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On the E�e
ts of the Ele
tromagneti
 Sour
e Modeling19 in the Iterative Multis
aling Method2021 Davide Fran
es
hini, Massimo Donelli, and Andrea Massa2223 Abstra
t24 The validation against experimental data is a fundamental step in the assessment of25 the e�e
tiveness of a mi
rowave imaging algorithm. It is aimed at pointing out the26 limitations of the numeri
al pro
edure for a su

essive appli
ation in a real environ-27 ment. Towards this end, this paper evaluates the re
onstru
tion 
apabilities of the28 Iterative Multi-S
aling Approa
h (IMSA) when dealing with experimental data by29 
onsidering di�erent numeri
al models of the illuminating setup. In fa
t, sin
e the30 in
ident ele
tromagneti
 �eld is usually 
olle
ted in a limited set of measurement31 points and inversion methods based on the use of the �state� equation require the32 knowledge of the radiated �eld in a �ner grid of positions, an e�e
tive numeri
al33 pro
edure for the synthesis of the ele
tromagneti
 sour
e is generally needed. Con-34 sequently, the performan
es of the inversion pro
ess may be strongly a�e
ted by the35 numeri
al model and, in su
h a 
ase, a great 
are should be devoted to this key issue36 to guarantee suitable and reliable re
onstru
tions.3738 Keywords:39 Mi
rowave Imaging, Inverse S
attering, Iterative Multi-s
aling Method, Sour
e Modeling.40 Index Terms:41 6982 Radio S
ien
e: Tomography and imaging; 0629 Ele
tromagneti
s: Inverse s
attering;42 0669 Ele
tromagneti
s: S
attering and di�ra
tion.43
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1 Introdu
tion44 Within the framework of the medi
ine [Louis, 1992℄ and biomedi
al engineering (see45 for example [Liu et al., 2003℄ and the referen
es 
ited therein), without forgetting the46 industrial quality 
ontrol in industrial pro
esses [Hoole et al., 1991℄ and the subsurfa
e47 sensing [Dubey et al., 1995; Daniels, 1996℄, many di�erent appli
ations require a non-48 invasive sensing of ina

essible areas. Towards this end, mi
rowave imaging methodologies49 [Steinberg, 1991℄ have re
ently gained a growing attention sin
e they allow to retrieve50 information on the environment probed with ele
tromagneti
 �elds by fully exploiting the51 s
attering phenomena [Colton and Kress, 1992℄.52 Unfortunately, the inverse problem to be fa
ed is intrinsi
ally nonlinear, ill-posed, and53 non-unique [Denisov, 1999℄. In parti
ular, the ill-posedness and the non-uniqueness arise54 from the limited amount of information 
olle
table during the a
quisition of the s
attered55 �eld. The number of independent s
attering data is limited [Bertero et al., 1995; Bu

i and56 Fran
es
hetti, 1989℄ and they 
an only be used to retrieve a �nite number of parameters57 of the unknown 
ontrast fun
tion. To fully exploit su
h an information and to a
hieve a58 suitable resolution a

ura
y, several multi-resolution strategies have been proposed [Miller59 and Willsky, 1996a, 1996b; Bu

i et al., 2000a, 2000b; Baussard et al., 2004a, 2004b℄.60 The Iterative Multi-S
aling Approa
h belongs to this 
lass of algorithms [Caorsi et al.,61 2003℄. The unknown s
atterers are iteratively re
onstru
ted by 
onsidering initially a62 rough estimate of the diele
tri
 distribution1 and by enhan
ing su

essively the spatial63 resolution in a set of regions-of-interest (RoIs) where the obje
ts have been lo
alized.64 Su
h a strategy is mathemati
ally formulated by de�ning a suitable multi-resolution 
ost65 fun
tion whose global minimum is assumed as the estimated solution. The fun
tional66 is iteratively minimized by using a 
onjugate-gradient-based pro
edure [Kleinman and67 Van den Berg, 1992℄, but sto
hasti
 [Massa, 2002℄ or hybrid algorithms 
an be suitably68 applied.69 In order to validate su
h an approa
h, the multi-resolution algorithm has been tested70 against experimental data [Caorsi et al., 2004a℄ 
olle
ted in a 
ontrolled environment71 1The IMSA is initialized by 
onsidering the free spa
e distribution, then no a-priori information onthe s
enario under test is exploited. Moreover, the initialization of the intermediate steps is obtainedfrom the re
onstru
tion of the previous step with a simple mapping of the retrieved pro�le in the newdis
retization of the RoI. 3



[Belkebir and Saillard, 2001℄, sin
e syntheti
ally-generated data 
an give only limited72 indi
ations and they model an ideal s
enario.73 In dealing with real data, one of the key issue is the modeling of the ele
tromagneti
74 sour
e or of the related radiated �eld. In general, the ele
tromagneti
 �eld emitted by the75 probing system is measured only in the observation domain. However, iterative methods76 based on �Data� and �State� equations require the knowledge of the in
ident �eld (i.e., the77 �eld without the s
atterers) generated from the sour
e in the investigation domain. To-78 wards this end, an a

urate but simply model (i.e., requiring a reasonable 
omputational79 burden) of the sour
e should be developed. Compli
ated numeri
al models a

urately re-80 produ
e real data, but they are di�
ult to be implemented starting from a limited number81 of samples of the radiated ele
tromagneti
 �eld 
olle
ted in a portion of the observation82 domain. On the other hand, a rough model 
ould introdu
e erroneous 
onstraints to83 the re
onstru
tion pro
ess. Nevertheless, whatever the sour
e model, an e�e
tive inver-84 sion pro
edure should be able to re
onstru
t the s
atterer under test with an a

eptable85 a

ura
y a

ording to its robustness to the noise.86 In this framework, to assess the e�e
tiveness and the robustness of the IMSA, the results87 of a set of experiments, where di�erent models for approximating the illuminating sour
e88 are 
onsidered, will be shown.89 The paper is organized as follows. In Se
tion 2, the statement of the inverse problem90 and the mathemati
al formulation of the IMSA will be brie�y resumed, while in Se
tion91 3 the numeri
al models used to synthesize the probing ele
tromagneti
 sour
e will be92 des
ribed. A numeri
al validation and an exhaustive analysis of the dependen
e of the93 re
onstru
tion a

ura
y on the modeling of the radiated �eld will be 
arried out in Se
tion94 4 by 
onsidering some experimental test 
ases. Finally, some 
on
lusions will be drawn95 (Se
t. 5).96 2 Mathemati
al Formulation97 The inversion pro
edure will be illustrated referring to a two-dimensional geometry (Fig-98 ure 1). Let us 
onsider an investigation domain DI , where an unknown s
atterer is99 supposed to be lo
ated. The embedding medium is assumed lossless, non-magneti
, and100 4




hara
terized by a diele
tri
 permittivity ε0. Su
h a s
enario is illuminated by a set of101
V in
ident mono
hromati
 ele
tromagneti
 �elds Ev

inc(x, y), v = 1, ..., V , and the 
orre-102 sponding s
attered �elds Ev
scatt

(
xm(v)

, ym(v)

), v = 1, ..., V , are available (
omputed as the103 di�eren
e between the �eld with Ev
tot and without the s
atterer Ev

inc, Ev
scatt = Ev

tot −Ev
inc)104 in m(v) = 1, ..., M(v), v = 1, ..., V , positions belonging to the observation domain DM . The105 obje
t is des
ribed by a 
ontrast fun
tion τ(x, y) = εr(x, y) − 1 − j σ(x, y)

2πfε0
, (x, y) ∈ DI ,106

εr(x, y) and σ(x, y) being the diele
tri
 permittivity and the ele
tri
 
ondu
tivity, respe
-107 tively.108 The arising s
attering phenomena are mathemati
ally des
ribed through the well-known109 Lippmann-S
hwinger integral equations [Colton and Kress, 1992℄:110111112
Ev

scatt(xm(v), ym(v)) = k2
0

∫
DI

G2d(xm(v), ym(v)|x
′, y′)τ(x′, y′)Eυ

tot(x
′, y′)dx′dy′, m(v) = 1, ..., M(v)

(xm(v)
, ym(v)

) ∈ DM v = 1, ..., V(1)(Data Equation)113114115
Ev

inc(x, y) = Ev
tot(x, y) − k2

0

∫

DI

G2d(x, y|x′, y′)τ(x′, y′)Ev
tot(x

′, y′)dx′dy′ (x, y) ∈ DI (2)(State Equation)116117 where G2d denotes the Green fun
tion of the ba
kground medium [Jones, 1964℄.118 Sin
e the problem asso
iated with (??) is ill-posed (see [Groets
h, 1993℄ and [Vogel, 2002℄)119 the system matrix after dis
retization of the Data Equation (a

ording to the Ri
hmond's120 pro
edure [Ri
hmond, 1965℄) is highly ill-
onditioned, and, hen
e the problem is extremely121 sensitive to the the noise. To remedy this ill-
onditioning, a regularization is needed.122 Thus, the problem is then reformulated in �nding the unknown 
ontrast fun
tion that123 minimizes a suitable 
ost fun
tion generally de�ned as follows124
Φ {τ (xn, y) , Ev

tot (xn, yn) ; n = 1, ..., N ; v = 1, ..., V } =

=
∑V

v=1

∑M(v)

m(v)=1

∣∣∣Ev
scatt

(
xm(v)

, ym(v)

)
−

∑N
n=1

{
τ (xn, yn) Ev

tot (xn, yn)Gext
2d

(
An, ρnm(v)

)}∣∣∣
2

+
∑V

v=1

∑N
n=1

∣∣∣Ev
inc (xn, yn) −

[
Ev

tot (xn, yn) −
∑N

u=1 {τ (xu, yu) Ev
tot (xu, yu) Gint

2d (Au, ρun)}
]∣∣∣

2(3)5



where Gint
2d and Gext

2d indi
ate the dis
retized forms of the internal and external Green's125 operators [Colton and Kress, 1992℄, ρnm(v)
=

√(
xn − xm(v)

)2
+

(
yn − ym(v)

)2, ρun =126
√

(xu − xn)2 + (yu − yn)
2 and An (Au) is the area of the n-th (u-th) square dis
retiza-127 tion domain. In parti
ular, the �rst term of (??) enfor
es �delity to the s
attered data in128 the observation domain (Ev

scatt(xm(v)
, ym(v)

), (xm(v)
, ym(v)

) ∈ DM) and it amounts to the129 residual error with respe
t to the s
attered �eld 
omputed from the Data Equation (??).130 The se
ond term is a regularization term equal to the residual error with respe
t to the131 in
ident �eld in the investigation domain (Ev
inc(xn, yn), (xn, yn) ∈ DI) 
omputed from132 the State Equation (??).133 However, due to the limited amount of information 
ontent in the input data [Bu

i and134 Fran
es
hetti, 1989℄, it would be problemati
 to parametrize the investigation domain in135 terms of a large number N of pixel values (in order to a
hieve a satisfying resolution136 level in the re
onstru
ted image). To over
ome this drawba
k, an initial uniform (
oarse)137 dis
retization is used and su

essively an iterative parametrization of the test domain138 allows to adaptively in
rease the resolution level only in the region-of-interest of the139 investigation area thus a
hieving the required re
onstru
tion a

ura
y [Caorsi et al., 2003℄.140 To retrieve the unknown s
atterer (i.e., an obje
t fun
tion that better �ts the problem141 data, (Ev

scatt(xm(v)
, ym(v)

), Ev
inc(x, y)), Eqs. (??) and (??) are dis
retized a

ording to the142 Ri
hmond's pro
edure [Ri
hmond, 1965℄. Moreover, to better exploit the limited infor-143 mation 
ontent of the s
attering data, an adaptive multi-resolution strategy is adopted144 [Caorsi et al., 2003℄.145 More in detail, su
h an adaptive multi-resolution algorithm 
an be brie�y des
ribed as146 follows. Firstly, the IMSA 
onsiders (i = 0, i being the step index) an homogeneous147 dis
retization of the investigation domain with a number of dis
retization domains N(0)148 equal to the essential dimension of the s
attered data and 
omputed a

ording to the149 
riterion de�ned in [Isernia et al., 2001℄. Then, a �
oarse� re
onstru
tion of the investi-150 gation domain is yielded by minimizing (??) starting from the free-spa
e 
on�guration151 [τ(xn(0)

, yn(0)
) = 0.0 and Ev

tot(xn(0)
, yn(0)

) = Ev
inc(xn(0)

, yn(0)
)℄ in order to assess the robust-152 ness of the overall approa
h with respe
t to the �starting guess� in �worst-
ase�. After the153 minimization, where a set of 
onjugate-gradient iterations (k being the iteration index)154 6



is performed not modifying the dis
retization grid, a new fo
used investigation domain155 (RoI), DO(i), i = 0, is de�ned. Su
h a squared area is 
entered at156
xRoI

c(i)
=

xRoI
re(i)

+ xRoI
im(i)

2
, yRoI

c(i)
=

yRoI
re(i)

+ yRoI
im(i)

2
(4)where xRoI

re(i)
, xRoI

im(i)
, yRoI

re(i)
and yRoI

im(i)
are de�ned as157158

xRoI
ℜ(i) =

∑R

r=1

∑N(r)
n(r)=1

{
xn(r)

ℜ

[
τ

(
xn(r)

,yn(r)

)]}

∑N(r)
n(r)=1

{
ℜ

[
τ

(
xn(r)

,yn(r)

)]} , R = i (5)159
yRoI
ℜ(i) =

∑R
r=1

∑N(r)

n(r)=1

{
yn(r)

ℜ
[
τ

(
xn(r)

, yn(r)

)]}

∑N(r)

n(r)=1

{
ℜ

[
τ

(
xn(r)

, yn(r)

)]} (6)160 and its side L(i) is de�ned as follows161162
LRoI

(i) =
LRoI

re(i)
+ LRoI

im(i)

2
(7)163164

LRoI
ℜ(i) = 2

∑R
r=1

∑N(r)

n(r)=1





ρn(r)c(i)
ℜ

[
τ

(
xn(r)

,yn(r)

)]

maxn(r)=1,..,N(r)

{
ℜ

[
τ

(
xn(r)

,yn(r)

)]}





∑R
r=1

∑N(r)

n(r)=1





ℜ

[
τ

(
xn(r)

,yn(r)

)]

maxn(r)=1,..,N(r)

{
ℜ

[
τ

(
xn(r)

,yn(r)

)]}





(8)165 where ℜ stands for the real or the imaginary part and ρn(r)c(i) =

√(
xn(r)

− xRoI
c(i)

)2
+

(
yn(r)

− yRoI
c(i)

)2
.166 Su

essively, the iterative pro
ess starts (i → i + 1). A

ording to the multi-resolution167 strategy, an higher resolution level denoted by R (R = i) is adopted only for the RoI.168

DO(i−1) is dis
retized in N(i) square sub-domain whi
h number is always 
hosen equal to169 the essential dimension of the s
attered data [Bu

i and Fran
es
hetti , 1989℄. A �ner170 obje
t fun
tion pro�le is then retrieved, starting from the 
oarser re
onstru
tion a
hieved171 at the (i-1 )-th step, by minimizing the multi-resolution 
ost fun
tion, Φ(i), de�ned as172
7



follows:173
Φ(i)





τ (i)
(
xn(r)

, yn(r)

)
, E

v (i)
tot

(
xn(r)

, yn(r)

)
;

r = 1, ..., R = i;

n(r) = 1, ..., N(r); v = 1, ..., V





=

=
{∑V

v=1

∑M(v)

m(v)=1

∣∣∣Ev
scatt

(
xm(v)

, ym(v)

)
−

∑R
r=1

∑N(r)

n(r)=1

{
w

(
xn(r)

, yn(r)

)
τ (i)

(
xn(r)

, yn(r)

)

E
v (i)
tot

(
xn(r)

, yn(r)

)
Gext

2d

(
An(r)

, ρn(r)m(v)

)}∣∣∣
2
}

+
{∑V

v=1

∑R
r=1

∑N(r)

n(r)=1

{
w

(
xn(r)

, yn(r)

) ∣∣∣Ev
inc

(
xn(r)

, yn(r)

)
−

[
E

v (i)
tot

(
xn(r)

, yn(r)

)

−
∑N(r)

u(r)=1

{
τ (i)

(
xu(r)

, yu(r)

)
E

v (i)
tot

(
xu(r)

, yu(r)

)
Gint

2d

(
Au(r)

, ρu(r)n(r)

)}]∣∣∣
}2

} (9)where174
w(xn(r)

, yn(r)
) =





0 if (xn(r),yn(r)
) /∈ DO(i−1)

1 if (xn(r),yn(r)
) ∈ DO(i−1)and R indi
ates the resolution level and DO(i) denotes the area of the RoI de�ned at175 the i -th step of the iterative pro
edure. It should be pointed out that the de�nition of176 (??) requires not only the knowledge of the available s
attered �eld in the observation177 domain [Ev

scatt

(
xm(v)

, ym(v)

)
= Ev

tot

(
xm(v)

, ym(v)

)
− Ev

inc

(
xm(v)

, ym(v)

), (
xm(v)

, ym(v)

)
∈178

DM ℄, but also that of the in
ident �eld in DO(i) [Ev
inc(xn(r)

, yn(r)
), (xn(r),yn(r)

) ∈ DO(i−1)℄.179 This latter information is generally not available from measurements [sin
e, in general,180 only the samples of Ev
inc

(
xm(v)

, ym(v)

) other than Ev
tot

(
xm(v)

, ym(v)

) are experimentally181 measured℄, therefore it should be syntheti
ally generated by means of a suitable model of182 the ele
tromagneti
 sour
e.183 The multi-step pro
ess 
ontinues by 
omputing a new RoI a

ording to (??)(??) and by184 estimating a new diele
tri
 distribution through the minimization of the updated version185 of (??) until a "stationary re
onstru
tion" is rea
hed [Caorsi et al., 2003℄ (i = Iopt) .186 Su
h a pro
edure 
an be extended to multiple-s
atterers geometries by 
onsidering a suit-187 able 
lustering pro
edure [Caorsi et al., 2004b℄ aimed at de�ning the number of s
atterers188
Q belonging to the investigation domain and the regions D

(q)
O(i), q = 1, ..., Q, where the189 syntheti
 zoom will be performed at ea
h step of the iterative pro
ess.190

8



3 Modeling the In
ident Field191 The in
ident �eld data play a 
ru
ial role in the imaging pro
ess sin
e the knowledge/availability192 of Ev
inc (x, y) in the investigation domain adds new information. In fa
t, as it 
an be no-193 ti
ed in the equation de�ning the multi-resolution 
ost fun
tion (??), it allows to de�ne194 another 
onstraint (??) for the problem solution then redu
ing the ill-posedness of the195 inverse problem [Bertero and Bo

a

i, 1998℄ sin
e su
h a term 
an be also 
onsidered as a196 sort of �regularization term�. Clearly, an erroneous or impre
ise knowledge of the in
ident197 �eld 
ould 
onsiderably a�e
t the reliability of the fun
tional and 
onsequently of the198 overall imaging pro
ess sin
e (??) 
ontrols the minimization pro
edure. As a matter of199 fa
t, in many pra
ti
al situations, the in
ident �eld is only available at the measurement200 points belonging to the observation domain, Ev

inc

(
xm(v)

, ym(v)

), (
xm(v)

, ym(v)

)
∈ DM .201 Su
h a situation is 
ommonly en
ountered when dealing with real data be
ause of the202 
omplexity and di�
ulties in 
olle
ting reliable and independent measures in a dense grid203 of points. Hen
e, to fully exploit the knowledge of the in
ident �eld and before fa
ing204 with the data inversion, it is mandatory to develop a suitable model able to predi
t the205 in
ident �eld radiated by the a
tual ele
tromagneti
 sour
e in the investigation domain,206

Ev
inc (x, y), (x, y) ∈ DI . Towards this aim, in the referen
e literature (see [Belkebir and207 Saillard, 2001℄ and the referen
es 
ited therein), di�erent solutions have been proposed.208 They are mainly based on plane or 
ylindri
al waves expansions, sin
e far-�eld 
onditions209 are usually satis�ed. In this paper, su
h models will be analyzed and a new distributed210 model will be proposed. More in detail, let us 
onsider211
• the Plane-Waves Model (PW-Model) where the in
ident �eld is modeled as the212 superposition of a set of W plane waves213

Eυ
inc(x, y) =

W∑

w=1

Aw e−jwk0(xcosθv+ysinθv) (10)
θv being the in
ident angle, k0 the free-spa
e propagation 
onstant, and Aw the214 amplitude of w-th wave;215

• the Con
entri
-Cylindri
al-Waves Model (CCW-Model) where the radiated216 �eld is represented through the superposition of 
ylindri
al waves a

ording to the217 9



following expansion218
Eυ

inc(x, y) =
W∑

w=−W

AwH(2)
w (k0ρ) ejwφv (11)where Aw is an unknown 
oe�
ient, H(2)

w indi
ates the se
ond kind w-th order219 Hankel fun
tion, ρ is the distan
e between the observation point lo
ated at (x, y)220 and the phase 
enter of the radiating system where the w-th line sour
e is pla
ed221 and φv the 
orresponding angle;222
• the Distributed-Cylindri
al-Waves Model (DCW-Model) where the a
tual223 sour
e is repla
ed with a linear array of equally-spa
ed line-sour
es, whi
h radiates224 an ele
tri
 �eld given by225

Eυ
inc(x, y) = −

k2
0

8πfε0

W∑

w=1

A (xw, yw) H
(2)
0 (k0ρw) (12)where A(xw, yw) is the unknown 
oe�
ient related to the w-th element and ρw the226 distan
e between the observation point and the w-th line sour
e.227 Su
h models are 
ompletely de�ned when the set of unknown 
oe�
ients, Aw or A(xw, yw),228 have been determined. Therefore, the solution of an inverse sour
e problem, where the229 known terms are the values of the in
ident �eld measured in the observation domain230

Ev
inc

(
xm(v)

, ym(v)

), is required. More in detail, the following system has to be solved:231



Ev
inc(x1, y1)

...

...

Ev
inc(xm(v)

, ym(v)
)

...

...

Ev
inc(xM(v)

, yM(v)
)




=




G11 ... G1s ... G1S

... ... ... ... ...

... ... ... ... ...

Gm1 ... Gms ... GmS

... ... ... ... ...

... ... ... ... ...

GM1 ... GMs ... GMS







I1

...

...

Is

...

...

IS




(13)
or in a more 
on
ise form232

[E] = [G] [I] (14)10



where (a) for the PW -model Gms = e−jsk0dm , dm = xmcosθv + ymsinθv, and Is =233
As, s = 1, ..., S, S = W ; (b) for the CCW -model Gms = H(2)

s (k0ρm) ejsφv , ρm =234
√

(xm − xsource)2 + (ym − ysource)2, (xsource, ysource) being the lo
ation of the sour
e, and235
Is = As−1−W , s = 1, ..., S, S = 2W+1; (
) for theDCW -modelGms = −

k2
0

8πfε0
H

(2)
0 (k0ρms),236

ρms =
√

(xm − xs)2 + (ym − ys)2, and Is = A (xs, ys), s = 1, ..., S, S = W .237 Unfortunately, (??) involves the limitations typi
al of an inverse-sour
e problem (see for238 example, [Devaney and Sherman, 1982℄). In parti
ular, [G] is ill-
onditioned and the239 solution is usually non-stable and non-unique. Now, the problem of determining [I] from240 the knowledge of the in
ident �eld 
an be re
ast as the inversion of the linear operator241
[G] through the SVD-de
omposition [Natterer, 1986℄242243

[I] = [G]+ [E] (15)where244
[G]+ = [V] [Γ]−1 [U]∗ (16)and245246

[Γ]−1 =




1/γ1 ... 0

... 1/γs ...

0 ... 1/γS




(17)Owing of the properties of [G], the sequen
e of singular values {γs}
S

s=1 will be de
reasing247 and 
onvergent to zero. Consequently, the solution of equation (??) does not 
ontinuously248 depend on problem data and the unavoidable presen
e of the noise, due to measurement249 errors as well as to an ina

urate model of the experimental setup, 
ould produ
e an250 unreliable sour
e synthesis.251 In the next se
tion, an exhaustive numeri
al analysis will be 
arried out to assess the ro-252 bustness of the IMSA against the error in the in
ident �eld data and to better understand253 �how� and �how mu
h� the model of the a
tual ele
tromagneti
 sour
e a�e
ts the IMSA254 performan
es.255
11



4 Numeri
al Analysis256 In this se
tion, su
h an assessment will be performed by 
onsidering di�erent targets and257 starting from experimental data. The s
attered data refers to the dataset available at258 the �Institute Fresnel� - Marseille, Fran
e�. As des
ribed in [Belkebir and Saillard, 2001;259 Testorf and Fiddy, 2001; Marklein et al., 2001℄ and sket
hed in Figure 2, the bistati
260 radar measurement system 
onsists of an emitting antenna pla
ed at rs = 720 ± 3mm261 from the 
enter of the experimental setup and a re
eiver whi
h 
olle
ts equally-spa
ed262 (5◦) measurements of Ev
tot

(
xm(v)

, ym(v)

) and Ev
inc

(
xm(v)

, ym(v)

) on a 
ir
ular investigation263 domain of radius rm = 760±3mm. Note the presen
e of a blind-se
tor of θl = 120◦ around264 the emitting antenna (Figure 2). The s
atterers 
onsidered in the following experiments265 are shown in Figs 2(a)-(
) for referen
e.266 In the �rst example [Fig. 2(a)℄, we will 
onsider the 
ir
ular diele
tri
 pro�le (Lref =267
30 mm in diameter) positioned about 30 mm from the 
enter of the experimental setup268 (xcref

= 0.0, ycref
= −30 mm) and 
hara
terized by a homogeneous permittivity εr(x, y) =269

3.0 ± 0.3 [τ(x, y) = 2.0 ± 0.3℄. The square investigation domain, LDI = 30 cm sided,270 is partitioned in N = 100 homogeneous dis
retization domains and the re
onstru
tion is271 performed by exploiting all the available measures (M(v) = 49, v = 1, ..., V ) and views272 (V = 36), but using mono-frequen
y data (f = 4 GHz).273 The performan
es of the IMSA in terms of quantitative as well as qualitative imaging have274 been assessed 
onsidering ne
essarily the State Term2 during the minimization of the 
ost275 fun
tion (??) and thus introdu
ing the information-
ontent of the in
ident ele
tri
 �eld.276 To do this, two simple models for the �eld emitted by the probing antenna have been277 preliminary taken into a

ount. The �rst one represents the radiated �eld with a plane278 wave (W = S = 1) , the other with a 
ylindri
al wave (W = 0, S = 1). The amplitudes of279 the modeled in
ident waves are estimated a

ording to the SVD-based pro
edure detailed280 in Se
t. 3 starting from the knowledge of the values of the in
ident �eld measured in the281 forward dire
tion and available dire
tly from the experimental dataset. They turn out to282 be ∣∣∣A(PW−Model)
w=1

∣∣∣ = 1.23 and ∣∣∣A(CCW−Model)
w=0

∣∣∣ = 17.27, respe
tively.283 In spite of the ina

ura
y in reprodu
ing the values of the in
ident �eld 
olle
ted at the284 2Some examples of algorithms employing only the Data Term 
an be found in the spe
ial se
tion[Belkebir and Saillard , 2001℄. 12



measurement points [Figs. 3(a)-(d)℄, starting from su
h rough models the IMSA is able285 to lo
alize the unknown target with a satisfa
tory degree of a

ura
y as shown in Fig. 4286 and 
on�rmed by the geometri
 parameters reported in Tab. I.287 As far as the single-plane-wave model is 
on
erned, it should be pointed out that the288 re
onstru
ted 
ontrast3 is 
hara
terized by an average value of the obje
t fun
tion equal289 to τ = 2.1, then very 
lose to the a
tual value of the real target. However, several290 pixels belonging to the area of the referen
e pro�le present a larger obje
t fun
tion values291 [τ(xn, yn) = 2.5℄ and the retrieved obje
t 
ontour does not a

urately reprodu
e a 
ir
ular292 shape.293 With respe
t to the PW model, a better re
onstru
tion is obtained when a little more294 
omplex sour
e model (i.e., the single CW-Model) is used as it 
an be observed in Fig. 4(b)295 and inferred from the values of the error �gures (whi
h quantify the qualitative imaging296 of the s
atterer under test) given in Tab. II and de�ned as follows297
ρ(q) =

√[
x

(q)
c(Iopt)

− x
(q)
cref

]2
+

[
y

(q)
c(Iopt)

− y
(q)
cref

]2

λ
q = 1, ..., Q(Iopt) (18)298

∆(q) =





∣∣∣L(q)
(Iopt)

− L
(q)
ref

∣∣∣

L
(q)
ref



 × 100 q = 1, ..., Q(Iopt) (19)where the sub-s
ript �ref � refers to the a
tual pro�le.299 A

ording to the indi
ations drawn from these experiments, whi
h point out that even a300 rough representation of the in
ident �eld signi�
antly bene�ts the inversion of the s
at-301 tered �eld data, the su

essive pro
edural step will be aimed at re�ning the numeri
al302 model of the ele
tromagneti
 sour
e to further improve the e�e
tiveness of the retrieval303 pro
ess. However, it should be noti
ed out that using a wrong, even though 
omplex,304 model might a
tually degrade the re
onstru
tion, thus great 
are is needed in de�ning305 the most suitable 
omplex model. In order to point out su
h a 
on
ept, the problem306 has been studied 
onsidering the previous s
attering geometry, but using numeri
al �mea-307 sured� data with a 
ontrollable degree of noise. More in detail, the following analysis308 has been 
arried out. Di�erent ele
tromagneti
 sour
es have been 
onsidered to illumi-309 nate the s
enario under test (i.e., �PW-Sour
e�, �CCW-Sour
e�, and �DCW-Sour
e�) and310 3If not spe
i�ed, the IMSA is used to re
onstru
t the real part of the obje
t fun
tion.13



starting from the values of the in
ident �eld syntheti
ally 
omputed in the observation311 domain Ev
inc

(
xm(v)

, ym(v)

), (
xm(v)

, ym(v)

)
∈ DM , various sour
e models (i.e., �PW-Model �,312 �CCW-Model �, and �DCW-Model �) have been synthesized. Then, a noise 
hara
terized313 by a SNR = 20 dB has been superimposed to the data and the re
onstru
tion pro
ess has314 been 
arried out starting from the di�erent sour
e models previously determined. The315 obtained results in terms of qualitative (??)-(??) and quantitative error �gures ξ(j)de�ned316 as317

ξ(j) =
R∑

r=1

1

N
(j)
(r)

N
(j)

(r)∑

n(r)=1

{
τ(xn(r)

, yn(r)
) − τ ref (xn(r)

, yn(r)
)

τ ref(xn(r)
, yn(r)

)

}
× 100 R = Sopt (20)where N

(j)
(r) 
an range over the whole investigation domain (j ⇒ tot), or over the area318 where the a
tual s
atterer is lo
ated (j ⇒ int), or over the ba
kground belonging to the319 investigation domain (j ⇒ ext), are reported in Tab. III. As expe
ted, the use of a model320 
orresponding to the a
tual sour
e turns out to be the most suitable 
hoi
e and more321 
omplex modeling 
ause larger errors. As an example, let us 
onsider the PW-sour
e.322 When the pro�le retrieval is performed using the PW-model then the re
onstru
tion error323 is equal to ξtot = 0.30. Otherwise, ξ

(DCW−Model)
tot = 13.30 and ξ

(CCW−Model)
tot = 20.53.324 Similar 
on
lusions hold true also for other illuminations and sour
e models in terms of325 quantitative error �gures, as well.326 Consequently, the more 
omplex sour
e 
on�gurations des
ribed in Se
tion 3, whi
h 
on-327 sider the superposition of plane waves or of 
ylindri
al waves, have been taken into a

ount328 in order to de�ne the most suitable sour
e model. In su
h a framework sin
e the numeri-329 
al des
ription of the a
tual sour
e in the real measurement setup is only partially or not330 generally available, the optimal model has to be de�ned by looking for the most suitable331 number of the unknown sour
e 
oe�
ients, S, and 
orresponding values, As, s = 1, ..., S.332 For ea
h of the sour
e models, S has been 
hosen by looking for the 
on�guration that333 provides a satisfa
tory mat
hing between measured and numeri
ally-
omputed values of334 the in
ident �eld in the observation domain. Su
h a mat
hing has been evaluated by335 
omputing the following parameter336
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337
µ = (V M(v))

−1 ∑V
v=1

∑M(v)

m(v)=1

{[
Re

{
Ev

inc

(
xm(v)

, ym(v)

)}
− Re

{
Ẽv

inc

(
xm(v)

, ym(v)

)}]2
+

[
Im

{
Ev

inc

(
xm(v)

, ym(v)

)}
− Im

{
Ẽv

inc

(
xm(v)

, ym(v)

)}]2
} 1

2 (21)338 where Re {·} and Im {·} stand for the real and imaginary part, respe
tively, and the339 super-s
ript ˜ indi
ates a numeri
ally-estimated quantity.340 In Fig. 5, the behavior of the �mat
hing parameter� is displayed for di�erent sour
e341 models. As 
an be observed, µ redu
es when S in
reases. Thus, the optimal number of342 sour
e 
oe�
ients, Sopt, has been heuristi
ally-de�ned as the value belonging to a stability343 region. Consequently, the optimal values have been set to: S
(PW−Model)
opt = 20 (where344

µ ≃ 4×10−4) and S
(CCW−Model)
opt = 11 (where µ ≃ 10−4). The amplitudes of the weighting345 sour
e 
oe�
ients are shown in Fig. 6. The magnitudes of the CCW-Model 
oe�
ients346 [Fig. 6(b)℄ are very large when 
ompared to those of the single PW-Model or single CCW-347 Model . As expe
ted, the 
orresponding radiated-�eld distributions inside the investigation348 domain DI [Figs. 7(
),(d)℄ turn out to be una

eptable (for 
omparison purposes, the349 plot of the in
ident ele
tri
 �eld 
omputed by means of the single CCW-Model is given350 in Figs. 7(e),(f )). Moreover, Figs. 7(a),(b) show how even the in
ident �eld synthesized351 by means of the PW-Model presents rather high values with respe
t to the distribution of352 Figs. 7(e),(f ). Sin
e the in
ident �eld is the guess value for the optimization of the internal353 �eld, a 
ompletely wrong starting distribution may 
onsiderably a�e
t the whole retrieval354 pro
edure. A

ordingly, the adopted inversion strategy is not able to 
orre
tly estimate355 neither the shape nor the diele
tri
 distribution of the unknown s
atterer (Fig. 8). As far356 as the 
ase related to the PW-Model is 
on
erned, it should be noted that the iterative357 pro
ess is stopped at the fourth step (Tab. I) and the quality of the re
onstru
ted pro�le358 (Fig. 8(a)) turns out to be strongly redu
ed (if 
ompared to that of Fig. 4(a)) in terms359 of qualitative as well as quantitative imaging. Similar indi
ations 
an be drawn from the360 analysis of the retrieved distribution obtained with the CCW-Model . However, redu
ing361 the number of terms in the expansion 
ould lead to better results like, for example, those362 presented in the spe
ial se
tion [Belkebir and Saillard , 2001℄ and those obtained in this363 15



work by using S=1. Notwithstanding this, the value suggested by the indi
ator has been364 used in the proposed experiments.365 The obtained dis
ouraging results 
an be properly motivated by observing the singular-366 values spe
trum (Fig. 9) and by 
omputing the 
ondition number η of the linear matrix op-367 erator [G] (de�ned as follows η = maxp{σp}
minp{σp}

), whi
h 
learly point out an intrinsi
 instability368 of the system and the ill-
onditioning of the problem. In more detail, the ill-
onditioning369 index turns out to be equal to η(PW−Model) = 41.07 and to η(CCW−Model) = 5.62 × 107,370 respe
tively.371 A possible solution for suitably de�ning the sour
e model and, 
onsequently, for improving372 the resolution a

ura
y of the retrieval pro
ess (alternative to employ a trun
ated-SVD373 regularization algorithm as suggested by the step-like behavior of the singular-values spe
-374 trum), is to de�ne a spatially-distributed line-sour
e model as des
ribed in Se
t. 3.375 A

ording to the pro
edure for 
hoosing the number as well as the magnitude of the sour
e376 weights previously des
ribed, a reasonable 
on�guration is S
(DCW−Model)
opt = 15 (Fig. 5)377 with the 
oe�
ients distributed as shown in Fig. 10(a). For 
ompleteness, in order to378 give an idea of the �tting between measured and 
omputed data, Figs. 10(b)-(
) display379 the values of the amplitude and phase of the radiated-�eld 
omputed in the observation380 domain. Moreover, Fig. 11 gives a gray-level representation of the in
ident ele
tri
 �eld381 synthesized in the investigation domain.382 The use of su
h a model for the in
ident �eld allows a signi�
ant improvement in the383 re
onstru
tion. Su
h a result 
an be appre
iated in Fig. 12 where the gray-level represen-384 tation of the obje
t fun
tion is given. In parti
ular, for this representative 
on�guration,385 also the intermediate re
onstru
tions [Figs. 12(a)-(
)℄ of the multi-s
aling pro
ess are386 reported in order to show how the pro�le improves during the iterative pro
edure. As387 it 
an be noti
ed, even though the 
omputational domain is not �nely dis
retized at the388 �st step [Fig. 12(a)℄, the IMSA iteratively in
reases the resolution in the RoI in order to389 obtain an a

urate dis
retization at the 
onvergen
e step [Fig. 12(
)℄ where a meaning-390 ful pro�le is obtained. As a matter of fa
t, the lo
alization as well as the dimensioning391 error of the 
onvergen
e step [Fig 12(
)℄ redu
es with respe
t to the other sour
e models392 (ρ(DCW−Model) = 0.045λ0, ∆(DCW−Model) ≈ 9 - Tab. II) and the homogeneity of the a
tual393 16



s
atterer is better reprodu
ed. As far as the explanation of the better performan
e of394 su
h an approa
h with respe
t to the other sour
e-synthesis modalities is 
on
erned, it is395 mainly motivated by the faithful and stable reprodu
tion [Figs. 10(b)-(
)℄ of the a
tual396 values of the �eld measured in the observation domain.397 To further assess the robustness and the e�e
tiveness of the IMSA, by validating the398 radiated-�eld synthesis as well, the se
ond example 
onsiders a multiple-s
atterers s
enario399 (�twodielTM_8f.exp� - [Belkebir and Saillard , 2001℄). Under the same assumptions of the400 previous example in terms of measures, radiation frequen
y, and views as well as extension401 and partitioning of the investigation domain, two diele
tri
 (τ (q) = 2.0± 0.3, q = 1, ..., Q,402
Q = 2) 
ir
ular (L(q)

ref = 30 mm in diameter) 
ylinders are pla
ed 90 mm from ea
h other403 [Fig. 2(b)℄.404 Fig. 13 shows the results of the re
onstru
tion pro
ess in 
orresponden
e with di�erent405 sour
e models. As 
an be seen, whatever the stable sour
e synthesis the two targets406 are 
orre
tly lo
ated and dimensioned with a satisfa
tory a

ura
y. Certainly, the more407 sophisti
ated synthesis approa
h (DCW-Model - S = 15) allows to obtain a better re
on-408 stru
tion as 
on�rmed by the geometri
 parameters of the retrieved pro�les resumed in409 Tab. IV. In order to show the 
apabilities of the IMSA in estimating the lossless nature410 of the diele
tri
 s
atterers, the re
onstru
tion 
orresponding to the DCW-Model has been411 run using a blind inversion s
heme, that is without a-priori information of its 
hara
ter-412 isti
s. Su
h assumption does not exploit the alternative de�nition of the solution spa
e,413 whi
h allows to re
onstru
t only the real part of the obje
t fun
tion. A

ordingly, Fig.414 13(d) points out that the minimum of the imaginary part of the obje
t fun
tion is 0.08415 (
orresponding to σ = 1.78 × 10−3 S
m
).416 Finally, in order to 
omplete the validation of the approa
h, the last example deals with417 a metalli
 stru
ture. The s
atterer is an U-shaped metalli
 
ylinder [Fig. 2(
)℄ and the418 re
onstru
tion is performed starting from the 
omplete data 
olle
tion of the dataset419 �uTM_shaped.exp� [Belkebir and Saillard , 2001℄ at the working frequen
y of f = 4 GHz.420 A

ording to the strategy proposed in [Van den Berg et al., 1995℄, only the imaginary part421 of the obje
t fun
tion has been retrieved 
onsidering a lower bound in the re
onstru
ted422 
ontrast and if at some iteration the estimated Im {τ(x, y)} is lower than τmax

Im = −15.0,423 17



then the 
ontrast is repla
ed by τmax
Im . As a result, the imaginary part of the retrieved424 pro�le in the 
on�guration with the DCW-Model for the synthesis of the radiated �eld, is425 depi
ted in Fig. 14. At the 
onvergen
e step (Iopt = 4), the re
onstru
tion 
learly reveals426 that we are dealing with a U-shaped target. The outer and the inner 
ontour of the �U�427 are well reprodu
ed (even though little artifa
ts appear) 
on�rming the e�e
tiveness of428 approa
h in shaping and lo
ating diele
tri
 as well metalli
 s
atterers.429 5 Con
lusions430 The Iterative Multi-S
aling Approa
h has been tested against experimentally-a
quired431 data by fo
using the attention on its robustness as regards di�erent mathemati
al models432 used to synthesize the in
ident ele
tri
 �eld. The e�e
tiveness of the iterative minimization433 of the 
ost fun
tional in re
onstru
ting unknowns s
atterers presents a 
ertain degree of434 sensitivity to the model of the in
ident �eld used to formalize the 
onstraint stated by435 the State Equation. By 
onsidering a more 
omplex approximation model (DCM-Model),436 satisfa
tory lo
alizations and re
onstru
tions have been 
arried out by indi
ating the437 positive e�e
t of a suitable synthesis methodology on the inversion pro
ess.438 However, even though an a

urate approximation model generally might result in a more439 a

urate re
onstru
tion, whi
h 
omplex model is more appropriate for the in
ident �eld440 may depend on the measurement setup, espe
ially the mi
rowave sour
e 
on�guration.441 For example, for simple plane-wave in
ident �eld, using the PW-model might redu
e442 artifa
ts whi
h result from measurement noise. So future investigations are needed by443 
onsidering other experimental datasets (
urrently not-available, but under development)444 to generalize the 
on
lusions of su
h an analysis.445 Moreover, the results of the numeri
al analysis 
arried out in the paper and the 
omparison446 with the re
onstru
tions obtained in the related literature suggest that improved imaging447 te
hniques (e. g., multi-frequen
y te
hniques) or additional regularization terms may448 probably diminish the impa
t of the in
ident �eld model. Sin
e this point has not dire
tly449 investigated other resear
hes will be aimed at further improving the e�e
tiveness of the450 IMSA by 
onsidering multi-frequen
y strategies, further regularization terms and more451 e�e
tive optimization algorithms for the minimization of the multi-resolution 
ost fun
tion452 18



in order to verify the above hypothesis.453

19



Referen
es454455 Baussard, A., E. L. Miller, and D. Lesselier (2004a), Adaptive multis
ale approa
h456 for 2D mi
rowave tomography, URSI - International Symposium on Ele
tromagneti
 The-457 ory , Pisa, Italia, pp. 1092-1094.458 Baussard, A., E. L. Miller, and D. Lesselier (2004b), Adaptive multis
ale re
on-459 stru
tion of buried obje
ts, Inverse Problems, 20 , S1-S15.460 Belkebir, K., and M. Saillard (2001), Spe
ial se
tion: �Testing Inversion Algorithms461 against Experimental Data,� Inverse Problems, 17, 1565-1702.462 Bertero, M., C. De Mol, and E. R. Pike (1995), "Linear inverse problems with463 dis
rete data. I: General formulation and singular system analysis," Inverse Problems, 1,464 301-330.465 Bertero, M., and P. Bo

a

i (1998), Introdu
tion to Inverse Problem in Imaging,466 IoP Publishing, Philadelphia.467 Bu

i, O. M., and G. Fran
es
hetti (1989), �On the Degrees of Freedom of S
attered468 Fields,� IEEE Trans. Antennas Propagat., 37, 918-926.469 Bu

i, O. M., L. Cro

o, T. Isernia, and V. Pas
azio (2000a), Wavelets in non-470 linear inverse s
attering,� Pro
. IEEE Geos
ien
e and Remote Sensing Symp., IGARSS-471 2000, 7, 3130-3132.472 Bu

i, O. M., L. Cro

o, and T. Isernia (2000b), An adaptive wavelet-based ap-473 proa
h for non destru
tive evaluation appli
ations, Pro
. IEEE Antennas Propagation474 Symp., APS-2000, 3, 1756-1759.475 Caorsi, S., M. Donelli, D. Fran
es
hini, and A. Massa (2003), A new methodol-476 ogy based on an iterative multi-s
aling for mi
rowave imaging, IEEE Trans. Mi
rowave477 Theory Te
h., 51, 1162-1173.478 Caorsi, S., M. Donelli, and A. Massa (2004a), Analysis of the stability and robustness479 of the iterative multis
aling approa
h for mi
rowave imaging appli
ations, Radio S
i., 39 ,480 1-17.481 Caorsi, S., M. Donelli, and A. Massa (2004b), Lo
ation, dete
tion, and imaging of482 multiple s
atterers by means of the iterative multis
alingmethod, IEEE Trans. Mi
rowave483 20



Theory Te
h., 52, 1217-1228.484 Colton, D., and R. Krees (1992), Inverse a
ousti
s and ele
tromagneti
 s
attering485 theory, Berlin, Germany: Springer-Verlag.486 Daniels, D. J. (1996), �Surfa
e penetrating radar,� IEE Ele
tron. Comm. Eng. J., 8,487 165-182.488 Denisov, A. M. (1999), Elements of theory of inverse problems, Utre
ht, The Nether-489 lands: VSP.490 Devaney, A. J., and G. C. Sherman (1982), Nonuniqueness in inverse sour
e and491 s
attering problems, IEEE Trans. Antennas Propagat., 33, 1034-1037.492 Dubey, A. C. (1995), Dete
tion te
hnology for mines and minelike targets, Eds. Orlando,493 FL.494 Groets
h, C. W. (1993), Inverse Problems in Mathemati
al S
ien
es, Wiesbaden, Ger-495 many: Vieweg.496 Hoole, S. R. H. (1991), Inverse problem methodology and �nite elements in the identi-497 �
ations of 
ra
ks, sour
es, materials, and their geometry in ina

essible lo
ations, IEEE498 Trans. Magn., 27, 3433-3443.499 Isernia, T., V. Pas
azio, and R. Pierri (2001), On the lo
al minima problem in a500 tomographi
 imaging te
hnique, IEEE Trans. Geos
i. Remote Sensing, 39, 1596-1607.501 Jones, D. S. (1964), The Theory of Ele
tromagnetism, Oxford, U.K.: Pergamon Press.502 Kleinman, R. E., and P. M. Van den Berg (1992), A modi�ed gradient method for503 two-dimensional problems in tomography, J. Comput. Appl. Math., 42, 17-35.504 Liu, Q. H., Z. Q. Zhang, T. T. Wang, J. A. Bryan, G. A. Ybarra, L. W.505 Nolte, and W. T. Joines (2003), A
tive mi
rowave imaging 1-2D forward and inverse506 s
attering methods, IEEE Trans. Mi
rowave Theory Te
h., 50, 123-133.507 Louis, K. (1992), Medi
al imaging: state of the art and future development, Inverse508 Problems, 8, 709-738.509 Marklein, R., K. Balasubramanian, A. Quing, and K. J. Lagenberg (2001), Lin-510 ear and nonlinear iterative s
alar inversion of multi-frequen
y mulit-bistati
 experimental511 ele
tromagneti
 s
attering data, Inverse Problems, 17, 1565-1702.512 Massa, A. (2002), Geneti
 algorithm based te
hniques for 2D mi
rowave inverse s
atter-513 21



ing, in Re
ent Resear
h Developments in Mi
rowave Theory and Te
hniques, Ed. S. G.514 Pandalai, Transworld Resear
h Network Press, Trivandrum, India.515 Miller, E. L., and A. S. Willsky (1996a), A multis
ale, statisti
ally based inversion516 s
heme for linearized inverse s
attering problems, IEEE Trans. Geos
i. Remote Sensing,517 34, 346-357.518 Miller, E. L., and A. S. Willsky (1996b), Wavelet-based methods for nonlinear inverse519 s
attering problem using the extended Born approximation, Radio S
i., 31, 51-65.520 Natterer, F. (1986), Numeri
al treatment of ill-posed problems, in Inverse Problems,521 Ed. G. Talenti, Le
ture Notes in Mathemati
s, p. 1225.522 Ri
hmond, J. H. (1965), S
attering by a diele
tri
 
ylinder of arbitrary 
ross se
tion523 shape, IEEE Trans. Antennas Propagat., 13, 334-341.524 Steinberg, B. D. (1991), Mi
rowave imaging te
hniques, New York: Wiley.525 Testorf, M., and M. Fiddy (2001), Imaging from real s
attered �eld data using a linear526 spe
tral estimation te
hniques, Inverse Problems, 17, 1565-1702.527 Vogel, C. R. (2002), Computational Methods for Inverse Problems, Philadelphia, PA:528 SIAM.529530

22



Figure Captions531
• Figure 1. Geometry of the problem.532
• Figure 2. Numeri
al Experiments: (a) o�-
entered homogeneous 
ir
ular 
ylin-533 der (Real dataset �Marseille� [Belkebir and Saillard , 2001℄ - �dielTM_de
8f.exp�),534 (b) two homogeneous 
ir
ular 
ylinders (Real dataset �Marseille� [Belkebir and Sail-535 lard , 2001℄ - �twodielTM_8f.exp�), and (
) U-shaped metalli
 
ylinder (Real dataset536 �Marseille� [Belkebir and Saillard , 2001℄ - �uTM_shaped.exp�).537
• Figure 3. Comparisons between the in
ident �eld measured in DM and the values538 synthesized by means of the PW-Model ((a) amplitude and (b) phase), and CCW-539 Model ((
) amplitude and (d) phase).540
• Figure 4. Re
onstru
tions of an o�-
entered homogeneous 
ir
ular 
ylinder (Real541 dataset �Marseille� [Belkebir and Saillard , 2001℄ - �dielTM_de
8f.exp�) a
hieved542 at the 
onvergen
e step of the inversion pro
edure by modeling the radiated �eld543 through (a) the single PW-Model and (b) the single CCW-Model .544
• Figure 5. Fitting between 
omputed and measured values of the radiated �eld545 in the observation domain versus various numbers of sour
e 
oe�
ients, S, and for546 di�erent sour
e models.547
• Figure 6. Behavior of weighting sour
e 
oe�
ients as a fun
tion of the index w for548 (a) the PW-Model (S = 20) and for (b) the CCW-Model (S = 11).549
• Figure 7. Plots of the radiated �elds (V = 1) 
omputed by means of the PW-Model550 (S = 20) (amplitude (a) and phase (b) distributions), the CCW-Model (S = 11)551 (amplitude (
) and phase (d) distributions), and the single CCW-Model (S = 1)552 (amplitude (e) and phase (f ) distributions).553
• Figure 8. Re
onstru
tions of an o�-
entered homogeneous 
ir
ular 
ylinder (Real554 dataset �Marseille� [Belkebir and Saillard , 2001℄ - �dielTM_de
8f.exp�) a
hieved555 at the 
onvergen
e step of the inversion pro
edure by modeling the radiated �eld556 through (a) the PW-Model (S = 20) and (b) the CCW-Model (S = 11).557 23



• Figure 9. Normalized behavior of the singular values of [G] for (a) the PW-Model558 (S = 20) and for (b) the CCW-Model (S = 11).559
• Figure 10. Radiated-�eld modeling: DCW-Model (S = 15). (a) Behavior of560 weighting sour
e 
oe�
ients as a fun
tion of the index w. Comparison between the561 in
ident �eld measured in DM and the numeri
ally-
omputed values ((b) amplitude562 and (
) phase).563
• Figure 11. Plots of the radiated �eld (V = 1) 
omputed by means of the DCW-564 Model (S = 15) (amplitude (e) and phase (f ) distributions).565
• Figure 12. Re
onstru
tion of an o�-
entered homogeneous 
ir
ular 
ylinder (Real566 dataset �Marseille� [Belkebir and Saillard , 2001℄ - �dielTM_de
8f.exp�) a
hieved at567 (a) i=1, (b) i=2 and (
) at the 
onvergen
e step (i=3) of the inversion pro
edure568 by modeling the radiated �eld through the DCW-Model (S = 15).569
• Figure 13. Re
onstru
tions of two homogeneous 
ir
ular 
ylinders (Real dataset570 �Marseille� [Belkebir and Saillard , 2001℄ - �twodielTM_8f.exp�) a
hieved at the 
on-571 vergen
e step of the inversion pro
edure by modeling the radiated �eld through (a)572 the single PW-Model , (b) the single CCW-Model and the DCW-Model (S = 15)573 [(
) real part and (d) imaginary part℄.574
• Figure 14. Re
onstru
tion of an U-shaped metalli
 
ylinder (Real dataset �Mar-575 seille� [Belkebir and Saillard , 2001℄ - �uTM_shaped.exp�) a
hieved at the 
onver-576 gen
e step of the inversion pro
edure by modeling the radiated �eld through the577 DCW-Model (S = 15).578
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Table Captions579
• Table I. Re
onstru
tion of an o�-
entered homogeneous 
ir
ular 
ylinder (Real580 dataset �Marseille� [Belkebir and Saillard, 2001℄ - �dielTM_de
8f.exp�) - Estimated581 geometri
al parameters.582
• Table II. Re
onstru
tion of an o�-
entered homogeneous 
ir
ular 
ylinder (Real583 dataset �Marseille� [Belkebir and Saillard, 2001℄ - �dielTM_de
8f.exp�) - Error �g-584 ures.585
• Table III.Re
onstru
tion of an o�-
entered homogeneous 
ir
ular 
ylinder (SNR =586

20 dB) for di�erent illuminations and 
onsidering various ele
tromagneti
 sour
es -587 Quantitative error �gures [(a) ξtot , (b) ξint and (
) ξext℄.588
• Table IV. Re
onstru
tion of two homogeneous 
ir
ular 
ylinders (Real dataset589 �Marseille� [Belkebir and Saillard, 2001℄ - �twodielTM_8f.exp�) - Estimated geomet-590 ri
al parameters (d(Iopt) =
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x
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c(Iopt)

− x
(2)
c(Iopt)

}2
+

{
y
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Iopt xc(Iopt)
(mm) yc(Iopt)

(mm) L(Iopt) (mm)Data Equation Only 4 3.00 −16.00 58.00PW-Model (W = S = 1) 4 −2.00 −26.10 34.00PW-Model (W = S = 20) 4 −2.41 −22.73 45.44CCW-Model (W = 0, S = 1) 2 −1.81 −26.10 35.20CCW-Model (W = 5, S = 11) 2 1.57 −10.23 60.08DCW-Model (W = S = 15) 3 −1.90 −26.10 27.40
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ξtot PW-Model CCW-Model DCW-ModelPW-Sour
e 0.30 20.53 13.30CCW-Sour
e 16.61 0.37 0.45DCW-Sour
e 16.44 0.36 0.34
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ξint PW-Model CCW-Model DCW-ModelPW-Sour
e 13.79 58.64 44.66CCW-Sour
e 20.31 16.38 17.00DCW-Sour
e 19.98 25.22 15.29
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ξext PW-Model CCW-Model DCW-ModelPW-Sour
e 0.20 19.71 13.06CCW-Sour
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PW-Model CCW-Model DCW-Model(W = S = 1) (W = 0, S = 1) (W = S = 15)
x(1)

c(Iopt)
(mm) 12.42 12.89 13.17

y(1)
c(Iopt)

(mm) 40.77 42.96 45.87
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d(Iopt) (mm) 86.84 88.50 91.84

Iopt 3 3 3
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