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On the E�ets of the Eletromagneti Soure Modeling19 in the Iterative Multisaling Method2021 Davide Franeshini, Massimo Donelli, and Andrea Massa2223 Abstrat24 The validation against experimental data is a fundamental step in the assessment of25 the e�etiveness of a mirowave imaging algorithm. It is aimed at pointing out the26 limitations of the numerial proedure for a suessive appliation in a real environ-27 ment. Towards this end, this paper evaluates the reonstrution apabilities of the28 Iterative Multi-Saling Approah (IMSA) when dealing with experimental data by29 onsidering di�erent numerial models of the illuminating setup. In fat, sine the30 inident eletromagneti �eld is usually olleted in a limited set of measurement31 points and inversion methods based on the use of the �state� equation require the32 knowledge of the radiated �eld in a �ner grid of positions, an e�etive numerial33 proedure for the synthesis of the eletromagneti soure is generally needed. Con-34 sequently, the performanes of the inversion proess may be strongly a�eted by the35 numerial model and, in suh a ase, a great are should be devoted to this key issue36 to guarantee suitable and reliable reonstrutions.3738 Keywords:39 Mirowave Imaging, Inverse Sattering, Iterative Multi-saling Method, Soure Modeling.40 Index Terms:41 6982 Radio Siene: Tomography and imaging; 0629 Eletromagnetis: Inverse sattering;42 0669 Eletromagnetis: Sattering and di�ration.43
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1 Introdution44 Within the framework of the mediine [Louis, 1992℄ and biomedial engineering (see45 for example [Liu et al., 2003℄ and the referenes ited therein), without forgetting the46 industrial quality ontrol in industrial proesses [Hoole et al., 1991℄ and the subsurfae47 sensing [Dubey et al., 1995; Daniels, 1996℄, many di�erent appliations require a non-48 invasive sensing of inaessible areas. Towards this end, mirowave imaging methodologies49 [Steinberg, 1991℄ have reently gained a growing attention sine they allow to retrieve50 information on the environment probed with eletromagneti �elds by fully exploiting the51 sattering phenomena [Colton and Kress, 1992℄.52 Unfortunately, the inverse problem to be faed is intrinsially nonlinear, ill-posed, and53 non-unique [Denisov, 1999℄. In partiular, the ill-posedness and the non-uniqueness arise54 from the limited amount of information olletable during the aquisition of the sattered55 �eld. The number of independent sattering data is limited [Bertero et al., 1995; Bui and56 Franeshetti, 1989℄ and they an only be used to retrieve a �nite number of parameters57 of the unknown ontrast funtion. To fully exploit suh an information and to ahieve a58 suitable resolution auray, several multi-resolution strategies have been proposed [Miller59 and Willsky, 1996a, 1996b; Bui et al., 2000a, 2000b; Baussard et al., 2004a, 2004b℄.60 The Iterative Multi-Saling Approah belongs to this lass of algorithms [Caorsi et al.,61 2003℄. The unknown satterers are iteratively reonstruted by onsidering initially a62 rough estimate of the dieletri distribution1 and by enhaning suessively the spatial63 resolution in a set of regions-of-interest (RoIs) where the objets have been loalized.64 Suh a strategy is mathematially formulated by de�ning a suitable multi-resolution ost65 funtion whose global minimum is assumed as the estimated solution. The funtional66 is iteratively minimized by using a onjugate-gradient-based proedure [Kleinman and67 Van den Berg, 1992℄, but stohasti [Massa, 2002℄ or hybrid algorithms an be suitably68 applied.69 In order to validate suh an approah, the multi-resolution algorithm has been tested70 against experimental data [Caorsi et al., 2004a℄ olleted in a ontrolled environment71 1The IMSA is initialized by onsidering the free spae distribution, then no a-priori information onthe senario under test is exploited. Moreover, the initialization of the intermediate steps is obtainedfrom the reonstrution of the previous step with a simple mapping of the retrieved pro�le in the newdisretization of the RoI. 3



[Belkebir and Saillard, 2001℄, sine synthetially-generated data an give only limited72 indiations and they model an ideal senario.73 In dealing with real data, one of the key issue is the modeling of the eletromagneti74 soure or of the related radiated �eld. In general, the eletromagneti �eld emitted by the75 probing system is measured only in the observation domain. However, iterative methods76 based on �Data� and �State� equations require the knowledge of the inident �eld (i.e., the77 �eld without the satterers) generated from the soure in the investigation domain. To-78 wards this end, an aurate but simply model (i.e., requiring a reasonable omputational79 burden) of the soure should be developed. Compliated numerial models aurately re-80 produe real data, but they are di�ult to be implemented starting from a limited number81 of samples of the radiated eletromagneti �eld olleted in a portion of the observation82 domain. On the other hand, a rough model ould introdue erroneous onstraints to83 the reonstrution proess. Nevertheless, whatever the soure model, an e�etive inver-84 sion proedure should be able to reonstrut the satterer under test with an aeptable85 auray aording to its robustness to the noise.86 In this framework, to assess the e�etiveness and the robustness of the IMSA, the results87 of a set of experiments, where di�erent models for approximating the illuminating soure88 are onsidered, will be shown.89 The paper is organized as follows. In Setion 2, the statement of the inverse problem90 and the mathematial formulation of the IMSA will be brie�y resumed, while in Setion91 3 the numerial models used to synthesize the probing eletromagneti soure will be92 desribed. A numerial validation and an exhaustive analysis of the dependene of the93 reonstrution auray on the modeling of the radiated �eld will be arried out in Setion94 4 by onsidering some experimental test ases. Finally, some onlusions will be drawn95 (Set. 5).96 2 Mathematial Formulation97 The inversion proedure will be illustrated referring to a two-dimensional geometry (Fig-98 ure 1). Let us onsider an investigation domain DI , where an unknown satterer is99 supposed to be loated. The embedding medium is assumed lossless, non-magneti, and100 4



haraterized by a dieletri permittivity ε0. Suh a senario is illuminated by a set of101
V inident monohromati eletromagneti �elds Ev

inc(x, y), v = 1, ..., V , and the orre-102 sponding sattered �elds Ev
scatt

(
xm(v)

, ym(v)

), v = 1, ..., V , are available (omputed as the103 di�erene between the �eld with Ev
tot and without the satterer Ev

inc, Ev
scatt = Ev

tot −Ev
inc)104 in m(v) = 1, ..., M(v), v = 1, ..., V , positions belonging to the observation domain DM . The105 objet is desribed by a ontrast funtion τ(x, y) = εr(x, y) − 1 − j σ(x, y)

2πfε0
, (x, y) ∈ DI ,106

εr(x, y) and σ(x, y) being the dieletri permittivity and the eletri ondutivity, respe-107 tively.108 The arising sattering phenomena are mathematially desribed through the well-known109 Lippmann-Shwinger integral equations [Colton and Kress, 1992℄:110111112
Ev

scatt(xm(v), ym(v)) = k2
0

∫
DI

G2d(xm(v), ym(v)|x
′, y′)τ(x′, y′)Eυ

tot(x
′, y′)dx′dy′, m(v) = 1, ..., M(v)

(xm(v)
, ym(v)

) ∈ DM v = 1, ..., V(1)(Data Equation)113114115
Ev

inc(x, y) = Ev
tot(x, y) − k2

0

∫

DI

G2d(x, y|x′, y′)τ(x′, y′)Ev
tot(x

′, y′)dx′dy′ (x, y) ∈ DI (2)(State Equation)116117 where G2d denotes the Green funtion of the bakground medium [Jones, 1964℄.118 Sine the problem assoiated with (??) is ill-posed (see [Groetsh, 1993℄ and [Vogel, 2002℄)119 the system matrix after disretization of the Data Equation (aording to the Rihmond's120 proedure [Rihmond, 1965℄) is highly ill-onditioned, and, hene the problem is extremely121 sensitive to the the noise. To remedy this ill-onditioning, a regularization is needed.122 Thus, the problem is then reformulated in �nding the unknown ontrast funtion that123 minimizes a suitable ost funtion generally de�ned as follows124
Φ {τ (xn, y) , Ev

tot (xn, yn) ; n = 1, ..., N ; v = 1, ..., V } =

=
∑V

v=1

∑M(v)

m(v)=1

∣∣∣Ev
scatt

(
xm(v)

, ym(v)

)
−

∑N
n=1

{
τ (xn, yn) Ev

tot (xn, yn)Gext
2d

(
An, ρnm(v)

)}∣∣∣
2

+
∑V

v=1

∑N
n=1

∣∣∣Ev
inc (xn, yn) −

[
Ev

tot (xn, yn) −
∑N

u=1 {τ (xu, yu) Ev
tot (xu, yu) Gint

2d (Au, ρun)}
]∣∣∣

2(3)5



where Gint
2d and Gext

2d indiate the disretized forms of the internal and external Green's125 operators [Colton and Kress, 1992℄, ρnm(v)
=

√(
xn − xm(v)

)2
+

(
yn − ym(v)

)2, ρun =126
√

(xu − xn)2 + (yu − yn)
2 and An (Au) is the area of the n-th (u-th) square disretiza-127 tion domain. In partiular, the �rst term of (??) enfores �delity to the sattered data in128 the observation domain (Ev

scatt(xm(v)
, ym(v)

), (xm(v)
, ym(v)

) ∈ DM) and it amounts to the129 residual error with respet to the sattered �eld omputed from the Data Equation (??).130 The seond term is a regularization term equal to the residual error with respet to the131 inident �eld in the investigation domain (Ev
inc(xn, yn), (xn, yn) ∈ DI) omputed from132 the State Equation (??).133 However, due to the limited amount of information ontent in the input data [Bui and134 Franeshetti, 1989℄, it would be problemati to parametrize the investigation domain in135 terms of a large number N of pixel values (in order to ahieve a satisfying resolution136 level in the reonstruted image). To overome this drawbak, an initial uniform (oarse)137 disretization is used and suessively an iterative parametrization of the test domain138 allows to adaptively inrease the resolution level only in the region-of-interest of the139 investigation area thus ahieving the required reonstrution auray [Caorsi et al., 2003℄.140 To retrieve the unknown satterer (i.e., an objet funtion that better �ts the problem141 data, (Ev

scatt(xm(v)
, ym(v)

), Ev
inc(x, y)), Eqs. (??) and (??) are disretized aording to the142 Rihmond's proedure [Rihmond, 1965℄. Moreover, to better exploit the limited infor-143 mation ontent of the sattering data, an adaptive multi-resolution strategy is adopted144 [Caorsi et al., 2003℄.145 More in detail, suh an adaptive multi-resolution algorithm an be brie�y desribed as146 follows. Firstly, the IMSA onsiders (i = 0, i being the step index) an homogeneous147 disretization of the investigation domain with a number of disretization domains N(0)148 equal to the essential dimension of the sattered data and omputed aording to the149 riterion de�ned in [Isernia et al., 2001℄. Then, a �oarse� reonstrution of the investi-150 gation domain is yielded by minimizing (??) starting from the free-spae on�guration151 [τ(xn(0)

, yn(0)
) = 0.0 and Ev

tot(xn(0)
, yn(0)

) = Ev
inc(xn(0)

, yn(0)
)℄ in order to assess the robust-152 ness of the overall approah with respet to the �starting guess� in �worst-ase�. After the153 minimization, where a set of onjugate-gradient iterations (k being the iteration index)154 6



is performed not modifying the disretization grid, a new foused investigation domain155 (RoI), DO(i), i = 0, is de�ned. Suh a squared area is entered at156
xRoI

c(i)
=

xRoI
re(i)

+ xRoI
im(i)

2
, yRoI

c(i)
=

yRoI
re(i)

+ yRoI
im(i)

2
(4)where xRoI

re(i)
, xRoI

im(i)
, yRoI

re(i)
and yRoI

im(i)
are de�ned as157158

xRoI
ℜ(i) =

∑R

r=1

∑N(r)
n(r)=1

{
xn(r)

ℜ

[
τ

(
xn(r)

,yn(r)

)]}

∑N(r)
n(r)=1

{
ℜ

[
τ

(
xn(r)

,yn(r)

)]} , R = i (5)159
yRoI
ℜ(i) =

∑R
r=1

∑N(r)

n(r)=1

{
yn(r)

ℜ
[
τ

(
xn(r)

, yn(r)

)]}

∑N(r)

n(r)=1

{
ℜ

[
τ

(
xn(r)

, yn(r)

)]} (6)160 and its side L(i) is de�ned as follows161162
LRoI

(i) =
LRoI

re(i)
+ LRoI

im(i)

2
(7)163164

LRoI
ℜ(i) = 2

∑R
r=1

∑N(r)

n(r)=1





ρn(r)c(i)
ℜ

[
τ

(
xn(r)

,yn(r)

)]

maxn(r)=1,..,N(r)

{
ℜ

[
τ

(
xn(r)

,yn(r)

)]}





∑R
r=1

∑N(r)

n(r)=1





ℜ

[
τ

(
xn(r)

,yn(r)

)]

maxn(r)=1,..,N(r)

{
ℜ

[
τ

(
xn(r)

,yn(r)

)]}





(8)165 where ℜ stands for the real or the imaginary part and ρn(r)c(i) =

√(
xn(r)

− xRoI
c(i)

)2
+

(
yn(r)

− yRoI
c(i)

)2
.166 Suessively, the iterative proess starts (i → i + 1). Aording to the multi-resolution167 strategy, an higher resolution level denoted by R (R = i) is adopted only for the RoI.168

DO(i−1) is disretized in N(i) square sub-domain whih number is always hosen equal to169 the essential dimension of the sattered data [Bui and Franeshetti , 1989℄. A �ner170 objet funtion pro�le is then retrieved, starting from the oarser reonstrution ahieved171 at the (i-1 )-th step, by minimizing the multi-resolution ost funtion, Φ(i), de�ned as172
7



follows:173
Φ(i)





τ (i)
(
xn(r)

, yn(r)

)
, E

v (i)
tot

(
xn(r)

, yn(r)

)
;

r = 1, ..., R = i;

n(r) = 1, ..., N(r); v = 1, ..., V





=

=
{∑V

v=1

∑M(v)

m(v)=1

∣∣∣Ev
scatt

(
xm(v)

, ym(v)

)
−

∑R
r=1

∑N(r)

n(r)=1

{
w

(
xn(r)

, yn(r)

)
τ (i)

(
xn(r)

, yn(r)

)

E
v (i)
tot

(
xn(r)

, yn(r)

)
Gext

2d

(
An(r)

, ρn(r)m(v)

)}∣∣∣
2
}

+
{∑V

v=1

∑R
r=1

∑N(r)

n(r)=1

{
w

(
xn(r)

, yn(r)

) ∣∣∣Ev
inc

(
xn(r)

, yn(r)

)
−

[
E

v (i)
tot

(
xn(r)

, yn(r)

)

−
∑N(r)

u(r)=1

{
τ (i)

(
xu(r)

, yu(r)

)
E

v (i)
tot

(
xu(r)

, yu(r)

)
Gint

2d

(
Au(r)

, ρu(r)n(r)

)}]∣∣∣
}2

} (9)where174
w(xn(r)

, yn(r)
) =





0 if (xn(r),yn(r)
) /∈ DO(i−1)

1 if (xn(r),yn(r)
) ∈ DO(i−1)and R indiates the resolution level and DO(i) denotes the area of the RoI de�ned at175 the i -th step of the iterative proedure. It should be pointed out that the de�nition of176 (??) requires not only the knowledge of the available sattered �eld in the observation177 domain [Ev

scatt

(
xm(v)

, ym(v)

)
= Ev

tot

(
xm(v)

, ym(v)

)
− Ev

inc

(
xm(v)

, ym(v)

), (
xm(v)

, ym(v)

)
∈178

DM ℄, but also that of the inident �eld in DO(i) [Ev
inc(xn(r)

, yn(r)
), (xn(r),yn(r)

) ∈ DO(i−1)℄.179 This latter information is generally not available from measurements [sine, in general,180 only the samples of Ev
inc

(
xm(v)

, ym(v)

) other than Ev
tot

(
xm(v)

, ym(v)

) are experimentally181 measured℄, therefore it should be synthetially generated by means of a suitable model of182 the eletromagneti soure.183 The multi-step proess ontinues by omputing a new RoI aording to (??)(??) and by184 estimating a new dieletri distribution through the minimization of the updated version185 of (??) until a "stationary reonstrution" is reahed [Caorsi et al., 2003℄ (i = Iopt) .186 Suh a proedure an be extended to multiple-satterers geometries by onsidering a suit-187 able lustering proedure [Caorsi et al., 2004b℄ aimed at de�ning the number of satterers188
Q belonging to the investigation domain and the regions D

(q)
O(i), q = 1, ..., Q, where the189 syntheti zoom will be performed at eah step of the iterative proess.190
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3 Modeling the Inident Field191 The inident �eld data play a ruial role in the imaging proess sine the knowledge/availability192 of Ev
inc (x, y) in the investigation domain adds new information. In fat, as it an be no-193 tied in the equation de�ning the multi-resolution ost funtion (??), it allows to de�ne194 another onstraint (??) for the problem solution then reduing the ill-posedness of the195 inverse problem [Bertero and Boai, 1998℄ sine suh a term an be also onsidered as a196 sort of �regularization term�. Clearly, an erroneous or impreise knowledge of the inident197 �eld ould onsiderably a�et the reliability of the funtional and onsequently of the198 overall imaging proess sine (??) ontrols the minimization proedure. As a matter of199 fat, in many pratial situations, the inident �eld is only available at the measurement200 points belonging to the observation domain, Ev

inc

(
xm(v)

, ym(v)

), (
xm(v)

, ym(v)

)
∈ DM .201 Suh a situation is ommonly enountered when dealing with real data beause of the202 omplexity and di�ulties in olleting reliable and independent measures in a dense grid203 of points. Hene, to fully exploit the knowledge of the inident �eld and before faing204 with the data inversion, it is mandatory to develop a suitable model able to predit the205 inident �eld radiated by the atual eletromagneti soure in the investigation domain,206

Ev
inc (x, y), (x, y) ∈ DI . Towards this aim, in the referene literature (see [Belkebir and207 Saillard, 2001℄ and the referenes ited therein), di�erent solutions have been proposed.208 They are mainly based on plane or ylindrial waves expansions, sine far-�eld onditions209 are usually satis�ed. In this paper, suh models will be analyzed and a new distributed210 model will be proposed. More in detail, let us onsider211
• the Plane-Waves Model (PW-Model) where the inident �eld is modeled as the212 superposition of a set of W plane waves213

Eυ
inc(x, y) =

W∑

w=1

Aw e−jwk0(xcosθv+ysinθv) (10)
θv being the inident angle, k0 the free-spae propagation onstant, and Aw the214 amplitude of w-th wave;215

• the Conentri-Cylindrial-Waves Model (CCW-Model) where the radiated216 �eld is represented through the superposition of ylindrial waves aording to the217 9



following expansion218
Eυ

inc(x, y) =
W∑

w=−W

AwH(2)
w (k0ρ) ejwφv (11)where Aw is an unknown oe�ient, H(2)

w indiates the seond kind w-th order219 Hankel funtion, ρ is the distane between the observation point loated at (x, y)220 and the phase enter of the radiating system where the w-th line soure is plaed221 and φv the orresponding angle;222
• the Distributed-Cylindrial-Waves Model (DCW-Model) where the atual223 soure is replaed with a linear array of equally-spaed line-soures, whih radiates224 an eletri �eld given by225

Eυ
inc(x, y) = −

k2
0

8πfε0

W∑

w=1

A (xw, yw) H
(2)
0 (k0ρw) (12)where A(xw, yw) is the unknown oe�ient related to the w-th element and ρw the226 distane between the observation point and the w-th line soure.227 Suh models are ompletely de�ned when the set of unknown oe�ients, Aw or A(xw, yw),228 have been determined. Therefore, the solution of an inverse soure problem, where the229 known terms are the values of the inident �eld measured in the observation domain230

Ev
inc

(
xm(v)

, ym(v)

), is required. More in detail, the following system has to be solved:231



Ev
inc(x1, y1)

...

...

Ev
inc(xm(v)

, ym(v)
)

...

...

Ev
inc(xM(v)

, yM(v)
)




=




G11 ... G1s ... G1S

... ... ... ... ...

... ... ... ... ...

Gm1 ... Gms ... GmS

... ... ... ... ...

... ... ... ... ...

GM1 ... GMs ... GMS







I1

...

...

Is

...

...

IS




(13)
or in a more onise form232

[E] = [G] [I] (14)10



where (a) for the PW -model Gms = e−jsk0dm , dm = xmcosθv + ymsinθv, and Is =233
As, s = 1, ..., S, S = W ; (b) for the CCW -model Gms = H(2)

s (k0ρm) ejsφv , ρm =234
√

(xm − xsource)2 + (ym − ysource)2, (xsource, ysource) being the loation of the soure, and235
Is = As−1−W , s = 1, ..., S, S = 2W+1; () for theDCW -modelGms = −

k2
0

8πfε0
H

(2)
0 (k0ρms),236

ρms =
√

(xm − xs)2 + (ym − ys)2, and Is = A (xs, ys), s = 1, ..., S, S = W .237 Unfortunately, (??) involves the limitations typial of an inverse-soure problem (see for238 example, [Devaney and Sherman, 1982℄). In partiular, [G] is ill-onditioned and the239 solution is usually non-stable and non-unique. Now, the problem of determining [I] from240 the knowledge of the inident �eld an be reast as the inversion of the linear operator241
[G] through the SVD-deomposition [Natterer, 1986℄242243

[I] = [G]+ [E] (15)where244
[G]+ = [V] [Γ]−1 [U]∗ (16)and245246

[Γ]−1 =




1/γ1 ... 0

... 1/γs ...

0 ... 1/γS




(17)Owing of the properties of [G], the sequene of singular values {γs}
S

s=1 will be dereasing247 and onvergent to zero. Consequently, the solution of equation (??) does not ontinuously248 depend on problem data and the unavoidable presene of the noise, due to measurement249 errors as well as to an inaurate model of the experimental setup, ould produe an250 unreliable soure synthesis.251 In the next setion, an exhaustive numerial analysis will be arried out to assess the ro-252 bustness of the IMSA against the error in the inident �eld data and to better understand253 �how� and �how muh� the model of the atual eletromagneti soure a�ets the IMSA254 performanes.255
11



4 Numerial Analysis256 In this setion, suh an assessment will be performed by onsidering di�erent targets and257 starting from experimental data. The sattered data refers to the dataset available at258 the �Institute Fresnel� - Marseille, Frane�. As desribed in [Belkebir and Saillard, 2001;259 Testorf and Fiddy, 2001; Marklein et al., 2001℄ and skethed in Figure 2, the bistati260 radar measurement system onsists of an emitting antenna plaed at rs = 720 ± 3mm261 from the enter of the experimental setup and a reeiver whih ollets equally-spaed262 (5◦) measurements of Ev
tot

(
xm(v)

, ym(v)

) and Ev
inc

(
xm(v)

, ym(v)

) on a irular investigation263 domain of radius rm = 760±3mm. Note the presene of a blind-setor of θl = 120◦ around264 the emitting antenna (Figure 2). The satterers onsidered in the following experiments265 are shown in Figs 2(a)-() for referene.266 In the �rst example [Fig. 2(a)℄, we will onsider the irular dieletri pro�le (Lref =267
30 mm in diameter) positioned about 30 mm from the enter of the experimental setup268 (xcref

= 0.0, ycref
= −30 mm) and haraterized by a homogeneous permittivity εr(x, y) =269

3.0 ± 0.3 [τ(x, y) = 2.0 ± 0.3℄. The square investigation domain, LDI = 30 cm sided,270 is partitioned in N = 100 homogeneous disretization domains and the reonstrution is271 performed by exploiting all the available measures (M(v) = 49, v = 1, ..., V ) and views272 (V = 36), but using mono-frequeny data (f = 4 GHz).273 The performanes of the IMSA in terms of quantitative as well as qualitative imaging have274 been assessed onsidering neessarily the State Term2 during the minimization of the ost275 funtion (??) and thus introduing the information-ontent of the inident eletri �eld.276 To do this, two simple models for the �eld emitted by the probing antenna have been277 preliminary taken into aount. The �rst one represents the radiated �eld with a plane278 wave (W = S = 1) , the other with a ylindrial wave (W = 0, S = 1). The amplitudes of279 the modeled inident waves are estimated aording to the SVD-based proedure detailed280 in Set. 3 starting from the knowledge of the values of the inident �eld measured in the281 forward diretion and available diretly from the experimental dataset. They turn out to282 be ∣∣∣A(PW−Model)
w=1

∣∣∣ = 1.23 and ∣∣∣A(CCW−Model)
w=0

∣∣∣ = 17.27, respetively.283 In spite of the inauray in reproduing the values of the inident �eld olleted at the284 2Some examples of algorithms employing only the Data Term an be found in the speial setion[Belkebir and Saillard , 2001℄. 12



measurement points [Figs. 3(a)-(d)℄, starting from suh rough models the IMSA is able285 to loalize the unknown target with a satisfatory degree of auray as shown in Fig. 4286 and on�rmed by the geometri parameters reported in Tab. I.287 As far as the single-plane-wave model is onerned, it should be pointed out that the288 reonstruted ontrast3 is haraterized by an average value of the objet funtion equal289 to τ = 2.1, then very lose to the atual value of the real target. However, several290 pixels belonging to the area of the referene pro�le present a larger objet funtion values291 [τ(xn, yn) = 2.5℄ and the retrieved objet ontour does not aurately reprodue a irular292 shape.293 With respet to the PW model, a better reonstrution is obtained when a little more294 omplex soure model (i.e., the single CW-Model) is used as it an be observed in Fig. 4(b)295 and inferred from the values of the error �gures (whih quantify the qualitative imaging296 of the satterer under test) given in Tab. II and de�ned as follows297
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 × 100 q = 1, ..., Q(Iopt) (19)where the sub-sript �ref � refers to the atual pro�le.299 Aording to the indiations drawn from these experiments, whih point out that even a300 rough representation of the inident �eld signi�antly bene�ts the inversion of the sat-301 tered �eld data, the suessive proedural step will be aimed at re�ning the numerial302 model of the eletromagneti soure to further improve the e�etiveness of the retrieval303 proess. However, it should be notied out that using a wrong, even though omplex,304 model might atually degrade the reonstrution, thus great are is needed in de�ning305 the most suitable omplex model. In order to point out suh a onept, the problem306 has been studied onsidering the previous sattering geometry, but using numerial �mea-307 sured� data with a ontrollable degree of noise. More in detail, the following analysis308 has been arried out. Di�erent eletromagneti soures have been onsidered to illumi-309 nate the senario under test (i.e., �PW-Soure�, �CCW-Soure�, and �DCW-Soure�) and310 3If not spei�ed, the IMSA is used to reonstrut the real part of the objet funtion.13



starting from the values of the inident �eld synthetially omputed in the observation311 domain Ev
inc

(
xm(v)

, ym(v)

), (
xm(v)

, ym(v)

)
∈ DM , various soure models (i.e., �PW-Model �,312 �CCW-Model �, and �DCW-Model �) have been synthesized. Then, a noise haraterized313 by a SNR = 20 dB has been superimposed to the data and the reonstrution proess has314 been arried out starting from the di�erent soure models previously determined. The315 obtained results in terms of qualitative (??)-(??) and quantitative error �gures ξ(j)de�ned316 as317

ξ(j) =
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}
× 100 R = Sopt (20)where N

(j)
(r) an range over the whole investigation domain (j ⇒ tot), or over the area318 where the atual satterer is loated (j ⇒ int), or over the bakground belonging to the319 investigation domain (j ⇒ ext), are reported in Tab. III. As expeted, the use of a model320 orresponding to the atual soure turns out to be the most suitable hoie and more321 omplex modeling ause larger errors. As an example, let us onsider the PW-soure.322 When the pro�le retrieval is performed using the PW-model then the reonstrution error323 is equal to ξtot = 0.30. Otherwise, ξ

(DCW−Model)
tot = 13.30 and ξ

(CCW−Model)
tot = 20.53.324 Similar onlusions hold true also for other illuminations and soure models in terms of325 quantitative error �gures, as well.326 Consequently, the more omplex soure on�gurations desribed in Setion 3, whih on-327 sider the superposition of plane waves or of ylindrial waves, have been taken into aount328 in order to de�ne the most suitable soure model. In suh a framework sine the numeri-329 al desription of the atual soure in the real measurement setup is only partially or not330 generally available, the optimal model has to be de�ned by looking for the most suitable331 number of the unknown soure oe�ients, S, and orresponding values, As, s = 1, ..., S.332 For eah of the soure models, S has been hosen by looking for the on�guration that333 provides a satisfatory mathing between measured and numerially-omputed values of334 the inident �eld in the observation domain. Suh a mathing has been evaluated by335 omputing the following parameter336
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2 (21)338 where Re {·} and Im {·} stand for the real and imaginary part, respetively, and the339 super-sript ˜ indiates a numerially-estimated quantity.340 In Fig. 5, the behavior of the �mathing parameter� is displayed for di�erent soure341 models. As an be observed, µ redues when S inreases. Thus, the optimal number of342 soure oe�ients, Sopt, has been heuristially-de�ned as the value belonging to a stability343 region. Consequently, the optimal values have been set to: S
(PW−Model)
opt = 20 (where344

µ ≃ 4×10−4) and S
(CCW−Model)
opt = 11 (where µ ≃ 10−4). The amplitudes of the weighting345 soure oe�ients are shown in Fig. 6. The magnitudes of the CCW-Model oe�ients346 [Fig. 6(b)℄ are very large when ompared to those of the single PW-Model or single CCW-347 Model . As expeted, the orresponding radiated-�eld distributions inside the investigation348 domain DI [Figs. 7(),(d)℄ turn out to be unaeptable (for omparison purposes, the349 plot of the inident eletri �eld omputed by means of the single CCW-Model is given350 in Figs. 7(e),(f )). Moreover, Figs. 7(a),(b) show how even the inident �eld synthesized351 by means of the PW-Model presents rather high values with respet to the distribution of352 Figs. 7(e),(f ). Sine the inident �eld is the guess value for the optimization of the internal353 �eld, a ompletely wrong starting distribution may onsiderably a�et the whole retrieval354 proedure. Aordingly, the adopted inversion strategy is not able to orretly estimate355 neither the shape nor the dieletri distribution of the unknown satterer (Fig. 8). As far356 as the ase related to the PW-Model is onerned, it should be noted that the iterative357 proess is stopped at the fourth step (Tab. I) and the quality of the reonstruted pro�le358 (Fig. 8(a)) turns out to be strongly redued (if ompared to that of Fig. 4(a)) in terms359 of qualitative as well as quantitative imaging. Similar indiations an be drawn from the360 analysis of the retrieved distribution obtained with the CCW-Model . However, reduing361 the number of terms in the expansion ould lead to better results like, for example, those362 presented in the speial setion [Belkebir and Saillard , 2001℄ and those obtained in this363 15



work by using S=1. Notwithstanding this, the value suggested by the indiator has been364 used in the proposed experiments.365 The obtained disouraging results an be properly motivated by observing the singular-366 values spetrum (Fig. 9) and by omputing the ondition number η of the linear matrix op-367 erator [G] (de�ned as follows η = maxp{σp}
minp{σp}

), whih learly point out an intrinsi instability368 of the system and the ill-onditioning of the problem. In more detail, the ill-onditioning369 index turns out to be equal to η(PW−Model) = 41.07 and to η(CCW−Model) = 5.62 × 107,370 respetively.371 A possible solution for suitably de�ning the soure model and, onsequently, for improving372 the resolution auray of the retrieval proess (alternative to employ a trunated-SVD373 regularization algorithm as suggested by the step-like behavior of the singular-values spe-374 trum), is to de�ne a spatially-distributed line-soure model as desribed in Set. 3.375 Aording to the proedure for hoosing the number as well as the magnitude of the soure376 weights previously desribed, a reasonable on�guration is S
(DCW−Model)
opt = 15 (Fig. 5)377 with the oe�ients distributed as shown in Fig. 10(a). For ompleteness, in order to378 give an idea of the �tting between measured and omputed data, Figs. 10(b)-() display379 the values of the amplitude and phase of the radiated-�eld omputed in the observation380 domain. Moreover, Fig. 11 gives a gray-level representation of the inident eletri �eld381 synthesized in the investigation domain.382 The use of suh a model for the inident �eld allows a signi�ant improvement in the383 reonstrution. Suh a result an be appreiated in Fig. 12 where the gray-level represen-384 tation of the objet funtion is given. In partiular, for this representative on�guration,385 also the intermediate reonstrutions [Figs. 12(a)-()℄ of the multi-saling proess are386 reported in order to show how the pro�le improves during the iterative proedure. As387 it an be notied, even though the omputational domain is not �nely disretized at the388 �st step [Fig. 12(a)℄, the IMSA iteratively inreases the resolution in the RoI in order to389 obtain an aurate disretization at the onvergene step [Fig. 12()℄ where a meaning-390 ful pro�le is obtained. As a matter of fat, the loalization as well as the dimensioning391 error of the onvergene step [Fig 12()℄ redues with respet to the other soure models392 (ρ(DCW−Model) = 0.045λ0, ∆(DCW−Model) ≈ 9 - Tab. II) and the homogeneity of the atual393 16



satterer is better reprodued. As far as the explanation of the better performane of394 suh an approah with respet to the other soure-synthesis modalities is onerned, it is395 mainly motivated by the faithful and stable reprodution [Figs. 10(b)-()℄ of the atual396 values of the �eld measured in the observation domain.397 To further assess the robustness and the e�etiveness of the IMSA, by validating the398 radiated-�eld synthesis as well, the seond example onsiders a multiple-satterers senario399 (�twodielTM_8f.exp� - [Belkebir and Saillard , 2001℄). Under the same assumptions of the400 previous example in terms of measures, radiation frequeny, and views as well as extension401 and partitioning of the investigation domain, two dieletri (τ (q) = 2.0± 0.3, q = 1, ..., Q,402
Q = 2) irular (L(q)

ref = 30 mm in diameter) ylinders are plaed 90 mm from eah other403 [Fig. 2(b)℄.404 Fig. 13 shows the results of the reonstrution proess in orrespondene with di�erent405 soure models. As an be seen, whatever the stable soure synthesis the two targets406 are orretly loated and dimensioned with a satisfatory auray. Certainly, the more407 sophistiated synthesis approah (DCW-Model - S = 15) allows to obtain a better reon-408 strution as on�rmed by the geometri parameters of the retrieved pro�les resumed in409 Tab. IV. In order to show the apabilities of the IMSA in estimating the lossless nature410 of the dieletri satterers, the reonstrution orresponding to the DCW-Model has been411 run using a blind inversion sheme, that is without a-priori information of its harater-412 istis. Suh assumption does not exploit the alternative de�nition of the solution spae,413 whih allows to reonstrut only the real part of the objet funtion. Aordingly, Fig.414 13(d) points out that the minimum of the imaginary part of the objet funtion is 0.08415 (orresponding to σ = 1.78 × 10−3 S
m
).416 Finally, in order to omplete the validation of the approah, the last example deals with417 a metalli struture. The satterer is an U-shaped metalli ylinder [Fig. 2()℄ and the418 reonstrution is performed starting from the omplete data olletion of the dataset419 �uTM_shaped.exp� [Belkebir and Saillard , 2001℄ at the working frequeny of f = 4 GHz.420 Aording to the strategy proposed in [Van den Berg et al., 1995℄, only the imaginary part421 of the objet funtion has been retrieved onsidering a lower bound in the reonstruted422 ontrast and if at some iteration the estimated Im {τ(x, y)} is lower than τmax

Im = −15.0,423 17



then the ontrast is replaed by τmax
Im . As a result, the imaginary part of the retrieved424 pro�le in the on�guration with the DCW-Model for the synthesis of the radiated �eld, is425 depited in Fig. 14. At the onvergene step (Iopt = 4), the reonstrution learly reveals426 that we are dealing with a U-shaped target. The outer and the inner ontour of the �U�427 are well reprodued (even though little artifats appear) on�rming the e�etiveness of428 approah in shaping and loating dieletri as well metalli satterers.429 5 Conlusions430 The Iterative Multi-Saling Approah has been tested against experimentally-aquired431 data by fousing the attention on its robustness as regards di�erent mathematial models432 used to synthesize the inident eletri �eld. The e�etiveness of the iterative minimization433 of the ost funtional in reonstruting unknowns satterers presents a ertain degree of434 sensitivity to the model of the inident �eld used to formalize the onstraint stated by435 the State Equation. By onsidering a more omplex approximation model (DCM-Model),436 satisfatory loalizations and reonstrutions have been arried out by indiating the437 positive e�et of a suitable synthesis methodology on the inversion proess.438 However, even though an aurate approximation model generally might result in a more439 aurate reonstrution, whih omplex model is more appropriate for the inident �eld440 may depend on the measurement setup, espeially the mirowave soure on�guration.441 For example, for simple plane-wave inident �eld, using the PW-model might redue442 artifats whih result from measurement noise. So future investigations are needed by443 onsidering other experimental datasets (urrently not-available, but under development)444 to generalize the onlusions of suh an analysis.445 Moreover, the results of the numerial analysis arried out in the paper and the omparison446 with the reonstrutions obtained in the related literature suggest that improved imaging447 tehniques (e. g., multi-frequeny tehniques) or additional regularization terms may448 probably diminish the impat of the inident �eld model. Sine this point has not diretly449 investigated other researhes will be aimed at further improving the e�etiveness of the450 IMSA by onsidering multi-frequeny strategies, further regularization terms and more451 e�etive optimization algorithms for the minimization of the multi-resolution ost funtion452 18



in order to verify the above hypothesis.453
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Figure Captions531
• Figure 1. Geometry of the problem.532
• Figure 2. Numerial Experiments: (a) o�-entered homogeneous irular ylin-533 der (Real dataset �Marseille� [Belkebir and Saillard , 2001℄ - �dielTM_de8f.exp�),534 (b) two homogeneous irular ylinders (Real dataset �Marseille� [Belkebir and Sail-535 lard , 2001℄ - �twodielTM_8f.exp�), and () U-shaped metalli ylinder (Real dataset536 �Marseille� [Belkebir and Saillard , 2001℄ - �uTM_shaped.exp�).537
• Figure 3. Comparisons between the inident �eld measured in DM and the values538 synthesized by means of the PW-Model ((a) amplitude and (b) phase), and CCW-539 Model (() amplitude and (d) phase).540
• Figure 4. Reonstrutions of an o�-entered homogeneous irular ylinder (Real541 dataset �Marseille� [Belkebir and Saillard , 2001℄ - �dielTM_de8f.exp�) ahieved542 at the onvergene step of the inversion proedure by modeling the radiated �eld543 through (a) the single PW-Model and (b) the single CCW-Model .544
• Figure 5. Fitting between omputed and measured values of the radiated �eld545 in the observation domain versus various numbers of soure oe�ients, S, and for546 di�erent soure models.547
• Figure 6. Behavior of weighting soure oe�ients as a funtion of the index w for548 (a) the PW-Model (S = 20) and for (b) the CCW-Model (S = 11).549
• Figure 7. Plots of the radiated �elds (V = 1) omputed by means of the PW-Model550 (S = 20) (amplitude (a) and phase (b) distributions), the CCW-Model (S = 11)551 (amplitude () and phase (d) distributions), and the single CCW-Model (S = 1)552 (amplitude (e) and phase (f ) distributions).553
• Figure 8. Reonstrutions of an o�-entered homogeneous irular ylinder (Real554 dataset �Marseille� [Belkebir and Saillard , 2001℄ - �dielTM_de8f.exp�) ahieved555 at the onvergene step of the inversion proedure by modeling the radiated �eld556 through (a) the PW-Model (S = 20) and (b) the CCW-Model (S = 11).557 23



• Figure 9. Normalized behavior of the singular values of [G] for (a) the PW-Model558 (S = 20) and for (b) the CCW-Model (S = 11).559
• Figure 10. Radiated-�eld modeling: DCW-Model (S = 15). (a) Behavior of560 weighting soure oe�ients as a funtion of the index w. Comparison between the561 inident �eld measured in DM and the numerially-omputed values ((b) amplitude562 and () phase).563
• Figure 11. Plots of the radiated �eld (V = 1) omputed by means of the DCW-564 Model (S = 15) (amplitude (e) and phase (f ) distributions).565
• Figure 12. Reonstrution of an o�-entered homogeneous irular ylinder (Real566 dataset �Marseille� [Belkebir and Saillard , 2001℄ - �dielTM_de8f.exp�) ahieved at567 (a) i=1, (b) i=2 and () at the onvergene step (i=3) of the inversion proedure568 by modeling the radiated �eld through the DCW-Model (S = 15).569
• Figure 13. Reonstrutions of two homogeneous irular ylinders (Real dataset570 �Marseille� [Belkebir and Saillard , 2001℄ - �twodielTM_8f.exp�) ahieved at the on-571 vergene step of the inversion proedure by modeling the radiated �eld through (a)572 the single PW-Model , (b) the single CCW-Model and the DCW-Model (S = 15)573 [() real part and (d) imaginary part℄.574
• Figure 14. Reonstrution of an U-shaped metalli ylinder (Real dataset �Mar-575 seille� [Belkebir and Saillard , 2001℄ - �uTM_shaped.exp�) ahieved at the onver-576 gene step of the inversion proedure by modeling the radiated �eld through the577 DCW-Model (S = 15).578
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Table Captions579
• Table I. Reonstrution of an o�-entered homogeneous irular ylinder (Real580 dataset �Marseille� [Belkebir and Saillard, 2001℄ - �dielTM_de8f.exp�) - Estimated581 geometrial parameters.582
• Table II. Reonstrution of an o�-entered homogeneous irular ylinder (Real583 dataset �Marseille� [Belkebir and Saillard, 2001℄ - �dielTM_de8f.exp�) - Error �g-584 ures.585
• Table III.Reonstrution of an o�-entered homogeneous irular ylinder (SNR =586

20 dB) for di�erent illuminations and onsidering various eletromagneti soures -587 Quantitative error �gures [(a) ξtot , (b) ξint and () ξext℄.588
• Table IV. Reonstrution of two homogeneous irular ylinders (Real dataset589 �Marseille� [Belkebir and Saillard, 2001℄ - �twodielTM_8f.exp�) - Estimated geomet-590 rial parameters (d(Iopt) =
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Iopt xc(Iopt)
(mm) yc(Iopt)

(mm) L(Iopt) (mm)Data Equation Only 4 3.00 −16.00 58.00PW-Model (W = S = 1) 4 −2.00 −26.10 34.00PW-Model (W = S = 20) 4 −2.41 −22.73 45.44CCW-Model (W = 0, S = 1) 2 −1.81 −26.10 35.20CCW-Model (W = 5, S = 11) 2 1.57 −10.23 60.08DCW-Model (W = S = 15) 3 −1.90 −26.10 27.40
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806807
ξtot PW-Model CCW-Model DCW-ModelPW-Soure 0.30 20.53 13.30CCW-Soure 16.61 0.37 0.45DCW-Soure 16.44 0.36 0.34

808
(a)809810811812

ξint PW-Model CCW-Model DCW-ModelPW-Soure 13.79 58.64 44.66CCW-Soure 20.31 16.38 17.00DCW-Soure 19.98 25.22 15.29

813
(b)814815816817

ξext PW-Model CCW-Model DCW-ModelPW-Soure 0.20 19.71 13.06CCW-Soure 16.58 0.25 0.32DCW-Soure 16.42 0.17 0.22

818
()819820821 Table III - D. Franeshini et al ., �On the E�ets of the Eletromagneti...�822 45



823824825

PW-Model CCW-Model DCW-Model(W = S = 1) (W = 0, S = 1) (W = S = 15)
x(1)

c(Iopt)
(mm) 12.42 12.89 13.17

y(1)
c(Iopt)

(mm) 40.77 42.96 45.87

L
(1)
(Iopt)

(mm) 46.94 40.50 32.70

x(2)
c(Iopt)

(mm) 2.25 2.23 1.88

y(2)
c(Iopt)

(mm) −45.48 −44.91 −45.27

L
(2)
(Iopt)

(mm) 43.70 40.86 32.76

d(Iopt) (mm) 86.84 88.50 91.84

Iopt 3 3 3

826827828829830831TableIV-D.Franeshinietal.,�OntheE�etsoftheEletromagneti...�
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