-
ing oscillator. The force deformation relationship with stored potential energy on the dis-
placement position for a representative Duffing oscillator is depicted in Fig. 4a. The shape 
of the potential relation is named double-well potential where the bottom of the wells rep-
resents stable points. Between the two stable points, the effective stiffness is negative and 
therefore, the system assists the motion of the mass rather than resisting to it.

To capture the main bistable phenomena, the 3rd order Duffing Eq.  (4.b) was fit to 
the FE results as illustrated in Fig. 4b for the 1L-BM case of Table 1. Thus, for the single 
360 × 16 mm HSS column, the Duffing’s model parameters read P1 = −1.02e + 4kN∕m and 
P3 = 5.08e + 6kN∕m3 , respectively. Hence both the stable points and the post-buckled drift 
angle αs read,

(4.a)mẍ(t) + cẋ(t) + F(x) = 0

(4.b)F(x) = P1 ⋅ x + P3 ⋅ x
3

(5)

√

−
P
1

P
3

= ± 0.045m& �
s
= ± 2.58

◦

Fig. 4  a Force–deformation response of a bistable Duffing oscillator with its potential energy function; b 
Force–deformation relationship of a column for the 1L-BM; the FE analysis result is fitted with a simple 
Duffing oscillator response
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3  Linear and bistable metafoundation optimization

To achieve the best performance from each BM, an optimization process on some mechan-
ical parameters is deemed necessary. As mentioned in Sect. 2, the connection of the reso-
nators to the primary cell is realized by means of linear springs and dashpots can be subject 
to optimization of the LRMs. For each resonator mass, in view of efficiency, the largest 
mass compatible with the unit cell dimensions is taken (Reggio and De Angelis 2015; 
Basone et al 2019).

In addition to the resonator variables, the allowed snap-through buckling range [0,�max
S

 ] 
is also considered as an optimization parameter, where �max

S
 is computed from the elastic 

limits of the column steel section. In fact, low �s values trigger more snap-through motions, 
and this behaviour entails wanted energy dissipation.

The performance index (PI) adopted in the optimization of the BM is the energy dissi-
pation index (EDI, Basone et al. (2019),

In particular, the EDI is defined as the ratio of dissipated energy by the LRM with 
respect to the whole structure. Since all elements of the metastructure are elastic, and the 
bistable system exhibits no hysteretic dissipation, the energy can only be dissipated through 
viscous damping. Hence, the damping energy can be calculated as:

where cn and vn represent the damping coefficient and velocity of nth DoF, respectively. For 
the single-layer LRMs, after dynamic condensation four DoFs are involved: the primary 
cell, the resonator, the impulsive and the convective mass. Note that Econ

d
 is negligible wrt 

E
imp

d
.The dissipated energy by each DoF is computed for the whole seismic record dura-

tion. Hence, the optimal �s and optimum resonator variables, �optr  and �opt
r  , can be defined 

through the following relationship,

where X is the parameter vector of the optimization problem. The optimization proce-
dure was also conducted for the LMs in which only 2 variables �r and �r were involved; 
therefore,

3.1   Central composite design method

As mentioned above, the optimization variables �r , �r of the resonators and �s of col-
umns subjected to seismic records with different PGA values, can be identified as ran-
dom variables that can significantly influence the seismic vulnerability of unanchored 
tanks. Therefore, the CCD method was used to lower the computational cost associated 
with the initial parameter selection. It simulates an experimental design, based on the 

(6)EDI =

∑
Ecol
d

+
∑

Eres
d

∑
Ecol
d

+
∑

Eres
d

+ E
imp

d
+ Econ

d

=

∑
Ecol
d

+
∑

Eres
d∑

Ed

(7)Ed,i = � cn ⋅ vn ⋅ dvn = �
t

0

cn ⋅ v
2

n
⋅ dt ≥ 0

(8)max(EDI(XBM)), XBM = {�r,�r, �s}

(9)max(EDI(XLM)), XLM = {�r,�r}
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response surface methodology, where a second-order (quadratic) model for the response 
variable is built without needing to use a complete three-level factorial experiment (Gil-
mour and Trinca 2012). The CCD is composed of three types of design points: corner 
points or factorial points in the two-level designs (± 1); star points at ±�CCD which are 
used for quadratic design; and center points. Since in pure numerical simulations we 
cannot achieve additional information on variance, only one center point was evaluated. 
The pictorial representation of the CCD points for the 2-factor CCD ( �CCD = 1.414 ) rel-
evant to the LMs and to the 3-factor CCD ( �CCD = 1.682 ) employed for the BMs are 
given in Fig. 5. Other details of the procedure can be found in Phan et al. (2020).

Once the boundaries and means values of variables are defined with a uniform dis-
tribution, see Table 4, it is possible to associate both the values of coded and uncoded 
variables as collected in Table 5. The coded and uncoded variables are given in Table 6 
for the LM.

3.2   The kriging model

Nonlinear time history analyses on the coupled LM and BM models depicted in Fig. 1 
are carried out using the set of sixteen ground motion records of Table  2 for each 
sample indicated by the CCD. Then, the EDI value in agreement with Eq.  (6), and its 
median were evaluated. The median values, indeed, represent the 50 percent probability 
of occurrence which is robust against outliers, especially in earthquake analyses. Thus, 
a low-fidelity model was fitted by means of a Kriging model,

Fig. 5  CCD coded variable locations; a 2-factor case; b 3-factor case

Table 4  The boundary values of 
variables for both the LM and 
BM case

LM BM �
s

�
res

�
res

�
res

�
res

(rad/s) (%) (rad/s) (%) (°)

Max: 60 30 60 30 3.0
Min: 10 5 10 5 1.0
Mean: 35 17.5 35 17.5 2.0
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where xui and β’s are the design variables and regression coefficients, respectively. The 
xui denotes the level of the ith factor (i = 1, 2, …, k) in the uth run (u = 1, 2, …, n) of the 
experiment. Basically, the Kriging method is an approximation method that can predict 
unknown values of a random process based on a covariance or variogram model derived 
from data (Van Beers and Kleijnen 2003). Given the variable vector � , the Kriging model 
is divided into two parts: the global regression model and the stochastic process,

(10)y(xu) = 𝛽0 +

k∑

i=1

𝛽ixui+

k∑

i=1

𝛽iix
2

ui
+

k−1∑

i=1

k∑

i<j=2

𝛽ijxuixuj

(11)�(�) = �T f (�) + Z(�)

Table 5  Coded and uncoded 
CCD values for the BM case

Sample # Coded variable Uncoded variable

X1 X2 X3 X1 X2 X3

1  − 0.595  − 0.595  − 0.595 20.1 0.101 1.405
2  − 0.595  − 0.595 0.595 20.1 0.101 2.595
3  − 0.595 0.595  − 0.595 20.1 0.249 1.405
4  − 0.595 0.595 0.595 20.1 0.249 2.595
5 0.595  − 0.595  − 0.595 49.9 0.101 1.405
6 0.595  − 0.595 0.595 49.9 0.101 2.595
7 0.595 0.595  − 0.595 49.9 0.249 1.405
8 0.595 0.595 0.595 49.9 0.249 2.595
9  − 1.000 0.000 0.000 10.0 0.175 2.000
10 1.000 0.000 0.000 60.0 0.175 2.000
11 0.000  − 1.000 0.000 35.0 0.050 2.000
12 0.000 1.000 0.000 35.0 0.300 2.000
13 0.000 0.000  − 1.000 35.0 0.175 1.000
14 0.000 0.000 1.000 35.0 0.175 3.000
15 0.000 0.000 0.000 35.0 0.175 2.000

Table 6  Coded and uncoded 
CCD variables for the LM case

Sample # Coded variable Uncoded variable

X1 X2 X1 X2

1  − 0.707  − 0.707 17.3 0.087
2  − 0.707 0.707 17.3 0.263
3 0.707  − 0.707 52.7 0.087
4 0.707 0.707 52.7 0.263
5  − 1.000 0.000 10.0 0.175
6 1.000 0.000 60.0 0.175
7 0.000  − 1.000 35.0 0.050
8 0.000 1.000 35.0 0.300
9 0.000 0.000 35.0 0.175
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where �(�) is the function to be fitted, f (�) is the polynomial of the input variables, β is 
the unknown regression coefficient vector, and Z(x ) is a zero-mean stationary Gaussian 
process with a covariance function,

where �2 is the process variance. The spatial kernel function R(⋅) controls the smoothness 
of the resulting Kriging model and the influence of nearby points; it describes the correla-
tion between two sample points in the output conditioned by the hyperparameter θ. Since 
the behavior of the correlation in each dimension may differ, an anisotropic ellipsoidal cor-
relation function R(⋅) was utilized (Williams and Rasmussen 2006); it can be calculated as 
follows,

In this particular case, the commonly used Mat´ern kernel with a shape parameter equal 
to ν = 5/2 was used (Genton 2001). The relevant expression reads,

3.3  Optimization results

The performance of both the CCD and the Kriging metamodel were improved by means 
of an iterative procedure. Given the initial CCD points for each case of Table 1, Eq. (10) 
was used to locate the maximum of the median EDI (Eq. (6)). The corresponding sampling 
point was estimated and added to the CCD points; the Kriging metamodel was updated and 
the procedure was repeated until the optimum sampling did not vary more than the pre-
determined tolerance. The fitting of the Kriging metamodel was carried out with UQLab 
(Lataniotis et al. 2015) and the unknown hyperparameter vector θ was estimated using the 
K-Fold cross-validation method and optimized using a hybrid genetic algorithm.

The outcome of the optimization procedure is gathered in Table  7; and the atten-
tive reader can appreciate for each case, the EDI median values provided by the meta-
model and THAs; relative errors are limited to 1.2%. Moreover, one can observe that the 

(12)cov(Z(xi), Z(xj)) = �2R(xi − xj|�)

(13)R(x, x�;�) = R(h) where h =

√√√√
M∑

i=1

(
xi − x�

i

�i

)2

(14)R(h;�, v = 5∕2) =

�
1 +

√
5�h�
�

+

√
5h2

2�2

�
e

�
−

√
5�h�
�

�

Table 7  Optimization parameters 
of metafoundations and involved 
errors

1L-LM 2L-LM 1L-BM 2L-BM

�
res

(rad/s) 29 27 11 37
�
res

(%) 19 11 25 26
�
s
(°) – – 1.6 2.7

EDIKriging (%) 73.80 85.88 89.11 99.96
EDITHA (%) 73.81 83.35 89.23 98.87
Abs. Error (%) 0.01 0.62 0.13 1.11
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optimized resonator parameters of bistable metafoundations differ with respect to the linear 
counterparts.

To appreciate the optimization surfaces, the outcomes of the Kriging for 2L LRMs are 
depicted in Fig. 6. For the BM case, the results correspond to �s = 2.7◦ in agreement with 
Table 7. The results clearly show that the EDI values of the BM case easily exceed 90% 
and that the variance effect on the optimal values of  �res and �res was less marked with 
respect to the LM case.

4  Time history analyses

To validate the optimized solutions defined in Sect. 3, nonlinear THAs were carried out; 
therefore, Eqs. (3, 4.a, 4.b) were integrated in time by means of a standard semi-implicit 
Runge–Kutta method. For completeness, both the earthquakes listed in Table 2 associated 
with the DBE and the SSE events were considered; moreover, the resonators were char-
acterized by the optimized mechanical parameters collected in Table 7. In view of com-
pleteness, in addition to the EDI defined in Eq. (6), we quantify the seismic input energy 
provided to the superstructure ESS . ESS can be computed as follows,

where, m and v(t) define both mass and velocity while subscripts i and c identify impulsive 
and convective masses, respectively; ag(t), instead, defines the ground acceleration at time 
t whilst τ defines the generic duration of each seismic record. Clearly, an efficient perfor-
mance of the metafoundation limits the amount of ESS.

Figure 7 depicts the EDI values for each seismic record of Table 2 both for the 1L and 
2L LRMs, respectively, with their median values. In both cases, the BM entails more than 
10 per cent increased median EDI values whilst keeping EDI value above 70 per cent for 
all events. Clearly, there are a couple of SSE events where the 1L LM does not exhibit a 
favourable behaviour. Conversely, the 2L BM exhibit a favourable median EDI for both 
DBE and SSE events. Consequently, the bistable snap-through motions in the metafounda-
tions cause an increased damping and prevent damage to the superstructure.

(15)ESS = mi ⋅ ∫
�

0

ag(t) ⋅ vi(t) ⋅ dt + mc ⋅ ∫
�

0

ag(t) ⋅ vc(t) ⋅ dt

Fig. 6  Optimization surfaces for the double layer LRMs; a the 2L-LM case; b the 2L-BM case with 
�
s
= 2.7◦
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The advantages of the proposed bistable metastructures can be clearly appreciated 
through the estimate of ESS . The results are depicted in Fig. 8 for both DBE and SSE events, 
respectively. In the case of a single layer, see Fig. 8a and c, given the large amounts of ESS , 
the BM underperforms with respect to the LM in almost all cases. Though the 1L-BM is 
characterized by a favourable EDI, the energy dissipated in the BM is not enough. The 

Fig. 7  EDI results for each seismic record collected in Table 2, where the solid and dashed lines represent 
the median for SSE and DBE events, respectively: a 1L LRMs case; b 2L LRMs case

Fig. 8  Plots of the energy E
SS

 transferred to the superstructure for the seismic records of Table 2. Continu-
ous lines define median values: a DBE-1L case; b DBE-2L case; c SSE-1L case; d SSE-2L case
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2L-BM instead, entails a different isolation effect due to the presence of 2 layers of bista-
ble columns. More precisely, in the case of DBE events, the 2L-BM transfers only 6.1% 
of energy to the superstructure, in terms of median, compared to the 2L-LM case. With 
regard to the SSE events, see Fig. 8d, reductions of about 8.9% of ESS in terms of median 
are achieved. Clearly, there are cases, the 1st and 3rd SSE event, where the 2L-BM under-
performed with the high ESS . The seismic records and their frequency content causes the 
2L-BM to work outside of the snap-through region delimited by �s . Therefore, the strong 
axis of the columns significantly contributes to the response, with an increase in stiffness 
and high energy transfer ESS.

The main slabs time history displacement responses of the 2L-BM in terms of relative 
drift angle are depicted in Fig. 9 for the GM-1 and the GM-5 SSE seismic records -1992 
Erzincan and 2009 L’Aquila events of Table 2-.The first event entails the worst case for 
the 2L-BM and 2L-LM performs better. In particular, from Fig. 9a, one can argue that the 
first layer switches from the starting position to the other stable point and then, both lay-
ers move in a synchronized manner. Therefore, both layers act together rather than creat-
ing asymmetric modes. In particular, the GM-1 record excites low-frequency modes where 
both layers move together and the energy transfer to the superstructure increases. The 
opposite behaviour can be observed in Fig. 9b, where both layers vibrate and even columns 
buckle from one stable point to the other one, simultaneously, in opposite directions. This 
type of motion shows that the movement of the first layer slab governs and, simultaneously, 
excites the connected resonators with significant energy dissipation.

5  Analysis of the uncoupled metafoundation

The performance of the finite optimized metafoundations depicted in Figs. 1 and 3 both 
with one and two layers, and endowed with nonlinear columns generally provided a favour-
able seismic performance of the coupled system discussed in Sect. 4. Therefore, given the 
potential vibration attenuation capabilities offered by periodic bistable metamaterials, it is 
worthy to examine both the dynamic properties of the single cell and the relevant uncou-
pled periodic metafoundation depicted in Fig. 3b and c. Therefore, the optimized 1L-BM 

Fig. 9  Time history relative drift angle responses of the 2L-BM main slabs: a SSE GM-1 record; b SSE 
GM-5 record
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cell is selected and analyzed; herein, the investigation is carried out both numerically and 
analytically, where the columns were modeled using the Duffing approximation of (4.b).

5.1   Single‑cell dynamics

To investigate the effect of resonator on the response of a bistable system, an undamped 
BM unit cell with and without resonator was investigated through an initial displacement 
imposed to the main cell. Due to the bistable nonlinearity, the initial displacement ampli-
tudes were chosen to be: A0 = 0.01m , A0 = 0.02m , and A0 = 0.05m respectively, to entail 
intrawell, low amplitude interwell and high amplitude interwell motions. It must be noted 
that the input is given relative to the stable state and in the same direction. Successively, 
fast fourier transforms (FFT) were conducted on the free vibration responses.

The FFT results and the corresponding phase portraits are depicted in Fig.  10. The 
phase portrait of the first case, Fig. 10b, proves the intrawell motion, where the trajectory is 
kept around one of the wells. The frequency response function shows the harmonic energy 
diffusion property. The circular frequency of the main cell is at about �1 = 58rad∕s and 
resonance peaks can be observed at frequencies n�1 , n = 1, 2, 3,… . When the resonator is 
considered, the diffusion effect also allocates the antiresonances due to the resonator at var-
ious frequencies. Differently from the case without resonator, resonant peaks do not occur 
at integer multiples. Moreover, a slight increase of the main cell frequency is observed, i.e. 
�1 = 60rad∕s.

In the case of the low amplitude interwell case, see Fig. 10c and d, the harmonic dif-
fusion is observed at frequencies n�1, n = 1, 3, 5,… with a significant stiffness reduction, 
i.e. �1 = 23rad∕s . When the resonator is taken into account, the aperiodic motion is sig-
nificant and the peak response is reduced. Moreover, the phase portrait indicates that the 
system response is chaotic in some regions and this can be verified through the evaluation 
of the maximum Lyapunov exponents.

When higher initial amplitude are considered, aperiodic motions disappear and 
an increase on the main cell stiffness is observed with �1 = 62rad∕s . In contrast to the 
intrawell case, the addition of the resonators reduces the stiffness of the main cell. The 
phase portrait shows a motion similar to that of a linear system where the oscillation occur 
around stable points with an elliptical orbit. These results explain the performance loss 
observed in the SSE events, see Fig. 8d where the BM performance drastically decreases; 
in particular, the input seismic energy entailed high amplitude interwell motions and there-
fore, the whole stiffness of the system increased with a high energy transfer.

To investigate the interaction between input direction and bucked state, A0 = −0.05m 
was also considered, i.e. an input direction opposite to the buckled state and relevant 
results are depicted in both Fig. 10g and h. The results clearly show a different frequency 
content of the free vibration wrt to those depicted in Fig. 10e and f; moreover, the favour-
able dynamic effect of bistability is confirmed.

5.2   Finite Lattice and Periodic System Behaviour

To further analyse the energy attenuation properties of the bistable mechanism, both a 
finite lattice and a periodic system composed of BM cells endowed with resonators are 
considered; see, in this respect, Fig. 3b and c. In the first case, a sinusoidal driven bound-
ary excitation with different frequencies and amplitude was applied to one end of the chain. 
To prevent any shock-correlated error due to a sudden change from zero velocity and 
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displacement, the excitation was chosen to fit a smooth and slowly increasing profile. In 
particular, it reads,

where A0 and �0 define the input amplitude and frequency, respectively. Λ is a modulating 
smooth multiplier defined as,

where ts defines the smooth starting duration. The smooth starting profile which is very 
helpful in reaching a steady-state dynamics is depicted in Fig. 11.

Initially, the finite chain composed of 100 cells is excited at one end with a driven 
boundary input Eq. (16) with A0 = 0.01m , for td = 1sec and td = 20sec , respectively, with 

(16)u0(t) = A0 cos(�0t) × Λ v0(t) = −�0A0 sin(�0t) × Λ

(17)Λ =

{
[cos(𝜋 ⋅ (1 + t∕ts)) + 1]

/
2 t < ts

1 t ≥ ts

Fig. 10  FFT results for the free vibrations of a bistable unit cell with and without resonator; a, b FFT and 
phase portrait for A

0
= 0.01m (intrawell motions); c, d for A

0
= 0.02m (low amplitude interwell motions); 

e, f for A
0
= 0.05m (high amplitude interwell motions); g, h for A

0
= −0.05m (high amplitude intrawell 

motions)
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circular frequencies considered in the range 0—60  rad/sec. The energy Et
n
 that is trans-

ferred to the next cell is calculated as follows,

where Es
n
 and Ed

n
 represent the strain and damping energy flow from the (n-1)th cell to the 

(n)th cell. To perform computations, the resonator frequency and the damping values are 
assumed to be 11 rad/s and 25%, respectively, with the optimized 1L-BM.

For td = 1sec , the ET
n
∕ET

1
 ratio in per cent is plotted in Fig. 12a; for such a short td, 

less than 5 cells are sufficient to prevent the energy transfer in the whole frequency 
range examined. Figure 12b instead, depicts the case td = 20sec ; more precisely, except 
for the 3—8 rad/s range, less than 10 cells are sufficient to attenuate the 90 per cent of 

(18)ET
n
= Es

n
+ Ed

n
=

td

∫
t=0

F(un − un−1)u̇n−1dt +

td

∫
t=0

cn(u̇n − u̇n−1)u̇n−1dt

Fig. 11  Driven boundary 
displacement starting profile in 
black and Λ multiplier in red

Fig. 12  Energy flow Et

n
 for a finite lattice bistable chain as a function of �

0
 and cell number: a time duration 

of Eq. (18) t
d
= 1sec , b t

d
= 20sec
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ET
1
 . For the sake of clarity, these results are also compared with a finite lattice consist-

ing of linear unit cells of 1L-LM; and the required number of cells to dissipate 90% of 
ET
1
 - corresponding to the red lines of Fig. 12, are plotted in Fig. 13. The results prove 

the efficacy of the bistable finite chain against its linear counterpart at both low and 
high input time durations. In the case of short duration pulses with low frequencies, the 
bistable chain prevents the wave propagation by a limited number of cells. If the excita-
tion continues, since the transients will decay, the energy slowly flows.

If one uses the same finite chain, the transferred energy to a unit cell in terms of time 
can also be investigated for �0 = 5rad∕s . In this case, Fig. 13c shows how the energy 
reaches the 5th cell, i.e. ET

5
 vs. time. Clearly, the bistable finite lattice carries less energy 

wrt the linear finite lattice.
To further characterize the dynamic properties of the periodic bistable chain, its wave 

propagation and dispersion features are explored by means of analytical and numerical 
tools. To evaluate the dispersion properties, the system of EOMs (3) with the condi-
tion (4.b) is solved using the harmonic balance linearization method (HBM) (Wenzel 
et al. 2020). Therefore, the HBM coupled to the Floquet-Block 1D boundary conditions, 
see Appendix 1, entails an approximate solution for the dispersion relationship which 
depends on the nonlinearity level. Analytical results are depicted in Fig. 14. The disper-
sion effects can be clearly appreciated from the amount of κimag depicted in Fig. 14a.

To verify the analytical results, a numerical approach was also considered. A peri-
odic chain of bistable elements with 300 cells was exited using a driven boundary. The 
system was forced for a total of 60 s with ts = 20sec of smooth profile, where the first 
40 s of response were neglected due to the transient response. To prevent reflection from 
the undriven end of the chain, perfect match layers (PMLs) were applied at both ends. 
Therefore, a total of 1000 cells were utilized (Zhou et al. 2018), de facto a system with 
an infinite number of unit cells. After the simulation of the system at any wavenumber, 
one can determine the 2D Fourier transform of data in both frequency and wavenumber 
domains; and the real part of the wavenumber κreal was extracted from the 2D FFT of 
the time-displacement results. Some points extracted from the procedure are shown in 
Fig. 14b. Nonetheless, both the self-adaptivity and the strong wave attenuation effects 
of the resonators prevent the extraction of points in all branches. For the sake of clar-
ity, the 2D FFT decomposition for the intrawell motion is depicted in Fig. 15. The FFT 
amplitude peaks show the wave propagation. In the low-frequency range, strong long-
wavelength wave propagation is observed. The cut-off frequency of the bandgap region 
can also be clearly noted. At higher frequencies, the wave propagation is weak.

Fig. 13  Numbers of cells needed to dissipate 90% of Et

1
 for; a t

d
= 1sec ; b t

d
= 20se c; c Energy input to the 

5th cell wrt time and �
0
= 5rad∕s
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6  Conclusions and future studies

With the aim of improving the performance of locally resonant metafoundations, bistabil-
ity-based nonlinearities were introduced in the primary cells. The bistability was governed 
by elastically buckled steel columns, that can freely snap-through from one stable point 
to another. Along this vein, an optimization framework based on the Central Composite 
Design and Kriging is proposed and utilized to optimize both resonator linear spring and 
damper properties and allowed bistable column snap-through distance.

Fig. 14  Analytical and numerical dispersion curves: a Imaginary component of the wavenumber κ; b Real 
component of the wavenumber κ (An.: Analytical, Num.: Numerical, Amp.: Amplitude)

Fig. 15  2D FFT decomposition 
of the bistable periodic chain 
for the low amplitude excitation 
(Intrawell motions) as a func-
tion of the circular frequency 
ω and the propagation constant 
μ = κd. Black dots corresponds to 
response peaks
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Time history analyses conducted on optimized bistable metafoundations (BMs) high-
lighted the favourable behaviour of these isolation systems in terms of reduction of the 
total seismic energy input transferred to the superstructure. Clearly, the nonlinearity that 
characterizes the bistable mechanism significantly reduces the total structure stiffness and 
result in more compact locally resonant metafoundations wrt the linear metafoundations.

To further explore the dynamics and investigate the underlying properties of the BM, 
the uncoupled single cell, the finite lattice and a periodic chain system of BM unit cells 
was investigated. Sinusoidal driven boundary inputs were applied to all systems and both 
time/frequency domain responses were obtained.

The single cell analysis clearly showed the harmonic diffusion property. In addition, the 
harmonic diffusion of the antiresonance features of the resonators was also observed. The 
possibility of aperiodic motions were also discovered.

Then, the energy transfer through finite chains was investigated by finite lattices. It has 
been shown that in both short and long input durations, the bistable finite lattices prevent 
energy transfer by snap-through motions with less than ten cells. Moreover, as the input 
duration increases, the energy transferred to the generic cell significantly differs between 
the bistable and linear finite lattices; and the bistable lattice outperforms.

In addition, the dispersion relations of the bistable periodic system have been com-
puted using both analytical and numerical tools. The analytical results obtained through 
the harmonic balance method showed a very good agreement with the numerical approach 
based on the 2D FFT. Thus, the dispersion properties of the nonlinear system have been 
quantified.

Finally, the complex dynamics related to bistability and wire rope hysteresis deserve 
further studies. More specifically, the effects of varying gravitational loads, vertical seis-
mic excitations together with the physical realization of wire ropes and a finite lattice with 
the control of parameters that accurately replicate bistable nonlinear components warrants 
further research.

Appendix 1

The two-DoFs system associated with the uncoupled bistable periodic system can be rep-
resented as

where dots refers to differentiate wrt time. The application of the Floquet-Bloch theorem 
(Eastham 1973) and the formulation of the harmonic balance method (HBM) with the 
complex exponentials (Wenzel et al. 2020) entails,

where k = 1, 3,… denote the kth harmonic and n = {−1, 0, 1} identifies the previous, 
center, and next cell; μ defines the propagation constant. Specifically, the unit cell length 
d is taken as d = 1 m and, therefore, the propagation constant reads μ = κd = κ. Since the 
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objective is the definition of the dispersion properties of the chain around the linear natural 
frequency, the higher harmonics are disregarded, and the series is truncated to the 1st har-
monic. For the specific case, the solution represents a plane wave with a fundamental wave 
mode supported by the nonlinear system. The application of the harmonic terms to (19a 
and 19b), and collecting frequency terms and equating the first-order terms to zero, the fol-
lowing functions are obtained,

where Un and Ur are the amplitude of the primary cell and resonator, respectively. Ũn corre-
sponds to complex conjugate; and consequently, the amplitude can be rewritten as 
|U| =

√
Un ∗ Ũn. The term N is the sum of high order κ terms and reads,

The substitution of (21.b) into (21.a), and the rearrangements of terms entails the dis-
persion relationships between � and κ and can be computed as:

Due to the high order κ terms, a direct solution of F(�, �) is not possible. Therefore, 
for each frequency ω, the κ is computed by the trust-region-dogleg algorithm. When the 
amplitude term, U is equal to 0, (23) corresponds to the dispersion relationship of a linear 
system (Wenzel et al. 2020).
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