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Abstract

From industrial revolution to the present day, fossil fuels are the main sources for
ensuring energy supply. Fossil fuel usages have negative effects on environment that
are highlighted by several local or international policy initiatives at support of the
big energy transition (including the conference of the parties, the Climate change
action plan, the EU energy work programme and so on). The effects urge energy
planners to integrate renewable energies into the corresponding energy systems.
However, large-scale incorporation of renewable energies into the systems is difficult
because of intermittent behaviors, limited availability and economic barriers. It
requires intricate balancing among different energy producing resources and the
syringes among all the major energy sectors. Although it is possible to evaluate
a given energy scenario (complete set of parameters describing a system) by using
a simulation model, however, identifying optimal energy scenarios with respect to
multiple objectives is a very difficult to accomplished. In addition, no generalized
optimization framework is available that can handle all major sectors of an energy
system.

In this regards, we propose a complete generalized framework for identifying sce-
narios with respect to multiple objectives. The framework is developed by coupling
a multi-objective evolutionary algorithm and EnergyPLAN. The results show that
the tool has the capability to handle multiple energy sectors together, moreover, a
number of optimized trade-off scenarios are identified. The framework opens a door
for policy makers to optimize corresponding energy systems in terms of multiple
objectives and choose the appropriate one for his/her respective region.

Since the proposed framework is computationally costly we make significant
improvements by suggesting different techniques. Firstly, a technique is proposed
that exploits given domain knowledge by incorporating the knowledge into different
phases of the algorithm to improve algorithmic efficiency. Secondly, a convergence
detecting criterion is proposed to stop the algorithm at the right moment to prevent
wasting computational resources. The results show that a significant improvement
can be achieved by utilizing domain knowledge and a stopping criterion. Finally,
an algorithmic modification is proposed to explore particular targeted regions of a
Pareto-front in a very straight forward way. The exploration of targeted regions
is really important for energy domain as policy makers want to find scenarios that
fulfill certain goals in terms of different objectives (e.g., 20–30% CO2 emissions re-
duction with respect to a particular scenario). It is demonstrated that the modified
algorithm is capable of finding solutions in user-defined multiple regions for both
benchmark and real-world problems.

The framework is applied for identifying optimized scenarios for two Italian
Alpine valleys into two different contexts. In the first circumstance, optimized sce-
narios are identified by considering recent energy demands of the valley. Whereas
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long-term energy planning is performed by identifying future optimized scenarios
that consider projected energy demands for another valley.

The comparison of current operating scenario (of the valley) with optimized sce-
narios shows that much better scenarios can be achieved in terms of different aspects.
The results demonstrate that economically attractive, environmentally friendly and
less dependent energy scenarios can be obtained by introducing more renewable
energy into the electrical sector and modifying thermal sector by introducing heat
pumps and biomass boilers. The modification of the transport sector by introducing
electric cars is not economically viable under the current market conditions.

The results of the second phase show that the framework can be also applied for
long term planning of a system. Optimized scenarios for the valley “Val di Non” are
identified for three different time periods as the community wants to reach distinct
CO2 reduction goals within the periods. Moreover, a new technique is proposed for
selecting transient scenarios. The results show that the thermal sector would be
transformed within first two periods. Afterwards, the changes from tradition cars
to electric cars would be taken place.

The proposed framework and the corresponding improvements make it possible
to provide a complete tool for policy makers for designing optimized energy scenar-
ios. The tool can be able to handle all major energy sectors and can be applied in
short and long-term energy planning.

Keywords: Energy system optimization, energy scenario design, energy transition,
multi-objective optimization, multi-objective evolutionary algorithm, incorporating
domain knowledge, robust stopping criteria.
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Chapter 1

Introduction

You see that pale, blue dot? That’s us. Everything that has ever hap-
pened in all of human history, has happened on that pixel. All the tri-
umphs and all the tragedies, all the wars, all the famines, all the major
advances... it’s our only home. And that is what is at stake, our ability
to live on planet Earth, to have a future as a civilization. I believe this
is a moral issue, it is your time to seize this issue, it is our time to rise
again to secure our future.

— Al Gore

Energy is one of the key components for the development of modern society. The
society can not be evolved without proper supply of energy. Energy supply is how-
ever predominantly based on fossil fuels, which have several negative consequences
on the environment [162]. This harmful impact encourages the use of renewable
energy resources (RES) within the energy system to develop a sustainable energy
system. The design of future energy scenarios1 with a correct balance between fossil
fuels and RES is hence a very important topic to energy planners worldwide.

In fact, though RES are desirable for the reasons mentioned above, their exploita-
tion on large scale involves other issues, like fluctuating behavior, limited availability,
and economic or financial obstacles. These difficulties can be addressed – by intro-
ducing, e.g., proper control strategies, efficient couplings between different resources,
and supporting policies – but they increase the complexity of the resulting energy
systems, requiring the analysis of many variables. Identifying viable configurations
– parametrized for example in terms of type and capacity of energy generation tech-
nologies, for given demand conditions – can hence be a hard task for energy planners
[38, 39].

In order to solve the problem of integration of RES into a system, two opti-
mization phases can be considered [141], i.e., (i) operational optimization and (ii)
capacity/sizing optimization2. While the day-to-day operations of resources of a
given energy system are optimized in the first phase, the second phase is mainly
concerned with the design of future energy scenarios to integrate renewable ener-

1In this thesis, we use the terms energy scenario and energy system interchangeably, referring
to the complete set of parameters (e.g., generation capacities for given technologies) describing an
energy system configuration.

2In this thesis, we refer capacity optimization of an energy system as optimization of an energy
system.
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gies. For the first phase, many optimization models such as energy system simu-
lation models are available (e.g., see the comprehensive review article by Connolly
et al. [44]). Although a notable number of literatures are available regarding first
phase, very limited research work could be found for later stage. Moreover, optimiz-
ing an energy system can be formulated as either single-objective or multi-objective
optimization problem. It is however practical to formulate the problem as multi-
objective optimization problem since there are more than one potential objectives
(probably conflicting) exists when considering the complexity of an energy system.

1.1 Motivation

We have stated earlier that it is absolutely necessary to introduce renewable energy
sources to mitigate harmful effects on environment from fossil fuels. The ultimate
goal is to reach 100% renewable and sustainable energy system (can be reached by
introducing renewable energies or by introducing more cleaner technologies). How-
ever, it is not easy to reach the goal overnight, each energy system has to pass
through a number of transition phases. The transition from a fossil fuels’ based en-
ergy system to a renewable energy system has to be smooth - gradual introduction of
renewable energy. Therefore, each transition phase requires well designed optimized
scenarios that have optimal balances between different types of renewable energy
resources and fossil fuels’ based generation technologies. Nevertheless, finding the
optimal balance is not an easy task. Because of intermittent behaviors of renewable
energy and complex interactions among different energy sectors (e.g., interaction be-
tween electrical and thermal sector), it is very difficult to find the optimal amount
of renewable energy within a system. Therefore, capacities optimization (finding
viable configurations for different energy generating technologies) is one of the most
important aspects to design an energy system. Moreover, the problem has to solve
in a multiple objectives optimization manner as most of the time a real-world energy
system problem has more than one objectives to consider.

Designing energy scenario is an important research topic for last decades. A
large number of private and public institutes, universities and other organizations
of respected regions put forward resources to design energy scenario for the regions.
A number of literatures can be found that focus on designing energy systems ranges
from city [136, 112], state [85, 86] to country [98, 102, 80]. Therefore, our research is
a step forward towards the goal of automatic identification of optimized scenarios.
The research aims to propose a generalized user-friendly framework that can be
used by researchers/policy makers. The model should have two properties to be a
generalized framework: i) flexible enough to be used for any region, ii) can handle
most important energy sub-sectors. These two properties will provide the policy
makers a wide range of flexibility. Policy and decision makers of any region can use
the framework, at the same time, having the possibility to deal with all possible
energy sub-sectors.

Moreover, the policy maker has to deal not only with short term planning (which
includes the scenario that handles current demands of a region) but also with a long-
term planning. The long planning includes identification of optimized scenarios for
different future time frames (i.e., for all the transition phases/stages) by considering
future energy demands. Moreover, the selection of particular scenarios from those
optimized scenarios for each transition phase is another important aspect of long-
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term energy planning 3. The framework could provide a support to identify future
scenarios and helps policy makers to make plans for future.

1.2 Research goals

Generally the energy scenarios are designed manually [136, 20, 40, 108, 127]. The
scenarios are introducing manual dataset to fulfill certain targets such as reaching
to a specific goal of CO2 emissions reduction or reaching to a certain percentage in
terms of introduction of renewable energy within a system. In the case of manual
approach, the possibility of improving those objectives may not be explored or the
optimal combination of technologies to reach the target may not be found.

It has been found that optimization tools are applied for optimizing particular en-
ergy sector (mainly electrical sector) [19, 68]. However, this approach is not enough
because every sectors of a future energy system have to be interconnected [104, 107]4.
Synergies among different energy sectors provide a lot of flexibility for an introduc-
tion of renewable energies 5. Nevertheless, optimizing this kind of integrated systems
is really difficult by using a typical approach because of the complex interactions
and discontinuous nature of the system. To our best knowledge, no framework is
available to handle the optimization problem of interconnected energy systems.

The primary research goal of the thesis is to develop a generalized framework.
The computational model has to be versatile enough to deal with the complexity of
“smart energy system”, as the same time, scalable enough to tackle energy systems
of different sizes. Moreover, the model need to handle multiple objectives since
practical energy system problem generally has more than one objective.

The secondary goal is to improve the efficiency of the framework in terms of find-
ing better solutions in shortest possible time. The preliminary idea is to take advan-
tage of available domain knowledge regarding an energy system and use the knowl-
edge to find optimal scenarios efficiently. Our goal is to provide a novel technique
to integrate domain knowledge into the proposed framework. Moreover, we would
like to develop new methods that integrate user preferences (i.e., target ranges) in
a very simple way within the optimization phase to identify optimal scenarios that
fulfill the particular target.

The final goal is to explore the capability of the framework of finding optimized
scenarios by applying it on the real-world energy system optimization problems.

1.3 Contributions

In this thesis, we have proposed a framework based on a multi-objective evolutionary
algorithm and EnergyPLAN [111] that provides us a novel way to optimize inter-
connected energy systems. The proposed framework is applied on a test problem
and a number of optimized scenarios are identified with respect to two conflicting
objectives. The comparison of found optimized scenarios with a manually config-
ured scenario (designed by energy experts) shows that it is possible to find a better

3We call transient scenarios.
4The system is called “smart energy system” [119, 107].
5Considering that when a system produces excess electricity from photovoltaics or wind power,

it is possible to turn off the boilers fueled by fossil fuels and turn on the heat pumps.
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scenario than manually configured one. Moreover, a set of trade-off scenarios is iden-
tified as multiple objectives are considered. It also demonstrates that the framework
is very convenient in terms of usability (i.e., scalable and fast). The framework can
handle a reasonable number of decision variables (capacities of different technologies)
and able to find the solutions in an acceptable amount of time.

To make the framework efficient, we propose an innovative approach to incor-
porate domain knowledge regarding energy system into initialization and mutation
phases of the algorithm. Simple domain knowledge such as increasing wind power
capacity reduce emissions of a system is incorporated by exploiting different as-
pects of probability distributions. In the initialization phase, rather than drawing
individuals from a uniform distribution, the individuals are drawn from proposed
distributions that utilize domain knowledge. A similar approach is suggested for
mutation phase. The results show a significant improvement can be achieved in
terms of quality of identified solutions.

Generally, a multi-objective evolutionary algorithm is stopped by user defined
parameters (i.e., number of function evaluations). Without prior knowledge about
a problem, the parameter is difficult to specify. Therefore, a robust stopping crite-
rion is proposed to stop the algorithm automatically to save valuable computational
resources used by function evaluations. The criterion is based on simultaneous mon-
itoring of two spaces; i.e., decision and objective spaces. The criterion is tested on
different benchmark problems against state of the art approaches and it is demon-
strated that our approach stops an algorithm more reliably than other methods.
Finally, the proposed criterion is integrated within our proposed framework and
tested against a real-world energy system optimization problem and the results
show approximately 22% computational time is saved while achieving a comparable
performance with respect to default approach.

The framework is applied to identify scenarios for two local systems in two differ-
ent situations. In the first case, the model is applied for short term energy planning
where optimized scenarios are identified for near future (based on the current de-
mands). In the other case, long-term energy scenario planning is performed using
the model where optimized scenarios are identified for different time periods. In
both cases, a number of optimized scenarios are identified. From the optimized
scenarios, different target scenarios6 are determined. An approach is proposed for
selecting target scenarios from the optimal scenarios that are diverse (i.e., dissimilar
to each other in terms of capacities of resources). Diverse target scenarios offer a
wider view to the decision makers. Moreover, a novel technique is proposed to select
the transient scenarios form the targeted scenarios.

In the first case, the comparison of the current scenario with the identified scenar-
ios shows that economically attractive, environmentally friendly and less dependent
scenarios can be achieved. It also reveals that increasing photovoltaics capacity,
maximizing local biomass usage though biomass boiler and partial electrification of
thermal sector through heat pumps could help the community to have a green and
sustainable energy system. Moreover, the results also clarify that transformation
of the transport sector is not economically viable under current market conditions.
By analyzing the results of the second case (“Val di Non” energy system), it has
been found that it is required to transform thermal and transportation sectors to

6Target scenarios are the scenarios that fulfill specific goals on different objectives (e.g., 20%
emissions reduction with respect to the 2012 system).
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reach certain emissions reduction goals. However, transformations of different sec-
tors could take place in different time periods. The results show that it is enough to
reshape the thermal sector within the period of 2020–2030, whereas, in the period
of 2030–2050, the transformation of transport sector would be spontaneously taken
place.

As we have just stated that target scenarios are important to policy maker and
typical multi-objective evolutionary algorithms are not able to explore given target
regions in a straight forward way, therefore, we propose an algorithmic modifications
to identify solutions in particular regions. The basic idea is to generate more individ-
uals within the given targeted regions as the population evolves. To generate more
individuals, we suggest modifications of parent selection and ranking procedures of
generic algorithms. The modified procedures favor the individuals that are near to
or within the preferred regions and eventually that leads to explore and generate
individuals around the regions. The modified algorithms perform better than the
generic ones on six benchmark problems. In addition, it is demonstrated that the
algorithms can explore given regions for energy system optimization problem which
may help policy makers to identify scenarios on the particular targeted regions.

1.4 Structure of the thesis

In the following, we will have a brief discussion of the remaining chapters:

Chapter 2 - Multi-objective optimization: The chapter discusses all the ba-
sic concepts and definitions related to multi-objective optimization. Firstly,
some classical methods for solving multi-objective optimization problems are
presented. Afterwards, we discuss the details of the two most widely used
evolutionary algorithms of the domain. Finally, the chapter is concluded by
presenting some constraints handling techniques.

Chapter 3 - Proposed framework: This chapter presents the details of the pro-
posed framework. The framework is a coupling between EnergyPLAN and
non-dominated sorting genetic algorithm (NSGAII). The framework is tested
on Aalborg energy system to identify optimal solutions. A comparison is
made with a manually configured system. The results show a large number of
optimized scenarios can be identified in a single run. Capacity trends of dif-
ferent decision variables (technologies) regarding the optimized scenarios are
discussed. Finally, a simple technique to determine compromised scenarios
finishes the chapter.

Chapter 4 - Incorporating domain knowledge into the framework: The chap-
ter presents the approaches for incorporating energy system related domain
knowledge into different phases of the multi-objective optimization algorithm.
We present two techniques: smart initialization and smart mutation that uti-
lize domain knowledge to find better optimized solutions. The techniques
are tested individually on Aalborg energy system problem and results show a
significant improvement is achieved by incorporating domain knowledge.

Chapter 5 - Development of a robust stopping criterion: Development of a
robust stopping criterion for multi-objective evolutionary algorithms is pre-
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sented in the chapter. The proposed criterion is developed based on simulta-
neous monitoring of two spaces: decision and objective spaces of a problem.
Average Hausdorff distance and diversity metrics are considered to monitor
objective and decision spaces, respectively. The technique is evaluated on six
benchmark problems against state of the art techniques. The results show that
the proposed method can stop multi-objective evolutionary algorithms more
robustly than other approaches.

Chapter 6 - An integrated approach to energy system optimization: The chap-
ter is dedicated to integrate all the techniques developed in other chapters
(smart initialization, smart mutation and a robust stopping criterion) into en-
ergy system optimization framework. The integrated approach is applied on
a test problem. The approach can save a significant amount of computational
resource while providing similar results as the default approach.

Chapter 7 - A practical application of the framework: the case of Giudicarie Esteriori:

In this chapter, we have demonstrated the capability of the framework by
finding out optimized scenarios for an Italian Alpine valley. All the energy
sectors of the current energy system of the valley are analyzed (reference sce-
nario). Afterwards, by applying the proposed framework a larger number of
optimized scenarios are identified. Identified scenarios are categorized into
different groups according to different ranges of target objectives’ values. The
categorization narrows down the number of scenarios for decision makers that
helps them to make decisions. Finally, the chapter is concluded by providing
suggestions regarding different technological implementation possibility for the
valley.

Chapter 8 - Long term energy planning with multi-objective optimization:
The chapter demonstrates how the proposed tool can be applied in the case
of long-term energy planning for a region (identifying future optimize sce-
narios by considering future demands). The chapter starts by introducing a
reference scenario for an Italian valley named “Van di Non”. Afterwards, opti-
mized energy scenarios are identified for different time periods (i.e., 2008–2020,
2020–2030 and 2030–2050). A new technique is suggested to find out target
scenarios (in terms of CO2 emissions reduction) from the optimized scenarios
for different periods. The new technique ensures to provide diverse scenarios
to the decision makers. Sometimes target scenarios are not enough for deci-
sion makers as they want to select transient scenarios for different periods.
Therefore, a novel technique is proposed to determine transient scenarios from
the given target scenarios. The technique is applied on the identified target
scenarios of the valley and found transient scenarios are presented.

Chapter 9 - Multi-objective optimization with multiple preferred regions:
The typical goal in multi-objective optimization is to find a set of good and
well-distributed solutions. However, it has recently become popular to focus
on specific regions of the objective space, e.g., due to market demands or per-
sonal preferences. In this chapter, we contribute to the set of algorithms that
consider preferences. In particular, we propose the easy-to-use concept of “pre-
ferred regions” that can be used by laypeople, we explain algorithmic modifi-
cations of NSGAII and AGE, and we validate their effectiveness on benchmark
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problems. The results show an improvement over typical algorithms. Finally,
we applied our modified algorithm on energy system optimization problem.
The proposed modifications is capable to explore different regions simultane-
ously.

Chapter 10 - Conclusion: The thesis is concluded by providing a brief summary
and potential future research directions.
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Chapter 2

Multi-objective optimization

Theory provides the maps that turn an uncoordinated set of experiments
or computer simulations into a cumulative exploration.

— David E. Goldberg

2.1 Introduction

Mathematically, optimization problems can be conveniently formulated as minimiza-
tion or maximization problems. The most familiar case is that of single-objective
optimization (SOO), where the objective is represented by a scalar function which
has to be “extremized” (i.e., minimized or maximized).

For real-world problems, however, it is quite common to encounter the presence
of multiple conflicting objectives which have to be optimized simultaneously. For
example, this situation is typical in multi-criteria decision analysis (MCDA). The
presence of multiple objectives then requires the introduction of a vector function,
whose components are the quantities to be extremized. While for scalar values a
natural ordering is available, for vector values it is not obvious how to decide what
is “higher” or “lower”.

To solve this issue, multi-objective optimization (MOO) typically relies on the
concept of “dominance”, which allows to identify the set of optimal solutions as the
set of non-dominated solutions. A solution is said to dominate another solution if
it is strictly better in at least one objective, while at the same time not being worse
in all the other objectives. Mathematically, the dominance relation yields a strict
partial ordering within the objective space [51].

The chapter organizes as follows. In the following few sections, we will formal-
ize different concepts related to multi-objective optimization. Section 2.5 discuss
some of the classical methods for solving a multi-objective optimization problem
(MOP). We describe the basic concept of multi-objective evolutionary algorithms in
section 2.6. The well-known constraints handling techniques are briefly described in
section 2.7.

8
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2.2 Multi-objective optimization problems

A multi-objective problem (MOOP) can be mathematically formulated as follows:

Minimize/Maximize fm(X), m = 1, 2, . . . ,M

subject to gj(X) ≥ 0, j = 1, 2, . . . , J

hk(X) = 0, k = 1, 2 . . . , K.

(2.1)

Here, X is a solution, a vector with n number of decision variables, X = (x1, x2, . . . , xn)T .
Each decision variable can have a bound called upper and lower bounds, xli ≤ xi ≤ xui .
f1(X), f2(X), . . . , fM(X) are the M number of objectives that need to be maxi-
mized/minimized. fm(X) formed a M dimensional space called objective space, at
the same time, X constitutes a n dimensional space called decision space. Figure 2.1
shows a mapping of a solution from 3 dimensional decision space to a 2 dimensional
objective space.

Most of the time optimization problems face some restrictions because of physical
or environmental limitations. The solution that satisfy the restrictions are called
feasible solution, otherwise, it is called in-feasible solution. These restrictions are
generally called constraints. gj(X) is called inequality constraints and hk(X) is
called equality constraints.

Figure 2.1: Decision and objective spaces.

2.3 Objectives in MOOP

Generally objectives in a MOO problem are conflicting in nature. By considering the
nature of conflicting objectives, it is impossible to distinguish among some solutions
which one is better than others. These solutions are called optimal solutions. In the
case of multi-objective optimization, usually the set of optimal solutions contains
more than one solutions. The set projected in objective space is formally called
Pareto-optimal front 1. As all the optimal solutions are equally important, in a
ideal case, it is vital to find out as many such solution as possible. Therefore, the
algorithms for solving multi-objective optimization problems should have two major
goals:

1We will provide formal definition of Pareto-optimal front later. The front is also called Pareto-
front.
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• Find the optimal set as close as possible to true Pareto-front.

• The set should be as diverse as possible.

The first goal is very similar to any single objective optimization algorithm. The
found solutions has to be close to true optimal solutions.

However, the second desirable property is explicitly related to the multi-objective
optimization. As it is not possible to identify all the optimal solutions, therefore, it
is absolutely necessary to have diversity property of the set 2.

2.4 Dominance and Pareto-optimality

In this section, we will formally define some notations related to multi-objective opti-
mization. Without loss of generality, we are considering only minimization problem.

Pareto dominance If a solution S is said to dominate another solution S̄ (math-
ematically, S � S̄) if and only if the both the following statements are true:

1. S is no worse than S̄ in all objectives, ∀m ∈ {1, . . . ,M}, fm(S) ≤ fm(S̄).

2. S is strictly better than S̄ in at least one objective, ∃m ∈ {1, . . . ,M}, fm(S) < fm(S̄).

Figure 2.2: Example of Pareto-front and dominance relationship.

Figure 2.2 illustrates an example of Pareto dominance. All the solutions pre-
sented in gray color are dominated solutions. The gray solutions are dominated by
other colored solutions. Considering solution C and B, solution B has less function
values (both for f1 and f2) than solution C. Therefore, B dominates solution C.
However, if we consider solution A and B, A is better than B on function f1 and B
is better on function f2. It is not possible to say who dominates whom; therefore,
solution A and B are non-dominated to each other.

2Diversity can be measure both in objective and decision spaces. However, usually it refer to
the diversity in objective space.
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Pareto-optimal set & Pareto-front For a particular problem, the set of non-
dominating solutions in decision space is called Pareto-optimal set. However, when
the Pareto-optimal set is projected in objective space, the set is formally called
Pareto-front. Figure 2.3 illustrates the Pareto-optimal set and Pareto-front. The
set with dark-blue solutions (left side of the figure) represents Pareto-optimal set
and the set with red (right side of the figure) solutions represents a Pareto-front of
the Pareto-optimal set.

Figure 2.3: An example of Pareto-optimal set and Pareto-front.

Ideal objective vector Ideal vector (also called ideal point or utopia point) is
a vector (point) in objective space, constructed by considering all the minimum
objective values for M objectives [115].

Mathematically, Ideal vector (Z∗) is a vector such that for each m = 1, 2, . . . ,M ,
Z∗m = argminx{fi(Q)|Q ∈ X}.

In general, ideal point/vector is unattainable; that means the point corresponds
to a non-existent solution. In other words, the solution actually does not exist.
Figure 2.4 shows an example of an ideal point. In the two-dimensional space, the
ideal point is defined by taking minimum of function f1 and f2 of the Pareto-front.

Figure 2.4: An example of ideal point (Z∗) in two-dimensional space.

Compromised solution Compromised solution is a Pareto-optimal solution that
has to be as close as possible to the ideal point. Therefore, within all the Pareto-
optimal solutions, the closet solution to the ideal point is called compromised solu-
tion. The closeness can be defined as the minimization of Euclidean distance from
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the ideal point to a solution. Mathematically,√√√√ M∑
m=1

(
fm(X)− Z∗m

)2

(2.2)

Please note that if the objectives are in different units, Euclidean distance becomes
insufficient to represent closeness. Therefore, it is required to normalized objectives’
values so that the values become unitless.

2.5 Classical methods

In this section, we are going to discuss some of the most frequently used conventional
methods for solving a multi-objective optimization problem. We call these methods
as classical methods.

2.5.1 Lexicographic method

Lexicographic method is based on the minimization of objectives based on impor-
tance [114]. Considering that the decision makers provide importance/ranking to
the objectives, and, the minimization is performed based on the ranking of objectives
one after another. In first iteration 1st ranked objective is minimized, in the subse-
quent iteration, next ranked objective is minimized by keeping 1st ranked objective
at least as minimum as previous iteration. Arithmetically,

Minimize fm(X),

subject to fj(X) ≤ fj(X
∗
j ), j ∈ {1, 2, . . . , i− 1} & i > 1 & i ∈ {1, 2, . . . ,M}

gj(X) ≥ 0, j ∈ {1, 2, . . . , J}
hk(X) = 0, k ∈ {1, 2 . . . , K}.

(2.3)
Where i represents the position of ranked objectives, fj(X

∗
j ) represents the jth ob-

jective value found in jth iteration.
The approach is simple, however, it is very difficult to rank the objectives for a

real-world problem. In an ideal world, all the objectives of a problem are equally
important.

2.5.2 Weighted sum method

This is probably one of the most frequent used classical method in multi-objective
optimization domain, also called linear aggregating functions. This method is very
easy to understand and use. The idea is to convert a multi-objective problem into a
single objective problem by providing weights to the objectives [51]. Mathematically,

Minimize F (X) =
M∑
m=1

wmfm(x),

subject to gj(X) ≥ 0, j = 1, 2, . . . , J

hk(X) = 0, k = 1, 2 . . . , K.

(2.4)
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Where, wm is the weight associated with each objective and σMm=1wm = 1. In addi-
tion, F (X) can be seen as summation of weighted normalized objectives.

The approach is simple, however, it is extremely difficult to assign weights. It
obviously depends on decision makers which objectives are given emphasis on. A
priori selection of weights can not guarantee to provide a good solution. However,
by changing the weights, it is possible to get new a solution every time. In that
case, the whole procedure has to perform again to get a new solution.

2.5.3 ε-Constraint method

Haimes et al. [81] proposed a new approach in order to solve multi-objective opti-
mization problems. Like the others, the approach also converts a multi-objective
problem to a single objective problem with some additional constraints on objectives.
Mathematically,

Minimize fz(X),

subject to fm(X) ≤ εm, m ∈ {1, 2, . . . ,M}/{m = z}
gj(X) ≥ 0, j ∈ {1, 2, . . . , J}
hk(X) = 0, k ∈ {1, 2 . . . , K}.

(2.5)

It is clear from the formulation that one objective (zth) is minimized and others are
constrained by different constants (εm). The idea is to optimize one objective where
the others are fixed. In addition, by providing different values of εm, different fz(X)
values can be obtained. Therefore, by providing appropriate εm values, different
points of non-convex objective space can be explored. However, without knowing
the shape of the Pareto-front, it is difficult to assign appropriate εm values.

2.5.4 Weighted Tchebycheff method

Instead of using linear combination of weighted objective (i.e., weighted sum), a
different approach is developed by Tchebycheff [114]. Following is the formalization
of the approach:

Minimize T (X) = maxMm=1wm|fm(x)− z∗m|,
subject to gj(X) ≥ 0, j = 1, 2, . . . , J

hk(X) = 0, k = 1, 2 . . . , K.

(2.6)

Where z∗m is the component of ideal objective vector, Z∗. The advantage of the ap-
proach is that it can explore each and every Pareto-optimal solution. The approach
has also some disadvantages. Considering that each objective may have different
bounds, hence, it is advisable to normalize all the objectives to have value in a
uniform scale. However, it is required advanced knowledge about maximum and
minimum values for all the objectives.

2.5.5 Summary of classical methods

All the methods described here based on the principle of converting convert a multi-
objective optimization problem into a single objective optimization problem. Dif-
ferent methods use different approaches for the conversion. In the following, some
drawbacks related to the classical methods can be identified:
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• Only one Pareto-optimal solution can be identified in a single run.

• Some classical algorithms suffer for not finding all the Parto-optimal solutions
for a non-convex problem.

• All the algorithms require some user defined parameters.

The most obvious disadvantage of classical approaches when comparing multi-
objective evolution algorithms (discussed in next section) is that a multi-objective
evolutionary algorithm can identify multiple solutions in a single run without using
any additional problem specific parameters.

2.6 Multi-objective evolutionary algorithms

The concept of evolutionary algorithm is first proposed by Holland in 1970 [94].
An evolutionary algorithm (EA) is a meta-heuristic optimization algorithm inspired
from nature and originally developed for single-objective optimization problems.
The algorithm mimics the idea of natural reproduction and selection.

In the reproduction phase, the ideas of genetic ‘crossover’ and ‘mutation’ are
adopted in the algorithm. Crossover corresponds to an operator that generates new
individuals (called offspring) by somehow combining the information (i.e., decision
variable or gene) contained within a pair of parents. Unlikely crossover mutation is
instead a random change that happens in an individual, mostly at the gene level.
Parents are selected from the population based on some parent selection methods.
Most of the methods prefer fitter individuals as parents. However, different parent
selection methods can be found in literature [51].

Crossover and mutation play important roles in EA. Crossover generates a off-
spring similar to the parent, hence, generated offprings search the solution space
close to parents. It is expected that better genes will be preserved in the population
(converge towards overall good solutions) by using crossover. On the other hand,
mutation introduce genetic diversity which helps the solution to escape from local
optima. The application rate of these two operators is controlled by two user-defined
parameters called crossover probability and mutation probability.

After reproduction phase, it is required to select finite number of individuals
from a combined population (a combination of parent and offspring populations) for
the next generation. Therefore, the concept of ‘survival of the fittest’ (i.e., natural
selection) is implemented to ensure that only the best individuals have the chance
to reproduce in the next generation. In this way, new generations are produced in a
loop until a defined stopping criterion is met [51, 175, 36]. The individuals contained
in the last generation are considered as final solutions.

David Schaffer was the first to implement a real multi-objective evolutionary al-
gorithm (MOEA) in 1984, called VEGA (vector evaluated genetic algorithm) [153].
VEGA was most straight forward implementation of single-objective genetic algo-
rithm to find non-nominated solutions. The reproduction and selection processes are
performed in an independent loop based on each objective. The proposed algorithm
performed better in some cases, however, it failed to achieve finding well spread
Pareto-front because of biases towards the solutions with good individual objective
values [51].

14



CHAPTER 2. MULTI-OBJECTIVE OPTIMIZATION

Algorithm 1 NSGA-II

1: Pt, Qt . Parent and offspring population at generation#t, respectively
2: N . Population size
3: SG . Stopping generation
4: s . An individual or a solution
5: P0 ← ∅, Q0 ← ∅
6: Initialize population P with N random individuals (P1 ← ∪Nj=1sj)
7: t← 0
8: while t ≤ SG do . Until the algorithm reaches to stopping generation
9: t← t+ 1 . Increment generation counter

10: Generate N offsprings using crossover and mutation, Qt ← ∪Nj=1sj
11: Rt ← Pt ∪Qt . Merge parent and Offspring population into Rt

12: Identify all fronts (F ) from Rt using non-dominated sorting procedure
(F = F1, F2, . . .)

13: Pt ← ∅ and i← 1
14: while |Pt + Fi| ≤ N do . Until the parent population is filled with N

solutions
15: Pt ← Pt ∪ Fi . Insert ith front into parent population
16: i← i+ 1
17: end while
18: Sort Fi according to crowding distance
19: Pt ← Pt ∪ Fi[1 : (N − |Pt|)] . Take first (N − |Pt|) solutions from Fi and

insert the solutions into parent population
20: end while
21: return Pt

Afterwards, no significant step forward had been made until Goldberg suggested
a new non-dominating storing procedure in 1989, which kicked-off the MOEA field.
He suggested to assign more non-dominating solutions in a population by using
domination concept. To deal with diversity, he also suggested a niching strategy. By
following his suggestions, at least three independent groups of researchers developed
three different MOEAs: multi-objective genetic algorithm, niched Pareto genetic
algorithm, non-dominated sorting genetic algorithm. These algorithms are differ
from each-other by the way fitness is assigned to the individuals. In the following
sections, we will describe two well-known multi-objective evolutionary algorithms.

2.6.1 NSGA-II

Elitist non-dominated sorting genetic algorithm (named: NSGA-II) was proposed
by Deb and his student in 2001 [53]. NSGA-II is a improved version of non-elitist
non-dominated sorting genetic algorithm [157] developed by Deb and his student
in 1995. NSGA-II was critically modified over NSGA mainly in three aspect: i)
proposing better non-dominating sorting procedure, ii) introducing the elitist ap-
proach (when selecting solutions for next generation), and iii) better methods for
diversity preservation. Algorithm 1 provides the details of NSGA-II.

NSGA-II starts with a population Pt that contains N number of solutions (step #
6); using the genetic operators (i.e., crossover and mutation), N number of children
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are generated (step # 10). Afterwards, the parent and child population are merged
(step # 11). The merged population (Rt) is sorted by applying non-dominated sort-
ing procedure (step # 12). Non-dominated sorting procedure classifies the solutions
of the population into different ascending non-dominated levels/fronts 3 based on
domination property of the solutions. The parent population for next generation
will be filled by the different identified fronts. The population is filled by one front
at a time (when an entire front can be accumulated into parent population, all the
solutions of the front are copied into the parent population) (step # 15). Most of
the time, it is not possible to copy all the solutions from the last front. The situa-
tion is illustrated in Figure 2.5. The entire front # 4 of the figure can not copied
to the parent population. Therefore, some solutions will be accumulated until the
parent population is filled. However, rather than copied random solutions from the
front, first few solutions are copied after performing a ranking among the solutions
of the front. A technique called crowding-distance is used to rank the solutions (step
# 18). Please note that other part of the front # 4 and other trialing fronts are
rejected to enter into next generation.

Figure 2.5: Illustration of NSGA-II procedure.

Crowding distance Crowding distance is a metric that is used to identify the
density of a solution with respect to the surroundings solutions. The metric may
have little effect on the early stage of evolution as there exist many non-dominating
solutions. However, in the later stage of the evolution, it is more probable that only
a single front exists with more than N number of solutions. Therefore, crowding

3The set of best non-dominated solutions are called non-dominated solutions of level# 1/front#
1 and the next best is called front 2 and so on.
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distance becomes handy to deal with this kind of situation. In addition, it ensures
that well-distributed solutions (over objective space) is passes to the next generation.

The crowding distance of a solution is defined as the distance of two surrounding
solutions on either side of the solution along each objective. According to the authors
of NSGA-II [53], crowding distance of a solution is calculated by considering each
objective independently, and sum the distances between the surrounding solutions.
Figure 2.6 illustrates the crowding distance of ith solution, where (i+1)th and (i−1)th

solutions are considered as surrounding solutions.

i
i+1

i-1

k

0

f1

f2

Figure 2.6: Crowding distance calculation for ith individual.

2.6.2 SPEA2

Zitzler and Thiele proposed a new approach in 1998, called Strength Pareto Evo-
lutionary Algorithm (SPEA) [178]. In 2001, Zitzler et al. [180] proposed SPEA2,
an improved version of SPEA. SPEA2 has some differences with respect to NSGA-
II. Firstly, SPEA2 introduces an external archive to save non-dominated solutions.
Secondly, a new technique was suggested for assigning fitness to solutions. Thirdly,
a truncation approach was proposed to reduce the number of solutions in external
archive. Algorithm 2 shows the steps of SPEA2.

The algorithm starts with N number of randomly initialized solutions stored in
P0 (step # 7). Afterwards, all the solutions contained within Pt and Et are assigned
fitness according to the proposed approach. All the non-dominating solutions ex-
tracted from Pt and Et will be stored in Et+1 (step # 10). The number of solutions
in the archive can be higher or lower than the fixed size of the archive. Therefore,
step # 12 and step # 14 of the algorithm are related to adjusting the number of
solutions in Et+1. The entire process of adjusting the number of solutions is called
environmental selection. Afterwards, binary tournament selection is performed on
the archive to select the parents (step # 16). Using the genetic operators, N num-
ber of offsprings are generated; finally the offsprings are copied to Pt+1. Except the
initialization step all other steps are inside a loop and the loop continues until the
stopping criteria is met.

Fitness assignment Each of the solution in Pt and Et is assigned a strength
value based on number of solutions it dominates. Subsequently, the solution is
assigned a raw fitness which is calculated by summing all the strength values of
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Algorithm 2 SPEA2

1: Pt . Parent population at generation#t
2: Et . External archive at generation#t
3: N , N̄ . Population size, external archive Size
4: SG . Stopping generation
5: s . An individual or a solution
6: P0 ← ∅, E0 ← ∅
7: Initialize population P with N random individuals (P1 ← ∪Nj=1sj)
8: while t ≤ SG do . Until the algorithm reaches to stopping generation
9: Calculate fitness for all the individuals of Pt and Et

10: Find all the non-dominated solutions from Pt and Et and copied to Et+1

11: if |Et+1| > N̄ then
12: Reduce the size of Et+1 using truncating technique
13: else
14: Fill Et+1 from the dominated solutions from Pt and Et
15: end if
16: Apply binary tournament selection on Et+1 to fill the mating pool
17: Using crossover and mutation, N number of offsprings are generated
18: Copy the offsprings to Pt+1

19: t← t+ 1
20: end while
21: return Et

dominators (in Pt and Et) of the solution4. In the case of presence of many non-
dominating individuals in population, it becomes difficult to distinguish among the
individuals. Therefore, an additional value based on destiny estimation is added to
the raw fitness value. In addition, the destiny estimation is calculated by adopting
kth nearest neighbor method. The details can be found in [180].

Environmental selection When all the non-dominating solutions are copied in
external archive, any of the three situations can happen: i) the number of non-
dominating solutions are exactly equal to the size of the archive, ii) the number
of solutions are less than the size of the achieve, or ii) the number of solutions
are grater than the size. In the case of first condition, no additional operation is
required; however, this is very unlikely condition to happen. To handle the second
case, best (N̄ − |Et+1|) dominated solutions from Pt and Et are copied to archive.
The solutions are selected based on fitness values (by sorting the solutions according
to the fitness values). For the third case, a loop continue eliminating a solution at a
time until the number of solutions in Et+1 becomes N̄ . The elimination is performed
based on the distance of a solution and its kth nearest neighbor. The solution with
smallest distance with its neighbor will get eliminated in each phase.

4Raw fitness value needs to minimize; therefore, an individual with 0 raw fitness value refers
non-dominating solution.
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2.7 Constraint handling

Very few real-world problems are unconstrained optimization problems. Most of the
times, they come up with a number of constraints. Constraints divide the entire
search region into two different regions – feasible and infeasible regions. Feasible
region contains all the solutions those are acceptable under the given constraints.
And the goal is to find the Pareto-front within the feasible region.

There are two types of constraints – equality and inequlity constraints. In Equa-
tion 2.1, J and K numbers of inequality and equality constraints are formulated.
Please note that within the formulation, no “less-than-equal-to” ineqality constraints
are considered. Howevere, it is easily possible to convert “less-than-equal-to” to
“grater-than-equal-to” by multiplying left side of the constraints by -1.

In the few following sub-sections, we will discuss some of the constraints handling
methods used in MOEA.

2.7.1 Ignoring infeasible solutions

The most simplest way to handle constraints is to avoid the infeasible solutions [51].
The approach is easy to implement, however, it is difficult to find feasible solutions
for real-world problems at the beginning of the evolution. Therefore, a guiding ap-
proach is required for generating feasible solutions. The approach simply compares
the infeasible solutions with each other to understand which one may produce a
feasible solution. Most of the time, the overall constraint violation [51] metric is
used for the comparison stated above.

2.7.2 Penalty function method

Another popular method used for constrain handling is penalty function. The gen-
eral idea is to convert a constrained problem to an unconstrained problem. The
conversion is done by adding (or subtracting) a value (depending on how much the
constraints is violated) to (or from) the objective function. The general formulation
of penalty function method is as follows:

Fm(X) = fm(X) + PmΦ(X) (2.7)

Where Fm is the new objective function by considering constraints violations. Φ(X)
is the term that calculates overall constraint violation by the X individual. Pm is
called penalty factor. As the original objectives are in different scale in real-world
problems, the penalty factor should be adjusted differently for different objectives.
Generally, the parameter is very difficult to set, however, most of the time a static
value is chosen for the parameter [51]. It is clear from the equation that if Φ(X) is
zero, the Fm term becomes same as fm. However, in the case of constraint violation,
penalty (according to overall constraint violation) are added to the original objective
function.

To calculate the overall constraint violation, fist of all, constraint violation for
each constraint (j = 1, 2, . . . , J) is calculated.

φj(X) =

{
|gj(X)|, if gj(X) < 0

0, otherwise.
(2.8)
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And the overall constrain violation is the summation of all the constraint violations
(calculated in Equation 2.8).

Φ(X) =
J∑
j=1

φ(X). (2.9)

The approach is easy to understand and implement. However, the difficult part
is to setup appropriate values for penalty factors. Study shows that if the factor is
chosen correctly, MOEAs perform well, otherwise an infeasible solutions or poorly
distributed set can be achieved.

2.7.3 Constrained tournament selection

Deb [50] proposed the method which is based on binary tournament selection [51].
The basic idea of binary tournament selection is that a better solution is chosen
within randomly picked two solutions. However, in the proposed approach feasible
and infeasiable solutions are considered to choose a better solution. Constrained
tournament selection simply prefers a feasible solution over an infeasible solution.
Therefore, when comparing two solutions, the following rules are strictly followed:

1. Feasible solution is chosen over infeasible solution.

2. Within two feasible solutions, the one is chosen which has better objective
value.

3. Within two infeasibale solutions, the one is chosen which violets less overall
constraints.

To handle step # 2, it is difficult to define a single objective value as there are
more than one objectives exist in the case of multi-objective optimization. To deal
with the problem, the concept of domination is employed. When the solutions are
in different non-dominating fronts, the solution will be chosen from better non-
dominating front. However, when two solutions belongs to the same front, crowding
distance is used to break the tie. Less crowded solution is preferred over more
crowded solution.

The approach does not require any extra computational demand. The approach
is generalized and can be used for any MOEA algorithms those are based on the
domination concept.

2.8 Conclusion

A multi-objective optimization problem is a kind of optimization problem where
more than one objectives exist that need to be optimized (minimized or maximized).
The conflicting nature of the objectives forced to have a set of non-dominating
individuals as solutions to a multi-objective optimization problem. Some classical
methods require to convert a multi-objective problem into a single objective problem
and solve the problem using some single objective optimization algorithms. The
classical methods face different problems when solving multi-objective problems; the
most difficult problem is that the algorithms need to run multiple times to generate
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multiple solutions by changing the parameters. On the other hand, MOEAs are
inspired from nature can deal with MOO problems because of inherited nature of
the algorithms. In addition, MOEAs can deal with high-dimensional, discontinuous
and multi-model MOO problems.

Real-world optimization problems are mostly bounded with constrains. There
are many ways to handle the constraints. One of the most well-known method is
penalty function method. A penalty is added (for minimization case) to the function
value for violating constraints. However, the user defined parameters are difficult to
set and the parameters are varied depending on the nature of the problem. In this
regards, constrained tournament selection was proposed which is parameter less and
well suited for evolutionary algorithms.

In the following chapter, we formulate the energy system optimization problem
as a constrained multi-objective optimization problem. Afterwards, a framework is
proposed to deal with the problem. The framework is tested against a real-world
energy system problem and satisfactory results are achieved.
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Chapter 3

Proposed framework

The Earth is the only world known so far to harbor life. There is nowhere
else, at least in the near future, to which our species could migrate... Like
it or not, for the moment the Earth is where we make our stand.

— Carl Sagan

3.1 Introduction

Nowadays, renewable energy is a cornerstone of an energy system; the necessity of
introducing renewable energy is required to mitigate harmful effects of our environ-
ment. Although an introduction of large scale renewable energy is preferable - it
poses some issues mainly because of intermittent behaviors and economical barri-
ers. By developing proper control strategies and by interconnecting different energy
resources the issues of renewable energy can be addressed; as a down side, systems’
complexity is hugely increased. Hence identifying viable system configurations (i.e.,
type and capacity of energy generation technologies for a given demand) is getting
extremely difficult.

To face this challenge, different approaches are possible. From a quantitative
viewpoint, in order to provide a reliable background for the design of future energy
systems, two ingredients appear to be crucial: the simulation model used to analyze
the behavior of the considered configurations and the optimization method used to
identify the most convenient parameters.

While several solutions are available in the literature in terms of these two ingre-
dients, their coupling in the context of energy scenario design is still far from being
fully satisfactory. In practice, either advanced optimization algorithms are applied
to sectorial models, or more comprehensive models are optimized with simplified

M. S. Mahbub, M. Cozzini, P. A. Østergaard, and F. Alberti, “Combining multi-objective
evolutionary algorithms and descriptive analytical modelling in energy scenario design,” Applied
Energy, vol. 164, pp. 140 – 151, 2016. DOI: http://dx.doi.org/10.1016/j.apenergy.2015.
11.042

The text is substantially verbatim in chapter 3 except introduction and conclusion; the sections
have been modified to ensure a better flow of the text in the thesis. The section related to
multi-objective evolutionary algorithms is removed as the basics of the algorithms is described in
chapter 2 in details. The analyses regarding selecting energy scenarios is included in section 3.5
compared to the published journal version.
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methods. Several examples of the first case are reviewed in [19], where distributed
energy resources (DER) are considered, and in [68] where hybrid renewable energy
Systems (HRES) models are considered: while detailed models and optimization
algorithms are used, these works typically analyze small systems or limited energy
sectors (typically focusing on electricity only). Concerning the second case, much
less literature is available. Some notable examples are found in [45, 57, 140]: here
the used models allow to include electric energy, thermal energy, and transportation,
but only single-objective optimization is considered. Koroneos et al. [95] performed
a case study on the Greek island Lesvos, investigating the penetration of renewables
by applying multi-objective optimization (in terms of costs and CO2 emissions).
However, the energy system (including electric and thermal energy, but no trans-
portation) is represented with a simplified and specifically developed model, not
immediately generalizable to other cases, and no details about the optimization
method are provided. In Table 3.1, a simple classification of the screened papers is
reported.

Table 3.1: Positioning of papers in the thesis with respect to comprehensive energy
system modelling and multi-objective optimization.

Papers
Simultaneously including

electrical, thermal and
transportation sectors

Multi-objective

Alarcon-Rodriguez et al. [19]
(review including about 80 papers)

No Yes

Fadaee and Radzi [68]
(review including about 50 papers)

No Yes

Koroneos et al. [95] No Yes
Pina et al. [140] Yes No
Dong et al. [57] Yes No
Cormio et al. [45] Yes No

We therefore propose a step forward in this direction by coupling advanced op-
timization techniques (multi-objective evolutionary algorithms) to a fairly detailed
and comprehensive energy system simulation model (EnergyPLAN). Our choices
concerning the model and optimization algorithms are motivated as follows.

A wide literature about energy simulation models exists. They can be classi-
fied in different ways, depending on their nature (descriptive, analytical, etc.) or on
technical aspects. An extended review is contained in [42], which differentiates mod-
els mainly in terms of time step, time extent, and modelled energy sectors. From
these points of view, two requisites seem to be needed for a complete analysis. First,
the intermittency typical of renewable sources requires a fine time step in order to
properly evaluate the issues related to this aspect (possible need for energy storages,
effects on grid stability, transmission line capacity, etc.). At least an hourly simula-
tion model appears to be necessary to this purpose. Second, issues related to inter-
mittency and supply-demand matching have shown the importance of considering
peak shaving strategies exploiting all the possible synergies between different energy
sub-systems, for example between electric energy and thermal energy (through, e.g.,
heat pumps and thermal storages), and between electric energy and transportation
(through, e.g., electric vehicles). Hence, a comprehensive model is needed, including
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all the three energy sectors mentioned above. Within the large number of available
models – HOMER [13, 100], RETScreen [78, 70], H2RES [12, 108], LEAP [14, 150],
and TIMES [18, 169], to cite a few – it is typically difficult to find tools satisfying
both of these requisites. Either they are not fully comprehensive (e.g., focused on
the electric system only) or difficult to extend to large scale. Our choice fallen hence
on EnergyPLAN, which satisfies both requisites, is a freely available model, and
is already used in several papers [101, 128], as further described in Section 3.2.1.
A model such as EnergyPLAN can simulate an energy system yielding its yearly
performance (e.g., in terms of aggregate energy consumptions, costs, and emissions)
after proper inputs have been provided (e.g., power capacities for different energy
production, conversion, and consumption units). On the other side, as capacities
are an input of the tool, their choice is left to the user, so that their optimization
against specific objectives is typically performed manually.

Concerning optimization of system configurations, again several methods are
available in the literature. In this case, the requisites are determined by the fol-
lowing aspects. First, the high number of decision variables which can enter the
optimization process gives rise to a very large search space, where advanced opti-
mization techniques are required in order to yield a feasible computational demand.
Second, optimization of energy systems needs to deal with multiple criteria, often
in mutual contrast. For instance, the ability of an electricity system to balance
demand and supply may be in opposition to its efficiency, as higher flexibility typ-
ically requires higher consumptions. Consequently, the optimization problem of a
large energy system is in general a multi-objective optimization problem with fea-
tures reminiscent of complexity (e.g., the strong interaction among its many compo-
nents). Combining these needs, we decided to resort to meta-heuristic optimization
algorithms in a multi-objective framework [51] to tackle this task. This goes well
beyond the optimization tools embedded in some energy models (e.g., HOMER),
which are single-objective and tailored for small systems, where a brute-force search
on a discretized design space is possible.

Meta-heuristic algorithms are indeed especially suitable for large and complex
search spaces. Among these algorithms, we choose the class of evolutionary algo-
rithms (EAs). EAs (with single or multi-objective optimization) have been applied
for solving different energy related problems such as: photovoltaic related problems
[77]; wind farm layout (turbine selection and positioning) problems [121, 152, 149,
163]; design and optimization of hybrid stand-alone energy systems [92, 24]; HVAC
(heating, ventilation, and air conditioning) systems optimization [96]; and many
others. In addition, several of the papers reviewed in [39] and [68] adopt these
techniques.

Summarizing, future energy scenario design is a challenging MOO problem and
in this work we present a generalized framework to analyze it, coupling for the
first time a simulation model able to describe all the relevant energy sectors (elec-
tric, thermal and transport) to an advanced multi-objective optimization algorithm.
When designing an energy scenario, it is indeed always desirable that the proposed
scenario is in a near optimal state, which is not always achievable with analytical
optimization [135]. The proposed meta-heuristic approach takes the form of a multi-
objective evolutionary algorithm coupled with the EnergyPLAN simulation model.
Moreover, EnergyPLAN is not a linear model, containing as it does conditional
clauses for variable assignment and conditional procedures, which is an additional
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motivation to combine with MOEA. The goal is to be able to identify a set of future
energy scenarios taking simultaneously into account multiple criteria - e.g., decrease
of CO2 emissions and decrease of annual costs. The proposed framework assures a
significant speed-up of the identification process compared to the manual approach
used in the past for scenario design with EnergyPLAN – provided the latter is
feasible at all.

As a case study, we apply our framework to the energy system of Aalborg, Den-
mark. The performed simulations allow to identify the Pareto-optimal solutions
with respect to the two contrasting objectives of costs and emissions. The simu-
lation results are compared with a manually-identified future scenario, taken from
literature [20]. Though our main purpose is to explain and demonstrate our com-
putational framework, we also offer some qualitative understanding of the observed
trends for the decision variables, providing support to the effectiveness of the opti-
mizer.

The remainder of the Chapter is organized as follows. Section 3.2 discusses the
methodology and the details of the framework. In Section 3.3, we present the case
study being investigated, as well as the choice of decision variables. Section 3.4
presents the simulation results, with two slightly different approaches for the deter-
mination of one of the decision variables. Section 3.5 presents a technique to identify
compromised scenarios from the Optimized scenarios. Conclusions are given in Sec-
tion 3.6.

3.2 Methodology

In this section, we will present a framework that coupled a MOEA and EnergyPLAN.
In this regard, we will first introduce EnerlyPLAN model. Afterwards, computa-
tional requirement for the framework and the framework itself will be presented.

3.2.1 EnergyPLAN

EnergyPLAN [101] is a deterministic, descriptive, analytically programmed com-
puter model for hour-by-hour simulations of a regional or national energy system.
It is developed as a freely available tool at Aalborg University, though its use extends
beyond the academic environment.

EnergyPLAN is a deterministic model [108] in the sense that a given output
will always result in the same output and thus without any effects of randomness
or probability profiles. Wurbs [174] describes descriptive models as models that
“demonstrate what will happen if a specified plan is adopted” – as opposed to pre-
scriptive plans that “determine the plan that should be adopted to best satisfy the
decision criteria”. Hence, EnergyPLAN is a simulation model that simulates the
behavior of a system with a given configuration, as opposed to e.g. investment
optimization models which seek the optimal investments within a certain area of
possibility. Our framework, however, introduces the possibility of using Energy-
PLAN as a prescriptive model. Finally, EnergyPLAN is analytically programmed
[40]; i.e. the programmer has defined a priori which steps the model must take under
various circumstances – as opposed to e.g. linear programming where a solver finds
the optimal solution based on a set of interrelations and constraints and an objective
function. EnergyPLAN encompasses the entire energy system in terms of energy
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resources, energy conversion technologies and demands of electricity, heat and fuel
for all demands sectors [101]. It has been designed with particular focus on en-
ergy systems with interdependencies between sectors, exploitation of synergies, use
of district heating (DH) and with high proportions of non-dispatchable renewable
energy production.

Most demands are given as annual aggregates combined with annual distribution
profiles. Likewise, fluctuating renewable energy sources (RES) and non-dispatchable
energy sources in general are given as annual aggregates or installed capacities com-
bined with annual distribution profiles (i.e., hourly distribution profile for a year).
All energy conversion units are given as aggregates – e.g. one representation of all
heat pumps (HP) in dwellings, one representation of all land-based wind turbines
and one representation of all large-scale waste incineration plants. This aggregation
combined with analytical programming makes the model very fast with calculation
times measured in seconds [101].

Dispatchable plants include: (i) condensing mode power plants and combined
heat and power (CHP) plants for power production; (ii) boilers, heat pumps, and
CHP units for heat production; and (iii) electrolyzers and more for the production
of synthetic fuels. Combined with storages for electricity, heat and fuels, as well as
with flexible demands, these are the flexibilities in the energy system [101] .

EnergyPLAN has two primary regulation strategies; technical and economic.
With the economic regulation strategy, the model seeks to dispatch plants and use
import and export of electricity to realize the lowest economic costs. In technical
regulation, the user chooses between a set of regulation strategies detailing how the
CHP plants are operated; the main regulation strategies are 1) according to heat
demands, 2) according to pre-defined high electricity price intervals and 3) in order
to seek the most energy efficient balance between heat supply and heat demand and
between electricity supply and demand.

The model uses an endogen list of priorities, giving preference to units that
are considered fuel efficient. Hence, productions with a use-it-or-lose-it character
come in first, while dispatchable non-CHP productions (i.e., condensing mode power
production and boiler-based heat production) come in last.

The EnergyPLAN does not endogenously consider uncertainty in input parame-
ters such as weather-given production profiles. Previous work has however demon-
strated that energy scenarios showing relatively good performance against weather-
given production profiles from one year, also shows relatively good performance
against weather-given production profiles from other years. Thus, for planning and
scenario design purposes, uncertainty in weather-given production profiles is not
critical – whereas it is clearly important for actual operation or dispatch simula-
tion [105].

Based on the system configuration and the choice of regulation strategy, the
model provides aggregate annual outputs for fuel demands, productions and de-
mands of all types of units, CO2 emissions and costs. In addition, the model pro-
vides hour-by-hour results for all production and demand technologies as well as
storages.

For annual energy systems simulation tools, a 1-hour time step appears to be
the norm. In a survey of computer tools for energy systems models, nine out of
thirteen time step simulation tools employ hourly analyses [42]. Norms do not nec-
essarily reflect optimality, but the choice of a time step no longer than one hour is
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a compromise between data availability, processing time and the facility to capture
variations in demands and productions. In a comparison between dynamic simula-
tions and EnergyPLAN simulations, Pillai et al. [139] found that “The EnergyPLAN
tool needs to be taken conservatively if used for energy system analyzes of islands
and ‘islandable’ systems” due to intra-hour dynamics. Essentially, EnergyPLAN
simulates steady-state hourly situations, however in simulations, intra-hour require-
ments may be satisfied by stipulating minimum absolute productions and minimum
relative productions shares from units which in a given scenario is deemed grid sta-
bilising. In addition to this, in future high-RES energy systems it must be expected
that RES-based production units will function as virtual power plants, thus with
the ability to supply short-circuit power without tripping, and with the ability to
stabilise frequency and voltage through control of reactive and active power (see e.g.
[35] for developments in the field of wind farms or [62] for the role of smart grids to
enable renewable energy integration).

In a review, Prasad et al. [142] identify the EnergyPLAN model as being appro-
priate for “long-term planning in small developing island countries” and in another
review article, Connolly et al. [42] list the model as being one of the few mod-
els capable of modelling 100% renewable energy systems encompassing electricity,
heat and transport sectors. These are in fact two main applications of the model.
Additionally, EnergyPLAN is furthermore versatile as it may be run in command
line mode, enabling scenario file generation, simulation and result harvesting from
outside the actual EnergyPLAN simulation environment.

The model has been used on various national systems including Denmark [98,
102], Norway [80], Hungary [151], Hong Kong [109], Croatia [33], Mexico [127] [51],
Ireland [40, 43], Italy [72] and Jordan [137, 125]. It has also been applied on local
areas in Denmark [136], China [86, 85] and Croatia [108], as well as in more specific
simulations of the impact of particular elements of the energy system such as flexible
demand [97], transport systems [106, 145], heat pumps [84], heat savings [158],
biomass availability restrictions [118, 99] and district heating [41, 160]. The model
has also been applied to analyze different pricing systems for wind power, as well as
for generating input for more detailed electro-technical system analyzes [139, 160,
130, 21, 131].

3.2.2 Computational demand

As explained above, the goal of our framework is to identify the best configurations
for the energy system. In the quest for these optimal energy scenarios, the search
space to be explored can be huge, as it depends on a large number of decision
variables and on all their possible values. For continuous variables, considering a
combinatorial approach would not make sense at all, but it is worth emphasizing
that the number of possible combinations would easily explode even assuming a
reasonable discretization.

A simple way to discretize decision variables is to restrict them to multiples
of the accuracy required for the solution, which in practical applications is al-
ways finite. For explanatory purposes, we then consider that the optimal value
of the ith resource capacity xi has to be determined with an accuracy ∆xi and
that the feasible range is (0, xi,max). Then, we restrict the admissible values to
the set {0,∆xi, 2∆xi, . . . ,mi∆xi}, where mi = round(xi,max/(∆xi)). For the sake
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of simplicity, we also assume mi = m for each resource. Hence, for n resources,
there are in principle mn possible scenarios in total. Even for a quite rough accu-
racy of 10% with respect to each maximum range value (i.e., m = 10), in order to
fully explore n = 6 resources as done in this paper (onshore wind, offshore wind,
PV, conventional power plants, CHP, HP), 106 configurations should be compared.
EnergyPLAN, considered a very fast tool in the domain of energy systems sim-
ulation, takes approximately 3 seconds to evaluate a scenario on a typical single
core processor, so that the investigation of such a number of combinations would
take hundreds of hours of single-core computational time. With more demanding
accuracy requirements or a larger number of decision variables, the combinatorial
problem would quickly become intractable even with parallelization on large cluster
computing architectures.

While limiting the number of decision variables and exploiting other scenario
reduction techniques can always be useful, the MOEA ability of handling large
search spaces is highly valuable in this context.

Considering 6 decision variables, 100 individuals and 100 generations to compute,
a MOEA is able to generate a well-structured Pareto-optimal front in a few hours
on a common workstation. Increasing the number of decision variables requires
computing more generations. It is also advisable to run the MOEA multiple times
and to combine the fronts found by each run to generate a more appropriate Pareto-
optimal front. The topic is further discussed in Section 3.4.1.

3.2.3 Combination of EnergyPLAN and multi-objective evo-
lutionary algorithms

The integration of EnergyPLAN with a MOEA provides a complete framework for
energy scenario design. The corresponding scheme is described in Figure 3.1. On
the upper part of the figure, the general steps of a MOEA are shown. Depending
on which MOEA is used, implementation details regarding genetic operators (selec-
tion, crossover, mutation) and ranking procedures (anyway based on the dominance
concept) can be different. EnergyPLAN comes into play when an individual needs
to be evaluated. The lower part of Figure 3.1 shows the corresponding procedure.
All required distributions (e.g., electricity demand, thermal demand, solar, on- and
offshore wind availability) and relevant costs (e.g., investment costs for PV and wind
or fuel costs) are fixed1 inputs of EnergyPLAN, as they do not change during the
algorithm evolution. Conversely, at each generation the MOEA provides new val-
ues of decision variables to EnergyPLAN, which in turn simulates the scenario and
calculates all output parameters. The necessary objective parameters are fed back
to the MOEA. The loop continues until a termination condition is met, which in
our case is given by the number of specified generations. After completion of all the
generations, a Pareto-optimal front is generated by the MOEA.

As regards implementation, the jMetal [58] framework is used. This is an

1In the simulations, transitions are not modelled but rather optimal system’s configurations are
determined. Learning effects in terms of investment cost reductions are therefore not endogenously
modelled, but applied costs must reflect the expected costs at the time of investment. In the
Aalborg scenario, costs stem from the national Danish catalogue Technology Data for Energy
Plants developed for energy planning and scenario making-purposes by the Danish Energy Agency
together with the Danish transmission System Operator (TSO) Energinet.dk.
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Figure 3.1: Integration of a generic MOEA and EnergyPLAN.

object-oriented JAVA-based framework for multi-objective optimization with meta-
heuristics. Using the advantages of this framework, the described scheme is imple-
mented2. The MOEA generates an input file for EnergyPLAN, executes Energy-
PLAN in command-line mode and reads main results from an EnergyPLAN output
file. The output is then used to evaluate the fitness functions and proceed to the
next iteration.

3.3 Case study

To test the performance of our framework, we perform simulations on the dataset
of Aalborg, Denmark. We have chosen this municipality because of the extensive
studies already carried out on its energetic performance, making all the required
data readily available. Moreover, a possible future scenario to improve the Aalborg
energy system was already proposed in the past by a pool of experts [20], thereby
providing a valuable chance to compare the results of our automatic framework with
a “manual” work.

2Source code: https://github.com/shaikatcse/EnergyPLANDomainKnowledgeEAStep1
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3.3.1 Description of Aalborg scenario

Aalborg is the fourth largest city in Denmark and the main city in the municipality
bearing the same name. The municipality has 200000 inhabitants distributed among
the city, smaller towns and rural areas and spans more than 1000 km2. In the current
situation, energy supply is based on a mixture of (see Figure 3.2):

– Wind power.

– Electricity and district heating from coal, natural gas and biogas fired power
plants.

– Individual heating (outside district heating areas) based on oil, biomass and
natural gas boilers.

– A transport sector almost exclusively based on fossil fuels.

The Aalborg scenario was developed by researchers at Aalborg University for Aal-
borg Municipality as part of a political process to indicate ways for Aalborg to
transform its energy system towards a 100% renewable energy system based on lo-
cally available renewable energy sources. The reports are both in Danish [132, 129],
however main results have also been published internationally [20] and have been
the starting point for further analyzes [161, 134].
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Figure 3.2: Primary energy demand for Aalborg Municipality in the 2007 reference
situation as well as in the 100% renewable energy scenario.

In the process, eight distinct scenarios were designed from which one was further
developed into the final scenario. EnergyPLAN was applied in the process, but as
a simulation model without endogen investment optimization, all refinement was
conducted iteratively outside the model. General characteristics of the transition
are:

– Strong energy savings within heat and electricity.
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– Phasing out of small-scale CHP plants, fossil-fuel vehicles and individual boil-
ers for heating.

– Transition to electricity use where possible within industry, transport and
heating.

– Expansion of the central district heating network to connect to outlying net-
works.

– Exploitation of geothermal energy for district heating.

– Increased use of heat pumps for both district heating systems and individually
heated houses.

– Increased biomass use within industry, transportation and large-scale CHP.

– An electricity system which is in balance on annual basis, while on hourly
basis import/export is applied.

In spite of significant electricity savings, the overall electricity demand will in fact
increase as other sectors are converted to electricity as shown in Table 3.2.

Table 3.2: Electricity demand in Aalborg Municipality in the 2007 reference and in
the 100% RE scenario. Any demands for Transport, Hydrogen, and Biogas produc-
tion are insignificant and included in the category “Other electricity demand” in
2007. In 2007, also industry is included in “other”. Thus, the 117 GWh indicated
is additional to what is included in the category “Other”.

[GWh] 2007 Reference 100% RE Scenario
Electrical Heating 5 0
Heat pumps 1 120
Industry - 117
Transport - 460
Hydrogen - 192
Biogas Production - 9
Other electricity demand 1047 573
Total electricity demand 1053 1470

Electricity supply will shift from CHP units based on natural gas and coal to
wind power, supplemented by smaller fractions of production based on waste and
biomass incineration plants and a highly efficient CHP plant (see Table 3.3).

Heat supply will almost exclusively come from central district heating, and where
this is not feasible, heat pumps will be applied, as shown in Table 3.4. Overall heat
losses are reduced through insulation.

3.3.2 Choice of decision variables, objectives and constraints
of an energy system to optimize

There are plenty of decision variables to choose from when optimize an energy
system. A handful of decision variables are not only easy to optimize, but also
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Table 3.3: Electricity production in Aalborg Municipality in the 2007 reference and
in the 100% RE scenario.

[GWh] 2007 Rference 100% RE Scenrio
Small-scale CHP 90 0
Large-scale CHP 670 150
Waste incineration CHP 110 100
Wind power 240 1230
Total 1110 1480

Table 3.4: Final heat demand in Aalborg Municipality in the 2007 reference and in
the 100% RE scenario. Final DH demands include grid losses.

[GWh] 2007 Reference 100% RE scenario
Individual oil 78 0
Individual gas 43 0
Individual biomass 194 0
Individual HP 3 94
Individual electric 5 0
Individual solar 0.5 0.5
Bioler DH 38 0
Local CHP or HP DH 138 17
Central DH 1730 1344

help to understand the behavior or trend of a variable with respect to others. In the
following, we divided a range of possible decision variables into two main categories
– production unit investments and flexible technologies.

Production unit investments Within this category, the main decision variables
are the capacities of the units. In order to select the most significant ones,
two main arguments were taken into account: (i) the options given by local
conditions (which mainly offer wind and PV) and (ii) the fact that the combi-
nation of fluctuating RES and dispatchable units (CHP / conventional power
plant) is a core issue in future high-RES systems. Hence, the following decision
variables were chosen for this category:

a) Onshore wind capacity.

b) Offshore wind capacity.

c) PV capacity.

d) CHP capacity.

e) Conventional power plant (PP) capacity.

Flexible technologies These are the technologies assisting the energy system to
establish continuous balance between supply and demand. Among these, we
choose:
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a) Heat pump (HP) capacity – efficient conversion from electricity to heat.
It is worth pointing out that, when shifting from CHP to HP, an extra
electricity demand is introduced.

As for performance indicators or objectives to be minimized, two are selected which
are at the center point of energy planning and policy:

a) CO2 emissions.

b) Annual costs.

The optimization takes place under a number of constraints:

– Transmission line capacity of export/import: 160 MW. This constraint en-
forces the system to produce enough electricity so that it does not require to
import more than 160 MW.

– Heat balance: This constraint enforces the system to produce exactly the
amount of heat necessary to meet the heat demand.

– Grid stabilization: More than 30% of power production in all hours must come
from units able to supply grid support (see [133] for details on grid stability
in EnergyPLAN).

3.4 Simulation and results

In the simulation, we optimize the values of all the mentioned six decision variables
with respect to the two objectives and under the three constraints specified in the
previous sub-section. All other parameters are identical to the 100% RE Scenario.
Table 3.5 shows the lower and upper bounds in MW used for the different decision
variables.
The MOEA optimization is conducted using the following parameters:

– Population size: 100

– Number of generations: 100

– Crossover probability: 0.9

– Mutation probability: 1/number of decision variables

– Number of runs: 4

The parameters are selected to provide enough time to the MOEA to converge.
However, sometimes it is possible for a MOEA to trap in local optima. Therefore,
multiple runs are performed to get a well-approximated Pareto-front [28].

An important remark is in order concerning the PP capacity. In our model, no
annualized investment costs are associated with PP, resembling a situation where
these plants are close to end of life. In the absence of explicit costs, PP capacity
gives rise to degenerate solutions. On the other hand, PP capacity can be determin-
istically fixed by calculating the minimum value which allows to satisfy the demand.
With this second approach, only 5 free variables are left. In order to provide a
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Table 3.5: Lower and upper bounds for the decision variables used in this simulation.

Decision variable
Capacity

Lower bound
[MW]

Upper Bound
[MW]

CHP 0 1000
HP 0 1000
PP 0 1000
Onshore wind 0 1500
Offshore wind 0 1500
PV 0 1500

better exemplification of our framework, we implemented both approaches: a full
optimization with 6 decision variables, yielding degeneracy in the value of PP, and
a partially deterministic optimization with 5 decision variables and a properly fixed
PP capacity. The two approaches clearly yield the same Pareto-front in the objective
space. The only difference will be given by the value of the PP capacity associated
with a given Pareto point. These aspects will hence be explained in more detail
when discussing the capacity trends.

3.4.1 Pareto-front obtained with MOEA
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Figure 3.3: Pareto-front for deterministic PP capacity simulation.

The Pareto-optimal front obtained from the simulations is shown in Figure 3.3,
where the horizontal axis refers to CO2 emissions (in million tons) and the vertical
axis to annualized costs (in million DKK). In the right side of the figure, a secondary
axis is added to show the cost in million Euro.

The pink diamond corresponds to the scenario manually configured by experts
[20], as described in the previous section. It is interesting to note that the man-
ual configuration is very close to the Pareto-front, which is formed by all the other
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points (+), each of them representing a scenario optimized based on CO2 emissions
or annual costs with a different configuration of the decision variables. Starting
from the left side, we have scenarios that are more costly but less polluting, while
moving to the right we get increasingly more polluting scenarios with lower costs.
This clearly shows the additional benefit of running a multi-objective optimization:
along a large range of costs, several Pareto-optimal configurations are obtained si-
multaneously. This opens up the possibility for the planner to choose from a whole
set of optimized energy scenarios.

The numerically obtained Pareto-front is given by the series represented by red
‘+’ sign. The front is a combination of four fronts found by four separate runs. Due
to random effects in the choice of the initial population and in the application of
genetic operators, results of different runs may differ. The green-cross series (×)
represents the front found in the 1st run. There is a good agreement between the
combined Pareto-optimal front of all four runs and the front found in the 1st run,
except that the 1st run did not generate some leading points on the left side and
obviously provided a less dense set. This shows that it is advisable to run the
MOEA multiple times in order to obtain an accurate Pareto-front. Of course, the
most convenient number of runs depends on the number of decision variables and
on the computational time required by the evaluation of each configuration.

Note that some scenarios have negative CO2 emissions. In the simulation, we
not only consider the CO2 emissions generated within the system, but also the
emissions generated or avoided by importing or exporting electricity. Carrying out
the analysis in island mode [135], the calculation only requires to consider CO2

production within the system. However, in practice, most energy systems should
be analyzed in connected mode, where a system is connected to the outside world
for importing or exporting electricity. To calculate CO2 emissions in connected
mode, EnergyPLAN assumes that all the imported electricity is generated from
condensing-mode plants; therefore, the corresponding CO2 emissions are added to
the CO2 emissions of the internal system. It is clear that the negative emission
systems/scenarios export some “green” electricity generated within the system to
the outside world.

3.4.2 Capacity trends

Besides showing the resulting Pareto-front, it is interesting to discuss the values of
the decision variables in the various Pareto-optimal configurations. In this regards,
a short discussion will be presented in the followings. The corresponding configura-
tions, as evident from the above figure, can be parametrized by a single objective,
e.g., CO2 emissions. We therefore present the trends of the different capacities as a
function of emissions for Pareto-optimal configurations.

RES capacities As a starting point, we present the trends for PV and for the
overall wind capacity (on- plus offshore) on Figure 3.4. One clearly recognizes an
increase in the installed power for low emissions. Wind is generally favored, as
expected for the Danish climate. Moreover, the trends are rather smooth, showing a
strict correspondence between reduction in emissions and increase in RES capacity.
It is worth pointing out that this relation appears to be linear at high emissions, but
not at low emissions. Here, a given increase in the installed capacity yields a lower
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Figure 3.4: PV and total wind capacities with respect to CO2 emissions.

effect on emission reduction. This is related to the excess electricity availability
occurring in high RES scenarios (i.e., the instantaneous RES capacity occasionally
exceeds the sum of internal demand and transmission line capacity for export, so
that not all the potentially available energy can be exploited).
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Figure 3.5: On- and offshore wind capacity trends with respect to CO2 emissions.

To get a better insight into these effects, we discuss separately the behavior of
wind capacities. Figure 3.5 shows the trends for the two kinds of considered wind
power (on- and offshore). It is clear from the figure (Figure 3.4) that, while the
total wind capacity smoothly increases as CO2 emissions decrease, the behavior of
the single wind technologies is more complicated. At the lowest CO2 emission value,
on- and offshore wind capacities are at their maximum. However, above about -0.2
Mt of emissions, offshore wind is favored over onshore wind and vice versa below.

Hereafter, we present a qualitative explanation of the RES behavior in the
Pareto-optimal scenarios. First of all, we note that with two objectives each point
on the Pareto-front can be obtained by fixing the value of one objective (at least
within a proper range) and then optimizing the other. As an example, we assume
to fix the emission value and to minimize the costs. We then discuss the trends
occurring at different emission levels.

At a high emission level, the RES share is low and all the renewable electricity is
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absorbed by the internal demand (no excess electricity production). In this situation,
the intermittency of RES does not play any role: everything can be understood on
the basis of yearly balances. The minimization of RES costs for a given yearly
RES production is obtained by favoring the RES technology with the lowest costs
per unit energy. RES costs are typically mainly fixed by the installed capacity.
The corresponding investment costs can be converted into annualized costs per unit
capacity considering the operational lifetime of a plant. Costs per unit energy are
then obtained by taking into account the yearly operational time. For the case of
Aalborg, the technology with the lowest costs per unit energy, when fully exploited,
is offshore wind, which then saturates the RES share at high emission levels, forcing
onshore wind and PV to zero.
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Figure 3.6: Energy production vs. installed capacity for on- and offshore wind.
Production per unit capacity evidently decreases for large installations, due to excess
electricity availability.

For lower emission levels, the RES share must be higher. Below a certain emission
threshold, depending on the hourly distribution of demand and RES availability,
excess electricity production occurs. In this situation, RES intermittency becomes
significant. If the surplus even exceeds the transmission line capacity for export
(at least occasionally), then not all the theoretically available electricity can be
exploited, so that, for given costs per unit capacity, costs per unit energy increase.
Here, it is crucial to consider the instantaneous (hourly, for EnergyPLAN) matching
between the RES availability and the demand. In the extreme case, it can happen
that an initially favored RES cannot provide more exploitable energy, no matter
how large its capacity, as its distribution does not cover some demand periods. It is
then clear that, if available, another RES with a non-zero distribution during these
periods must be used. Similar effects give rise to optimal solutions with a mix of RES
technologies. From a different point of view, one could say that the cost per unit
energy of the different RES sources changes in the case of excess capacity (i.e., when
not all the theoretically available energy can be exploited), modifying the relative
convenience of the different sources during some periods. The effect of incomplete
exploitation at high RES shares is evident in the above figure (Figure 3.6), plotting
production as a function of capacity.

As a final comment, we note that, to increase the overall complexity, whenever
there is excess capacity and more than one RES, one needs to establish a prioritiza-
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tion strategy. The latter will affect the actual production from a certain RES and
hence its costs per unit energy.

We point out that it would be very complicated to analyze in detail these effects,
which necessarily involve the actual hourly distributions. While not able to provide
a full insight into the various driving forces at play, an automatic optimizer is hence
a needful tool to quickly obtain the desired solutions.
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Figure 3.7: CHP and HP capacities with respect to CO2 emissions for the optimiza-
tion of the energy system of Aalborg. HPs are used in three cases; individual houses,
the central DH system and local DH system. The HPs here are the HPs used in the
central DH system.

Non-RES capacities Figure 3.7 shows the CHP and HP capacities with respect
to CO2 emissions. CHP and HP change rather abruptly (and with opposite direc-
tions, suggesting they compensate each other) between the minimum value of CO2

emissions and about -0.45 Mt; for CO2 emissions above -0.45 Mt they are constant
on average. CHP reaches almost 0 MW and HP is around 50 MW capacity on
average. The apparent volatility of the HP capacity is discussed later.
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Figure 3.8: PP capacity with respect to CO2 emissions for the optimization of the
energy system of Aalborg.
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As anticipated above, for the determination of the PP capacity two different
approaches were followed. First, we present the results obtained including the PP
capacity among the decision variables. The PP behavior is reported in Figure 3.8,
where the capacity appears to be roughly constant on average, but with significant
fluctuations. This is in agreement with the absence of a cost associated to PP
capacity. Costs are only taken into account for fuel consumptions, which are however
independent of capacity when the latter is large enough. Hence, it can happen that
the PP capacity is quite large, but there is no significant production from PP. From
the point of view of the optimization, the MOEA does not have any motivation
to lower the capacity of PP, as it focuses on the minimization of cost and CO2

emissions.

Figure 3.9: Flow chart for deciding PP capacity.

The approach described before exemplifies well a degenerate case. In our second
approach, we remove this degeneracy by fixing the PP capacity deterministically.
The approach is split in two steps. In the first step, a scenario starts with a very large
capacity of PP (for our case, 1000 MW; it can be larger or smaller depending on the
total electricity demand). In the internal technical optimization of EnergyPLAN, PP
is the least prioritized unit; hence, the production of PP depends on the configuration
of the other electricity-producing units. As an example, if other units (e.g., onshore
wind, offshore wind, PV) are large enough to meet the electricity demand in a given
hour, then the PP is not used even if there is a large PP capacity. Therefore, in
the second step, the actual capacity of PP is decided by setting it to the maximum
use of the PP for the obtained scenario. Figure 3.9 illustrates the process. The
described process is applied in the evaluation phase of the MOEA (see Figure ??),
that is, PP is set to the minimum possible value at each iteration. This would not
be necessary from the point of view of the MOEA, but it yields the possibility to
follow the evolution of the variable after each generation.

Figure 3.10 shows the new trend of PP capacity with respect to CO2 emissions.
The new trend is much smoother than the trend of Figure 3.8. The new trend
shows an increasing pattern when the CO2 emissions of the system are increased.
The optimization process is clearly much more efficient when this second approach
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Figure 3.10: Trend of PP with respect to CO2 emissions in deterministic PP capacity
simulation.

is used, as only 5 decision variables are actually optimized. On the other side, in
a model including investment costs for PP (perceived as being beyond boundary
in EnergyPLAN), it would be necessary to resort to the full optimization of the 6
variables.

Summary about capacity trends As some of the shown trends can be explained
qualitatively, while others are more elusive. Moreover, we pointed out as it can hap-
pen that multiple configurations have very similar performances (or even identical,
in the presence of a degeneracy).

The Pareto-optimal front is a collection of different configurations, possibly re-
sulting from different runs. If one of the decision variables has little influence on the
overall performance (or if two variables can be exchanged to give a similar overall
result), then it can occur that even for close configurations on the Pareto-front such
variable changes significantly and randomly. As an example, if one considers the
trends of CHP and HP on Figure 3.7 when emissions are very low (negative), some
exchange configurations between CHP and HP can be found. At -0.5 Mt CO2 emis-
sion, one finds a configuration with almost the same amount of capacity (40 MW
for CHP and 45 MW for HP). On the left side of the position, there are multiple
configurations where HP capacity is low and CHP capacity is high. In conclusion,
it is not possible to easily predict and interpret all the trends. Multiple configu-
rations (systems) with similar performance (i.e., similar objective values) can give
rise to scattered behaviors, even more complicated to interpret than those discussed
for RES. This discussion emphasizes the importance of having access to numerical
optimization for the identification of all possible optimal scenarios in energy systems.

3.5 Compromised scenarios

Despite giving the decision makers a very large set of scenarios, there are several
ways to focus on some particular scenarios. We would like to discuss one method
here to identify some best compromised scenarios. The best compromised solution
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is a solution within all solutions of a Pareto-front that is closest to the ideal point 3.
Section 2.4 describe the details about the compromised solution and the ideal point.
We will present 10 best compromised solutions (i.e., 10 solutions that have minimum
distances from the ideal point) for Aalborg energy system.

Firstly, it is required to normalized as described in section 2.4 because the op-
timization functions are in different units. Considering that there are n number of
scenarios in Pareto-front and Z∗ is the ideal point (where zj refer to value of jth

objective value), the normalized jth objective value of ith scenario (sijnor) will be:

sijnor =
sij − zj

max1≤k≤n skj − zj
(3.1)

Using the formulation, all the objective values are normalized in a scale between
[0, 1]. After normalization, 10 scenarios are identified those have least Euclidean
distances from the ideal point. Figure 3.11 shows 10 compromised solutions (marked
in blue), the ideal point is marked by green colored star.
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Figure 3.11: Pareto-front and the 10 best-compromised scenarios (marked with blue
color) for Aalborg energy system.

3.6 Conclusion

In this chapter, we have presented a new simulation framework combining a multi-
objective evolutionary algorithm and a descriptive analytical energy model. We have
shown that it is possible to automatically identify a set of energy scenarios which
optimize conflicting objectives and satisfy given constraints. For the case study of
the Aalborg energy system, it was confirmed that the manual configuration available
from the literature is quite close to optimality; at the same time, the presented
framework allowed to obtain the full Pareto-front under the chosen decision variable
bounds. This illustrates a broad choice of optimal scenarios available to decision
makers, corresponding to different possible trade-offs between costs and emissions.

3An ideal point is a point on objective space where each coordinate is taken from minimum
value of the corresponding objective of all the solution in Pareto-front.
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Even for a small number of decision variables, the identification of a Pareto-
optimal configuration with manual search is evidently a hard task, not to mention
the impracticality of locating by hand multiple optimal scenarios to represent the
Pareto-front in a satisfactory way. Combinatorial approaches, which could be intro-
duced on the discretized space obtained by approximating decision variables within
a certain accuracy, explode exponentially with the space dimensionality, i.e., with
the number of decision variables themselves. Also classical optimization methods
often encounter difficulties in this context, for example due to the multi-modal and
degenerate nature of this type of problems. All in all, this supports the use of meta-
heuristics techniques. In particular, we successfully used the NSGA-II as a MOEA
– a readily available optimizer whose efficiency in solving complex problems is well
known from literature.

We have presented some criteria for the selection of decision variables. In spite of
the optimizer efficiency, it is of course convenient to restrict as much as possible the
number of degrees of freedom, as it strongly affects the complexity of the problem
and hence the performance of any search method. Even with a reasonable number of
decision variables and on a common workstation, the corresponding computational
time is expected to be of the order of a few hours. Carrying out multiple runs, which
is always advisable to confirm the quality of the obtained front, would similarly be
reasonable under these conditions.

Finally, a simple techniques is adopted to identify some compromised scenarios
that may help decision markers for selecting scenarios.

In the next chapter, we will propose some techniques that utilize domain knowl-
edge regarding energy systems to improve the efficiency of the framework. Domain
knowledge will be integrated into different phases of the framework. It is expected
that the framework will be more efficient in terms of finding optimal solutions.
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Chapter 4

Incorporating domain knowledge
into the framework

The key to artificial intelligence has always been the representation.

— Jeff Hawkins

4.1 Introduction

Energy plays a key factor in the advancement of humanity. As energy demands are
mostly met by fossil fuels, the world-wide consciousness grows about their negative
impact on the environment. Therefore, it becomes necessary to design sustainable
energy systems by introducing renewable energies. Because of the intermittent avail-
ability of different renewable resources, the designing of a sustainable energy system
should find an optimal mix of different resources. However, the optimization of this
combination has to deal with a number of possibly conflicting objectives.

In the previous chapter, we have proposed a multi-objective optimization frame-
work to design energy scenarios. The framework requires to simulate a large number
of scenarios to identify optimized scenarios. Generally, simulation models are com-
putationally costly, therefore, we want to optimize energy systems more efficiently.
In particular, we want to achieve this by generating a high-quality approximation
of the Pareto-front [51] at reduced computational cost. To reach this goal, we in-
vestigate the incorporation of domain knowledge related to energy systems into the
different phases of a MOEA. Firstly, we propose a smart initialization technique and
secondly, incorporate a smart mutation [110]; both exploit domain knowledge. The
results clearly show that all these individual methods have an impact to optimizing
an system. To the best of our knowledge, this is the first attempt to incorporate
energy system domain knowledge into different operators of MOEAs. In this study,
Danish Aalborg energy system problem is taken as a test problem to demonstrate

M. S. Mahbub, M. Wagner, and L. Crema, “Incorporating domain knowledge into the opti-
mization of energy systems,” Applied Soft Computing, vol. 47, no. C, pp. 483–493, Oct. 2016.
DOI: http://dx.doi.org/10.1016/j.asoc.2016.06.013
The text is verbatim apart from the introduction and the conclusion and mentioned additions
in chapter 4 and chapter 6; section 4.2.2.2 and 4.2.3 are extensively modified, paragraph 4.2.2.2
and 4.2.2.2 are added, moreover, new results are included in paragraph 4.4.3 compared to published
version.

43

http://dx.doi.org/10.1016/j.asoc.2016.06.013


4.2. INCORPORATING DOMAIN KNOWLEDGE

the feasibility of our approach. It is a well-understood problem, and the details are
readily available as we have described in previous chapter.

The Chapter is organized as follows. Most of Section 4.2 discusses how domain
knowledge is represented and how it can be incorporated into a MOEA through
problem-specific initialization. A proposed smart mutation techniques is described
in Sections 4.2.3. Then, we describe the details of all the performed experiments
and the corresponding results in Section 4.4. Finally, we draw our conclusions in
Section 5.5.

4.2 Incorporating domain knowledge

In general, a typical MOEA cannot perform well for all classes of problems, as this
would be contradictory to the No Free Lunch Theorem [26]. According to this the-
orem, the average performance of an algorithm over all possible classes of problems
is constant. Hence, the good performance of an optimization algorithm on one class
of problems is balanced out by the bad performance of the algorithm on another
class of problems. However, this also means that problem-specific algorithms with
above-average performance are possible. Bonissone et al. [26] define two different
ways to achieve this by incorporating domain knowledge: implicitly and explicitly.
Encoding, design of data structures and constraints representation are categorized
as an implicit incorporation of domain knowledge. Our proposed approaches mainly
focus on the explicit incorporation (i.e., smart seeding of initial population, muta-
tion exploiting domain knowledge) for the energy system optimization problem. In
the following sections, we will discuss how we represent domain knowledge of energy
systems and how we incorporate this knowledge into initialization and mutation
phases.

4.2.1 Domain knowledge related to energy systems

Typically, experts of a field can provide detailed domain knowledge about the field,
and laypeople can at times provide very basic knowledge or “rules of thumb”. In
the following, we will use such basic knowledge.

We described in previous chapter that the main focus of designing an energy
system is to minimize CO2 emissions and the total annual cost. In this context, it is
obvious that some decision variables have influence on some objectives. For example,
increasing the capacities of renewable resources can reduce CO2 emissions. At the
same time, decreasing the capacities of renewable sources can reduce the annual cost
as no additional investment cost is required. To encode such basic knowledge, we
will use the following method: we mark each decision variable with true, false or null
for each objective. True and false indicate increasing and decreasing, respectively,
of the value of a decision variable to minimize an objective. Null indicates that
there is no domain knowledge available for the decision variable for the objective.

A real-life example of DK representation in the context of energy systems is given
in Table 4.1. WCoff

and WCon represent off- and on-shore wind power capacities,
respectively. PVC is the photovoltaic’s and PPC is the power plant’s capacity. CS,
OS and NGS represent the coal, oil and natural gas shares, respectively, to fire
power plants. Finally, DKOEM and DKOAC are the domain knowledge associated
with the minimization of emission and annual cost, respectively. The first row of the
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table can be interpreted as increasing (i.e., off-shore, on-share wind, PV capacities;
natural gas share to fuel power plants) and decreasing (i.e., coal share) of some
decision variables that could minimize the objective emissions. The second row can
be interpreted in similar fashion.

Table 4.1: A real-life domain-knowledge representation example.

DKObj

DVs
WCoff

WCon PVC PPC CS OS NGS

DKOEM
true true true null false null true

DKOAC
false false false null true null false

4.2.2 Smart initialization

Most experimental studies on MOEAs use random initialization to initialize the
population. There, the initial values of the decision variables are drawn from a uni-
form distribution within the lower and upper bounds of the variables. In practice,
however, optimizers can typically be seeded with good candidate solutions either
previously known or created according to some problem-specific method. This seed-
ing has been studied extensively for single-objective problems. For multi-objective
problems, however, very little literature is available on the approaches to seeding
and their individual benefits and disadvantages.

Friedrich and Wagner [73] provide a recent overview on MOEA seeding, and
also a comprehensive study on 48 artificial MOO problems for five different MOO
algorithms. Their generic seeding approaches are based on linear combinations of the
objectives, and the individual seeds are computed by a single-objective optimizer
that solves a particular linear combination. These linear combinations are quite
“evenly spread out” in order to achieve an unbiased but close initial population.
They observe that some problems benefit significantly from their seeding strategies,
while others profit less. The advantage of seeding also depends on the examined
algorithm.

In contrast to their problem-independent seeding approaches, our method initial-
izes a decision variable by using actual domain knowledge. We enable laypersons to
provide some domain knowledge in a very basic manner. For example, “decreasing
coal share could minimize the objective emissions” is encoded as “false” in Table 4.1.
Our method in the following section then translates this basic knowledge into a di-
verse set of seeds. We call this process smart initialization, and we describe the
details in the following.

4.2.2.1 Methodology

The initial value of a decision variable can be defined as follows:

dvi = lbi + (ubi − lbi) ∗ δ̄ (4.1)

where lbi and ubi are the lower and upper bounds of the decision variable, respec-
tively. We calculate δ̄ from the probability distributions described below.

45



4.2. INCORPORATING DOMAIN KNOWLEDGE

Probability distribution The following proposed probability distribution is used
when a decision variable is needed to be initialized with higher values:

p(δ) = (β + 1)δβ (4.2)

And the following probability distribution is used when a decision variable is needed
to be initialized with lower values:

p(δ) = (β + 1)(1− δ)β (4.3)

These distributions are valid for δ ∈ (0, 1). β takes a non-negative value that is used
to control the shape of the distribution.

Note that a uniform distribution cannot be used to incorporate any domain
knowledge. While Gaussian distributions can be used, it is not as easy as with ours
to incorporate domain knowledge. We will see in the following how we can control
the shape of the distribution in order to initialize values closer to either the lower
or upper bounds of the decision variables.
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Figure 4.1: Example of probability distributions.

Figure 4.1 illustrates four examples with two different distributions and different
β values. The blue and red curves are the plots of Equation (4.2), however, the red
curve is steeper than the blue curve due to the larger β value. Hence, with larger
β value, it is more probable that the initial value will be closer to the upper bound
of the decision variable. For lower β values, the distribution will be flatter, hence,
increasing the probability of an initial value to fall within the entire range between
the upper and lower bounds, rather than near the upper bound. Eventually, when
β = 0 the distribution will be equivalent to the uniform distribution (i.e., purple line
in Figure 4.1) that is commonly used for random initializations. Additionally, the
orange curve is an example of a distribution based on Equation (4.3). In summary,
by controlling the β value and by using the appropriate distribution, one can have a
better control over the initial value of a decision variable than with random initial-
ization. Note that, while we could manually set exact values for the initial values,
domain knowledge is often a bit “fuzzy”, and our distributions allow for random but
biased variations of the initial values.
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Now, the analytical formula for δ̄ (used in Equation (4.1)) can be found by
calculating the inverse of the cumulative distribution function [75](also known as
inversion method [56])1. ∫ δ̄

0

p(δ)dδ = t (4.4)

where t is a random number within [0, 1] drawn from a uniform distribution. When
Equation (4.2) is used as probability distribution, the analytical formula for δ̄ is

δ̄ = t
1

β+1 . (4.5)

When lower values are preferred (Equation (4.3)), the formula is

δ̄ = 1− (1− t)
1

β+1 (4.6)

4.2.2.2 Generating initial population

As it is not possible to know in advance which combinations of β values for the
decision variables of an individual will be suitable to generate the initial biased
populations, we will consider all possible combinations. If the problem at hand
has d decision variables and if we consider b different values for β, then the total
number of combinations is nc = bd. Considering an example where d = 2 and
b = 3, therefore, β ∈ [0, 1, 2] and total number of combination is 9. Table 4.2
shows all the combinations for β values. Moreover, for each of the o objectives,
there are nc combinations of β values, and for each combination we can generate k
individuals to achieve some diversity among the biased solutions. Hence, we generate
nDK = o ∗ nc ∗ k individuals in total.

Table 4.2: Combination of all β values when d = 2 and b = 3.

βd1,d2 βd1,d2 βd1,d2

(0,0) (1,0) (2,0)
(0,1) (1,1) (2,1)
(0,2) (1,2) (2,2)

Most evolutionary algorithms, however, only work with a population that is
significantly smaller than nDK for real-world problems. For example, with o = 3, b =
3, d = 5, and k = 10 the initial population size would be nDK = 7290, which is about
two orders of magnitude above what is typically used in studies. A population of
this size tends to slow down the actual optimization algorithm as the computational
complexity of the algorithm is typically dependent on the population size. To solve
this problem, we provide a procedure for reducing the number of individuals down
to a fixed number. Algorithm 3 presents our overall process of generating initial
populations that uses domain knowledge.

Reducing the number of individuals Due to combinatorial explosion, our pre-
viously proposed methodology generates many individuals. As we want to reduce
the number of individuals, we adapt the concept of decision space diversity to cover
the space efficiently using a fixed number np of individuals.

1A process for generating random variates from a specific probability distribution.
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Algorithm 3 Algorithm for generating initial population

Require: DKoi – an array contains domain knowledge regarding ith objective (e.g., 1st row of
Table 4.1 )

1: for all domain-knowledge arrays DKoi do
2: for all combinations (c) from nc number of combinations do
3: Generate k individuals using Algorithm 4
4: end for
5: end for
6: Reduce number of individuals from nDK to np

Algorithm 4 Algorithm for generating a single individual

Require: c – a combination for β values
1: for all dvj do

2: if DK
dvj

oi is true then
3: Use Equations (4.5) and (4.1) to generate the value of the decision variable; value of β

is taken from the combination c
4: else if DK

dvj
oi is false then

5: Use Equations (4.6) and (4.1) to generate the value of the decision variable; value of β
is taken from the combination c

6: else if DK
dvj
oi is null then

7: Generate a random value within upper and lower bound from uniform distribution (i.e.,
use Equations (4.5) or (4.6) with β = 0)

8: end if
9: end for

Ulrich [167] categorizes diversity measurements depending on the way they are
calculated. The categorization is based on (i) relative abundances, (ii) taxonomy,
(iii) aggregating the dissimilarities, and (iv) utility of solutions. In the first class
(relative abundance), diversity is calculated by measuring the relative abundance
of each solution within a population set, with one example being the Shannon en-
tropy [117] metric. The metrics in the second class use the path length within a
taxonomy tree, where the solutions are arranged in a tree that reflects the taxo-
nomic classification of the solutions. Clustering metrics belong to this class, and the
calculation of metrics from this class typically suffers from high computational cost.
The metrics of the third kind are computed by summing up all the dissimilarities
between all the individuals. For example, Shir et al. [155] use a metric from this
class to enhance diversity in a MOEA. The last class is based on measuring the util-
ity of solutions. Solow and Polasky [156] proposed a metric that uses a utilitarian
view on solutions. There, each solution has a pre-defined utility value, and the key
idea is that the total utility of a population does not increase by adding duplicate
individuals. Ulrich [167] has shown that this Solow and Polasky metric (a metric of
the forth class) is the only one to fulfill all the three basic requirements of a diversity
measure (i.e., monotonicity in varieties, twinning and monotonicity in distance). In
our proposed approach, we will use the Solow and Polasky metric to measure the
diversity of an initial population.

Let us consider a population P with k individuals (A1, A2, . . . , Ak), and let
d(Ai, Aj) be the Euclidean distance in the decision space between Ai and Aj (i.e.,

d(Ai, Aj) =
√

Σd
l=1(dvlAi − dv

l
Aj

)2, where dvlAi , dv
l
Aj

are the lth decision variable of

Ai and Aj individuals, respectively). Then each element mi,j of a k × k matrix M
can be defined as mi,j = exp(−θ ∗ d(Ai, Aj)), where θ is a normalizing parameter
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between distance and number of individuals. Finally, the Solow and Polasky metric
is the summation of all the elements of the M−1 matrix. Algebraically, it can be
written as follows:

SP (P ) = vM−1vT (4.7)

where v = (1, 1, . . . , 1) is a row vector of size 1× k and vT represents the transpose
of v. Intuitively, the metric measures the number of different individuals present in
the population. The individuals that are close to each other are considered as the
same individuals, which can be adjusted via the value of θ.

The initial population PDK from our previous approach contains nDK = o∗nc ∗k
individuals. As we need to reduce the number of individuals from initial population,
the idea is to select a subset PI of size np from PDK that maximizes the population’s
diversity. The problem is formulated as follows:

argmax
PI⊆PDK

SP (PI) (4.8)

As it is not practical to consider all possible subsets because of combinatorial
explotion, we use the greedy approach proposed in [167]. This approach iteratively
removes the individual that contributes the least to the Solow and Polasky metric.
The iterative process stops when the population size reaches np. In the following
the approach is described in details.

Calculate contribution of a solution to Solow-Polasky metric Consider-
ing M is a symmetric matrix because of symmetry of distance measurement (i.e.,
d(Ai, Aj) = d(Aj, Ai). Therefore, M can be partitioned into following form:

M =

(
G f
fT e

)
,M−1 =

(
Ḡ f̄
f̄T ē

)
(4.9)

where f and f̄ are column vectors and fT , f̄T are transpose of the two vectors,
respectively. Moreover, e and ē are single elements. Using block matrix inversion
method [25],

G−1 = Ḡ− 1

ē
f̄ f̄T (4.10)

Please note that SP (P ) is the summation of all the element of M−1 matrix. In
addition, please consider that we want to calculate the contribution of the individ-
ual that is related to last row and column of M . Hence, our goal is to calculate∑

(M−1)−
∑

(G−1), where
∑

(M−1) refers to the summation of all the elements in
M−1. The contribution can be calculated as:

Σ(M−1)− Σ(G−1) = Σ(Ḡ) + 2Σ(f̄) + ē− Σ(Ḡ) +
1

ē

(
Σ(f̄)

)2

=
1

ē

[
(ē)2 + 2ēΣ(f̄) +

(
Σ(f̄)

)2
]

=
1

ē

(
Σ(f̄) + ē

)2

(4.11)

The term 1
ē

(
Σ(f̄) + ē

)2

is the contribution from the element of the last column’s

or last row’s M−1. The least contributed element is identified by comparing all the
contributions.
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Alternate approach for maximizing population diversity The previous ap-
proach suffers the problem of lager computational time when number of decision
variables are increased. Therefore, an alternative diversity maximization approach
is proposed later. This alternate approach is effective when number of decision vari-
ables are increased a lot, hence, the number of individuals in initial population are
very large (as nDK = o ∗ nc ∗ k and nc = bd, please see Section 4.2.2.2). Therefore,
inverting the large M−1 will take considerable amount of time, in addition, the com-
pletion of the phase (i.e, reducing number of individuals) will take a signification
amount of time compared to others phases of optimization. As oppose to previous
approach, an alternative approach could be – starting with a small population (i.e.,
matrix) and add the individual to the population that contributes most to increase
the diversity of the population.

Now considering Q is the smaller matrix and we want to calculate the contribu-
tion of adding a new individual (ni), therefore, the new matrix becomes as follows:

U =

(
Q r
rT s

)
(4.12)

Where r is the distance vector that contain all the distances from newly added
individual (ni) to other individuals. The goal is to calculate

∑
(U−1)−

∑
(Q−1)

without inverting U . Form bordering method [25], it is easily possible to find U−1.

U−1 =

(
Q−1 + 1

v
Q−1rrTQ−1 − 1

v
Q−1r

− 1
v
Q−1r 1

v

)
, (4.13)

where v = s− rTQ−1r. Now, considering W = [w1, w2, . . . , wn]T = Q−1r, then U−1

becomes:

U−1 =

(
Q−1 + 1

v
WW T − 1

v
W

− 1
v
W T 1

v

)
(4.14)

Therefore,
∑

(U−1)−
∑

(Q−1) is the sum of all the elements of

1

v

(
WW T −W
−W T 1

)
(4.15)

Finally by simplifying,

Σ(U−1)− Σ(Q−1) =
1

v

[
Σ(WW T )− 2Σ(W ) + 1

]
=

1

v

(
φ2 − 2φ+ 1

)
=

1

v
(φ− 1)2

(4.16)

Where φ =
∑n

i=1wi. By comparing all these terms, it is possible to find which
individual contributes most to increase diversity of the previous population.

In this approach, the process starts with a randomly selected individual and con-
tinue adding individuals (in each iteration an individual is added to the population)
until the population size reaches np. This approach requires less time compared
to other approach, however, other approach is more efficient to maximize diversity
of the population; as it starts with whole population and eliminates individuals
one-by-one.
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4.2.3 Smart mutation

While we expect the smarter initialization to give the optimization a “head start”,
we also want to speed up the actual optimization process itself. We developed the
idea of smart mutation, which is based on the same concept of domain knowledge
utilization as is our initialization strategy. In this proposed technique, the polyno-
mial mutation as proposed by Deb [51] is modified to create two additional mutation
operators called renewable energy favor mutation (REFM) and conventional energy
favor mutation (CEFM). Polynomial mutation mutates an offspring so that the val-
ues of the decision variables can be increased or decreased depending on a randomly
generated value. On the other hand, both REFM and CEFM use the same domain
knowledge representation as described in Section 4.2.1. For example, the first and
second row of Table 4.1 can be used for REEM and CEFM, respectively. In addition,
REEM mutates the decision variables to be increased or decreased based on domain
knowledge represented by the first row of Table 4.1 and in the same way, the second
row can be interpreted for CEFM. In the following, we will briefly outline the details
of smart mutation.

 0
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p
(γ

)

γ

Polynomial mutation with ξ=0
Polynomial mutation with ξ=3
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Modified Polynomial mutation for increasing value with ξ=4

Figure 4.2: Probability distributions for polynomial and modified polynomial mu-
tation.

Polynomial mutation In polynomial mutation, a probability distribution is used
to perturb a decision variable of an offspring solution.

µ̄ = µ+ (µU − µL)γ̄ (4.17)

where µ̄ is the mutated offspring decision variable, µ is the offspring decision variable
that will be perturbed. µU and µL are the upper and lower bounds of µ, respectively.
γ̄ will be calculated from the following probability distribution.

p(γ) = 0.5(ξ + 1)(1− |γ|)ξ (4.18)

where ξ is a parameter that takes only non-negative values, called distribution index.
This distribution is valid for γ ∈ (−1, 1). Three black lines of Figure 4.2 illustrate
the distributions with different distribution index values.
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Followings are the analytical formulas for γ̄ (in Equation (4.17)), calculated from
the probability distribution given by Equation (4.18). Equation (4.19) is valid when
no upper and lower bounds of a variable are specified.

γ̄ =

{
(2r)

1
ξ+1 − 1, if r ≤ 0.5

1− [2(1− r)]
1
ξ+1 , otherwise

(4.19)

Where r is a random number within a range of 0 to 1, drawn from a uniform
distribution.

When an upper and lower bounds of a parent variable are defined, the calculation
of γ̄ is changed in the following way so that the new value will be within specified
range.

γ̄ =

{
[2r + (1− 2r)(1− γmax)ξ+1]

1
ξ+1 − 1 if r ≤ 0.5

1− [2(1− r) + 2(r − 0.5)(1− γmax)ξ+1]
1
ξ+1 , otherwise

(4.20)

Where γmax = min {(µ− µL), (xU − x)}/(µU − µL).

Modified polynomial mutation to increase value When it is required to
increase the value of a decision variable (e.g., require for REFM and CEFM), a
modified probability distribution function is used instead of Equation (4.18).

p(γ) = 0.5(ξ + 1)(1− γ)ξ (4.21)

The distribution is valid for γ ∈ (0, 1). This distribution insures that the value of an
offspring decision variable can only be increased or stay same as before. The black
line with downward triangles in Figure 4.2 illustrates the probability distribution
used in a polynomial mutation with distribution index 4. Whereas, the red line with
empty rectangles in the figure shows the modified distribution with same distribution
index. The closed/analytical form of γ̄ for the above distribution is as follows:

γ̄ = 1− [1− r + r(1− γmax)ξ+1]
1
ξ+1 (4.22)

Where r is a random number within a range of 0 to 1, drawn from a uniform
distribution. And γmax = min {(µ− µL), (µU − µ)}/(µU − µL). This closed form of
γ̄ is used in Equation (4.17) to calculate the new mutated value.

Modified polynomial mutation to decrease value In the following, the mod-
ified probability distribution and the closed form of γ̄ are presented, when the value
of a decision variable of an offspring needs to be decreased:

p(γ) = 0.5(ξ + 1)(1 + γ)ξ, valid for γ ∈ (−1, 0) (4.23)

γ̄ = [r + (1− r)(1− γmax)ξ+1]
1
ξ+1 − 1 (4.24)

At the beginning of an optimization, the probabilities of the problem-specific
mutations (i.e., REFM and CEFM) are maximal and these decrease over time. As
generations pass, the probability of generic mutation (i.e., polynomial mutation)
is increased. This dynamic adjustment of the mutation probabilities ensures that
modified mutations are used more in the early stage to better explore the search
space (generates some extreme individuals) and polynomial mutation is used more
in the later stage to maintain the usual exploration and exploitation behavior of a
generic mutation.
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Mutation probability The mutation technique presented in the thesis, specially
designed to deal with the optimization problem of an energy system, is a combina-
tion of three different mutations. In a single mutation process, only one mutation
is applied among three mutations (REFM, CEFM and polynomial mutation) . The
selection of a mutation among three mutations depends on a random number drawn
from a uniform probability distribution. Figure 4.3 illustrates the overall mutation
process (PREFM is the probability of applying the mutation favoring renewable en-
ergy and PCEFM is the probability of applying the mutation favoring conventional
low cost energy sources). The probability of PREFM and PCEFM are equal and
defined by the following formula.

PREFM = PCEFM =
1− gc

gmax

2
(4.25)

Where gc and gmax is the current generation number and maximum generation num-
ber of a run, respectively. At the beginning of a run, the probability of applying
these two mutations are high and the probability is linearly decreased when genera-
tions pass. At the initial stage of the search, we want to explore the search space as
much as possible by using two specially designed mutation operators. In the later
stage of the evaluation the probability of of applying generic mutation is increased.

Figure 4.3: Flowchart for proposed mutation technique.

4.3 Test problem: Aalborg energy system

To study the effect of our proposed techniques to use of domain knowledge in ini-
tialization and mutation, we choose the Aalborg energy system problem [20] as
a test problem 2. The reason behind choosing this particular problem is that it

2Our framework can be applied to identify future optimization scenarios for other cities, states
and countries. With the availability of specific domain knowledge, we conjecture that our proposed
improvements can solve these problems more efficiently as well.
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is extensively analyzed, therefore, all necessary data is available and described in
Section 3.3.1.

We optimize five decision variables (i.e., capacities in MW of: combined heat and
power (CHP), heat pump (HP), on-shore wind (ONW), off-shore wind (OFW) and
photo-voltaic (PV)) in order to minimize CO2 emissions (EM) and annual cost (AC).
The lower and upper bounds for the decision variables are presented in Table 4.3.
The computational cost of about three seconds per evaluation through EnergyPLAN
make this a challenging real-world problem3.

Table 4.3: Lower and upper bounds of different decision variables for Aalborg energy
system problem.

Bounds
DVs

dvCHP dvHP dvONW dvOFW dvPV

Lower (MW) 0 0 0 0 0
Upper (MW) 1000 1000 1500 1500 1500

4.4 Comprehensive experiments and results

We divide our experiments into two parts. The first part reports the impact of
our smart initialization by comparing it against the commonly used random initial-
ization. In the second part, we investigate the influence of the smart mutation by
comparing it with the commonly used polynomial mutation. The results of smart mu-
tation and initialization will be reported by adopting these techniques into NSGA-II
[53] and SPEA2 [180], separately.

4.4.1 General experimental settings

In this section, we present all the experimental settings that are used for all three
phases of the experiments. Specific experimental settings related to a specific phase
will be presented in the corresponding section.

All the proposed methodologies are implemented in jMetal [59]4. Table 4.4 shows
the general parameter settings that are used in the experiments. Additionally, we
use simulated binary crossover [51], polynomial mutation [51] and binary tourna-
ment selection [51] for both algorithms. For each phase of the experiments, the
algorithms are run independently 30 times to facilitate a statistical analysis of the
results. Table 4.5 presents the domain knowledge used in the experiments to opti-
mize Aalborg energy system. This knowledge is based on intuitive understanding.
The first row of the table describes that the increasing capacities of CHP, HP On-,
off-shore wind and PV can decrease the emissions of Aalborg energy system. In ad-
dition, the second row represents that the decreasing of the capacities can decrease
the annual cost of the system.

3The simulation was performed on a machine having two 2.6 GHz CPUs with six cores each
and 96 GB RAM.

4Our complete source code is available online: https://github.com/shaikatcse/

EnergyPLANDomainKnowledgeEAStep1.
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Table 4.4: General parameter settings for NSGA-II and SPEA2.

NSGA-II SPEA2

Population size 100 100
Archive Size – 100
Crossover probability 0.9 0.9
Mutation probability 0.1 0.1
Distribution index 10 10
Maximum evaluations 7000 7000

Table 4.5: Domain knowledge related to different decision variables and objectives
for Aalborg energy system problem.

DKObj

DVs
dvCHP dvHP dvONW dvOFW dvPV

DKoEM true true true true true
DKoAC false false false false false

4.4.2 Evaluation metrics

Evaluation metrics are necessary to measure the quality of the found set of trade-off
solutions. To evaluate our proposed initialization method, we will use four met-
rics that are commonly used, namely the hypervolume (HV) [177], the inverted
generational distance (IGD) [37], the additive epsilon approximation [181], and the
spread [53]. The HV metric measures the volume covered by a set of solutions in
the objective space with respect to a pre-defined reference point. IGD is the average
distance of all the solutions in the true Pareto-front (tPF) to the nearest solution
of given set of solutions. The concept of epsilon approximation is that one deter-
mines the minimum distance a found solution set in the objective space needs to be
translated to in order to dominate the tPF. Deb at al. [53] introduced an indicator,
called spread, to understand how well the front is distributed. Typically, a tPF
(or an approximation thereof) is required to calculate the values of all the metrics
except for the hypervolume. The reference point can be chosen either arbitrarily or
based on a reference set: assuming we are minimizing, the coordinates of the point
can be the maximum values per objective that the reference set in the objective
space attains.

As the tPF of Aalborg energy system problem is not known in advance, we merge
all the found sets of solutions (i.e., solution sets of 240 different individual runs),
and we take only the non-dominated solutions from the merged fronts. We use this
approximation of the tPF to calculate all the metric values. Please note that higher
HV values indicate better results, whereas lower values for the other metrics indicate
better results.

4.4.3 Influence of smart initialization

To investigate the impact of our smart initialization (SI), we will compare it with
random initialization (RI) that is typically used in MOEA experiments. Random
initialization is the process of selecting the value of a decision variable uniformly at
random within the lower and upper bound of the decision variable. For the smart

55



4.4. COMPREHENSIVE EXPERIMENTS AND RESULTS

initialization process, we set θ = 6.0, k = 4 and β ∈ [0, 1, 2] based on preliminary
experiments.5
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Figure 4.4: Pareto-fronts generated by SPEA2 with random initialization (RI) and
with smart initialization (SI).

Figure 4.4 presents two Pareto-fronts for Aalborg energy system problem, gener-
ated by the SPEA2 algorithms; the red one is generated using RI and the green one
uses SI. The X-axis represents CO2 emissions in million tons and the Y-axis repre-
sents annual cost in million Danish Krone (DKK) for Aalborg energy system. It is
noticeable that some of the solutions (i.e., scenarios) have negative emissions. This
is simply because these scenarios export electricity generated by green sources from
within the system to outside partners of the system. The net amount of emissions
of the system is adjusted by the electricity generation mix of imported electricity.
Details of this aspect can be found in the article by Lund [103].

Moreover, the green set of solutions clearly has a better spread, hence, produces
more optimized energy scenarios towards the corners that can be interesting to en-
ergy planners. In addition, sometimes it produces better solutions than some of the
solutions of the Pareto-front generated by using RI. However, as previously men-
tioned, it is required to perform statistical analyzes to understand the performance
of the algorithms. Therefore, Figure 4.5 shows the results as boxplots for the four
different evaluation metrics. The means and standard deviations of four metrics
for two MOEAs are presented in Table 4.6. The dark gray shade indicates better
results. It is very clear from the figure and the table that SI outperforms RI on
all the metrics for the two algorithms. Moreover, we perform Mann-Whitney U-
tests [113]6 on all the metric values of the different runs. The test is performed to
test the null hypothesis against an alternative hypothesis to determine whether two
samples come from same population or not. In our context, we want to reject the
null hypothesis, as the evaluation metric values of applying SI and RI should be
significantly different to each other. We consider that the null hypothesis will be
rejected if the corresponding p-value is less than 0.05. Table 4.7 presents p-values

5We conjecture that additional performance gains are possible, however, a tuning of these
parameters is beyond the scope of this thesis.

6A non-parametric statistical test, also known as Wilcoxon rank-sum test.
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Figure 4.5: Boxplots for four metrics comparing random initialization (RI) with
smart initialization (SI) in NSGA-II and SPEA2.

for all the metrics of the two different MOEAs. All the p-values except spread and
IGD for NSGA-II are less than 0.05. The test results shows that there are statis-
tically significant differences for the metrics (except spread for NSGA-II) when SI
is used instead of RI. In summary, for most of the metrics, significant amounts of
improvements are achieved by using our proposed smart initialization technique.

Table 4.6: Mean and standard deviation (in subscript) for different quality indica-
tors.

Mean and standard deviation
Algorithm Evaluation metrics Random Initialization Smart Initialization

NSGA-II

HV 8.35e− 013.6e−04 8.35e− 012.9e−04

IGD 7.01e− 034.0e−04 6.81e− 033.5e−04

Epsilon 6.70e+ 004.8e+00 2.37e+ 001.5e+00

Spread 4.38e− 013.6e−02 4.29e− 013.5e−02

SPEA2

HV 8.32e− 012.4e−03 8.35e− 015.1e−04

IGD 2.51e− 022.0e−02 1.00e− 021.8e−03

Epsilon 7.06e+ 015.5e+01 2.63e+ 011.2e+01

Spread 5.98e− 014.2e−02 5.45e− 012.3e−02

While it is necessary to compare the final solutions, we are also interested in
the actual effect that SI has on the optimization. As SPEA2 benefits more than
NSGA-II from the use of SI, we are showing the development of the indicator values
over time in Figure 4.6. As we can see, our smart initialization strategy results
in significantly better starting points for the optimization process than random
initialization does. In addition, SI also appears to provide better populations for
the subsequent optimization, as the progress over time is “steeper” in comparable
parts of the optimization. For example in the case of additive epsilon approximation,
it takes six generations to improve from approximately 380 to 200 when SI is used,
whereas twice as much time is needed when random initialization is used. Similar
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Table 4.7: Mann-Whitney U-tests: p-values for different metrics when comparing
smart initialization (SI) with the common random initialization (RI).

p-values
Evaluation
metrics

Compare NSGA-II:
With SI and RI

Compare SPEA2:
With SI and RI

HV 0.02247 9.083e−12

IGD 0.087783 2.2e−16

Epsilon 5.92e−05 1.886e−04

Spread 0.3986 2.841e−07
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Figure 4.6: Development of the indicators during the optimisation runs for SPEA2.

trends can be observed for development of the other indicator values. We conjecture
that the bias of the initial populations as generated by SI has favorable properties
that are exploited in the subsequent optimization, whereas RI with its uniform
initialization is not problem-specific.

Result of the alternate approach for diversity maximization In this experi-
ment, we want to compare the optimization results when the default and an alternate
technique (described in Section 4.2.2.2) are used for initialization. Table 4.8 presents
the parameters related to initialization phase. First row shows the same parameter
settings presented before (i.e., last experiment of smart initialization). Second and
third rows show the parameter settings for the alternate technique. Please note
that the parameters for first and second row are identical. Only the reducing initial
population approaches are different. However, the last row shows different parame-
ter settings. Please note that with the parameter settings of last row, a very large
number of initial individuals is produced (i.e., in total 106 number of initial indi-
viduals are produced). It is practically impossible to use the default approach with
this parameters because of computation time. However, with the help of alternate
approach, it is possible to reduce that large number of individuals in several seconds.
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Table 4.8: Parameters settings for examine alternate approach.

Experiment name Reducing approach θ k β
SId Default approach 6.0 4 [0, 1, 2]
SIA1 Alternate approach 6.0 4 [0, 1, 2]
SIA2 Alternate approach 6.0 5 [0, 1, 2, . . . , 8, 9]

SId SIA1 SIA2

0.
83

45
0.

83
55

HV:NSGAII

SId SIA1 SIA2

0.
00

65
0.

00
75

IGD:NSGAII

SId SIA1 SIA2

0
2

4
6

8
12

Epsilon:NSGAII

SId SIA1 SIA2

0.
35

0.
40

0.
45

0.
50

Spread:NSGAII

SId SIA1 SIA2

0.
83

30
0.

83
45

HV:SPEA2

SId SIA1 SIA2

0.
00

8
0.

01
2

0.
01

6

IGD:SPEA2

SId SIA1 SIA2

0
10

20
30

40
50

Epsilon:SPEA2

SId SIA1 SIA2

0.
48

0.
52

0.
56

0.
60

Spread:SPEA2

Figure 4.7: Boxplots for four metrics comparing smart initialization with the default
(SId) and the alternate approach with different parameters’ settings (SIA1, SIA2) for
NSGA-II and SPEA2.

Figure 4.7 presents a comparison of the results obtained by using the default ap-
proach and the alternate approach with two different parameters settings reported
in Table 4.8. In addition, Table 4.9 presents the results of Mann-Whitney U-tests.
When comparing SId and SIA1 for NSGAII and SPEA2, SId performs slightly bet-
ter, however, the resultant samples are not statistically different (from Table 4.9).
Therefore, it can be concluded that alternate approach with identical parameter has
very similar results. When comparing SId with SIA2 for NSGAII, SIA2 perform
marginally better. Still there is no statistically significant differences between the
results. Only, the significant difference is observed for IGD and epsilon for SPEA2.
By considering the results, it can be concluded that the alternate approach produce
similar results of the default approach. However, the default approach produces mi-
nor improved results. Therefore, it is recommend to use the default approach when
the computational cost is under manageable range. Alternate approach should be
employed when a problem has a large number of decision variables.

59



4.4. COMPREHENSIVE EXPERIMENTS AND RESULTS

Table 4.9: Mann-Whitney U-tests: p-values for different metrics when comparing
alternate approach with default approach.

p-values
Evaluation
metrics

NSGAII SPEA2

SId, SIA1 SId, SIA2 SId, SIA1 SId, SIA2

HV 0.4147 0.3898 0.5229 0.07228
IGD 0.2861 0.7412 0.9824 5.833e-05

Epsilon 0.2843 0.5033 0.433 2.652e-05
Spread 0.6865 0.592 0.1774 0.2601

4.4.4 Influence of smart mutation

In this section, we investigate the impact of smart mutation on the Aalborg energy
system problem. We compare polynomial mutation (PM) with our smart mutation
(SM) using the same evaluation metrics as above for NSGA-II and SPEA2 as the
underlying MOEAs. For each MOEA, the same initial population is used for each
run to ensure a fair comparison between PM and SM. By using the same initial
populations we cut down any advantage gain by a MOEA in the initial phase.
Therefore, the settings ensure that if any MOEA performs better than other, then
this is strictly due to the use of specific mutation.

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 6000

-0.6 -0.4 -0.2  0  0.2  0.4  0.6

A
n
n
u
a
l 
co

st
 (

in
  
M

ill
io

n
 D

K
K

)

CO2 emissions (in Mt)

SPEA2 with PM
SPEA2 with SM

Figure 4.8: Pareto-fronts generated by SPEA2 with polynomial mutation (PM) and
with smart mutation (SM).

Figure 4.8 shows two Pareto-fronts generated by SPEA2 using PM and SM. The
Pareto-front with SM has better spread and produces better solutions. Figure 4.9
presents the comparison of PM and SM as boxplots. For all the metrics, SM per-
forms better than PM. However, the statistical test (Table 4.10) shows that not all
the metrics are not statistically significantly different for NSGA-II. Nevertheless,
significant improvement is achieved for SPEA2. From the boxplots and the statis-
tical test, it can be concluded that SM provides a good performance improvement
for both MOEAs.
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Figure 4.9: Boxplots for four metrics comparing PM with SM for NSGA-II and
SPEA2.

Table 4.10: Mann-Whitney U-tests: p-values for different metrics when comparing
our smart mutation (SM) with the common polynomial mutation (PM).

p-value
Evaluation
metrics

Compare NSGA-II:
With SM and PM

Compare SPEA2:
With SM and PM

HV 0.0906 1.51e−05

IGD 0.2539 1.20e−16

Epsilon 0.01664 0.07721
Spread 0.7082 1.34e−04

4.5 Conclusion

To accurately plan a system with an introduction of more renewable energies, com-
plex and computationally costly simulations are typically used to assess configura-
tions according to different objectives, for example, based on their cost and their
emissions.

General purpose multi-objective evolutionary algorithms are often used to solve
such problems, however, the simulation cost result in time-consuming optimizations.
In this chapter, we present different techniques to improve solution quality of an
optimization. First and foremost, we incorporate basic domain knowledge about
energy systems into different operators of such algorithms in order to increase the
solution quality.

Our results on the Danish Aalborg energy system problem reveal that our problem-
specific approaches achieve significant improvements over generic state of the art
approaches. It is noteworthy that this was achieved with rather basic domain knowl-
edge. It remains to be seen how much solution quality can be improved further by
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using more detailed knowledge.
As we see the function evaluations for optimizing an energy system is compu-

tationally costly, next chapter will be dedicated to the development of a robust
stopping criterion. The goal is to develop a technique that stops a MOEA automat-
ically when convergence is detected.
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Chapter 5

Development of a robust stopping
criterion

You don’t understand anything until you learn it more than one way.

— Marvin Minsky

5.1 Introduction

Virtually all the engineering fields have to deal with optimization problems. Most
practical problems encounter multiple conflicting objectives; therefore, the problems
need to be considered as multi-objective optimization problems. Recently, multi-
objective evolutionary algorithms (MOEA) become a major technique for optimizing
real-world optimization problems [171]. A MOEA should find a Pareto-front by
using minimum computational cost. Since function evaluations (FE) of most of
the real-world optimization problems are costly (e.g., function evaluation of energy
system optimization take around 3 seconds), FE occupy the lion’s share of total
computational cost of an optimization algorithm. Therefore, finding an appropriate
stopping criterion is an important task to minimize computational cost. To save
wasteful function evaluations, it is necessary to spot the stagnation or convergence
of an algorithm. Almost all MOEAs are stopped after certain number of function
evaluations [171]. However, specifying this number for a practical problem without
any prior knowledge, is quite difficult. Therefore, in last few years some techniques
for detecting convergence of a MOEA have been proposed [171, 164, 30, 76, 147, 116].

All the proposed techniques are based on investigating an objective space of a
problem. However, our approach is based on simultaneous monitoring of an objec-
tive and a decision space. Investigating a decision space with an objective space is

M. S. Mahbub, T. Wagner, and L. Crema, “Improving robustness of stopping multi-objective
evolutionary algorithms by simultaneously monitoring objective and decision space,” in Proceedings
of the 2015 Annual Conference on Genetic and Evolutionary Computation, GECCO ’15, ACM,
2015, pp. 711–718. DOI: http://doi.acm.org/10.1145/2739480.2754680
The text is substantially verbatim apart from the introduction and the conclusion and mentioned
additions in chapter 5. Section 5.3 is modified for better explanation compared to published
version.
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important to efficiently detect the convergence of a MOEA. Simultaneous stabiliza-
tion of indicators on the two spaces provides us more robust1 stopping criterion as
it is shown later that an algorithm runs longer when a decision space indicator is
included with an objective space indicator. The approach has another major ben-
efit. It does not require any thresholding parameters that require prior knowledge
about a problem. Finally, the convergence is detected by analyzing the trends of
the two indicators. A two-sided t-test on the slop coefficients is used to detect the
stagnation of linear trends.

In this chapter, our developed method is tested on the theoretical multi-objective
test problems found in literature against state of the art techniques. The results show
that our method perform reliably than other techniques. Finally, the capability of
the stopping methods on real-world optimization problem is demonstrated in the
next chapter.

The remainder of the chapter is organized as follows. In section 5.2, we briefly
describe the state of the art techniques of stopping criteria of MOEAs. Section
5.3 presents the details of our proposed method. Experimental results and corre-
sponding discussion are reported in section 5.4. Conclusion and future work will be
described in section 5.5.

5.2 State of the art

Deb and Jain [52] was first to propose two metrics, convergence and diversity, that
can be monitored online. The stopping decision of a MOEA depends on the visual
inspection of the metrics. At that time, no automatic convergence method was
proposed. Inspired from the technique of a stopping criterion of a single objective
evolutionary algorithm (EA), Redenko and Schoenauer [147] proposed a stability
measure. The measurement is based on density of non-dominated solutions. By
studying the dynamics of NSGA-II [53], the authors experimentally showed that
the algorithm converge when maximum crowding distance [53] is reached. The user
needs to provide a threshold and the algorithm stops when the standard deviation
of maximum crowding distance falls below the threshold for pre-defined number of
generations.

Mart́ı et al. [116] proposed a stopping method called MGBM criterion. The au-
thors proposed an indicator named mutual dominance rate (MDR) that is basically
a measurement of how many non-dominate solutions of one generation dominate
the non-dominate solutions of consecutive generation. They used simplified Kalman
filer to gather evidences about when to stop. A MOEA is stopped when a-posteriori
estimation of MDR falls below a pre-defined threshold.

Goel and Stander [76] uses an external achieve to propose a new indicator, named
consolidation ratio(CR). The archive keeps non-dominated solutions and in each
generation the archive is updated. Additionally, CR is a ratio between the number
of solutions of previous generation that are still present in archive and size of the
archive. Two different stopping criteria are proposed: fixed threshold approach and
utility-function based approach. In fixed threshold approach, a MOEA is stopped
when the CR falls below than the pre-defined threshold. For the next approach, the

1In this context of stopping criteria of a MOEA, robust means the consistency of stopping
decision when dealing with stochastic nature of a MOEA.
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utility of evolving extra generation is calculated and an algorithm terminates when
the utility falls below the utility threshold.

Bui et al. [30] suggest a stability measure named dominance-based quality (DQ)
based on dominance relation of a solution and neighbouring solutions. The basic
idea is that the number of non-dominated neighbouring solutions will be decreased
over time as a solution moves towards a Pareto-front. To measure the local dom-
inance of a solution, the authors use additional function evaluations and a Monte
Carlo simulation approach. The authors do not provide any suggestions about the
convergence value of DQ. However, it is obvious that DQ = 0 is a powerful stopping
criterion and with the help of visual inspection, the stagnation of an algorithm can
be identified.

Trautmann et al. [165] and Wagner et al. [171] apply a statistical approach to
solve the problem. In [171], the authors propose two different statistical tests on
three performance indicators (PI) (i.e., hypervolume, R2 and additive epsilon) to
detect convergence. One of the test is a one-sided χ2-variance test for measuring
the significance decrease of the variances of PIs than pre-defined thresholds. An-
other proposed test is a two-sided t-test for detecting stagnation by analyzing slope
coefficient of different PI trends. A MOEA is stopped when any of the two tests are
able to detect convergence (i.e., p-value lower/above the critical level depending on
the test).

Roche et al. propose a stopping criterion based on the detection of loss of pop-
ulation diversity in the decision space [146]. The authors propose a formula to
determine the time, when the diversity falls below a threshold. The authors also
propose a statistical procedure to confidently stop an EA. However, without prior
knowledge about decision space of a problem, it is very difficult to set the threshold.
The method is validated only on single objective problems. In contrast, as we are
dealing with MOEAs (population consists of a set of solutions covering a Pareto-
front, not converging towards a single solution), the population always has certain
diversity. Hence, in our context, it is more important to detect the moment in time,
when the solutions covering decision space are no longer moved. Therefore, it is
good to detect stagnation of the diversity value instead of the value falling below a
certain threshold.

5.3 Proposed methodology

Most of the studies we have discussed above require an objective space parameter
falls below user-defined parameters to stop. Additionally, some recent studies also
address the stagnation of more than one objective space indicators using statistical
tests. In contrast to these approaches, our proposed method is based on simultaneous
monitoring of two metrics; one on objective space and another on decision space. To
get a better stopping/convergence method, our primary assumption is that these two
spaces (i.e., objective and decision) should be stabilized concurrently. Considering
stagnation of some indicators on objective space (e.g., hypervolume [177], epsilon
[181] and so on) does not mean that an algorithm could not improve later. The
individuals of a population may contain enough diversity to generate better children
in later generations. Therefore, by concurrently monitoring of two spaces, more
robust stopping criterion could be developed. Average Hausdorff distance [154] and
diversity metrics are used to monitor an objective and a decision space, respectively.
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Figure 5.1: Example of Hausdorff distance.

In the field of MOEA, diversity usually refers population diversity in an objective
space; however in our approach, we use the term diversity to refer decision space
diversity.

Average Hausdorff distance Classical Hausdorff distance is a widely used met-
ric to measure the distance between two sets. Let A = {a1, a2 . . . , an} and B =
{b1, b2, . . . , bm} are two finite sets. Hausdorff distance (dH) is defied as:

dH(A,B) = max(supai∈Adis(ai, B), supbi∈B(bi, A)) (5.1)

Where dis(ai, B) = infbi∈B‖ai − bi‖ and ‖.‖ refers norm. An example of Hausdorff
distance is depicted in Figure 5.1. However, the original version of Hausdorff distance
is not a suitable metric for measuring the convergence of multi-objective optimization
problem [154]. The main reason is that a set with an outlier is largely penalized
that does not compatible with the stochastic nature of MOEAs.

Therefore, Average Hausdorff distance (AHD) is proposed by Schutze et al. in
[154]. The metric is a modified version of Hausdorff distance adopted for multi-
objective optimization problem by applying generational distance (GD) and inverted
generational distance (IGD). Let A = {a1, a2 . . . , an} and B = {b1, b2, . . . , bm} are
two finite sets. GD is defined as follows:

GD(A,B) =
1

n

( n∑
i=1

dis(ai, B)p
) 1

p

(5.2)

Where dis(ai, B) = infbi∈B‖ai − bi‖ and ‖.‖ refers norm. The indicator suffers a
problem when a candidate set could have many similar solutions, hence reducing
the GD value. Therefore, it becomes difficult to compare the set with different
number of solutions. To avoid the unwanted problem, the authors of [154] propose
a slightly modified version of GD by talking power mean of average distances.

GD(A,B)p =

(
1

n

n∑
i=1

dis(ai, B)p

) 1
p

(5.3)
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The same approach is applied on IGD [154].

IGD(A,B)p =

(
1

m

m∑
i=1

dis(bi, A)p

) 1
p

(5.4)

Finally, the average Hausdorff distance is defined as follows:

AHDp(A,B) = max(GDp(A,B), IGDp(A,B)) (5.5)

The metric is particularly interested to us, since the metric considers the averaged
distances between between two sets without penalized by outliers.

Diversity There are many possible techniques to measure genetic diversity of a
population. The most popular two methods are Hamming distances among all pairs
of chromosomes and Shannon entropy on gene frequencies [173]. The authors of
[173] argues that the underlying mechanism of all the diversity measurements is very
similar. Fundamentally, population diversity is a measurement of how individuals
of a population are different from one to another.

Considering P is a population of n individuals and {xi,1, xi,2, . . . , xi,l} are l num-
bers of chromosomes (decision variables) of an arbitrary ith individual. The diversity
for a chromosome (k) is the all possible distances among all the individuals of the
population for the chromosome and can be written in the following way [173]:

Div2
k(P ) =

1

2

n∑
i=1

n∑
j=1

D2(xi,k, xj,k) (5.6)

where D2 is Euclidean distance based on L2 norm. To get all possible pairs diversity
for all the chromosomes, the Equation (5.6) becomes

Div2(P ) =
1

2

l∑
k=1

n∑
i=1

n∑
j=1

D2(xi,k, xj,k) (5.7)

By using some algebraic manipulation, we get the diversity in the following form:

Div2(P ) = n2

l∑
k=1

(
x2
k − xk

2
)

(5.8)

Where xk = 1
n

∑n
i=1 xi,k and x2

k = 1
n

∑n
i=1 x

2
i,k. Finally, since diversity of a population

should not be increased by adding same individual and same chromosome over and
over again, it is defined as follows [173]:

Div(P ) =
1

l

√√√√ l∑
k=1

(
x2
k − xk2

)
(5.9)

One can wonder why do not we use the Solow and Polasky diversity metric that
was proposed in previous chapter. Please note that our primary goal is to detect the
movements of individuals in decision space though the metric. Movements can be
detected by any diversity metrics, therefore, in principle Solow and Polasky metric
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Figure 5.2: Normalized AHD and diversity are represented by black and blue trends.
Three vertical lines with three different colors indicate the stopping generations for
three different criteria.

could be used. However, as we see in the last chapter that Solow and Polasky metric
is computationally expensive; the proposed diversity metric is chosen because of low
computational cost.

Figure 5.2 illustrates the values of two metrics for ZDT1 [179] problem solved
by NSGA-II. In the figure, the values for AHD and diversity for each generation
is normalized to illustrate two metrics in the same plot. The figure shows that
after some time, each metric is stabilized. There are still some random fluctuation,
however no definite increasing or decreasing trends can be found.

One can argue that the AHD is still not zero, therefore there is still a movement
in objective space. The movement of individuals are still there, however, it is not
so significant. The reason for these insignificant movement are explained by diver-
sity controlling mechanism of MOEAs. Most classical MOEAs such as NSGA-II
[53], SPEA2 [180]; have a mechanism to maintain diversity in the objective space
(e.g., crowding distance, archive truncation). When the trend of AHD remains al-
most stable, it means that some individuals are removed from a crowding region
and some are added in less crowding region by objective space diversity control-
ling mechanism of a MOEA. In addition, in this stage of an algorithm, this process
continues repeating. Figure 5.3 illustrates the Pareto-fronts of 140th and 141th gen-
eration of same problem (i.e., ZDT1) solved by NSGA-II. The region covered by
a rectangle illustrates the behavior discussed before. A zoomed view of the region
is illustrated in the upper part of the figure. By carefully examine the area, one
can see deletion of an individual of 140th generation marked by ‘+’ and addition of
an individual marked by ‘�’ for 141th generation. Therefore, if this kind of stable
trend (Figure 5.2) continue for long time, we conclude that significant improvement
may not be possible. On the other hand, when the diversity becomes nearly stable,
individuals in the decision space become stabilized.

To detect the trends of stability, a regression analysis is performed. More specif-
ically, a two-sided t-test is carried out to check the significance of decreasing linear
trend [171]. Using the test, it is possible to measure the slope (β) of some points
using least-square method [171]. Moreover, a statistical hypothesis test (i.e., t-test)
is carried out to determine the significance of error on β. As we want to detect the
stability of the trends (i.e., β = 0), the statement for the hypothesis test can be
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expressed as:
H0 : β = 0 vs H1 : β 6= 0 (5.10)

Consequently, we try to find out the generation where the null hypothesis can not be
rejected anymore. Figure 5.2 shows the stopping generations (three vertical lines)
when the test is applied individually and concurrently on different metric (i.e., AHD
and diversity). It is clear from preliminary results that each metric stabilizes in
different time. Moreover, by considering two metric simultaneously, the algorithm
stops later. Hence, it is possible to detect convergence more robustly by monitoring
an objective and a decision space concurrently.
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Figure 5.3: Pareto-fronts extracted by NSGA-II for two consecutive generations.

Algorithm 5 Algorithm for detecting stopping generation
Require:

1: α . Significance level for statistical test
2: nGenLT . Number of previous generations considered for calculating slop of linear regression model
3: nGenUnCh . Number of previous generations the p-values remain unchanged (pValj > α, j ∈ {AHD ,Div})
4: MaxGen . Maximum number of allowed generations
5: i = 0
6: pAHD[]← 0, pDiv[]← 0
7: repeat
8: i← i+ 1
9: AHD [i ]← AHD between Pareto-front of ith and (i− 1)th generation

10: Div [i ]← Diversity of ith generation
11: if i > nGenLT then
12: pAHD [i ]← pValue for previous nGenLT of AHD (∀z ∈ {i, i− 1, . . . , i− nGenLT} : AHD[z])
13: pDiv [i ]← pValue for previous nGenLT of Div (∀z ∈ {i, i− 1, . . . , i− nGenLT} : Div[z])
14: end if

15: until i ≥MaxGen or (∀j ∈ {i, i− 1, . . . , i− nGenUnCh} : pAHD [j ] > α ∧ pDiv [j ] > α )

Algorithm 5 presents the details of the proposed method. There are four intu-
itive parameters that need to be specified. The user has to provide a significance
level (α) for the statistical test. Mainly two values are found: 0.05 (standard) and
0.1 (conservative) [171]. A user needs to specify the number of previous generations
(nGenLT ), for which AHD and diversity values are considered in order to estimate
the slop of the liner regression model. The next parameter (nGenUnCh) is the num-
ber of preceding generations for which no significant improvement can be obtained
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(H0 can not be rejected, p − value > α). Finally, the last parameter (MaxGen) is
the number of maximum allowable generations. AHD and diversity are calculated
for each generation (step #9 and #10). After first nGenLT generations, p-values
for AHD and diversity are calculated (step #12 and #13). To calculate p-values for
corresponding metric previous nGenLT metric values are considered. A MOEA will
be stopped when either the algorithm already evolved for MaxGen generations, or
the p-values for both metrics (AHD and diversity) are larger than α for previous
nGenUnCh generations (step #15).

5.4 Experiments and results

A number of experiments have been conducted to analyze the performance of pro-
posed MOEA stopping criterion. For the experiments, we have selected two most
widely used MOEAs (i.e., NSGA-II [53] and SPEA2 [180]) and six benchmark prob-
lems (ZDT1, ZDT2, ZDT3, ZDT4, DTLZ2, DTLZ5 ) [54, 179] depending
on the different characteristics of solution Pareto-fronts. All the problems of ZDT
family are bi-objective problems and DTLZ2, DTLZ5 are three objectives problems.
Our proposed approach will be compared with individual monitoring of each space.
Additionally, it will be compared with state-of-the-art stopping criteria, called online
convergence detection (OCD) [171]. Finally, a comparison with standard budget FE
recommendation, will be presented.

5.4.1 Experimental settings

The proposed methodology is implemented in jMetal [59], Table 5.1 shows the stan-
dard parameter settings for our experiments. Moreover, we have used simulated
binary crossover [51], polynomial mutation [51] and binary tournament selection
[51] for both of the algorithms. Additionally, we set nGenLT = 30, nGenUnCH
= 10 and α = 0 .05 for the experiments. p = 2 is used to calculate AHD. For each
problem, the algorithms independently run 30 times. Moreover, for each run, we
let the algorithms evolve 500 generations. The reason of letting the algorithms to
run more than standard MaxGen (Table 5.2) is that we want to investigate when
exactly the proposed stopping method is activated. Finally, we have used the fol-
lowing parameters in the variance test of OCD for the three indicators: εHV = 1e−4

, εR = 1e−6 and εEpsilon = 2e−4.

Table 5.1: Parameter settings for NSGA-II and SPEA2.

NSGA-II SPEA2

Population size 100 100
Archive Size – 100
Crossover probability 0.9 0.9
Mutation Probability 1/NDV a 1/NDVa

Distribution Index 20 20

a Number of decision variables
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5.4.2 Evaluation metrics

To evaluate our proposed method, we have defined four metrics/indicators. The first
indicator is the difference between hypervolume (HV) [177] achieved by different
methods (HVi : i ∈ {AHD,Div,AHD +Div,OCD} and HV achieved by standard
MaxGen (i.e., HVi −HVstd), we call the difference, HVd. In the same manner
differences between epsilons [181] (epsd = epsstd−epsi : i ∈ {AHD,Div,AHD+Div,
OCD}) will be computed. The Pareto reference sets provided by jMetal framework 2

are used to calculate epsilon. NegativeHVd value means smaller HV is achieved when
an algorithm stops by a method than standard MaxGen and vice versa. Similarly,
negative epsd means epsilon is larger when an algorithm stops by a method than
standard MaxGen and vice versa. Therefore, HVd and epsd values closer to 0
indicate better approximation of a Pareto-front. The standard stopping generation
for different problems can be found in Table 5.2. Additionally, we want to study
the percentage of HV of true Pareto-front [122]; obtained by an algorithm when the
algorithm stops by the combined approach (AHD+Div). The calculation is easily
done by taking percentage between HV achieved by an algorithm and HV of true
Pareto-front(i.e., HVper = HVADH+Div

HVtPF
). We use Pareto-reference sets provided by

jMetal framework as true Pareto-front. We will also report average number of saved
function evaluations (NoSFE ) for each problem. The NoSFE will be calculated
by (MaxGen − GenAHD+Div) ∗ PS, where GenAHD+Div is the stopping generation
number by combined method; PS is the population size.

Table 5.2: Standard Maximum allowed number of generations [171], [54].

Problem ZDT family DTLZ2 DTLZ5

Standard MaxGen 200 300 200

5.4.3 Discussion

Figure 5.4 and 5.5 present comparisons of the four different stopping approaches
with respect to stop generation (StopGen), HVd and epsd on the different test sce-
narios. Each row of the figures presents a problem and each column presents the
performance with regard to a particular indicator. Horizontal lines in the plots of
the first column indicate the standard MaxGen. Moreover, horizontal lines in the
plots of the second and third columns are drawn to indicate the zero level for the
corresponding indicators.

It is clear from the figures that for all the problems and algorithms, the combined
approach runs longer than the individual approaches. For example, by considering
AHD metric alone for ZDT4 problem or by considering only diversity metric for
ZDT1 problem for SPEA2, the algorithm stops prematurely. It is interesting to
point out that there is no clear winner between AHD and Div. Therefore, relying on
a particular space may detect converge prematurely. This clarifies the fact that the
simultaneous monitoring of both spaces is more reliable to detect the convergence
of an algorithm. Finally, HVd and epsd values get closer to the horizontal lines
(with respect to individual monitoring approach, except OCD) also ensure that

2http://jmetal.sourceforge.net/problems.html
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Table 5.3: Mean and standard deviation for parameters for different problems.

Problem Evaluation
metrics

NSGA-II SPEA2
mean SD mean SD

ZDT1

NoSFE 5527 2382 643 1153
HVd -5.89E-03 3.54E-03 -6.24E-04 1.19E-03
epsd -3.06E-03 3.33E-03 -5.40E-04 1.21E-03
HVper 0.979285 0.005466 0.986092 0.001775

ZDT2

NoSFE 2793 1887 0 0
HVd -2.68E-03 2.04E-03 0.00E+00 0.00E+00
epsd -1.63E-03 2.38E-03 0.00E+00 0.00E+00
HVper 0.966308 0.006051 0.957989 0.042851

ZDT3

NoSFE 5077 2427 1427 2509
HVd -4.36E-03 2.88E-03 -3.46E-03 1.40E-02
epsd -4.71E-03 4.35E-03 -5.37E-03 2.38E-02
HVper 0.984483 0.00566 0.983046 0.027052

ZDT4

NoSFE 777 1864 953 2582
HVd -2.30E-02 6.62E-02 -4.03E-02 1.29E-01
epsd -2.04E-02 6.17E-02 -7.41E-02 2.42E-01
HVper 0.925081 0.109336 0.874061 0.185557

DTLZ2

NoSFE 18323 2410 15173 6152
HVd -3.13E-03 7.17E-03 -3.85E-03 4.81E-03
epsd 3.52E-03 3.21E-02 -2.45E-03 1.18E-02
HVper 0.790937 0.011261 0.857519 0.008931

DTLZ5

NoSFE 3113 3467 2767 4192
HVd -8.90E-05 2.66E-04 -4.36E-04 7.50E-04
epsd -2.66E-04 1.83E-03 -6.47E-04 1.58E-03
HVper 0.969181 0.003113 0.968569 0.00784

the combined approach has a better performance with regard to the Pareto-front
approximation.

The figures also illustrate that the algorithms run much longer for OCD than
for the combined approach on all ZDT problems. In addition, the algorithms run
longer than standard MaxGen. Consequently, the HVd and epsd values pass the
horizontal lines having positive values implies that the algorithms with OCD bet-
ter approximate Pareto-fronts than the algorithm with standard stopping criteria
(standard MaxGen). However, it is straight forward to understand because the
algorithms that run longer generations would have better approximation of Pareto-
fronts. In contrast, on DTLZ problems, the algorithms with OCD stop earlier than
our approach. However, using our method the algorithms stop more reliably with
well-approximated Pareto-fronts. Therefore, the simultaneous monitoring approach
is more consistent, whereas OCD is not so stable when confronted with different
problems.

In this paragraph, we will compare our method (AHD + Div) with standard
budget recommendations (that means MaGen values are set according to Table
5.2). Table 5.3 reports the means and standard deviations of the respective indi-
cator values. We have found very well approximated Pareto-fronts for all problems
and for both algorithms, except on ZDT4. The means and standard deviations of
HVd and epsd are very low for all these problems.The good quality Pareto-fronts
are found while also obtaining reasonably good NoSEF s. The only exception is
ZDT2 for SPEA2, where the proposed method does not converge before MaxGen
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Figure 5.4: Boxplots for stopping generation, HVd and epsd on the different problems
for NSGA-II.
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Figure 5.5: Boxplots for stopping generation, HVd and epsd on the different problems
for SPEA2.
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(standard budget). Very good percentages of true HVs (HVper) are obtained. HVper
has reached over 95% for all the problems, except DTLZ2 and ZDT4. HVpers are
considerably low (0.7916) for NSGA-II and SPEA2 (0.8557) on the DTLZ2 problem.
However, please note that the average HVpers are 0.7976 and 0.8657 for standard
MaxGen for NSGA-II and SPEA2, respectively. Therefore, there is almost no
difference in terms of achieved HVper when comparing our method with standard
MaxGen. Nevertheless, sometimes the method detects convergence prematurely
on the ZDT4 problem. It should be noted that the ZDT4 problem has 219 local
Pareto-fronts. Finally, in comparison to standard budget recommendation, on aver-
age our proposed method saves 29% and 17% of function evaluations for NSGA-II
and SPEA2, respectively.

5.5 Conclusion

In this chapter, we have shown that the simultaneous monitoring of the objective
and decision space of a problem, can improve the robustness of stopping MOEA.
Two metrics have been proposed for the different spaces. The stagnation has been
detected by a two-sided t-test on the regression coefficients estimated from the ma-
trices in the two spaces.

We have validated our method by investigating the performance on six differ-
ent benchmark problems for two well-established MOEAs. Our proposed method
performs consistently well for all problems, also compared to state of the art stop-
ping criteria. Additionally, on average a decent number of function evaluations has
been saved compared to fixed budget recommendations without losing significant
approximation accuracy.

In the next chapter, the developed stopping method will be employed within
the energy system optimization framework. Moreover, the efficiency of the frame-
work will be improved by incorporating all the individual components developed in
previous chapter.
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Chapter 6

An integrated approach to energy
system optimization

Science is what we understand well enough to explain to a computer.
Art is everything else we do.

— Donald Knuth

6.1 Introduction

It is very importation for an optimizer to identify solutions in a efficient manner;
both in terms of quality of the solutions and in reduced computational cost. Some of
the individual components, such as smart initialization and smart mutation where
domain knowledge about energy system is incorporated), are developed and tested
individually (in Chapter 4) which improve the efficiency of energy system optimiza-
tion framework. Finally, a robust stopping criterion is proposed in the previous
chapter that stops a MOEA automatically when the algorithms converge. In this
chapter, we will integrate all the components developed previously into a single
framework. Figure 6.1 presents the typical steps for the framework proposed in
Chapter 3. However, three yellow-blue boxes show modified steps where developed
components are integrated into the framework. The results show that our integrated
approach yields better Pareto-front in less time than generic approach.

6.2 Experiments and results

We want to compare the integrated approach (i.e., smart initialization, smart mu-
tation and stopping criterion are combined) with a typical approach (i.e., random
initialization, polynomial mutation and fixed maximum generations) for NSGA-II
and SPEA2 on the Aalborg energy system problem.

M. S. Mahbub, M. Wagner, and L. Crema, “Incorporating domain knowledge into the opti-
mization of energy systems,” Applied Soft Computing, vol. 47, no. C, pp. 483–493, Oct. 2016.
DOI: http://dx.doi.org/10.1016/j.asoc.2016.06.013
The text is verbatim apart from the introduction and the conclusion and mentioned additions in
chapter 4 and chapter 6; results regarding integrated approach are included in chapter 6. However,
the introduction and the conclusion of the chapter are written independently to the published copy.
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Figure 6.1: An integrated approach to energy system optimization model.

For this experiment, we use the following parameters for the stopping criterion:
nGenLT = 20, nGenUnCH = 5, α = 0 .05 and MaxGen = 70 1. The values are
chosen in such a way that the stopping happens early, which we prefer as we are using
costly simulations. All other parameters remain unchanged as it was in Chapter 4.
Each algorithm runs 30 times independently for the experiment.
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Figure 6.2: Pareto-fronts generated by generic SPEA2 and SPEA2 Int.

1Please see Chapter 5 for the explanation of the parameters.
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First, Figure 6.2 presents an example of the comparison of two Pareto-fronts
generated by the generic SPEA2 and by SPEA2 with the integrated approach
(SPEA2 Int). Again, SPEA2 Int clearly performs better than the generic approach.
In addition, Table 6.1 shows the results of the four different MOEAs, where a darker
cell color indicates a better result. Figure 6.3 shows the results as boxplots to
compare NSGA-II and NSGA-II with the integrated approach (NSGA-II Int), and
similarly for SPEA2. Table 6.2 presents the p-values for all the metrics. From
the boxplots and Table 6.1, it is clear that our integrated approach performs very
similarly to a typical approach for NSGA-II (p-values show there is no statistically
significant differences), however, it outperforms a typical approach on every cho-
sen metric for SPEA2 (p-values show there is statistically significance differences).
Nevertheless, it should be noted that our approach achieves the similar results for
NSGA-II with fewer function evaluations (Table 6.3); on average almost one-forth
of total function evaluations (Table 6.3) are saved. On the other hand, for SPEA2,
a significant improvement of the metric values are obtained, compared to the typical
method. Hence, it can be concluded that our approach has a positive impact on
MOEAs.
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Figure 6.3: Boxplots for four metrics comparing NSGA-II and SPEA2 with inte-
grated approach.

Table 6.1: Mean and standard deviations of four different metrics

Metric NSGA-II NSGA-II Int SPEA2 SPEA2 Int
HV 8.35e− 013.6e−04 8.35e− 013.5e−04 8.32e− 012.4e−03 8.35e− 017.5e−04

IGD 7.01e− 034.0e−04 6.85e− 034.3e−04 2.51e− 022.0e−02 9.96e− 032.9e−03

Epsilon 6.70e+ 004.8e+00 6.57e+ 004.9e+00 7.06e+ 015.5e+01 2.03e+ 011.4e+01

Spread 4.38e− 013.6e−02 4.27e− 013.1e−02 5.98e− 014.2e−02 5.51e− 012.5e−02

Lastly, we list in Table 6.3 the total number and average percentage of saved
function evaluations for each MOEA for 30 runs. Note that all the simulations
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Table 6.2: Mann-Whitney U-tests: p-values for different metrics when comparing
our integrated approaches (Int) with the generic approaches.

p-value
Evaluation
metrics

Compare NSGA-II:
With integrated and generic approach

Compare SPEA2:
With integrated and generic approach

HV 0.7191 1.63e−09

IGD 0.1727 2.20e−16

Epsilon 0.8704 6.932e−06

Spread 0.3136 4.106e−09

Table 6.3: Number and percentage of saved function evaluations for different
MOEAs.

MOEA
Total saved

function evaluation
Average percentage of

saved function evaluations

NSGA-II Int 45400 22%

SPEA2 Int 27400 13%

without our stopping criterion technique use 7,000 function evaluations (i.e., 70
generations, Section 4.4.1). We calculate the number of saved function evaluations
(SFE) for each run by SFE = (70−Gensc)∗PS, where Gensc is stopping generation
when the the stopping criterion is activated and PS is the population size (in the
experiment, PS = 100). Then, we sum up all SFE values of the 30 runs to find

the total SFE. The average percentage of SFE is calculable by SFET ∗100
FET

, where
SFET is the total SFE and FET = 210, 000 as this is the total number of function
evaluations required (for 30 runs) when the stopping criterion is not used. According
to the results, the modification of NSGA-II has saved the largest number of function
evaluations. On average 22% function evaluations are saved, while also yielding a
similar performance of the final solutions (see Table 6.1 and Figure 6.3).

The poor results of SPEA2 can be also explained by the number of saved evalu-
ations. According to the table, fewer evaluations are saved compared to NSGA-II.
Therefore, it is clear that SPEA2 is not able to converge as quickly as NSGA-II on
this problem.

6.3 Conclusion

In this chapter, we incorporate all the developed components of Chapter 4 and 5
under a single framework. The framework is applied on the Aalborg test problem.
The results show a significance improvement can be achieved in term of evaluation
metrics (HV, IGD, Epsilon ans spread for SPEA2) and number of saved function
evaluations (22% for NSGAII with respect to usual number of function evaluation).
It is now a complete framework where domain knowledge about energy system is
applied to increase the efficiency of algorithm, at the same time, a robust stopping
criterion is incorporated to detect the convergence, hence, saving a lot of valuable
computational time.

In the following chapter we will describe a practical application of the frame-
work. The framework will be applied to identify multiple optimized scenarios for
the studied area.

79



Chapter 7

A practical application of the
framework: the case of Giudicarie
Esteriori

Global warming is no longer a philosophical threat, no longer a future
threat, no longer a threat at all. It’s our reality.

— Bill McKibben
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Nomenclature

Qsh Space heating demand (kWh/year)

ndw Number of dwellings in a specific time period

QTR
sh Average dwelling space heating demand at the age of construction (kWh/m2)

DDMun Local municipality degree day

DDTR Degree day in the city of Trento

S̄ Average living area of the dwellings (m2)

Qh
sh Hourly space heating demand (kWh)

Ta Conventional ambient temperature (◦C)

T hout Hourly outdoor temperature (◦C)

QHSW Yearly hot sanitary water heating demand (kWh/year)

ρw Volumetric mass of water (Kg/m3)

cw Specific heat of water (J/(Kg ∗K))

Vw Volume of daily required hot and sanitary water (m3)

θHSW Hot sanitary water temperature (◦C)

θt Tap water temperature (◦C)

ND Number of days in a year

nin Number of inhabitants

Qtr Yearly transportation energy demand (kWh/year)

Qpc
tr Yearly transportation energy demand for petrol cars (kWh/year)

Qdc
tr Yearly transportation energy demand for diesel cars (kWh/year)

npc Number of cars fueled by petrol

ndc Number of cars fueled by diesel

dpc Average yearly distance traveled by a petrol car (km/year)

ddc Average yearly distance traveled by a diesel car (km/year)
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fpc Average fuel efficiency of a petrol car (km/l (per liter of fuel))

fdc Average fuel efficiency of a diesel car (km/l (per liter of fuel))

LCVpc Lower calorific value for petrol (kWh/l)

LCVdc Lower calorific value for diesel (kWh/l)

eli Yearly electricity imported (kWh/year)

ele Yearly electricity exported (kWh/year)

eld Yearly electricity demand (kWh/year)

PEi Yearly primary energy imported (kWh/year)

PEd Yearly primary energy demand (kWh/year)

ellp Yearly local electricity production (kWh/year)

LPGi Yearly liquid petroleum gas imported (kWh/year)

NGi Yearly natural gas imported (kWh/year)

Oili Yearly oil imported (kWh/year)

BMc Yearly local biomass consumption (kWh/year)

HHP Yearly heat produced by heat pumps (kWh/year)

COP Coefficient of performance

PEF el
i Primary energy factor for imported electricity

PEF el
lp Primary energy factor for locally produced electricity

elcond Electrical demand by considering electrification of all the sectors (kWh)

PVLP Local producibility of photovoltaics (kWh/kW)

elCeff Electric car efficiency (kWh/km)

SWR Yearly sustainable wood resource (GWh/year)

Stot Total surface area (Hectare (ha))

Spfor Percentage of surface area covered by forest

Sfor Surface covered by forest (ha)

PSWR Potentiality of sustainable use of the wood resource (MWh/(ha*year))
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CHAPTER 7. A PRACTICAL APPLICATION OF THE FRAMEWORK: THE CASE OF
GIUDICARIE ESTERIORI

7.1 Introduction

There is an international effort to support multiannual programs for the energy
transition from a fossil fuel-based society to a different energy mix and integration.
In particularly in the last decade, the European Union has initiated several plans
that promote new technologies, introduce renewed infrastructure and improve energy
efficiency. All the efforts will help the transition of Europe to a sustainable, low-
carbon and environmental friendly economy. Moreover, the European Union has
autonomously set targets for climate and energy for the year of 2020 [65], 2030 [67]
and 2050 [64]. Member states are required to contribute to achieve these goals with
internal plans and strategies.

The challenges of minimizing energy costs, decreasing the dependency on for-
eign resources, reducing carbon footprint and integrating renewable energy sources,
require a detailed analysis of many possible energy scenarios. Moreover, many re-
newable energy sources, such as solar, wind and water, are dependent on weather;
therefore, it is necessary to find the correct mix among all the available resources
to model potential energy scenarios. Usually, the appropriate sustainable scenarios
do not include a predominance of one resource over others, rather a suitable mix,
based on local resources and demands is sought.

In this study, the analysis of the energy system of Giudicarie Esteriori (a small
Italian Alpine valley) is carried out by EnergyPLAN [101]. As optimizing an energy
system is a multi-objective optimization problem, we use our developed framework
to identify optimized scenarios.

Afterwards, the identified optimized scenarios are categorized into different tar-
get groups. The identification of optimized scenarios and the analysis of some target
scenarios are carried out for providing a whole range of different scenarios (in terms
of different objectives) to the policy makers of the studied area. These results could
be used by local policy makers to make a sustainable energy action plan (SEAP), re-
ducing the local emissions under the framework of the covenant of mayors initiative
[5].

The remainder of the chapter is organized as follows. In section 2, the analysis of
electrical, thermal and transport sectors of Giudicarie Esteriori is presented. Section
3 describes the applied framework in brief; moreover, considered decision variables,
constraints and objectives are discussed. Section 4 presents the results and the
corresponding discussion about the results. Finally, the chapter is concluded by
providing some potential directions for the decision makers.

7.2 The study area: Giudicarie Esteriori

7.2.1 Location and population

The studied area, an Italian Alpine valley named Giudicarie Esteriori, is located
in the province of Trento (Figure 7.1). The area is characterized by the presence

M. S. Mahbub, D. Viesi, and L. Crema, “Designing optimized energy scenarios for an italian
alpine valley: the case of giudicarie esteriori,” Energy, vol. 116, Part 1, pp. 236 – 249, 2016. DOI:
http://dx.doi.org/10.1016/j.energy.2016.09.090

The text is verbatim without introduction and conclusion in chapter 7; the introduction and
conclusion have been modified to ensure a better flow of the text in the thesis.
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of a cooperative called “Consorzio Elettrico Industriale di Stenico (CEIS)”. CEIS
was established in 1905 with the aim of contributing to the economic and social
improvements of the people living in the area, through the production and distri-
bution of electricity. CEIS is one of the 77 Italian historical electric cooperatives.
A considerable amount of economic saving (up to 40% compared to the national
average electricity price [32]) is possible to the member of CEIS, as CEIS has the
ownership of the electricity production plants and the electrical distribution grid.

Figure 7.1: The Province of Trento and the area of Giudicarie Esteriori supplied by
CEIS

The supplied area of CEIS has a surface of 248 km2 and includes 8,426 citizens
and 3,536 families. At 31st December 2013, the shareholding structure was made of
3,425 members who represent about 80% of households served by CEIS [32]. In the
next few sub-chapters, we analyze energy demands and productions of the reference
scenario (RS). The RS characterizes the state of the energy system in the year 2013.

7.2.2 Electricity production and demand

CEIS produces electricity using only renewable energy sources; it has the ownership
of 1 hydropower plant (4.0 MW) and 5 centralised photovoltaic (PV) plants (1.0
MW). In addition, the diffusion of residential PV panels has been greatly increased
(442 PV plants, 6.5 MW, at 31st December 2013) in recent year because of high
national grants. Two CEIS members own two biogas plants (0.5 MW), produc-
ing renewable electricity from cow waste [32]. Part of the electricity produced by
residential PV panels and biogas is used for self-consumption and the remaining
is injected into the CEIS grid. The number of plants and corresponding installed
capacities (kW) for the reference year (2013) [32] is reported in Table 7.1. As an

Table 7.1: Number of different electricity producing plants and corresponding in-
stalled capacities (kW) of CEIS.

Renewable energy sources Number of Plants Installed capacity
Biogas 2 500
PV 447 7515
Hydropower 1 4000

agreement with the cooperative, the hourly electrical production and demand data
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GIUDICARIE ESTERIORI

are made available to the authors. Using the available data, the comparison of elec-
trical production (monthly) from different plants (total: 29.4 GWh) and electrical
demand (total: 26.2 GWh) is illustrated in Figure 7.2 (the demand includes do-
mestic sector, industry, services, agriculture etc.). The hydro plant has the highest
production among all other technologies and it is characterized by a major peak
in spring and a secondary peak in autumn. PV production has one major peak
in summer. On the other hand, electrical demand remains steady over the time,
however, some small monthly variations are observed. The total monthly electrical
production exceeds the electrical demand between the months of April to November,
while between December to March, a considerable amount of electricity import is
required from the national grid (purchased by the vendor Trenta S.p.A.). The lack
of electrical balancing between local production and demand is even more visible
at the daily and hourly level; indeed, the daily production profile does not match
two peaks of the demand (i.e., morning and evening). While hydro production
is moderately regulated during low-production months (using a very small hydro
storage reservoir), such activity is not implemented for PV production. The large
variable and non-programmable power flows make the management (of the system)
challenging.
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Figure 7.2: Monthly electricity demands and productions from different plants.

The area served by the cooperative is not an energy island system; the local
electrical gird is connected with the national grid. During the reference year the
total electricity import reached about 4.6 GWh and the export reached about 7.8
GWh, and maximum peak of importing is about 3.2 MW, while maximum peak of
exporting is about 7 MW.

7.2.3 Thermal energy demand

Because of the lack of monitoring facilities, it is not possible to get the real thermal
consumption data for the reference scenario. Therefore, the thermal demand is
estimated. The total thermal demand is divided into two sub-sectors: space heating
and heating requirement for hot sanitary water (HSW).
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The yearly space heating demand (Qsh) can be estimated at the municipality
level by using the following formula:

Qsh = ndw ∗QTR
sh ∗

(
DDMun

DDTR

)
∗ S (7.1)

The demand for space heating is considered variable throughout a year, based on the
outdoor temperature (our data is collected from the weather station “Meteotrentino
T0414 San Lorenzo in Banale (Pergoletti)” [15]) and by considering a conventional
ambient temperature of 20◦C. The hourly space heating demand (Qh

sh) is evaluated
at municipality level by the following formula:

Qh
sh = (Qsh) ∗

1∑8760
h=1 (Ta − T hout)

∗ (Ta − T hout) (7.2)

The heating demand for HSW (QHSW ) is considered constant throughout a year,
with an average HSW usage of 65l

(day∗person)
tap water. In addition, tap water tem-

perature is considered to increase from 10◦C to 40◦C. Therefore, the yearly HSW
heating demand is calculated at the municipality level by:

QHSW = ρw ∗ cw ∗ (Vw ∗ (θHSW − θt)) ∗ND ∗ nin (7.3)

The total yearly thermal demand in Giudicarie Esteriori is estimated to be 55.83
GWh. Space heating demand is very high compared to heating required for hot
water (monthly demands are illustrated in Figure ??reaching its peak in the mid-
dle of winter (December — March). Hot water heating demand remains constant
throughout the year.
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Figure 7.3: Monthly thermal energy demand for two sub-sectors in Giudicarie Es-
teriori.

The energy mix and generation technologies for thermal energy are identified by
considering municipality statistical data provided by the province of Trento [17] and
questionnaires collected from local citizens. Almost all the dwellings use individual
boilers to meet the corresponding demands, however, different types of individual
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boilers are in use (please see Table 7.2 for thermal energy mix). The main fuels
for the individual boilers are wood, oil and liquid petroleum gas (LPG). The use of
wood-fired individual boilers is highly widespread; thanks to the large local surface
covered by forest and the low cost of wood in the market. In comparison with the
electrical part, thermal part has a lower share of renewable sources (i.e., only wood)
and a large share of imported fossil fuels (oil and LPG).

Table 7.2: Energy mix for thermal energy in Giudicarie Esteriori.

Thermal energy
source

Thermal energy
demand (kWh)

Peak Power (kW)

Individual wood boiler 29,694,971 9,549
Individual oil boiler 19,004,782 6,126
Individual LPG boiler 7,126,793 2,342
Total 55,826,546 —

7.2.4 Energy demand for transport

The analysis of transport energy demand in Giudicarie Esteriori is conducted at
municipality level based on data collected from Automobile Club d’Italia [23] and
Unione Petrolifera Italiana [168] for the reference year 2013. The transport demand
of the area is calculated by considering the demands of petrol and diesel cars (the
average annual distance travelled, fuel efficiency and lower calorific value (LCV)
applied in this study are presented in Table 7.3).

The yearly transport energy demand (Qtr) is calculated by the following formula:

Qtr = npc ∗ dpc ∗ fpc ∗ LCVpc + ndc ∗ ddc ∗ fdc ∗ LCVdc (7.4)

Table 7.3: Characteristics (average annual distance travelled, fuel efficiency and
LCV ) of petrol and diesel cars applied in this study.

Type of fules
Distance travelled

(Km/year)
Fuel efficiency

(km/l)
LCV

(kWh/l)
Petrol 7,250 15.5 8.86
Diesel 13,400 18.2 10.12

Based on the formula, transport demand for each municipality is calculated and
reported in Table 7.4. By summing all the municipalities’ demands, it is calculated
that the total yearly petrol and diesel demands are about 11.45 GWh and 15.60
GWh, respectively.

7.3 Methodology

We use the very similar framework to optimize energy system of the cooperative.
As an optimization algorithm SPEA2 [180] is used in the place of NSGAII [53].
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Table 7.4: Transport energy demand for the municipalities situated in Giudicarie
Esteriori.

Municipality npc ndc
Qpc
tr

(kWh)
Qdc
tr

(kWh)
Qtr

(kWh)
Bleggio Superiore 511 387 2,117,683 2,883,533 5,001,216
Comano Terme 937 710 3,883,109 5,290,202 9,173,312
Dorsino 135 102 559,446 760,001 1,319,467
Fiavè 385 291 1,595,515 2,168,238 3,771,203
San Lorenzo in Banale 385 292 1,595,515 2,175,689 3,771,203
Stenico 410 311 1,699,119 2,317,258 4,016,377
Total 2762 2094 11,446,263 15,602,371 27,048,634

We prefer SPEA2 over NSGAII because we need to optimize four objectives and
SPEA2 has better perform better when more than three objectives need to optimize.
Moreover, SPEA2 is also preferable over MOEA/D [176] because it needed fewer
algorithmic parameters.

The section also describes the decision variables (i.e., technologies that considered
for optimization) and the constraint of the energy system are described in detail.
Finally, the objectives for the optimization are formalized and described.

7.3.1 Decision variables and constraints

In this sub-section, we discuss the technologies that are used as decision variables
to design optimized energy scenarios for the studied area:

• PV capacity: It is still possible to increase the capacity of PV. The maximum
reasonable PV capacity is decided by dividing the annual maximum electrical
consumption (by assuming that the energy system is completely electrified:
existing electrical demand, existing thermal demand covered by ground source
heat pumps, existing transport demand covered by electric cars) with the local
PV productivity. The PV productivity can be calculated by dividing total
yearly PV production by peak power of PV capacity. The calculated maximum
reasonable PV capacity is approximately 42 MW (calculation is performed in
Appendix A.1). Specifying a maximum capacity is necessary because the
optimizer will find the optimal scenarios within the specified maximum limit.
A large maximum limit is specified to let the optimizer find optimal scenarios
within the range.

• 2. All the existing heat production technologies (individual wood, oil and
LPG boilers) are considered as decision variables. In addition, ground
source heat pumps (GSHP) are also considered. Heat pumps are a well-
consolidated technology that can use ground, water or air as sources of heat
or cold; the need of an electric compressor for running the thermodynamic
process implies an electrical consumption.

• 3. Another technology that is chosen as a decision variable is wood organic
rankine cycle micro cogeneration (wood ORC mCHP). Organic rank-
ing cycle allows to suit low grade thermal power to simultaneously provide

88



CHAPTER 7. A PRACTICAL APPLICATION OF THE FRAMEWORK: THE CASE OF
GIUDICARIE ESTERIORI

electric and thermal power thanks to an organic working fluid such as refrig-
erant (e.g., R245fa) [22].

• 4. The transport sector could be radically transformed by increasing the use of
an alternative energy carrier such as electricity. The transition from fossil fuels
cars to electric cars could lead very high benefits in terms of CO2 emissions
and achieving energy independence. In this study, a night charging profile is
considered as it is assumed that all electric cars will be charged from 21:00 to
4:00. The cost associated with recharging infrastructure is not considered.

In the optimization process, one constraint is considered: the total wood con-
sumption has to be less than nearly 57 GWh/year for Giudicarie Esteriori. The
calculation is based on the assessment of local sustainable wood resource presented
in the Appendix A.2.

7.4 Objectives

In this study, four objectives are considered. In addition, these objectives need to
be minimized to design better energy scenarios.

1. CO2 emissions: Minimizing CO2 emissions is one of the most important
aspect in terms of the environment. The quantity of CO2 emissions of a given
energy system is calculated by EnergyPLAN [101].

2. Annual Cost: Annual cost is a parameter that measures the economical as-
pect of an energy system. Annual cost is calculated by summing four different
yearly costs: annual investment cost, variable operational and maintenance
(O&M) cost, fixed operational and maintenance cost, and additional electric
grid cost. Annual investment, variable O&M and fixed O&M costs are calcu-
lated by EnergyPLAN [101]. Additional electric grid cost includes all other
extra costs (i.e., general system cost, grid and metering cost and taxes) that
are incurred by consuming electricity.

3. Load following capacity (LFC): LFC is a technical parameter that mea-
sures how much electricity production follows electricity demand over a period
(e.g., yearly). LFC is formulated as follows:

LFC =
eli + ele
eld

(7.5)

Please note that eli and ele are output parameters of EnergyPLAN [101]. It
is obvious that when import and export are low, the load following capacity
is getting low. In addition, import and export are low when an energy system
can produce electricity as required. This parameter is particularly relevant
for energy systems with a high fraction of electricity produced from renewable
sources, because of intermittent behavior.

4. Energy system dependency (ESD): ESD measures how much an energy
system depends on foreign import of energy. The dependency is a ratio be-
tween primary energy imported (i.e., supply from outside of the system) and
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total primary energy demand of the system. Minimizing the dependency im-
plies that less energy is imported. Being energy independent is an important
consideration for a community and its policy makers, since it could indeed
reduce energy costs, increase local employment and reduce dependency from
external energy markets that are not directly controllable. The general equa-
tion for ESD is:

EDS =
PEi
PEd

(7.6)

However, a specific formula for Giudicarie Esteriori is as follows:

ESD =
(eli ∗ PEF el

i + LPGi + oili)

(ellp − ele) ∗ PEF el
lp + eli ∗ PEF el

i + LPGi + oili +BMc + (HHP −HHP /COP )

(7.7)

The primary Energy factor for locally produced electricity (PEF el
lp , used in

the aforementioned equation) is calculated by following formula:

PEF el
lp =

PEel
lp

ellp
=

∑
t∈T el

t
p ∗ PEF t

eltp
(7.8)

Where PEel
lp is the total primary energy required for local electricity produc-

tion, eltp is the electricity production t different technologies, PEF t is the
primary energy factor for the technology (t). T is the set of all the electricity-
generating technologies in Giudicarie Esteriori.

7.5 Simulation and results

In the first sub-section, the results regarding the reference scenario are presented.
A simulation is conducted to identify optimized scenarios, and we report the results
in the subsequent sub-sections. Afterwards, some of the optimized scenarios are
specially identified and compared with respect to the reference scenario. Finally, a
general discussion about different technologies concludes the section.

7.5.1 Results of the reference scenario

After collecting all the data about demands and productions (electric, thermal, and
transport) that characterize the Giudicarie Esteriori energy system (Chapter 7.2),
it is now possible to model the reference scenario using EnergyPLAN, in order
to obtain the numeric values for four considered objectives. The technical and
economical parameters used for the simulation can be found in Appendix A.3. The
numeric values for four objectives are reported in Table 7.5. In the table, kEuro and
kt represent thousand euro and kilo ton, respectively.

7.5.2 Results of optimized scenarios

After the completion of the simulation, 401 optimized scenarios are identified. As we
have four objectives to optimize, we need to visualize four dimensional Pareto-front,
which is a difficult task. However, using a three-dimensional view with different
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Table 7.5: The reference scenario of Giudicarie Esteriori in terms of four objectives.

Economical aspect
Total variable cost 11,782 kEuro
Fixed operational cost 713 kEuro
Additional cost 2,780 kEuro
Investment cost 0 kEuro
Total Annual cost 15,275 kEuro

Environmental aspect
CO2 emissions 13.092 kt

Technical aspect
Import 4.63 GWh
Export 7.87 GWh
Load following Capacity (LFC) 0.48

Political aspect
Energy System Dependency (ESD) 0.51

colors (i.e., 4th objective is presented as color), it is possible to visualize the front
(see Figure 7.4). X, Y and Z-axis correspond to CO2 emissions (kt/year), annual
cost (KEuro) and load following capacity, respectively; the different colors represent
different values of energy system dependency. Please note that some of the opti-
mized scenarios have negative emissions, since the emissions are emitted from not
only within the system, but also outside of the system (due to importing/exporting
electricity). As some scenarios in the Pareto-front export a large amount of green
electricity, the net emissions of the systems get lower and eventually even become
negative (please see Chapter 3 for more explanation).

The CO2 emissions of the optimized scenarios range from -26.14 to 9.40 kt, the
annual costs range from 13456 to 39626 kEuro, load following capacities extend from
0.38 to 1.88, and energy dependency range from 0.11 to 0.36; these are shown as
spheres in Figure 7.4. In comparison to the reference scenario (shown as a gray
cube at the bottom of Figure 7.4) all the identified scenarios emit less emissions
than reference one. Most of the scenarios (i.e., 375 out of 401) are costlier than the
reference scenario. Finally, all the identified scenarios are better in terms of energy
system dependency, however, only 54 scenarios are superior to the reference scenario
in terms of load following. Overall, 13 scenarios are identified that are superior to the
reference scenario in all four objectives. It can be concluded from the results that it
is straightforward to make improvements with respect to emissions and dependency
of the considered studied area. However, improvements for the other objectives (i.e.,
annual cost and load following) appear a bit more difficult to achieve.

It is very difficult to study all the 401 optimized scenarios individually. Therefore,
we present some significant scenarios and their trends in terms of decision variables
in three different categories. In the first category, some best scenarios in terms
of annual cost will be presented. Afterwards, some target scenarios in term of
CO2 emissions and energy dependency reduction will be presented. To present the
target scenarios, some groups are defined. Target groups are defined in terms of CO2

emissions reduction that involve a specific range of reduction percentage with respect
to the reference scenario (RS) (e.g., 40 to 45% emissions reduction with respect to
the RS emissions). We present the 3 least costly scenarios for each target group.
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Figure 7.4: Pareto-front for Giudicarie Esteriori energy system optimization prob-
lem.

We use a similar approach for the energy dependency target scenarios. Finally, a
general discussion about the implementation possibilities for the different addressed
technologies (i.e., decision variables) concludes this section.

7.5.3 Best annual cost scenarios

One of the most interesting objectives of the optimization is annual cost, as the pa-
rameter is the most attractive to the policy makers of their respective communities.
All the numeric values for the decision variables, the objectives and the amount of
electricity exchanges of best 15 scenarios in terms of annual cost are reported in
Table 7.6; first row of the table presents the reference scenario and other rows of
the table present scenarios in ascending order with respect to annual cost (named as
AC1, AC2, . . . , AC15). Third column of the table shows the reduction of the cost
in percentage with respect to the reference scenario. Moreover, a visual comparison
of the capacities of different technologies of the scenarios is illustrated in Figure 7.5.

Based on Table 7.6 we find that consistent economic savings (from 4.8 to 11.9%)
with respect to the reference scenario can be achieved. At the same time, it is in-
teresting to point out that minimized annual cost scenarios also have consistence
reductions of CO2 emissions (from 28.1 to 70.9%). In other words, several energy
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Figure 6: Capacities of different technologies (except transportation) for the reference scenario (RS) and for 15 best scenarios in 636 
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Figure 7.5: Capacities of different technologies (except transportation) for the ref-
erence scenario (RS) and for 15 best scenarios in terms of annual cost. X-axis
represents scenarios and Y-axis represents capacities (in kW). Each vertical grey
line represents a particular scenario.

scenarios are greener and cheaper than the reference one. Additionally, energy de-
pendencies of the scenarios are highly reduced; these scenarios import 14 to 20% less
energy, mainly thanks to the increasing use of local wood and the partial electrifi-
cation of the thermal sector (through heat pumps). Load followings in most cases
are very close to the value of the reference scenario, ensuring electrical grid stability.
Electrical import increases from 4.63 GWh/year (of RS) to a range of 6.76 – 9.68
GWh/year, and electrical export moves from 7.87 GWh/year to a range of 6.48 –
14.87 GWh/year depending on scenarios (last two columns of Table 7.6). Note
that there are no specific import or export trends can be found related to cost of
the system. The reason of not getting any particular trend is that the cost related
to importing and exporting electricity is rather small compared to other costs, and
therefore no significant effect on cost can be observed.

According to the trend of micro CHP illustrated in Figure 7.5 (also illustrated
the trends of other decision variables of 15 scenarios), the suggested introduction of
micro CHP appears often negligible (30 – 1,269 kWel for a yearly production of 0.02
– 0.89 GWhel). Instead, an increase of PV capacity is suggested from 5,015 kWel

(0.3% increases compared to the reference scenario; yearly production of 6.13 GWh)
to 12,819 kWe (156.38% increases; yearly production of 15.68 GWh). Although
small modifications are suggested in the electrical sector, the thermal sector is highly
transformed; all individual oil and LPG boilers’ capacities reach nearly zero. In other
words, it is suggested to lower the oil and LPG boilers’ capacities because of high
fuel costs compared to other alternative energy carriers. On the other hand, the use
of local wood and the electrification of the thermal sector have gained importance.
Most of the thermal demands are covered by individual wood boilers (i.e., compared
to the reference scenario, individual wood boilers’ capacities for all 15 scenarios show
higher trends), moreover, total wood consumption increases from 39.59 GWh/year
(of RS) to a range of 41.75 – 56.76 GWh/year (close to the given constrain of
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57 GWh/year, see Chapter 7.3.1). Even though the micro CHP does not appear
economically attractive, an extensive introduction of heat pumps is observed for the
cost effective scenarios. Thermal capacities of heat pumps range from 3,523 to 7,334
kWth. In the optimized scenarios, individual wood boilers cover 56 – 73% of total
thermal demands (was 53% for the RS) while heat pumps cover 20 – 41% (was 0%
of the reference scenario).

Concerning the transport sector, the number of introduced electric cars are al-
most negligible (from 2 to 185) 1. Indeed, the investment necessary to replace fossil
fuels based cars with electric cars is economically unattractive under the current
market conditions.

7.5.4 Target CO2 emissions scenarios

Annual cost is not always the only objective to consider, and many communities
commit themselves to reach particular environmental targets, for example, as de-
cided by the Covenant of Mayors [5]. In this regard, this study suggests several
scenarios with ambitious CO2 emissions reduction (Table 7.7) for the policy makers.
In particular, some target groups are defined based on percentage reduction of CO2

emissions with respect to the emissions of the reference scenario (each group has an
interval size of five percent, e.g., 30 to 35%, 40 to 45% reduction and so on). Target
groups start with a group of 30 to 35% reduction and end with a group of 100 to
105% reduction. Afterwards, we present three less costly scenarios (ascending order)
for each target group (e.g., the three less costly scenario in a target group of 40 to
45% reduction are named as EM40A, EM40B and EM40C). Please note that for the
first category/group (i.e., 30 to 35%) only one scenario is identified (i.e., only one
scenario of the group is identified by the optimizer).

All the scenarios of the 1st and 2nd groups are less costly than the reference
scenario (RS). Even some scenarios in different target groups (until the group of
70-75%) have less annual cost than the reference scenario. Energy dependency is
highly reduced in all proposed scenarios through the reduction of fossil fuels import
and by increasing the use of local resources. Load following capacities of the first
two groups are close to the value of the reference scenario. In all other cases, the
high fraction of non-programmable renewable energy production (i.e., PV) leads to
poor load following capacity as it is required to export excess electricity 2. Electrical
imports shift from 4.63 GWh/year of the reference scenario to a range of 2.58 – 9.68
GWh/year; electrical exports move from 7.87 GWh/year to a range of 6.51 – 20.44
GWh/year depending on different scenarios. The exports have a significant impact
on emissions reduction for the energy system. Less emitting scenarios export more
electricity since the system exports completely green electricity, and thus reducing
the emissions. However, there is much lesser impact on emissions of the system for
importing electricity.

The electrical resource mix shows gradual increase of PV capacity with respect
to the target group, in particular, the highest target scenarios suggest a large intro-
duction of this technology. The trend of micro CHP is not stable, and it appears to

1As integer values are used for decision variables for optimizing the system, the number of
electric cars can have any integer value between upper and lower bounds depending on different
scenarios.

2It may require an expensive adaption of the grid transmission capacity.
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be an expensive alternative. Some scenarios include it with relatively high capacity,
others have less. However, it is clear that the large introduction of micro CHP can
be beneficial to reduce energy dependency and load following capacity (e.g., scenario
EM100A compared to EM100B).

As expected, in the thermal sector, individual oil and LPG boilers are included
at only low overall capacity. However, the capacity of individual wood boilers is typ-
ically increased. Interestingly, wood boilers and micro CHP appear to be somewhat
exchangeable, as the boilers’ capacity decreases when the CHP capacity increases.
In addition to this, heat pumps are extensively introduced.

Again, the introduction of electric cars is barely noticeable for these scenarios
(i.e., from 2 to 371). This means that it does not require a radical transformation
of transport sector even to reach 100

7.5.5 Target ESD scenarios

Scenarios with minimized energy dependency suggest which mix of technologies can
maximize the use of local energy resources while minimizing the energy import. This
study suggests several scenarios with high dependency reduction. The best identi-
fied scenario has an ESD value of 0.11, this means that the system needs only 11%
external energy resources to cover all the local energy demands (electricity, thermal
and transport). The scenario is characterized by the comprehensive introduction
of micro CHPs and electric cars. Our interpretation is that micro CHPs use local
resources (i.e., wood), in addition, electric cars may use the electricity produced
locally (not the imported electricity). However, the less energy dependent scenarios
are very costly and may not be attractive to the policy makers, unless they would
come with significant benefits, e.g., in terms of local employment. Therefore, we
present some target groups of energy dependency reduction in a similar way pre-
sented before.

We report the three least costly scenarios for each target group in Table 7.8. The
target groups are defined by the reduction of energy dependency (with respect to the
reference scenario) to a specific range. For example, the first target group represents
0.15–0.17 dependency reduction from the dependency value of the reference scenario
(0.51). The subsequent groups represent scenarios (named as ESD20A, ESD20B
and ESD20C) with a reduction of 0.20–0.22 and so on. The groups are presented
in descending order by dependency values. The reduction of the dependency of
a scenario with respect to the reference scenario is reported in the third column
of the table. Please note that bottom groups of the table have lower dependency
values, which implies an increase independence from foreign resources. In terms of
annual cost, the first two groups are highly comparable with the annual cost of the
reference scenario, with a significant dependency reduction. However, it becomes
increasingly expensive to achieve lower dependency values. CO2 emissions are highly
reduced for all the identified scenarios (from 30 to 155.9% compared to the reference
scenario): reducing fossil fuels import (and electricity from the national grid) means
reducing emissions. Load following capacities, in most cases for first 3 groups, are
close to the reference scenario. Electrical imports move from 4.63 GWh/year (of
the reference scenario) to a range of 1.92–9.68 GWh/year, electrical exports shift
from 7.87 GWh/year to a range of 6.48–22.65 GWh/year. Again, no specific tend
is found for importing electricity with respect to energy dependency (there is no
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relation of exporting on energy dependency, please see the corresponding equation).
The effect of importing electricity on energy dependency is far less than the effect
of importing oil and LPG, as imported electricity is small compared to total energy
imported (by converting the imports into primary energy).

The electrical resource mix shows a moderate PV capacity increase within the
first 3 groups in the table, while lower dependency scenarios (i.e., the last 2 groups)
make extensive use of this technology. Micro CHPs are negligible only for the
first group, whereas for more ambitious target groups, more CHPs are introduced.
Individual wood boilers are preferred over the CHP for first few target groups;
however, less wood boilers are introduced for lower dependent scenarios. As usual,
individual oil and LPG boilers are at very low capacity. Heat pumps are always
broadly introduced, it is not only cheap and green but also allows an optimal use of
local resources.

The first 3 target groups do not introduce a significant number of electric cars
(from 3 to 314). However, in order to reach the higher target groups (in particular to
reach last two groups of the table), it is necessary to have a radical transformation
of the transport sector through the extensive introduction of electric cars.

7.5.6 General discussion

By analyzing the optimized scenarios, we identified some general conclusions regard-
ing different technologies. For example, there is the possibility to increase the PV
capacity, and this is suggested in several cases within the category of “best annual
cost scenarios” (Section 7.5.3) and “target dependency scenarios” (Section 7.5.5).
PV helps to achieve considerable benefits in terms of CO2 emissions reduction for
those scenarios.

Since the study in Appendix A.2 shows the potential effects of increasing the
use of wood, it is interesting to investigate a further diffusion of individual wood
boilers and the introduction of wood based micro CHPs. The maximal exploitation
of wood induces benefits in terms of emissions and energy dependency. Wood re-
sources appear economically very attractive for individual boilers but not for micro
CHP because of the high investment cost. However, the lowest dependent scenar-
ios (Table 7.8) make a large introduction of micro CHP technology. Additionally,
the technology helps to reduce load following capacity, and therefore assists to in-
crease the technical stability of the energy system. Another interesting solution
for the thermal sector is the use of ground source heat pumps; this technology is
extensively introduced for most of the target scenarios.

The transport sector could be radically transformed by increasing the use of
electric cars. However, the necessary investment to replace fossil-fuels based cars
by electric cars is economically unattractive under the current market. As we have
seen, a small number of electric cars are introduced for all the groups related to
CO2 emissions reduction (Table 7.7) and for first three groups of energy dependency
reduction (Table 7.8). In order to reach the lower dependency values (i.e., last two
groups), it is necessary to have a radical change to the transport sector.
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7.6 Conclusion

In this work, all the energy demands and productions data that characterize the
energy system of Giudicarie Esteriori for the year 2013 (the reference scenario) are
collected. Based on this, a precise hourly analysis of the overall energy flows is
performed.

Designing optimized scenarios that minimize energy costs, decrease the depen-
dency on foreign resources, improve environmental impacts and integrate renewable
energy sources is a multi-objective optimization problem. We formulate two tradi-
tional objectives (i.e., CO2 emissions and annual cost) and two new objectives (i.e.,
load following capacity and energy system dependency) to quantify environmental,
economic, technical and political aspects of an energy system.

To identify optimized scenarios for Giudicarie Esteriori, our framework based on
a multi-objective evolutionary algorithm (i.e., SPEA2) and EnergyPLAN is applied.
A significant number of optimized scenarios are identified.

From these optimized scenarios, we select a range of “best scenarios” to em-
phasise different aspects of designing the energy system. Firstly, some less costly
scenarios are presented. The least costly scenario is 11% less costly than the ref-
erence. Moreover, all these scenarios reduce CO2 emissions. At the same time, a
reasonable improvement is achieved in terms of load following and energy depen-
dency. Secondly, some scenarios belonging to target groups of emissions reduction
are presented. A similar procedure is applied to identify scenarios for energy depen-
dency target groups. Several scenarios provide significant improvements in terms
of CO2 emissions and dependency. In addition, it is even possible to reach zero
emissions and a system that needs only 11% of external energy resources to cover
all the local energy demand for electricity, thermal and transportation.

From the point of view of the investigated technologies, the optimized scenar-
ios show economically attractive potentials for the reduction of CO2 emissions and
dependency through: (1) increasing the capacity of PV, (2) maximizing the exploita-
tion of wood and use for individual wood boilers, and (3) partial electrification of
the thermal sector through heat pumps. The transport sector could be profoundly
transformed by increasing the use of electric cars but it is currently not cost effective.

Finally, this kind of study can be performed systematically for the policy makers
of other regions by considering the following steps: 1) collection of energy demands
and productions’ data and elaboration of hourly profiles, 2) analysis of a reference
scenario, 3) identification of local available renewable resources and corresponding
technologies, 4) application of the framework to identify optimized scenarios, and 5)
study of the identified scenarios according to the requirements (may compare with
the reference scenario). This type of study will help energy planners to design their
systems more efficiently and accurately.

In the next chapter, we will show that how the proposed framework can be
applied when performing long-term energy planning for a region.
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Chapter 8

Long-term energy planning with
multi-objective optimization

I think that the world is in the middle of a huge transition that we have
to make to renewable energy. We have to transition away from fossil
fuels very, very quickly.

— Josh Fox

8.1 Introduction

In the previous chapter we have demonstrated how optimized scenarios are identified
for an energy system with respect to multiple objectives. However, long-term energy
planning requires to design multiple scenarios for different time periods. The long
term energy planning is necessary for communities to fulfill the European energy
and climate targets.

The Covenant of Mayors [5] initiative was launched in 2008 under the measures
of European Union climate and energy package [63]. The goal of the initiative is to
engage local authorities of towns to achieve EU objectives of lowering green house
gases within the year of 2020. The participating authorities had to agree to develop
a plan formally called Sustainable Energy Action Plan (SEAP). SEAP includes a set
of actions that has to be carries out by the local authorities to achieve the European
Unions’ energy and climate target. A new revised initiative called The Covenant
of Mayors for Climate & Energy was initiated in 2015 to develop a new SEAP
for 2030 to reduce CO2 by 40%. Developing the plan is a threefold problem: i)
estimating local energy demands for different sectors (by considering future trends),
ii) finding local renewable sources, and iii) identifying optimal scenarios that fulfill
energy demands by utilizing local renewable sources. The authorities have to make
a plan by considering local available resources and energy demands. This requires
an extensive analysis of future energy demands for different sectors and a planning
for optimal utilization of local renewable resources. As the studied area, named
“Val di Non”, is a signatory local authority for The Covenant of Mayors, it has to
prepare a SEAP for different time frames.

Val di Non is an Italian Alpine valley in the north-west of the province of Trento
(Figure 8.1). In this study, the energy system of Val di Non is analyzed by using
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EnergyPLAN. The goal of the study is to design optimized scenarios to minimize
annul cost and CO2 for three different time periods (i.e., 2008–2020, 2020–2030
and 2030–2050) and compare the scenarios with the reference one (for the year of
2008). Future energy scenarios are designed by the framework proposed in Chapter 3
and by considering future energy demands. After identifying optimized scenarios
for different periods, a few scenarios1 are selected from those optimized scenarios
to fulfill specific emission reduction targets (such as scenarios that reduce 50–55%
emission with respect to 2008).

Additionally, energy transitions [34] from a state of an energy system to a future
optimal state can not be abrupt. It depends on the social and economic status of the
region. The region adopts different policies, such as carbon taxation [34], feed-in-
tariffs (FIT) [93] and other similar policies, to reach a certain scenarios. Therefore,
the scenarios of consecutive periods should not be too different so that the policy
makers need not to adopt completely new policies. In this regards, a methodology
is proposed for selecting transient scenarios from target scenarios that are suitable
for a transition from one time period to next period.

The remainder of the chapter is organized as follows. Section 8.2 presents a
territorial description of the studied area. Section 8.3 describes all the details of the
reference scenario. All the details of projected fuel prices, demands and electricity
grid mix are presented in section 8.4. Section 8.5 presents the simulation results for
modeling the reference scenarios and results regarding the identification of optimized
future scenarios. Corresponding results for identifying target scenarios (in terms of
emission reduction) for different time frames are described in Section 8.6. The
methodology of selecting scenarios for transition from one period to another and
the results are presented in section 8.8. Finally, the chapter is concluded by proving
some future directions.

8.2 The studied area

Val di Non (VdN) has a surface area of 597.12 km2 and it can be considered as a vast
valley plateau crossed almost entirely by the river Noce. Rising 268m from Rocchetta
and bordered with Val d’Adige, Val di Non has different natural landscapes. The
lower valley of the area is dominated by vast apple orchards and the upper valley
is used for grazing. The culture of the apple tree has been increasingly intensified
in recent years, becoming the main product of the valley (67.4 km2 land is used
for apple production). The whole valley is surrounded by forest, which covers 238.5
km2, more than a third of the total area. Many lakes, streams and creeks are found
throughout the territory. Among the freshwater lakes, the artificial lake named Santa
Giustina is the most important resource of the valley; the lake is used for generating
electricity, as water resource for apple production and as a touristic attraction.

The population of the area was estimated (in 2014) as 39,500. The population is
distributed over 34 small municipalities and about 70% of the population live in the
altitude between 600 and 1200m (while the remaining 30% between 500 to 600m).
The demographic trend is upward since 1991 with a peak in the years between 2000–
2010. The population has grown 11.8% (in total) with an average of 0.5% per year
within the year of 1991–2014. According to a projection the population will reach

1The scenarios are called “target scenario”.
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Figure 8.1: The Province of Trento and the area of Val di Non.

under around 49,000 inhabitants in 2045.

8.3 Reference scenario

The energy system of year 2008 is chosen as a reference scenario. The year is chosen
as all the data regarding the energy system of “val di Non” is available in that year.
In the following sections (8.3.2, 8.3.3 and 8.3.4) electrical, thermal and transport
energy demands and productions are calculated and analyzed.

8.3.1 Overview of the energy system

31 municipalities are analyzed to study the energy system of VdN. The total yearly
final energy demand for the area is around 632 GWh; in percentage 47% demand is
for thermal sector, 26% and 27% are for transport and electrical sectors, respectively.
Energy data is partially provided by local distribution system operators (DSO) and
partially estimated by the author depending on availability of data.

8.3.2 Electrical demand and production

The yearly electrical demand for VdN (including 31 municipalities) was approxi-
mately 163 GWh in the year of 20082. This includes all the sectors from domestic
and industrial demands to public lighting demands. The peak demand of electric-
ity is recorded in October which seems unusual in comparison with other valleys.

2The data is collected from SET Distribuzione S.p.A. (part of Gruppo Dolomiti Energia);
electricity distributor in the province of Trento. For the municipality of Cles, distribution data
are partially available and are integrated with data from Azienda Elettrica Comunale di Cles and
STN Consortium. For municipalities of Coredo, Smarano, Taio, Tres and Vervò, data is provided
by SET.
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However, the area is famous for apples and October is apple harvesting time. Many
workers come to help harvesting apples that induces some extra electricity demands.

Electricity production of Val di Non is dominated by two kinds of production
units: i) hydro-power ii) photovoltaics. The total yearly production from these two
sources was around 312 GWh in 2008. The electricity production shows strong
fluctuations as hydro-power and photovoltaics are two renewable sources that vary
significantly during different months of a year. The installation of PV was very
limited in 2008, the installed capacity was only 936 kW (according to Gestore Servizi
Energetici) for a total energy production of 1.2 GWh/year. Instead, the hydro-power
plant is one of the most important resource of energy for the valley. Located at the
heart of Val di Non, the hydro-power plant has an average annual production of
around 282 GWh from the main 105 MW plant and 29 GWh from a small secondary
3 MW plant (installed in 2004). The hydro-power electricity production in winter is
lower than in other months of a year; the pick production is reached in spring and
autumn. The monthly production in 2008 exceeded the monthly demand from April
to December; while in the months of January, February and March, it was required
to import electricity from the national grid.

8.3.3 Thermal demand and production

Thermal demands are divided into two types of demands: demands for space heating
and domestic hot water. Table 8.1 shows the breakdown of thermal demands into
different energy sources and different sub-sectors (i.e., residential, industry and other
sectors). It is clear from the table that the residential sub-sector has the highest
demands and most of the demands are met by oil (41.64%). The reported yearly
total thermal demand is approximately 297 GWh. 3.

Table 8.1: Breakdown of the thermal energy demands by sub-sectors and by energy
sources.

Energy
sources

Residential
(GWh)

Industry
(GWh)

Municipality
(GWh)

Total
(GWh)

%

Gas 58.82 25.41 6.17 86.41 19.07
Oil 74.44 44.94 4.39 123.77 41.64
LPG 9.46 - 0.01 9.47 3.19
Wood 68.28 - 3.74 72.02 24.23
Solar - - - 5.59 1.88
Total (GWh) 207.01 70.35 14.31 297.26

-

The production of thermal energy is covered by individual plants at building
level (i.e., wood stoves & boilers, oil, gas and LPG boilers, solar thermal panels).
The use of wood stoves & boilers is very widely spread in the area; thanks to the
forest and the low cost of wood in the local market. Despite the use of a lot of wood,
it can be seen that there is still a strong dependency on fossil fuels (about 74%),

3Thermal data are provided by Val di Non Community [4], Dolomiti Reti[6], ISTAT [1]. The
methodology for converting yearly data to hourly data described in previous chapter.
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whereas renewable energy covers a minor percentage (wood: 24% and solar thermal:
2%).

8.3.4 Energy demand for transportation

The energy demand for transportation is calculated by considering only the cars of
the valley. We do not consider other types of vehicles (i.e., trucks, public transport,
tractors) since the number of other types vehicles is very small compared to the
number of cars. The total number of cars in the area is 19,379 [138]. To calculate
the energy demand, it is considered that each car travels around 12,900 km/year [23]
on average with an efficiency of 0.684 kWh/km (typical for an internal combustion
engine (ICE) car [46]). Therefore, calculated total yearly demand for transportation
is approximately 170 GWh. The entire demand is satisfied by fossil fuels: oil, natural
gas and LPG.

8.4 Parameters for identifying future optimized

scenarios

The main focus of the study is to identify future optimized energy scenarios for the
valley. For this purpose, we have divided the time between 2008 to 2050 into three
periods (i.e., 2008–2020, 2020–2030 and 2030–2050). For each period, we have iden-
tified optimized scenarios by considering corresponding projected demands, prices,
efficiencies and other parameters of the energy system. Please note that fuels prices
are varied according to different considered cases such as 2oC and 4oC (also called
IEA 2DS and IEA 4DS). Firstly, optimized scenarios are identified by considering
IEA 2DS. In addition, sensitivity analysis has been performed by considering 4oC
cases (please see Section 8.4.1.2). However, future reference scenarios are simulated
by considering 6DS case[82, 83] (the details will be discussed in section 8.5.2) In
the followings, future projections regarding energy demands, fuels prices and other
parameters will be discussed. Finally, the technologies (i.e., decision variables) for
designing future scenarios will be presented.

8.4.1 Future projections

Future projections for different parameters are absolutely necessary to design future
scenario, as future scenarios have to cope with all new parameters of an energy
system (i.e., demands, prices and other parameters). In the following sections,
projected energy demands for three sub-sectors are discussed; mainly targeted for the
year of 2020, 2030 and 2050. In addition, the prices related to fuels, an investment
costs of different technologies are estimated. As the energy system of VdN is not an
energy island (electricity is exchanged between local grid and nation grid), projecting
the future national electricity grid mix is required to calculate emissions of the
system. Therefore, in the following we will also present projected future national
grid mix for electricity generation.
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8.4.1.1 Energy demands

By considering the demand trends presented in [31], electrical and thermal demands
are calculated for the year of 2020, 2030 and 2050. However, transport demand is
calculated in a different way. It is considered that the distances (in km) traveled by
the cars of the valley will be the approximately the same in future. Therefore, the
demand is calculated by considering efficiency of ICE car (kWh/km) which will be
improved over time.

Table 8.2 and Figure 8.2 show the projected demands for three different sub-
sectors. It can observed that there is not much difference found in terms of electrical
and thermal demands. The electricity and thermal demands will remain almost
constant over the periods. However, the transport demand gradually decreases over
time due to improved efficiency of cars.

Table 8.2: Projected demands for three sub-sectors for three different years.

Sectors
Demands (GWh)

2020 2030 2050
Electrical 168.17 166.11 170.78
Thermal 253.71 249.85 256.11
Transportation 151.75 137.25 124.25
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Figure 8.2: Projected demands for three sub-section including reference scenario (in
red).

8.4.1.2 Fuel prices

Fuel prices have a significant impact on annual cost of an energy system. In ad-
dition, different cases (e.g., 2DS, 4DS) have different impact on prices. In other
words, different prices are estimated for considering different cases. In the study, we
consider the predictions provided by International Energy Agency (IEA) in Energy
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Technology Perspectives 2015 (ETP 2015) [8] and the local prices of fuels [126, 2, 9]
to calculate projected prices. Table 8.3 shows the projected prices for different fuels
under different considered cases (i.e., 2DS, 4DS and 6DS) for different years. The
fuel prices are lowest in the case of 2DS and highest in the case of 6DS, as for 2DS
case fuel demands will be low worldwide (due to large adaptation) and opposite for
the case of 6DS. For biomass prices are considered the same under all the cases (i.e.,
2DS, 4DS and 6DS) since same trends are considered for all the cases.

Table 8.3: Projected Fuel prices.

Fuels
2008

(e/MWh)
2020 (e/MWh) 2030 (e/MWh) 2050 (e/MWh)

2DS 4DS 6DS 2DS 4DS 6DS 2DS 4DS 6DS
Diesel for vehicle 133.0 153.09 159.39 162.93 148.72 175.05 195.26 142.88 194.98 234.60

Oil for boiler 122.2 130.23 135.59 138.60 126.51 148.91 166.10 121.54 165.86 199.57
Natural Gas 63.0 84.50 87.48 89.44 80.47 95.37 102.67 72.43 104.04 116.67

Wood/biomass 35.0 37.16 37.16 37.16 39.06 39.06 39.06 43.16 43.16 43.16

Table 8.4: Projected grid electricity prices.

Grid Electricity
Price (PUN)

2008
(e/MWh)

2020 (e/MWh) 2030 (e/MWh) 2050 (e/MWh)

2DS 4DS 6DS 2DS 4DS 6DS 2DS 4DS 6DS
87.0 54.75 57.70 58.57 52.34 61.26 64.06 47.82 69.04 76.63

To calculate the variable cost of a system (that contributes to the annual cost),
it is also required to consider how much cost is incurred by importing or exporting
electricity. Table 8.4 reports the average projected grid electricity prices for different
cases and different projected years. Grid electricity price trends are predicted as ex-
act data regarding the trends are not available. A constant increasing or decreasing
trends for different cases are considered.

8.4.1.3 National electricity grid mix

The composition of the national electricity grid mix is necessary for analyzing the
local system, as the mix is required to calculate CO2 emissions by considering im-
port and export electricity from th national grid. In this regard it is essential to
predict the future energy mixes for electricity generation. The energy mix of 2008
is reported as second row of Table 8.5. The projected renewable energy shares (for
2020, 2030 and 2050) [69] are presented in the second column of the table. The
shares of different fossil fuels are calculated by considering the fact that the shares
will be decreasing (with respect to share of 2008) according to the increased share
of renewable energy (with respect to share of 2008). For example, the renewable
energy share is increased by 7.3% from 2008 to 2020. This 7.3% is distributed (by
keeping the same ratio of 2008) among fossil fuels’ shares and reduced from the
shares of 2008. The calculations for 2030 and 2050 are carried out in the same way.
Finally, Figure 8.3 illustrates the shares for different years.

8.4.2 Decision variable, objectives and constrains

In this section, the parameters that are used as decision variables to identify future
optimized scenarios are described.
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Table 8.5: Reference and projected national electricity grid mix in percentage for
different years (2008 and renewable shares are from [69]).

Year
Mix

Renewable(%) Coal(%) Oil(%) NGas(%)

2008 28.1 15.6 6.2 50.1
2020 35.4 14.0 5.6 45.0
2030 52.0 10.4 4.1 33.4
2050 85.0 3.3 1.3 10.5
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Figure 8.3: Reference and projected national electricity grid mix for different years.

1. PV capacity: There is already some PV plants situated in the valley. In
addition, it is still possible to have more PV. It is estimated that the maximum
PV capacity can be installed is about 40 MW by considering available roof top
area. Hence, the optimized scenarios can have maximum 40 MW of capacity.

2. Existing technologies that are used to meet heat demands (i.e., oil, natural
gas and wood boilers) are considered as decision variables. At the same time,
ground source heat pump (GSHP) and solar thermal (ST) technologies are
considered for investigation.

3. As the valley can offer a lot of wood, we are interested to see how convenient
(economically and environmentally) the introduction of wood organic rankine
cycle co-generation (wood ORC mCHP) could be for future system.

4. Finally, the transport sector is one of the most emitting sector globally [143].
It is possible to make the sector environmental-friendly by using an alternative
energy carrier such as electricity. Therefore, we are interested in investigating
the optimal mix between ICE cars and electric vehicle (EV). In this study, a
night charging profile (from 21:00 to 4:00) is considered to charge the electric
cars.
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As already mentioned, there are multiple objectives that need to be optimized. In
this study, we select the two most important objectives to minimize: CO2 emissions
and total annual cost. As concern grows about the environment, it is absolutely
essential to minimize CO2 emissions as much as possible. Please note that in this
study, total CO2 emissions are calculated by considering all the emissions of the local
system and emission related to importing electricity, excluding electricity export.
The reason behind excluding export is that all the local electricity is produced from
green sources and the decision makers are only interested in total emissions of the
system. At the same time, the costs of the energy system are also an important
factor to the community and policy makers, as it is vital for economic aspect. The
total cost of a system includes investment cost, operational and maintenance cost,
variable cost and additional cost. Except additional cost, other parameters are
calculated by EnergyPLAN. Additional cost is the summation of all the extra costs
such as grid and metering cost and similar costs.

Finally, there is a good potential for extracting wood in the valley; however,
a constraint is set on total collection to maintain a sustainable extraction. 98.84
GWh/year is the maximum limit of wood extraction. The calculation is carried out
in the same way as in A.2.

8.5 Identifying future optimized scenarios

As stated in section 1.2 that identifying optimized energy scenarios is a multi-
objective optimization problem as there are more than one objectives that need
to be optimized. In addition, optimizing an energy system is a discontinuous prob-
lem by nature, therefore, an advanced optimization tool is required to handle such
a problem. In this regards, the proposed framework in Chapter 6 is employed to
deal with the problem. All the corresponding parameters regarding the framework
are given in Appendix B.1 (Table B.1 and Table B.2). However, the framework is
applied multiple times to identify scenarios for different instances (for different time
periods and different cases/IEA perspectives).

8.5.1 Simulation and results

Firstly, the results regarding reference scenarios are presented. Reference scenarios
will be used to compare with corresponding optimized scenarios in terms of different
energy systems’ parameters. Afterward, we present the Pareto-fronts found for
three different time periods and two different considered cases (i.e., 2DS and 4DS).
Subsequently, some specific emissions target scenarios for different periods will be
presented.

8.5.2 Results of reference scenarios

In this section, the results of four reference scenarios (RS) are presented. The first
RS is the scenario of the year 2008. In addition, other RS are projected for the year
of 2020, 2030 and 2050 by considering that no steps are taken to reduce emissions.
Therefore, we consider to have the same technologies of 2008. In other words, all
the sectors are kept same as the reference scenario of 2008 in terms of technologies.
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As the studied area is not an energy island, we do not need to adjust the ca-
pacity of electricity producing technologies for satisfying future electricity demands.
Instead, the capacities of technologies of thermal sector are adjusted (increased or
decreased by keeping the same ratio of 2008) to meet the projected thermal demands
(please see Table 8.2). Efficient ICE cars are used to fulfill the transport demand
(please see Table 8.2). Please note that corresponding efficiency values (for different
technologies for all sectors) are used to simulate the future reference scenarios.

The considered fuels’ cost are estimated according to 6DS case (please see Ta-
ble 8.3). In addition, the grid projected electricity price (Table 8.4) and grid energy
mix (Table 8.3) are also considered according to 6DS case.

Table 8.6: Results of reference scenarios for different time periods.

Year
Reference
Scenario

CO2

emision (kt)
Emission
reduction (%)

Annual
cost (KEuro)

Cost
increased (%)

2008 RS2008 98.09 – 140863 –
2020 RS2020 91.84 6.37 160363 13.84
2030 RS2030 86.05 12.27 167656 19.02
2050 RS2050 82.78 15.60 181145 28.60

Table 8.6 shows the emissions and annual costs for all reference scenarios. It
is clearly understood that over time, the emissions of the scenarios will decrease
and annual costs will increase. The decreasing of emissions will take place, because
of improved efficiencies of boilers and conventional cars; and the greener national
energy mix. On the other hand, the annual cost will increase since the fuel prices
will be increased in the 6DS case. Fourth and last columns report the percentages
of emissions reductions and cost increases for different scenarios with respect to
the scenario of 2008. No scenarios can achieve the goals of emissions reduction of
Covenant of Mayors, although the costs are increased. Therefore, we need to design
some new optimized scenarios that can achieve the goals.

8.5.3 Result of future optimized scenarios

Figure 8.4 presents the comparison of all the Pareto-fronts found by the simulations.
The series presented by rectangles represent 2DS case, where different colors present
different periods. In addition, the series with filled-triangles represent 4DS case.

Considering general trends of the Pareto-fronts, it is easily understandable from
the figure that it will be less costly to introduce renewable energy over time. As
an example, a scenario of 2020 has higher annual cost than a scenario of 2030 with
same emissions. Considering the 2020 case, it requires more investment cost, hence,
more annual cost to get a less emitting scenario. However, considering the 2030 and
2050 cases, less cost is required to reach less emitting scenarios; mostly because of
less investment and variable costs. In addition, it will be possible to reach near zero
emissions over time (some scenarios of 2050 reach very close to zero emissions).

Considering the Pareto-fronts for 2020, someone may wonder why does not the
optimizer identify more less costly scenarios that emit more than 46 ktons (whereas
the reference scenario emits around 100 ktons). It is because that behind the partic-
ular point (i.e., around 46 ktons for 2020 case), the contradiction between emissions
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Figure 8.4: Comparison of all Pareto-fronts.

and annual cost breaks down. It means that more emitting scenarios (more than
46 ktons) have more annual costs than the scenarios in the Pareto-front; mainly
because of more variable costs. Therefore, those scenarios are dominated by other
scenarios in the Pareto-front and these dominated scenarios are not interesting to
consider (policy makers are not interested to have costly scenarios that emit more).
The same argument is applicable for all other Pareto-fronts.

Now, we will compare Pareto-fronts of different time periods for considered cases
(2DS and 4DS). Please note that the only differences between 2DS and 4DS with
respect to energy systems parameters are fuel prices (please see Table 8.3) and grid
electricity prices (please see Table 8.4). There is virtually no difference between the
Pareto-fronts for 2020 for 2DS and 4DS (2020:2DS and 2020:4DS). The reason is that
the differences among fuel prices for 2DS and 4DS for 2020 are not very significant
(please see Table 8.3). Fuel price for 4DS is little more costly than 2DS. Careful
observation of those two Pareto-fronts reveals that more emitting scenarios for 4DS
are slightly more costly than 2DS, since more emitting scenarios use more fuels and
the use of the fuels increases the variable cost, hence, annual cost. Considering
2030 cases, similar trends as discussed before can be seen as well. The Pareto-fronts
intersect around 15kt emissions. Less emitting (less than 15kt) 4DS scenarios are a
bit less costly than 2DS scenarios. Please note that all the scenarios are exporting
more electricity than importing, because of the big hydro-plant and PV. As the grid
electricity price is more for 4DS case, the scenarios of 4DS case earn more than
2DS, therefore, less emitting scenarios are less costly for 4DS case. However, getting
towards more emitting scenarios, 4DS optimized scenarios are getting more costly
than 2DS; it is because the same reason that the scenarios use more fuels and fuels
are costly in 4DS case.

Finally, the most interesting situation can be found for the 2050 scenarios. For
2DS case, we have a Pareto-front with quite a reasonable spread. However, after
a certain point, the scenarios are spread almost in a straight line along the X-axis.
Hence, many scenarios are found with different emissions but with very similar
cost. In addition, for 4DS case, the scenarios are less spread, since there will be
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very little contradiction between emissions and annual cost. Therefore, the energy
systems with more renewable energies will be less costly than the systems depend
on conventional fuels.

8.6 Emission target scenarios

According to European Union’s climate action [66], it is recommended to reduce
greenhouse gas emissions by 20%, 40% and 80% with respect (wrt) to 1990 emissions
levels in 2020, 2030 and 2050, respectively. However, according to the Covenant of
Mayors for climate and energy, it is agreed that the reduction of a region will be
targeted with respect to recent past year when all energy data of the region is
available. In the case of VdN, most energy data is available in 2008, therefore, we
will present the target scenarios with respect to year 2008. In the following section,
for each time period, we define a reduction range (e.g, 50-55% for 2020) and within
the range 10 scenarios will be discussed. If there are more than 10 scenarios are
available, we select those 10 scenarios that maximize decision space diversity as
proposed in Chapter 4 Paragraph 4.2.2.2. In other words, the scenarios that are
different from each other in terms of decision variables will be chosen. On the other
hand, we could choose 10 least costly scenarios; however, these scenarios may not
differ much in terms of cost as well as decision variables. This is the reason that we
propose a scenario selection technique based on maximizing decision space diversity
in order to provide a diverse set to the policy makers with a wider range to choose
from.
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Figure 8.5: Target ranges and scenarios for different time periods for 2DS case.

Figure 8.5 shows the defined emission reduction ranges and corresponding sce-
narios (on objective space) for different time periods. The faded markers show the
same Pareto-front depicted in the previous figure for 2DS case. The ranges are spec-
ified by vertical lines and filled markers present the selected target scenarios Please
note that there are actually 10, 15 and 58 scenarios within the ranges of 50–55%,
65–70% and 95–100%, respectively and by using the propose method 10 diverse tar-
get scenarios are selected within each range. In the following sections, the scenarios
for each time frame are analyzed in details.
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8.6.1 Target scenarios for 2020

Although it is mentioned that within 2020 emissions should be reduced by 20% with
respect to 2008, the Pareto-front (Figure 8.4) shows that the least emitting system
achieves 53.69% reduction (i.e., 45.42 ktons of emissions compared to 98.09 ktons in
2008). As mentioned earlier it is not always possible to get scenarios that covers all
the ranges (with respect to emissions), thus we decide to present scenarios within
the range of 50–55% emissions reduction.

Figure 8.6 presents capacities of 10 selected target scenarios within the defined
range. In addition, Table 8.7 reports all the details (annual cost, emissions, ca-
pacities of all technologies related to electric and thermal sectors and number of
ICE and EV cars) of the scenarios. Moreover, the table shows a comparison with
reference scenario (i.e., RS2008 and RS2020) in terms of emissions reductions and
cost reduction or increment. The selected target scenarios are 3 to 5% more costly
compared to RS2008, however, 8 to 9% less costly when comparing with RS2020
(modeled reference scenario for 2020).
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Figure 8.6: Capacity of different decision variables for 10 target scenarios for
2020:2DS.

In terms of decision variables (technologies), little PV introduction is suggested
except two scenarios (TS3 and TS5). A reasonable amount of biomass micro CHP
is proposed (range: 21 to 2431 kWe, depending on different scenarios). The small
introduction of PV and CHP is explained by the fact that the electricity sector of
the territory is already renewable. In contrast to electricity sector, a major change
is suggested to the thermal sector. It can be seen from the figure and the table that
all the fossil-fuel-based boilers (i.e., oil- and NGas boilers) are recommended to be
replaced by heat pumps (around 8.5 MWe) and biomass boilers (range: around 18.5
to 22.02 MWth depending on different scenarios). Finally, a very small amount of
solar tharmal can be introduced (range: 0.8 to 3.9 MWth).

Figure 8.7 shows the annual heat production in percentage in terms of different
technologies. GSHP and biomass boilers are the dominant technologies. These
two technologies meet most of the heat demands. However, depending on different
scenarios, a small amount of heat is produced by biomass CHP and solar thermal.

The transportation sector is slightly transformed. Most of the cars remain as
ICE cars. A small numbers of EVs are introduced depending on scenario (limited
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Figure 8.7: Heat production (in percentage) from different technologies for
2020:2DS.

between 7 to 726).

Therefore, it is important to note that the environmental target for 2020 could
be reached mainly by transformation of thermal sector with significant intervention
for transport sector.

8.6.2 Target scenarios for 2030

Following the 2020 emission range, we present 10 scenarios that achieve 65–70%
emissions reduction with respect to RS2008 in 2030. Table 8.8 presents a similar
comparison as before for 2030. It should be noted that these scenarios are even less
costly than 2020 scenarios (3–4% increase of cost with respect to RS2008 and 12–
13% cost reduction with respect to RS2030) because of the reduction of investment
cost of renewable technologies. In terms of decision variables regarding electric
and thermal sectors, the differences among the scenarios are not so significant. All
the variables have very similar values. However, the scenarios are different from
each other by the number of EVs are introduced. A moderate number of EVs are
introduced; Figure 8.8 presents the mixing of ICE and EVs for those 10 selected
scenarios. With higher number of EV, the scenarios have less emissions and vice
versa.

In comparison with 2020 scenarios with 2030, there is not much difference can
be found in term of suggested technologies in electrical and thermal sector. A
further emission reduction could be achieved through the transition in the transport
sector. Therefore, it is suggested by analyzing the target optimized scenarios that
the transition of transport sector has to begin in this time period (2020 to 2030).

8.6.3 Target Scenarios for 2050

Table 8.9 presents 10 scenarios that can be implemented for 2050 with a target range
of 95–100% reduction. It is not possible to reach 100% reduction of emissions as no
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8.6. EMISSION TARGET SCENARIOS
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Figure 8.8: Number of Cars (ICE and EV) for 10 target scenarios for 2030:2DS.

scenarios are able to reach the target with the considered technologies 4. Since no
scenarios operate in island mode, therefore, all the scenarios depend on importing
some electricity. As the national grid is not completely renewable, there will be
always be small amount of emissions by importing electricity to VdN.
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Figure 8.9: Heat production shares from different technologies for 2050:2DS.

Moreover, we have found a diverse set of systems in terms of decision vari-
able/technologies. There are some scenarios where PV reaches to the maximum
possible capacity; whereas, some scenarios introduce small amount of PV. Similar
patterns can be found for biomass CHP. Biomass CHP reaches very high capacity
for near zero emissions scenarios. However, very small CHP is introduced for other
scenarios. As we have a constraints on biomass usage, both biomass CHP and boiler
compete for the same (limited) resources. When CHP capacity is getting high, boiler
capacity is getting low and vice versa. A moderate amount of GSHP introduction

4Energy storage is not considered as decision variable.
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is suggested (6.8 to 9.2 MWe), however, when the capacity is relatively low, it is
compensated by solar thermal and biomass boilers.

Figure 8.9 presents annual heat production shares with respect to different tech-
nologies. It is clear from the figure that GSHP produce most of the required heat
to meet the demands. Biomass CHPs and boilers compensate each other in term of
heat productions as well. Moreover, solar thermal produces small amount of heat
for the selected scenarios.

Finally, the transportation sector is completely transformed by the introduction
of electric cars. For most of the scenarios, almost all ICE cars are replaced by electric
cars.

In comparison of the 2050 scenarios with 2030, a radical transformation is pro-
posed in the transport sector. Therefore, in this period (2030–2050), the conversion
of the sector could lead the community to achieve an almost zero emission target.

8.7 Target scenarios for 4DS case

Table B.3, Table B.4 and Table B.5 present the target scenarios for 4DS case. A
very brief discussion about the scenarios is presented. There is not much differences
among the scenarios for 2020 and 2030 in comparison with 2DS and 4DS case.
However, the scenarios for 4DS case are a little costlier than 2DS because of prices
of fuels. For 2050:4DS, PV capacity always reaches maximum. GSHP remain a
bit low in capacity compared to 2DS case. In addition, similar behavior can be
observed with respect to GSHP, Biomass boiler and solar thermal. Finally, the
transport sector is revolutionized by introduction of 10% EV.

8.8 Transition from one scenario to another

In the previous few sections, we have presented some target scenarios for each time
period. However, it is not clear which two scenarios should be selected to have a
smooth transition from one time period to another (e.g., transition from 2020 to
2030). The transition from one target scenario to another one should be gradual
so that no abrupt policy changes are required. Therfore, there should be minimum
differences in terms of decision variables/technologies. As we need to satisfy different
targets (in terms of emissions) in different time, of course, the scenarios of two
different periods will be different. However, the differences should be as small as
possible between two selected transient scenarios. Therefore, in next section we will
discuss a simple methodology for selecting the scenarios. Moreover, the proposed
method is applied on the selected scenarios of the valley and results will be presented
in the later sections.

8.8.1 Methodology

Considering T1, T2, . . . , Tn are the n number of sets (i.e., sets containing target sce-
narios) containing n1, n2, . . . , nn number of scenarios. Each set Tl contains {S1

l , S
2
l , . . . , S

nl
l }

scenarios. The transition from Tl to Tl+1 (denoted as Tl → Tl+1) is carried out by
finding two scenarios; one from Tl and another from Tl+1. The scenarios are selected
from the corresponding set based on the minimum distance between them in terms
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of decision variables. All the scenarios from the Tl set are compared with all the
scenarios from Tl+1 set based on the distances. The scenarios that have minimum
distance among all the pairs, are selected as transient scenarios. Mathematically
Tl → Tl+1 is calculated as follows (by considering nl, nl+1 > 0):

A := argmin0≤il<il+1<max{nl,nl+1}{d(Sill , S
il+1

l+1 )}

= {(il, il+1) : d(Sill , S
il+1

l+1 ) ≤ d(Sjll , S
jl+1

l+1 ), 0 ≤ il, jl < ni, 0 ≤ il+1, jl+1 < nl+1}

B := min
0≤il+1<nl+1

min
0≤il<nl

{(il, il+1) : (il, il+1) ∈ A}

(8.1)

Where d(Sill , S
il+1

l+1 ) is the Euclidean distance between two scenarios (ithl scenario from
Tl and ithl+1 scenario from Tl+1 set) with respect to decision variables/technologies and
the distances are symmetrical. Set A contains all the indice pairs that have minimum
distances 5. Finally, set B contains only one pair of indices. The indices contained
in B (i.e., ithl and ithl+1 scenario from Tl and Tl+1, respectively) are considered as
transient scenarios.

The previous formulation is only applicable for a single-stage transition (e.g,
2020→ 2030), however, it is also possible to extend the process by considering multi-
stages transitions (i.e., n-stages). To design a multi-stage transition (T1 → T2 → · · · → Tn),
it is required to minimize the summation of the all a 1-stage distances. This is es-
sentially a comparison among all possible pairs contained within the sets. As an
example, to find T1 → T2 → T3, all pairs of T2 → T3 are considered for each pair
of T1 → T2. Mathematically T1 → T2 → · · · → Tn is calculated as follows (by
considering, n1, n2, . . . , nn > 0, n ≥ 2):

A := argmin 0≤il<il+1<max{nil ,nil+1
}

1≤l≤n−1

{
n−1∑
j=1

d(S
ij
j , S

ij+1

j+1 )

}

B := min
0≤in<Nn

min
0≤in−1<Nn−1

· · · min
0≤i1<n1

{(i1, i2, . . . , in) : (i1, i2, . . . , in) ∈ Ak}

(8.2)

Where i1, i2, . . . , in are the indices of the transient scenarios from T1, T2, . . . , Tn sets,
respectively.

8.8.2 Results

In the current section, we will identify transition scenarios for VdN. In the previous
few sections (section: 8.6.1, 8.6.2 and 8.6.3), we have selected sets of target scenarios
for different time periods. We would like to identify scenarios for transition from
2020 to 2030 (2020→ 2030) and 2030 to 2050 (2030→ 2050).

For each 2020 scenario (in Table 8.7), we identify a 2030 scenario using equa-
tion 8.1. Please note that all the values of decision variables are normalized to
calculate the distance between scenarios. Each two rows of the Table 8.10 shows the

5This is unlikely that there will be more than one set of pairs that have same minimum distances,
however, in theory it may be happen. Therefore, the next formulation is provided that will return
only one set of pairs.
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Table 8.10: Energy transition 2020→ 2030 for all 2020 scenarios.

Capacities Number of Cars
Transition

from
2020 to 2030

PV
(kWe)

Biomass
CHP
(kWe)

GSHP
(kWe)

Oil
Boiler

(kWth)

NGas
Boiler

(kWth)

Biomass
Boiler

(kWth)

Solar
Thermal
(kWth)

ICE
cars

EVs
Normalized

distance

1209 2096 8635 1 7 19263 2239 18726 654
TS1 to TS8

1071 53 7466 3 5 21389 86 15509 3871
0.572

1253 174 8639 6 174 20959 2195 18654 726
TS2 to TS6

1726 43 7467 5 15 21376 169 14865 4515
1.074

4275 148 8736 7 21 20613 2477 18910 470
TS3 to TS7

1082 318 7494 9 2 20952 731 15252 4128
0.607

958 173 8463 12 118 22016 3424 18868 512
TS4 to TS1

1164 258 7531 15 27 20748 903 13742 5638
0.771

989 21 8473 12 96 22137 2978 18911 469
TS5 to TS1

1164 258 7531 15 27 20748 903 13742 5638
0.696

3060 515 8719 2 24 20344 1220 19149 231
TS6 to TS8

1071 53 7466 3 5 21389 86 15509 3871
0.602

1652 1167 8679 11 11 19923 2978 19230 150
TS7 to TS7

1082 318 7494 9 2 20952 731 15252 4128
0.589

1262 2431 8680 9 2 18670 3746 19328 52
TS8 to TS7

1082 318 7494 9 2 20952 731 15252 4128
0.600

1279 9 8681 10 1 21082 3933 19328 52
TS9 to TS7

1082 318 7494 9 2 20952 731 15252 4128
0.580

1247 697 8594 10 7 20886 802 19373 7
TS10 to TS7

1082 318 7494 9 2 20952 731 15252 4128
0.551

details of the transient scenarios. First column shows the names of the transition
scenarios, for example, TS1 to TS8 refers that the scenario named ‘TS8’ of 2030
(see Table 8.8) is the best match for the 2020 scenario named ‘TS1’ (see Table 8.7).
Moreover, the last column shows the normalized distance between the scenarios in
terms of decision variables. Please note that different 2030 scenarios are selected for
different 2020 scenarios. The reason is that different 2020 scenarios have different
values for decision variables; based on the values, a 2030 scenario is chosen that has
minimum distance with the particular 2020 scenario. Table 8.11 shows the details
of the transition 2030→ 2050.

In last few paragraphs we have showed the results for 1-stage transition, however,
a multi-stage transition is required to do a long-term planning. In the case of
VdN, a 2020→ 2030→ 2050 transition planning can be done based on the available
targeted optimized scenarios. Using equation 8.2, a double-stage transition planning
is performed. The results are reported in Table 8.12. For each 2020 scenario, the best
2030 and 2050 scenarios are presented (each row presents transient scenarios for each
2020 scenario). Please note that the results presented in Table 8.12 are not combined
results from Table 8.10 and Table 8.11. The later results minimize the summation of
2-steps distances (distances from 2020 to 2030 scenarios and distances from 2030 to
2050 scenarios) while the other results minimize only 1-step distances. The results
shows that there are mainly two scenarios (i.e., TS3 and TS7) in 2030 which are more
compatible with scenarios of 2020; while single 2050 scenario (i.e., TS7) is compatible
in this case. The last column of the table reports the normalized total distance
for each transition. Finally, the blue shaded row presents best possible transition
scenarios where less differences are required among different technologies/decision
variables.

Figure 8.10 illustrates all the target scenarios and best transition scenarios in
objective space. All the boxes present optimized scenarios for different time periods
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Table 8.11: Energy transition 2030→ 2050 for all 2030 scenarios.

Capacities Number of Cars
Transition

from
2030 to 2050

PV
(kWe)

Biomass
CHP
(kWe)

GSHP
(kWe)

Oil
Boiler

(kWth)

NGas
Boiler

(kWth)

Biomass
Boiler

(kWth)

Solar
Thermal
(kWth)

ICE
cars

EVs
Normalized
distances

1164 258 7531 15 27 20748 903 13742 5638
TS1 to TS7

2091 239 7470 3 20 18845 583 46 19333
1.189

1164 39 7531 20 21 20964 822 13742 5638
TS2 to TS9

1019 6 8603 8 24 11695 236 1306 18074
1.300

1063 2 7443 3 17 21567 444 13884 5495
TS3 to TS7

2091 239 7470 3 20 18845 583 46 19333
1.022

1077 64 7431 1 4 21599 367 14271 5108
TS4 to TS6

1218 288 7109 3 0 21170 1557 1 19379
1.056

1100 40 7449 3 17 21491 985 14509 4871
TS5 to TS7

2091 239 7470 3 20 18845 583 46 19333
1.067

1726 43 7467 5 15 21376 169 14865 4515
TS6 to TS7

2091 239 7470 3 20 18845 583 46 19333
1.096

1082 318 7494 9 2 20952 731 15252 4128
TS7 to TS7

2091 239 7470 3 20 18845 583 46 19333
1.165

1071 53 7466 3 5 21389 86 15509 3871
TS8 to TS7

2091 239 7470 3 20 18845 583 46 19333
1.141

1066 32 7467 18 4 21388 1005 15986 3393
TS9 to TS9

1019 6 8603 8 24 11695 236 1306 18074
1.398

1074 78 7418 4 0 21662 298 16221 3159
TS10 to TS6

1218 288 7109 3 0 21170 1557 1 19379
1.193

Table 8.12: Transition 2020→ 2030→ 2050 for all the 2020 scenarios.

Scenario
2020

Transition Normalized
total distance2030 2050

TS1 TS3 TS7 1.665
TS2 TS3 TS7 2.122
TS3 TS3 TS7 1.714
TS4 TS3 TS7 1.958
TS5 TS6 TS7 1.882
TS6 TS3 TS7 1.686
TS7 TS7 TS7 1.753
TS8 TS7 TS7 1.765
TS9 TS7 TS7 1.745
TS10 TS7 TS7 1.716

(different colors represent different time periods). Down-pointing triangles present
the identified target scenarios (different colors represent different time periods). Red
colored down-pointing triangles represent the best scenarios for 2020→ 2030→ 2050
transition. Finally, the two arrows show the transitions.

8.9 Conclusion

In this chapter, we have shown how our proposed framework can be applied when
performing long-term energy system planning. As most of the local European com-
munities are signing the Covenant of Mayors, the communities are bound to reduce
progressively their CO2 emissions, following reduction targets at 2020, 2030 and
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Figure 8.10: Transition 2020→ 2030→ 2050 shown in objective space

2050. Therefore, it is necessary to provide the long term energy planing for cor-
responding regions. We take an example of Val di Non and applied our proposed
framework to find out optimized scenarios for different time periods. Afterwards, we
have identified some target scenarios (in term of CO2 emissions) from the optimized
scenarios, since the community has to reach different emissions goals in different
time periods.

Decision makers may choose any scenario within the target sets, however, the sce-
narios of consecutive time periods should be consistence to each other (i.e., should
not being too different from each other). In this regard, we propose a technique
that can identify best possible scenarios to have a smooth transition from one
time period to another. The technique can not only be applied for single-stage
transition (i.e., 2020→ 2030), but also be applied for multi-stage transition (i.e.,
2020→ 2030→ 2050). We have applied the proposed technique on Val di Non tar-
get scenarios and different transient scenarios are identified.

In the next chapter we will propose modified MOEAs that can deal with given
preferred (targeted) regions. In the precious two chapters, we have manually identi-
fied some target scenarios from the optimized scenarios (after finishing the optimiza-
tion phase). However, with the help of the proposed technique, the target regions
can be set before the optimization phase and the modified MOEA will identify only
the scenarios within the regions.

In both this and the previous chapter, an approach is considered where we have
manually selected some target scenarios from identified optimized scenarios (after
the identification of optimized scenarios). In the next chapter we will propose mod-
ified MOEAs that can deal with the problem of identification of solutions in given
preferred regions. With the help of the proposed technique, it would be possible that
the target regions are set before the optimization phase and the modified MOEA
will identify the scenarios only within the specified regions.
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Chapter 9

Multi-objective optimization with
multiple preferred regions

We are trying to prove ourselves wrong as quickly as possible, because
only in that way can we find progress.

— Richard P. Feynman

9.1 Introduction

For the last two decades, multi-objective evolutionary algorithms (MOEA) have been
successfully used to solve multi-objective optimization (MOO) problems. Typically,
the goal of a MOEA is to find a set of trade-off solutions that are well-distributed
over the objective space. Sometimes, however, the decision makers/users have little
interest in exploring the entire objective space. It may be more interesting to them
to explore some preferred regions of a front due to market demands, due to financial
pressure, or simply due to curiosity.

Let us consider an energy system optimization problem, where the goal is to
minimize CO2 emission and annual cost. In this case, a reference system is analyzed
(generally the current system), optimized systems are identified, and then compared
with the reference system. Decision makers are often interested in exploring several
regions defined by either CO2 emission or annual cost. For example, if a reference
scenario has x amount of CO2 emissions, the interesting regions could be 10%–20%
and 35%–40% reduction of x (a manual approach is considered in Chapter 7 and 8).

There are a few algorithmic advantages in exploring preferred regions over ex-
ploring the entire objective space. These include faster convergence speed and better
approximation of Pareto-front. Based on the idea of incorporating user preference,
a wide range of different concepts and algorithms has been proposed (see [172, 27]
for comprehensive surveys, as it is impossible to list all relevant work here), such as

M. S. Mahbub, M. Wagner, and L. Crema, “Multi-objective optimisation with multiple pre-
ferred regions,” in proceedings of Artificial Life and Computational Intelligence: Third Australasian
Conference, ACALCI 2017. Springer, pp. 241–253 [online] http://dx.doi.org/10.1007/978-
3-319-51691-2_21.
The text presented in chapter 9 is revised versions of the articles. Most of the sections of the
chapter are paraphrased and extended for better understanding to the readers.
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(i) defining reference-point(s) [144, 55, 148] and specifying weights in the objective
space [123, 74]. However, the problem with these approaches typically is that it
is difficult to set the corresponding parameters without knowing the shape of the
true Pareto-front. Therefore, we propose modifications of generic algorithms that
require only very intuitive preference encoding in the form of intervals, as outlined
above in the energy system example above. The modified algorithms are tested
on seven benchmark problems. The results show that the algorithms perform than
generic ones. Finally, one of the algorithms is applied on energy system optimization
problem with satisfactory results.

The structure of this chapter is as follows. First, we introduce the idea of prefer-
ences for MOEAs in Section 9.2. In Section 9.3 we show how we integrate preference
information in two algorithms. Lastly, we present and discuss the results of our ex-
perimental studies in Section 9.4 and Section 9.5.

9.2 Basic principles

There is a fundamental difference between how reference points and weights are
defined, and how our preferred regions are defined. A reference point is defined by
specifying values for all the dimensions for a point in the objective space. In contrast
to this, a preferred region is defined by specifying an upper and lower bound of one
particular dimension. For example, if a two-objective problem (objectives are plotted
along x and y-axes) is considered, a user can define three preferred regions by setting
three upper and lower bounds for intervals along either the x or y axis. Figure 9.1
illustrates an example of three preferred regions (bounded by three different color
vertical lines). In this figure, we also show three reference points (gray crosses)
which might have been set by a user. As the user lacks knowledge about the shape
of the front, these points are not on the true Pareto-front. Consequently, it is
left up to the MOEA to follow its own interpretation of “closeness” in order to
distribute the solutions around the reference. One outcome is that the solution
density is high near the reference point and the density decreases with increasing
distance (see Figure 9.1 for the outcome of one run by r-NSGAII [55] using the
shown reference points). As mentioned before, it is also possible to use weights in the
objective space in order to encode preferences. In Figure 9.1 we indicate this using
a color gradient along the x-axis, where a preference for smaller x-values is encoded.
The preference formulation for a single objective using weights is relatively simple,
however, the formulation becomes tricky when multiple objectives are preferred, and
it becomes very complicated when reference points or preferred regions are to be
encoded (using weights). The concept of our interval-based regions, on the other
hand, is straightforward to use even for laypeople. To the best of our knowledge,
even though there are lots of similar approaches, this is the first time this rather
simple concept of intervals along axes is used in the context of MOO.

9.3 Preferred regions for different MOEAs

In the following sections, we present the ideas related to preferred regions and the
adaptation of the ideas into different MOEAs. In the first section, preferred region
based NSGAII (pNSGAII) is presented. In the second section, two variants of AGE
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Figure 9.1: Reference points, weights in the objective space, and preferred regions.

(pAGEonline and pAGEoffline) are presented.

9.3.1 Ideas adopted in pNSGAII

We adopt several ideas in NSGAII [53] resulting in pNSGAII. Algorithm 6 presents
the main loop of the proposed pNSGAII. There are couple of modifications with
respect to the original NSGAII. Firstly, each solution is associated with a particular
region (step # 4). Secondly, a modified parent selection procedure is used (step # 8);
thirdly, the individuals of a merged population (containing solutions of the previous
generation and the offspring) are associated with nR regions (step # 13) such that for
each region, 2 ∗ αi individuals are associated. Based on the association, the merged
population is divided into nR sub-populations (step # 14). Sub-populations are used
to increase the likelihood of achieving the targeted αi well-distributed solutions per
preferred region. Lastly, a modified ranking procedure (step # 16) is applied to
rank the solutions of the sub-populations.

The first important addition to pNSGAII is the association of solutions to re-
gions. Before the optimization, the user provides the preferred number of solutions
associated with each region. During the optimization, the solutions are assigned
greedily to the regions based on the distance between solutions and regions (see Al-
gorithm 7). The distance from a solution (that is outside of the region) to a region
is calculated as min(|fi(A)− Ru|, |fi(A)− Rl|), where fi(A) is the objective value
(the objective dimension on which a user specifies the ranges) of a solution. The
distance is 0 if a solution is inside a preferred region. Finally, Figure 9.2 illustrates
an example of Algorithm 7 in step # 13 of Algorithm 6. In the example, α1 and
α2 are set to 6; which refers that 12 solutions will be associated with each region.
In the figure, two regions are bounded by different colors vertical lines and different
colored markers show the solutions associated with different regions.

In the proposed parent selection procedure, there are two ways the parents can be
selected. Firstly, a parent can be selected from the same region that the procedure
is currently working on (zth region, step # 6 of Algorithm 6). Secondly, the parent
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Algorithm 6 Main loop of pNSGAII

1: nR . Number of given regions
2: α . A set containing user-defined preferred number of solutions for each region;
αi is the number of preferred solutions for ith region

3: Initialize population P with
∑nR

i=1 αi random individuals and O ← ∅
4: Associate α number of solutions with nR regions
5: while Stopping criteria not met do
6: for z ← 1 to nR do
7: for j ← 1 to αz/2 do
8: Select two parents using modified parent selection procedure
9: Generate offspring and add to O

10: end for
11: end for
12: P ← P ∪O
13: Associate 2 ∗ α number of solutions with nR regions
14: Divide P into nR sub-populations (SPi; i = 1, . . . , nR)
15: for i← 1 to nR do
16: Rank SPi and select αi solutions based on ranking and crowding distance

17: Add these solutions to SPi
18: end for

19: P ←
nR⋃
i=1

SPi

20: end while

can be selected from other regions. A user defined probability (Pps) determines
which way the parent will be selected. The details of the algorithm are presented
in Algorithm 8. This approach enables us to prevent an algorithm from getting
trapped on a local multi-dimensional front (which we have observed in preliminary
experiments) by considering outliers 1.

However, when a parent is selected from the currently working region (zth region
of step # 6 of Algorithm 6), a tournament selection based approach is adopted. To
select a parent, a given number of tournaments are played between randomly selected
associated individuals (associated with zth region). The winner of the tournaments
is chosen as a parent. The winner (between two randomly selected individuals) of a
tournament is decided based on the following criteria:

• Distance from a given region

• Overall constraints violation [49]

• Dominance Relation

The order of the criteria is strictly followed. Therefore, if a solution is closer than
another solution with respect to a given region, then the following two criteria are
not considered (even 2nd solution violates constrains more than 1st or 2nd solution
dominates 1st solution). The overall constraint and dominance relations come into
play when two solutions are within the given region.

1We will refer to solutions as being outliers if they are not within preferred regions.
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Ranking in the original NSGAII is performed based on dominance. Individuals
are divided into different fronts depending on the relative dominance relationship
among the individuals. Therefore, the individuals which are not dominated by any
other individuals are placed in the first front. In addition, the second front contains
the individuals that are dominated by minimum number of individuals and so on.
However, for pNSGAII we propose a ranking procedure based on dominance rela-
tions and closeness of an individual to the preferred regions (same ordered criteria as
in parent selection). We do not apply the proposed ranking procedure in all gener-
ations, as narrowing down the search to some particular regions from the beginning
may be problematic. Therefore, for a particular generation (Step # 16, Algorithm 6),
only one of the two ranking procedures (i.e., default NSGAII ranking procedure and

proposed ranking procedure) is applied with probability prk =
(
usedBudget
totalBudget

)n
. The

shape of this schedule can be controlled through the exponent n. For n = 1, the
probability of applying the proposed ranking procedure is increased linearly over
time. For larger values of n, the probability increases sharply in later stages of the
algorithm’s run.

In Step # 14, we propose to sub-divided the population into nR number of pop-
ulation (we call it local sub-population). Solutions in a local front (front in local
sub-population) have to be non-dominated in term of other local fronts as we want
all non-dominated solutions in final output. A solution may be non-dominated
in local sub-population, however, may be dominated by a solution of other sub-
populations, has to be eliminated. Therefore, in order to rank a sub-population,
we not only compare a solution within the local sub-population, but also compare
the solution against other solutions of other sub-populations (we call it global pop-
ulation). Therefore, after ranking the local population as usual, each individual of
local population is compared (i.e., according to dominance) against all the global
individuals. If some local individuals are in the same local front and the individuals
are dominated by the same number of global individuals (or not being dominated),
then the local individuals will be in the same front. However, if the local individuals
are dominated by different number of global individuals, they will be in different
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Algorithm 7 Associating regions to solutions

1: nR . Number of given regions
2: Ru, Rl . Upper and lower bounds of given regions
3: S . A set containing all the solutions
4: cα← 0 . Current number of associated solutions with regions
5: for s ∈ S do
6: for i← 1 to nR do
7: if s is within Ri

u and Ri
l And cαi < αi then

8: Associate s with ith region; cαi ← cαi + 1 and exit the loop
9: end if

10: end for
11: if s is not yet associated then
12: Depending on the status of cαj, associate s with the region j that has

minimum distance to s (if cαj = αj, associate s with the region that has second
least distance)

13: cαj ← cαj + 1
14: end if
15: end for

Algorithm 8 Parents selection procedure

1: Pps . Probability of selecting a parent from other region
2: r . A random number drawn from uniform distribution
3: if r > Pps then
4: Return a parent based on tournament selection and ordered criteria
5: else
6: Return a random parent from a different region

7: end if

fronts depending on number of global dominators. Therefore, the local individual
with smaller numbers of global dominators will be placed in a lower ranked front,
and with higher numbers of global dominators will be placed in an higher ranked
front. With this approach, the local individuals that are dominated within the global
population will have smaller chances to stay in the next generation.

9.3.2 pAGE

The algorithm Approximation-Guided Evolution (AGE) [29] in its original formu-
lation uses an archive A in which it maintains a list of all non-dominated solutions
seen. This archive can grow and thus slow down the algorithm. In its newer version,
AGE maintains an archive Aε that is an ε-approximation of all non-dominated so-
lutions encountered [170]. In the following, we present two straightforward uses of
the archive to guide the optimisation towards preferred regions (see Algorithm 9):

• pAGEonline largely corresponds to any of the above-mentioned AGE variants.
After the generation of the offspring set O based on the population P , AGE
would normally proceed to consider the union P ∪O and then reduce this set
greedily to approximate the archive. At this point, we insert one action (step
# 11): from the union P ∪O we remove each of the solutions that are outside
the preferred regions with probability pr.
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Algorithm 9 (µ+ λ)-Approximation Guided Evolution with preferences

1: Initialize population P with µ random individuals
2: Set archive A← P
3: for each generation do
4: Initialize offspring population O ← ∅
5: for j ← 1 to λ do
6: Select two random individuals from P , and apply crossover and mutation
7: Add new individual to O, if it is not dominated by any individual from P
8: end for
9: Insert each offspring in the archive A

10: Add offspring to population, i.e., P ← P ∪O
11: [pAGEonline] remove each outlier from P with pr
12: while |P | > µ do
13: Remove p from P for which the approximation of A by P is the smallest when

p is left away
14: end while
15: end for
16: [pAGEoffline]
17: 17.1: Remove all outliers from archive A.
18: 17.2: P ← A.
19: 17.3: if |P | > µ then apply lines 14–16 to reduce the P

• pAGEoffline uses the original AGE with the non-ap-
proximated archive for the entire optimisation process. The preference se-
lection only happens once in the very end as a post-processing step using
already existing methods. First, pAGEoffline removes from the archive Aε all
outliers, and it assigns a copy of this reduced archive to the population P .
Since P might be larger than the desired population size, the original AGE’s
internal mechanism from steps # 12–14 is used so that P approximates Aε

well.

For pAGEonline, the probability pr can be static for the entire optimisation or
it can change dynamically according to some predefined schedule. In preliminary
experiments we observed that a static choice of pr = 1 can be problematic, as this
always removes all outliers. As an alternative to this we decided to increase pr with
the number of evaluations performed, which is similar to our approach in pNSGAII.
In additional preliminary experiments, we noticed that even a linear schedule such as
pr = usedBudget

totalBudget
can prevent pAGEonline from finding all regions. As a consequence,

we decided to lower the initial “pressure” by using pr =
(

usedBudget
totalBudget

)n
. If n = 10 is

considered, the pressure remains low for a long time which allows pAGEonline to find
the front. For example, when 90% of the runtime has been reached the probability
of removing an outlier is just pr = 0.35, and at 95% it is pr = 0.60. Then, in
the last couple of generations, the pressure increases quickly and pAGEonline can
focus on spreading out the solutions within the preferred regions. Note that this
schedule is by no means optimal, however, it performs well enough to demonstrate
the feasibility of the proposed approach.
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9.4 Experimental study

We conduct a range of experiments to analyze the performance of our proposed
algorithms pNSGAII, pAGEonline, and pAGEoffline. The benchmark problems
include five two-dimensional benchmark problems from the ZDT family [179] and
two three-dimensional problems from the DTLZ family [54]. To the best of our
knowledge, no directly comparable algorithms for multiple preferred regions are
available from the literature; algorithms that consider reference point(s) have a
different goal, which puts them at a disadvantage by definition (see Section 9.2).
Therefore, we compare our approaches with their original algorithms, and we vary
the evaluation budgets and population sizes to investigate the effectiveness.

9.4.1 Evaluation metrics

Over the years, a number of evaluation metrics have been proposed. We use widely
used metrics available in the jMetal framework, such as, the covered hypervolume
(HV) [177], inverted generational distance (IGD) [37] and additive ε-approximation
(EPS) [181] to measure the performance of the MOEAs. We use them with a
simple modification, i.e., separately for each preferred region. Therefore, indicators’
values are measured for each preferred region. As the true Pareto-front is required
for the calculation of IGD and EPS values, we use those provided by the jMetal
framework. From the true fronts, we extract the regional fronts from the original
ones by considering only the solutions that are inside the given regions. To calculate
HV values, we define the reference point for each region to be based on the extreme
values in the preferred region. For example, in the introductory Figure 9.1, these
reference points are (0.2, 0.62), (0.5, 0.38), and (0.95, 0.1).

It is important to note that performance indicators for preference-incorporating
algorithms exist (e.g. [120, 79]), however, these are for reference point-based ap-
proaches and thus not applicable.

9.4.2 Experimental setup

We developed all algorithms in the jMetal framework [58]. Initially, each pMOEA
variant is tested on the ZDT family with two configurations, based on population
size µ and maximum function evaluations (FE). Table 9.1 presents the different
configurations used in the experiments. The configurations are chosen in this way
to demonstrate the efficiency of pMOEA in terms of convergence speed.

Problem Algorithm µ EF

ZDT

pMOEA 30 12000

MOEA
30 12000
100 12000
100 24000

DTLZ
pMOEA 30 50000
MOEA 150 49950

Table 9.1: Configurations in terms of population size µ and evaluation budget EF
to test the efficiency of the interval-based preferences.
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Table 9.2: Parameter settings

Parameter Value Used on

[Rl, Ru]
[0.80, 0.95],
[0.40, 0.50],
[0.15, 0.20]

all algorithms

α [10, 10, 10] pNSGAII
Crossover SBX [53] all algorithms
Crossover probability 0.90 all algorithms
Mutation Polynomial mutation [53] all algorithms
Mutation probability 1/ndv a all algorithms
Distribution Index 20 all algorithms
Parent selection Binary tournament NSGAII
Number of tournaments 5 pNSGAII
εgrid 0.01 pAGE online, AGE
n 10 all pMOEA
Pps 0.20 pNSGAII

a number of decision variables

We consider short and long runs with an evaluation budget of FE = 12000
and FE = 24000, respectively. On the ZDT2 family, we conduct only short runs
of the pMOEAs, and we compare these with short and long runs of the original
MOEAs to investigate the efficiency. For the DTLZ3 functions, we only use a single
configuration of the original algorithm since the solutions with an increased pop-
ulation size, are otherwise the solutions would be very thinly spread out over the
three-dimensional front.4

Table 9.2 presents the other parameters used in the investigations. In this study,
the regions are defined in terms of Rl and Ru along the first objective. Moreover,
we set α = [10, 10, 10] for pNSGAII so that 10 solutions will be associated with
each region - this was chosen arbitrarily, however, it is possible to have different
numbers of solutions associated with different regions. The remaining parameters
are mostly the default values from the jMetal framework. In addition, n = 10 is
used for prk and pr for pNSGAII and pAGEonline, respectively. pps = 0.20 is used
within pNSGAII’s parent selection procedure. In pAGEonline, εgrid = 0.01 is used
for the approximating archive. We run each algorithm independently 100 times and
report the averages in the following.

9.4.3 Results and discussion

Firstly, we present in Figure 9.3 an example of Pareto-fronts obtained by different
pMOEAs. We can observe that the solutions are concentrated in the user-defined

2The ZDT functions are used as provided by the jMetal framework. The number of decision
variables is 30 for ZDT1/2/3 and 10 for ZDT4/6.

3Number of decision variables is 12 for DTLZ2/3, as set in the jMetal framework.
4If we use µ = 30 for typical MOEA (please see Table 9.1) then it is less probable to find

adequate number of solutions in preferred regions, that makes it difficult to compare with pMOEA.
In addition, compared in terms of FE, MOEA uses 50 less function evaluations than pMOEA only
because the number is compatible with µ (no extra function evaluations after completing last
generation).
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Figure 9.3: Pareto-fronts obtained by pAGEoffline and pNSGAII on ZDT1 problem.

regions. For more details, zoomed views of the obtained fronts of regions #1 and
#3 are shown that allow us to visually assess the distribution of the solutions.

Next, we report the results in terms of mean values and the corresponding stan-
dard deviations of EPS, IGD and HV for each region for each pMOEAs. Figure 9.4
and 9.5 show the result obtained for NSGAII and AGE, respectively. By using
markers of different shapes, we show how our pMOEAs perform compared to their
original variants. In the following, we summarize the results.5

Most of the time, pNSGAII outperforms NSGAII with the same evaluation bud-
get (EF = 12000) regardless of µ (Figure 9.4). pNSGAII performs similarly to
NSGAII (EF = 24000) a number of times, i.e., on all regions for ZDT1/ZDT2 and
regions #1/#2 for ZDT6. pNSGAII fails to converge on ZDT4 due to many local
optima.

The Figure 9.5 demonstrates the comparison of pAGE variants (i.e., online and
offline) and AGE with different configurations. pAGEonline and offline perform
consistently better in comparison to the generic AGE (with EF = 12000 regardless
of µ) for almost all the regions and all the problems. When comparing with AGE
(EF = 24000), most of the time it perform similarly (all the ZDT problems expect
ZDT). In the case of ZDT4, generic AGE performs better than pAGE variants.
Please not that in this comparison, AGE uses two times function evaluations than
pAGE variants.

It can be concluded from the results that our pMOEAs perform very well in
short runs (EF = 12000); however, in compare with long run (EF = 24000) the
performance is not so consistent.

To briefly demonstrate that the approach also works on three-dimensional prob-
lems, we show a few results in Figure 9.6; all other configurations performed worse
and were left away. It is clear from Figure 9.6 that pAGE achieves better approxi-
mations than pNSGAII. The plot also provides a comparison with the generic AGE
with two different configurations. The original AGE is not able to find the front given
the computational budget (being 1–10 units away), whereas our pMOEAs achieve

5all code and results are available to https://github.com/shaikatcse/pMOEAs.
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9.5. PNSGAII ON ENERGY SYSTEM OPTIMIZATION PROBLEM
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Figure 9.4: Comparison of our pNSGAII with their original variants on the ZDT
functions with m = 2. The Regions 1–3 are defined in Section 9.4.2. Shown are the
means and standard deviations of 100 independent runs. From top to bottom, we
show the results of epsilon, IGD and HV. Within each block of four markers, we
first show our pNSGAII with , then with and the original algorithm with two
population sizes (µ = 30 and µ = 100, EF = 12, 000 each), and then with the
original algorithm with twice the evaluation budget (µ = 100, EF = 24, 000).

good approximations of the fronts with the same budget (being only 0.05–0.5 unit
away). Between pAGEonline and pAGEoffline, there is no clear winner.

9.5 pNSGAII on energy system optimization prob-

lem

To investigate the performance of our approach on a real-world problem, we have
applied pNSGAII on an energy system optimization problem. The general goal
of the problem is to identify multiple optimal systems in order to minimize CO2

emissions and annual cost. Here, we want to identify multiple optimal systems for
three specific regions of interest (i.e., 10 solutions for each region) for the Aalborg
energy system. The three regions are defined in terms of CO2 emissions (i.e., [0.40,
0.5], [0.0, 0.15] and [-0.40, -0.50] Mtons of emissions). For example, we are interested
in identifying 10 optimal solutions in a region within 0.40 to 0.5 million tons of CO2

emissions.
The result is illustrated in Figure 9.7; x-axis presents emissions in million tons

and y-axis presents annual cost in million Danish krone. The gray points represent
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Figure 9.5: Comparison of our pAGE with their original variants on the ZDT func-
tions with m = 2. The Regions 1–3 are defined in Section 9.4.2. Shown are the
means and standard deviations of 100 independent runs. From top to bottom, we
show the results of epsilon, IGD and HV. Within each block of five markers, we
first show our pAGE variants with (pAGEoffline with × and pAGEonline with
+), then with and the original algorithm with two population sizes (µ = 30 and
µ = 100, EF = 12, 000 each), and then with the original algorithm with twice the
evaluation budget (µ = 100, EF = 24, 000).

the true Pareto-front, which is approximated by considering the outcomes of 240
independent runs of NSGAII and SPEA2 with µ = 100, ξ = 7000 (in Chapter 4).
The red markers show the solutions found by our pNSGAII (µ = 30, ξ = 6000,
problem-specific constraint handling was added): 10 solutions per region are found,
and they are very close to optimal solutions. As the experiment achieved these set
goals, we conclude that our proposed approach can not only be successfully applied
to test functions, but also to real-world optimization problems.

9.6 Conclusions

We proposed the concept of incorporating multiple user preferences into MOEAs via
the use of intervals. The concept was designed with laypeople in mind who might
not have detailed knowledge about the objective space.

We presented modifications for two MOEAs to handle multiple preferences, and
we demonstrated the resulting capability on two- and three-dimensional test prob-
lems. On two-dimensional problems, our pMOEAs typically achieve the same hy-
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Figure 9.7: Result of the energy system optimization. Shown is the final solution
set computed by pNSGAII.

pervolume, inverted generational and additive approximation values as the original
algorithms, where the latter had twice the evaluation budget. On three-dimensional
problems, our online and offline variants of AGE with preferences perform best. Fi-
nally, the effectiveness of the algorithm is investigated on a real-world problem and
satisfactory performance is achieved.

As solutions can be spread too diversely over the objective space for higher
dimension problems (having more than 3 objectives), we think that preferences in
general can be an interesting option for decision makers.
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Chapter 10

Conclusion

If you can’t explain it simply, you don’t understand it well enough.

— Albert Einstein

10.1 Thesis summary

The aim of the thesis is to develop a generalized, efficient, and user-friendly en-
ergy system optimization framework that can be used by decision makers to iden-
tify optimized energy scenarios. Since energy system optimization problem is a
multi-objective optimization problem (the problem requires to optimize multiple
objectives simultaneously), in this regards, a framework is proposed based on multi-
objective evolutionary algorithms and EnergyPLAN. A multi-objective evolution-
ary algorithm is chosen as the problem on hand is a combinatorial optimization
problem, at the same time, the problem is discontinuous in nature. In addition,
EnergyPLAN is mainly selected for the ability to incorporate all the energy sectors
together. Therefore, the proposed model is a generalized one as it can handle the
synergies among all the major energy sectors which is essential to integrate large
scale renewable energies. Moreover, simple domain knowledge regarding energy sys-
tems is incorporated in several stages of the model and a robust stopping criterion
is proposed to improve the efficiency of the model.

It has been found from the results that the framework is able to find out multiple
optimized scenarios while minimizing multiple conflicting objectives simultaneously.
Moreover, the investigation shows that the domain knowledge exploited model per-
forms better than default approach. The satisfactory results are found when the
proposed stopping criterion is tested on benchmark problems. We have also found
that the robust stopping criterion stops the energy system optimization process early
to save expensive computational time while achieving good results.

Finally, we have suggested a user-friendly way to incorporating user preferences
into the optimization process. The approach helps the user to explore specific regions
of a Pareto-front. The proposed approach is very useful in the energy domain
as decision makers generally want to identify optimized scenarios that fulfill some
specific targets (such as scenarios within certain ranges of emissions reduction). The
perform investigation shows that the modified algorithms explore the user-defined
regions more efficiently than the generic algorithms on both benchmark and practical
problems.
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Afterwards, the framework is put forward to solve two energy systems optimiza-
tion problems (energy systems for two Italian Alpine valley). Both energy systems
evolve all three major sectors. The first system is optimized based on four objectives
(handle economical, environmental, political and technical aspects) by considering
recent demands. The optimization results show that a reasonable number of sce-
narios has identified, among them 13 scenarios are better than the current one
(reference) in all four objectives. Moreover, all the identified scenarios are less emit-
ting and less dependent than the reference one. For the second system, a long-term
planning approach is considered. In this regards, optimization is performed to deter-
mine future scenarios; more specifically optimizations are carried out in three phases
(for three different time periods) by considering future demands. The results show
that it is possible to find some particular scenarios (i.e., target scenarios) from the
optimized scenarios that fulfill the decision makers’ goals, as decision makers want
to reach distinct goals in term of emissions reductions. The optimized scenarios also
reveal that it is required to transform thermal sector in near future and a radical
transformation of transport sector should be carried out after the year of 2030. Fi-
nally, a technique is proposed to choose two scenarios from the targeted ones (of two
different time frames) for a smooth transition from one time period to another. The
technique is successfully employed to determine transient scenarios for the valley.

We conclude from all the results that proposed framework is a general and com-
plete tool that can be applied to design virtually all kind of energy systems. The tool
can be applied for not only short-term designing but also for mid-to-long term energy
planning. We hope that the present contributions will stimulate energy planners to
explore the potential of all these options.

10.2 Future work

There are some unanswered questions found in the thesis that can be considered
as potential directions. The considered directions are two folded: i) possible next
steps to energy domain, and ii) interesting extensions regarding the improvements
of different components of multi-objective evolutionary algorithms. Following two
paragraphs are dedicated to energy domain and the last two paragraph tries to
provide some lights towards evolutionary algorithms.

As stated earlier that the approach presented here is used to identify optimal
scenarios of an energy system, however, the thesis does not investigate the problem
“how to reach there?”(a transition path [34] to optimized scenario). Even the frame-
work can be used to identify optimal scenarios for different time frames, still we do
not investigate which transition path is suitable for reaching one optimized scenario
to another. Transition path is guided by different policies such as emission trading
scheme [34], carbon taxation [34], feed-in-tariffs (FIT) [93]. Chappin investigates the
impact of different policies on energy transitions; results from [34] show the strong
dependence of a final state (scenario) on the adopted policies i.e., policy parameters.
On the other hand, it is not only important to reach the target scenario, but also
to approach it in a smooth way, i.e., with a transition compatible with economic
and stability concerns. From an economic point of view, a sudden/abrupt change
within an energy system is not expected to be sustainable. Therefore, it is impor-
tant and strategic to have instruments to monitor the evolution of a transition and
adapt/change the policy framework accordingly. Hence, potential research direction
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could be the optimization of policy parameters taking into account both the desired
final scenario and the transition path smoothness.

It may be possible that in future an energy system would be so complex that
optimizing two objectives would not be enough to evaluate it properly. A number of
evaluation criteria (objectives) have been proposed in [135] and [159]. The frame-
work proposed here may not scalable to deal with many-objective problems [48].
Therefore, an interesting extension could be the incorporation of a many-objectives
evolutionary algorithm such as NSGA-III [48], MOEA/D [176] into the framework.

More investigation can be carried out about the proposed stopping criterion in
Chapter 5. As a future work, an interesting step forward would be the investigation
of the performance of different metrics in the context of stopping criteria. In this
thesis, average Hausdorff distance and diversity are used for monitoring objective
and decision space, respectively. However, other objective space metric such as
hypervolume with a combination with diversity metric may improve the performance
of the stopping criteria. Only in-depth comparison of different combinations may
reveal the best approach for the criteria. Moreover, probably the most difficult
task in the field is to benchmark/testing different stop criteria as we do not know
true point to stop. To our best knowledge, no study has been found in literature.
Therefore, it remains an interesting topic for future.

Regarding preferred regional evolutionary algorithm proposed in Chapter 9, the
future work will include the adoption of the techniques to the higher dimensional
problems. Technically, the extension is straightforward, as the intervals just have
to be added to an internal array. Whether the approaches are effective in higher-
dimensional objective spaces remains to be seen.
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Appendix A

A.1 Local PV productivity and maximum reason-

able PV capacity

The PV productivity (PVLP ) can be calculated by dividing total yearly PV produc-
tion by peak power of PV capacity.

PVLP =
6, 111, 381kWh

4, 998kW
= 1, 223kWh/kW (A.1)

The maximum reasonable PV capacity is decided by dividing the annual maximum
electrical demand (elcond ) (assuming that the energy system is completely electrified:
existing electrical demand, existing thermal demand covered by GSHP, existing
transport demand covered by electric car) by the local PV productivity PVLP :

PVmax =
elcond
PVLP

=
eld +Qsh/COP + (dpc + ddc) ∗ elCeff

PVLP
(A.2)

=
26, 177, 984kWh+ 55, 826, 546kWh/3.2 + 48, 084, 100km ∗ 0.168kWh/km

1, 223kWh/kW
(A.3)

=
51, 701, 908kWh

1, 223kWh/kW
(A.4)

= 42.28MW (A.5)

A.2 Assessment of the local sustainable wood re-

source

In order to verify the potential of a sustainable use of the wood resources in the
studied area, the following calculation is performed. It considers the parameters (i.e.,
surface area and potentiality of sustainable use of biomass resources) provided by a
recent study performed by province of Trento (i.e., “Energetic and Environmental
Plan of the province of Trento” [71]):

SWR = Sfor ∗ PSWR (A.6)

Therefore, it is possible to use nearly 57 GWh/year (which is an increase by
30% over the reference scenario) of wood in a sustainable way for the studied area.
Table A.1 shows the corresponding calculation.
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A.3. COST AND EFFICIENCY RELATED DATA

Sfor (ha) PSWR(MWh/(ha ∗ year)) SWR (GWh)
13,671.35 4.16 56.87

Table A.1: Parameters for assessing sustainable wood resource.

A.3 Cost and efficiency related data

Table A.2: Investment cost, lifetime, fixed O&M cost

Technology Unit
Investment cost

(KEuro)
Lifetime
(year)

Fixed O&M
(%)

Reference

Hydro kWe 1.9 50 2.7 [47]
PV kWe 2.6 30 0.77 [47]
Biogas kWe 4 20 3.8 [7]
Individual wood,
LPG and oil boilers

kWth 0.588 15 2.1 [47]

Individual GSHP kWe 1.188 15 0.6 [47]
Borehole for GSHP kWe 3.2 100 0 [3]
Wood ORC CHP kWe 6.7 15 1.45 [60]
Fossil fuel based car 1 unit 9.45 15 0 [10]
Electric car 1 unit 18.69 15 5.5 [16]

Table A.3: Variable O&M cost

Technology Unit Variable O&M Reference
Hydro e/MWh 1.19 [47]
Wood ORC mCHP e/MWh 2.7 [60]
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Table A.4: Generation efficiency

Technology Efficiency Reference
Individual wood boiler Th = 0.75 [47]
Individual gas boiler Th = 0.9 [47]
Individual oil boiler Th = 0.8 [47]
Individual GSHP COP = 3.2 [3]
Wood ORC mCHP El = 0.18, Th = 0.8 [166]
Electric car 0.168 kWh/km [16]

Table A.5: Fuels’ prices and additional cost

Fuel Price (e/MWh) Reference
Oil & Diesel 145 [126]
Petrol 181.29 [126]
LPG 162 [126]
Wood 35 [2]
Electricity import Hourly price (average 61.58) [11]
Electricity export Hourly price (average 61.58) [11]
Electricity internal use additional cost
(Supply and sale
+ general system charges
+ grid and metering cost
+ taxes – CEIS discount (15%))

106.27 [32]
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Appendix B

B.1 Parameters regarding the energy system op-

timization framework for VdN

Table B.1: Parameters for framework used for finding optimized scenarios for VdN

Parameters Value
Initialization

related
parameters

θ 6.0
k 3
β [0,1,2]

Stopping criterion
related

parameters

nGenLT 20
nGenUnCh 5

α 0.05

Table B.2: Domain-knowledge related to decision variable and objectives

PV OB NGB BioB BioCHP HP ICEC EC ST
2020 & 2030

Emission True False Null True True Null False True True
AC False Null Null True False Null True False False

2050
Emission True False Null True True Null False True True

AC Null Null Null True False Null Null Null null

Where PV: photovoltaics, OB: oil boiler, NGB: natural gas boiler, BioB: biomass
boiler, BioCHP: biomass CHP, ICE: Internal combation engine cars, EC: electric car
and ST: solar thermal.

B.2 Results for 4DS case for VdN
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B.2. RESULTS FOR 4DS CASE FOR VDN

B.3 Projected investment, operational and main-

tenance costs, lifetimes and efficiencies

Table B.6: projected investment cost for different technologies for different targeted
years.

Technology Unit
2008

(MEuro/Unit)
2020

(MEuro/Unit)
2030

(MEuro/Unit)
2050

(MEuro/Unit)
Reference

Hydro Power MWe 3.297 3.297 3.297 3.297 [88]
PV (Residential) MWe 6.2 1.3 1.1 0.9 [90, 46]
Solar Thermal
for HSW+SH
(+ heat infrastructure)

MWth 0.958 0.697 0.479 0.383 [87]

Solar Thermal
for HSW+SH
(+ heat infrastructure)

TWh/year 2,281 1,660 1,140 571 [46]

Individual boilers
(+ heat infrastructure)

MWth 0.528 0,565 0,595 0,667 [46]

Individual GSHP
(+ heat infrastructure)
+ Borehole

2.328 2.183 2.062 1.93 [87, 3]

Biomass
cogeneration (<10MW)

MWe 5.988 5.326 4.775 4.775 [89]

District heating 1000Euro/TJ 145 145 145 [46]
Alkaline electrolyser MWe 0.834 0.631 0.508 [91]
H2 station
500 kg/day
(incl H2 compr& storage)

1000 car 1.444 1.111 1.111 [61]

Residential
BEV charging

1000 car 1.4 1.4 1.4 [61]

ICE
(Diesel) car

1000 car 18.763 20.357 21.048 21.177 [124]

BEV car 1000 car 39.258 27.78 24.321 22.57 [124]
FCEV car 1000 car 122.672 31.332 24.884 22.385 [124]

Table B.7: Projected operational and maintenance cost for different technologies for
targeted years.

Technology Unit 2008 2020 2030 2050 Reference
Hydro Power 2.65 2.65 2.65 2.65 [88]
PV 2.94 2.09 1.38 1.15 [46]
Solar Thermal
for HSW+SH
(+ heat infrastructure)

0.11 0.13 0.15 0.15 [46]

Individual oil boilers
(+ heat infrastructure)

4 4 4 4 [46]

Individual GSHP
(+ heat infrastructure)

1.1 1.1 1.1 1.1 [46]

Individual GSHP
(+ heat infrastructure)
+ Borehole

- 0,6 0,57 0,53 [46]

Biomass
cogeneration (<10MW) +
district heating

- 4,06 3,92 3,92 [46, 89]

Alkaline electrolyser - 5 5 5 [91]
ICE Car (all fuels) 4.09 4.09 4.09 4.09 [46]
BEV car
+ Residential
BEV charging

- 6,65 4,10 4,09 [46]

FCEV car
+ H2 station 500 kg/day
(incl H2 compr & storage)

% of
Investment cost

- 6,88 4,24 4,24 [46, 61]
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APPENDIX B.

Table B.8: Projected lifetime for different technologies for targeted years.

Technology Unit 2008 2020 2030 2050 Reference
Hydro Power years 50 50 50 50 [46]
PV years 20 25 30 30 [46]
Solar Thermal
(+ heat infrastructure)

years 20 25 30 30 [46]

Individual boilers
(+ heat infrastructure)

years 20 20 20 20 [46]

GSHP + Borehole years 34 34 34 34 [46, 3]
Biomass cogeneration
<10MW) + DH

years 24 25 25 [46, 89]

Alkaline electrolyser years 10 13 13 [91]
ICE car (all fuels) years 15 15 15 15 [46]
BEV car
+ Residential
BEV charging

years 13 13 13 13 [91, 61]

FCEV car
+ H2 station
500 kg/day
(incl H2 compr & storage)

years 13 13 13 13 [91]

Table B.9: Efficiencies for different technologies for targeted yeas.

Technology Efficiency 2008 Efficiency 2020 Efficiency 2030 Efficiency 2050 Reference
Solar Thermal
for HSW+
SH (+ heat infrastructure)

0.533 MWh/kW 0.533 MWh/kW 0.533 MWh/kW 0.533 MWh/kW [87]

Individual oil boilers
(+ heat infrastructure)

Th = 0.8 Th = 0.85 Th = 0.87 Th = 0.89 [46]

Individual biomass boilers
(+ heat infrastructure)

Th = 0.75 Th = 0.80 Th = 0.82 Th = 0.84 [46]

Individual gas boiler Th = 0.90 Th = 0.95 Th = 0.97 Th = 0.99 [46]
Individual GSHP
(+ heat infrastructure)

COP = 3.90 COP = 4.54 COP = 5.07 COP = 5.46 [87]

Biomass
cogeneration (<10MW)

El = 0.16,
Th = 0.80

El = 0.17,
Th = 0.80

El = 0.18,
Th = 0.80

El = 0.18,
Th = 0.80

[166]

District heating: Net loss (%) - 14.5% 14.5% 14.5% [46]
Alkaline electrolyser - 74 75 78 [91]
H2 station 500 kg/day
(incl H2 compr & storage)

- 80 80 80 [91]

ICE car
(diesel and petrol)

0.684 kWh/km 0.607 kWh/km 0.549 kWh/km 0.497 kWh/km [61]

BEV car - 0.169 kWh/km 0.145 kWh/km 0.117 kWh/km [61]
FCEV car - 0.334 kWh/km 0.267 kWh/km 0.200 kWh/km [91]
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