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Abstract— This paper outlines a bi-level algorithm to con-
currently optimize robot hardware and control parameters in
order to minimize energy consumption during the execution
of tasks and to ensure robust performance. The outer loop
consists in a genetic algorithm that optimizes the co-design
variables according to the system average performance when
tracking a locally optimal trajectory in perturbed simulations.
The tracking controller exploits the locally optimal feedback
gains computed in the inner loop with a Differential Dynamic
Programming algorithm, which finds the optimal reference
trajectories. Our simulations feature a complete actuation
model, including friction compensation and bandwidth limits.
This strategy can potentially account for arbitrary perturba-
tions, and discards solutions that cannot robustly meet the
task requirements. The results show improved performance
of the designed platform in realistic application scenarios,
autonomously leading to the selection of lightweight and more
transparent hardware.

I. INTRODUCTION

The problem of designing complex robotic hardware using
numerical optimization has received considerable attention
in recent years [1]–[3]. However, robustness remains an
open challenge for co-design, while being crucial to en-
sure the practical applicability of the designed solutions.
This becomes even more challenging for inherently unsta-
ble systems, such as legged robots. Following a common
assumption in co-design, our previous work [4] was mainly
targeting the adequacy of the hardware for optimizing the
motion. However, optimal trajectories may be unfeasible on
a real system, e.g., because the system cannot reject external
perturbations due to unmodeled dynamics, noise, delays,
saturation or actuator dynamics. So, even if optimality re-
mains a fundamental criterion, robustness is another aspect
to consider in order to deploy the results and the real system.
To do so, the synthesis and evaluation of a tracking controller
to compensate for noise must be addressed.

The problem of robustness in co-design has been in-
vestigated in the literature. A common approach to deal
with the stability of perturbed systems is to optimize a
metric that represents the sensitivity of the trajectory to
perturbation. This can be done in open-loop [1] or with
closed-loop sensitivity analysis [2], [5]. Both options rely
on custom-made and differentiable cost formulations that
increase the complexity and nonlinearity of the problem
itself. Another possibility is stochastic programming, in
which the optimal trajectory is found for a set of perturbed
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Fig. 1: Robust bi-level scheme with additional simulations

scenarios [3], [6], [7]. However, such methods do not scale
favourably as the dimension of the problem increases sig-
nificantly for each additional scenario. Another possibility is
to include the controller in the optimization problem, with
additional decision variables. Especially in the case of co-
design, this becomes prohibitive in terms of computational
complexity, because of the already large state dimension
and time horizon [8], [9]. Controller optimization is often
performed with some assumptions such as the use of reduced
models [10], sequential optimization [11] or constant gains
along the trajectory. In the realm of co-design, some heuristic
approaches to generate controllers, such as PD gains tuning,
have also been used [12]. In addition, swarm exploration [13]
and multi-objective co-design with gain tuning have been
proposed in the past, but without specifically addressing
robustness [14]. Our approach shares some similarities to the
technique of domain randomization used in reinforcement
learning (RL) [15], which aims to learn a control policy that
performs well with a variety of (possibly perturbed) robot
models. Instead, we try to find hardware parameters such
that a locally optimal linear controller can perform well under
different perturbations.

Overview of the paper: A co-design algorithm which
optimizes robot hardware design and control in order to min-
imize energy consumption and ensure robust performance, is
proposed. It relies on a bi-level optimization scheme, with a
parallelized version of CMA-ES [16]. The main contribution
is to extend this scheme in order to encompass robustness.
To this end, we use as metric the average performance
of the controller over multiple simulations [17], each one
including noise and an actuator model. In simulation, the
system is stabilized around an optimal trajectory with the
Riccati gains [18], automatically computed by the Differ-



Algorithm 1: Bi-level optimization

Input : 𝑁𝑔𝑒𝑛, 𝑁𝑝𝑜𝑝 , 𝑁𝑠𝑖𝑚, 𝑡𝑜𝑙, 𝑠𝑒𝑡𝑢𝑝
1 𝑁𝑝← 0
2 𝑝𝑜𝑝← random 𝑁𝑝𝑜𝑝 comb. of co-design params
Outer loop:

3 while 𝑁𝑝 < 𝑁𝑔𝑒𝑛 or stop condition ≤ 𝑡𝑜𝑙 do
Inner loop:

4 Lb ← []
5 for 𝑝𝑎𝑟𝑎𝑚𝑠 ∈ 𝑝𝑜𝑝 do
6 x★,u★,𝐾← solveDDP(𝑝𝑎𝑟𝑎𝑚𝑠)
7 Lb .append(simu(𝑝𝑎𝑟𝑎𝑚𝑠,x★,u★,K, 𝛾, 𝑁𝑠𝑖𝑚))
8 𝑝𝑜𝑝← evolveCMEAS(𝑝𝑜𝑝,Lb )
9 𝑁𝑝← 𝑁𝑝 +1

ential Dynamic Programming (DDP) algorithm, to avoid the
extra computational complexity of explicitly optimizing for a
control policy. Our algorithm scales much better than other
robust co-design approaches that explicitly optimize for a
robust controller, and just needs to introduce perturbations in
the simulations instead than in the OCP, significantly increas-
ing the number of tested scenarios. This comes at the price of
the blindness of the inner loop (DDP) to perturbations, which
theoretically limits the quality of the outcome. However, our
tests show extremely promising results for the design of an
energy-efficient robot manipulator and a jumping monoped,
which proved to perform better under perturbations than
their counterparts designed with our previous framework [4].
Finally we present also how an extension of the explicit
optimization of controller parameters is still possible in this
framework and can further improve robustness.

II. METHODOLOGY

Robust bi-level co-design optimization scheme

Our approach is to introduce robustness information in the
bi-level optimization structure introduced in [4], by adding a
simulation step with perturbations and a controller as shown
in Fig. 1 and in Algorithm 1 line 7. In an outer loop the co-
design parameters (hardware and optional gain scaling 𝛾) are
optimized with CMA-ES. Initially a population 𝑝𝑜𝑝 of 𝑁𝑝𝑜𝑝

possible robot hardware configurations is randomly initial-
ized. Then, for each individual set of parameters 𝑝𝑎𝑟𝑎𝑚𝑠 ∈
𝑝𝑜𝑝, a model of the robot is generated and the corresponding
OCP solved. This inner loop is just optimizing the reference
trajectories. Each optimized trajectory x★,u★ is then tracked
in 𝑁𝑠𝑖𝑚 simulations with a controller using the Riccati gains
K computed by DDP and optionally scaled by 𝛾. Each
simulation includes a set of perturbation sources b acting at
the joint torques. Moreover, the robot model corresponding
to 𝑝𝑎𝑟𝑎𝑚𝑠 is tested in simulations that include a model of
friction and actuator dynamics. The problem cost function
L is then averaged on the ensemble of 𝑁𝑠𝑖𝑚 simulation
trajectories xb ,ub with a Monte-Carlo approach to obtain
the robust metric under perturbations Lb as in (7). Then,
the outer-loop gets the values of the robust cost evaluated on
the reference trajectories. With the evaluated cost information

a new population can be selected by the genetic optimizer
as the next one to explore. The outer loop keeps iterating
until a termination condition 𝑠𝑡𝑜𝑝 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 < 𝑡𝑜𝑙 or the
maximum number of generations 𝑁𝑔𝑒𝑛 is attained. In the
implementation of the algorithm, for each generation, the
evaluation of the cost Lb is parallelized asynchronously
in order to speed up the algorithm. Unlike stochastic op-
timization, the number of these perturbed scenarios can be
rather high (up to 103), at a reduced computational cost of
multiple simulation runs (linear in the number of time-steps
and simulations 𝑂 (𝑁𝑠𝑖𝑚)). This way the genetic algorithm
selects the hardware leading to the most robust trajectories
and feedback controllers.

Local state feedback controller

Many approaches can be applied to perform feedback
control of unstable and underactuated robotic systems. A
promising one is to locally re-plan online the ideal trajectory
using model predictive control (MPC) [19], [20]. Another
method is to learn offline a control policy using techniques
such as reinforcement learning. These methods often require
problem specific tuning and thus cannot be easily autom-
atized for co-design. Furthermore, as the goal is treating
relatively small deviations from the reference trajectory, they
may be unnecessarily too complex. Close to optimality,
the dynamics can be linearized. The MPC controller is
then equivalent to a local linear controller. This guarantees
to follow the planned trajectory while counteracting small
disturbances [18]. This consideration is used in our approach
to make the problem tractable. Using Riccati gains proves to
be a natural way to synthesize a local controller around the
optimal trajectory. For the unconstrained LQR problem, such
gains are optimal, as detailed in [21], and an extension may
be possible also with equality or inequality constraints. To
follow the reference x★ from x ≈ x★, the control u includes
a feedback term linear with respect to the state error:

u = u★+𝛾K(x−x★) (1)

The gain matrix K maps state deviations to corrections of
the control input. The matrix K can optionally be multiplied
by a gain scaling factor 𝛾 ∈ R, (𝛾 = 1 by default). This
controller requires almost no tuning once the OCP is solved
with DDP, contrary to other techniques such as PD control
with gain scheduling. A drawback is that this feedback is
guaranteed to work only close to the optimal trajectory. If
the perturbations on x are too large, or if the dynamics is
highly nonlinear, these considerations may not hold anymore
and other strategies must be used instead.

a) Joint dynamics: To implement a control law such
as (1) in a realistic application, an actuator model has to
be considered. In order to deal with joint dynamics, the
same methodology as in [4] is used: the OCP solution
provides the joint trajectories that minimize the electrical
energy consumption, without modeling friction in the robot
dynamics, but considering it only in the cost function. Then
the control 𝝉 is computed so to compensate friction. To this
end, in Eq. 2, the torque u includes compensation terms for



Fig. 2: Actuator module, showing the belt-drive transmission
and the BLDC motor placement, courtesy of ODRI [22].

joint static friction 𝝉`,0 [Nm] and for joint damping b [Nms].

𝝉 = u+𝝉`,0 sign(v𝑎) +bv𝑎 (2)

Such correction compensates friction from the state
x = [q𝑢,q𝑎,v𝑢,v𝑎]⊤, where the subscripts (𝑎) and (𝑢) re-
spectively denote the actuated and underactuated parts of
positions q and velocities v.

b) Actuator bandwidth and torque limits: In addition
to friction compensation, the actuator dynamics is modeled
as a first-order low-pass filter in Eq. (3):

u𝑘 = 𝛼𝝉𝑘 + (1−𝛼)𝝉𝑘−1, for 𝑘 ∈ 1, ..𝑁 −1 (3)

where the initial torque is imposed u0 = u★
0 and 𝛼 is a

parameter depending on the cut-off frequency that was fixed
to 20 Hz based on testing. This filtering is introduced to sim-
ulate joint torques that can reasonably be applied within the
bandwidth limitations of each actuator. Finally, a saturation
is introduced to enforce the torque limits: u < u𝑘 < u.

Parametric actuation model

The actuator technology is shown in Fig. 2: each joint is
controlled by a BLDC motor with a low gear-ratio belt trans-
mission. For this hardware, a parametric model is introduced
to obtain the values of the friction parameters (damping b and
Coulomb friction 𝝉`,0) and motor properties (rotor inertia,
winding resistance and torque constant). Such parametriza-
tion is just dependent on the motor mass and the gear ratio of
the transmission [4], following an approach already used in
co-design [23], [24]. With the values obtained, the dynamics
of the system will be modified by:

1) modifying joint inertia adding the rotor inertia
2) adding the motor mass to the link

Power components

The values of the electro-mechanical characteristics are
used to compute the power components used as costs:

𝑃𝑚 = u★⊤v𝑎 [𝑊] (4)

𝑃 𝑓 =
(
𝝉`,0 sign(v𝑎) +b v𝑎

)⊤ v𝑎 [𝑊] (5)

𝑃𝑡 = u⊤K̃u [𝑊] (6)

Mechanical power 𝑃𝑚 is shown in Eq. (4) where u★ is the
ideal torque at the joint and v𝑎 is the actuated joint velocities.
Joint friction power loss 𝑃 𝑓 as in Eq. (5) corresponding to
the joint friction, reconstructed from v𝑎 multiplied by the

friction compensation torque introduced in Eq. (2).
Joule dissipation power loss 𝑃𝑡 is obtained as in Eq. (6)
from the value of the torque on the joint u, including friction
compensation as in Eq. (2). K̃ is a diagonal matrix mapping
joint torques to power. Each K̃𝑖,𝑖 entry depends on: the 𝑖𝑡ℎ

motor torque constant, its winding resistance and on the
actuated joint reduction. The power components in Eq. (4),
Eq. (5) and Eq. (6) are summed to get the total electrical
power, considering perfect regeneration and efficiency of the
electronic inverter. In the OCP, from a friction-less dynamics
the value of the friction compensation Eq. (2) is reconstructed
and then the overall associated energy minimized.

Ensembled final cost

The main feature of the introduced method is to consider
perturbation sources for each simulation 𝝃 ∈ R𝑁𝑠𝑖𝑚×𝑛𝑢×𝑁 ,
where 𝑛𝑢 is the number of actuated joints and 𝑁 the
number of timesteps. The single joint torque noise realization
𝝃𝑖 with 𝑖 ∈ {0, ..., 𝑁𝑠𝑖𝑚−1} acts on the ideal joint torque of
the robot u★, proportionally to its value: 𝝃𝑖 ∼ N(0,𝜎2) u★.
This is motivated as the source of perturbation has been
shown not to greatly impact the robust solution in [25]. Given
𝝃𝑖 , the trajectories xb𝑖 ,ub𝑖 obtained in simulation with the
controller are used to re-evaluate the optimal cost function of
the problem L(xb𝑖 ,ub𝑖 ), using a cost function that includes
both task fulfillment and energy minimization terms. This
will have similar information with respect to the minimum
cost obtained by the DDP solver L(x★,u★), but will enrich it
with that from simulations with the control correction. Since
each Lb𝑖 is a random variable, depending on the realizations
of the noise b𝑖 , its expected value Lb is obtained using a
Monte-Carlo approach. Finally CMA-ES minimizes Lb .

Lb = E(Lb𝑖 ) ≈
1

𝑁𝑠𝑖𝑚

∑︁𝑁𝑠𝑖𝑚−1

𝑖=0
L(xb𝑖 ,ub𝑖 ) (7)

III. RESULTS

In this section some results, including robustness in the
co-design framework, are presented. To solve the OCP and
obtain the Riccati gains, we use crocoddyl [26] an open-
source DDP solver based on the robot dynamics library
pinocchio [27], [28]. A custom URDF is shared between
the OCP and the simulator PyBullet [17]. It is generated
parametrically using the ROS module xacro [29]. In an
initial phase we optimize just hardware parameters (fixing
the gain scaling 𝛾 = 1). Two types of robot, shown in Fig. 3,
are optimized for robust task tracking. Each one is made
up with variants of the same actuator module (see Fig. 2)
developed in the framework of ODRI [22]:
- Serial manipulator (Fig. 3a) With a fixed base (red), it
includes 4 links actuated by 4 motors (𝑅𝑍 − 3× 𝑅𝑋). Only
the sizes of the last 3 links are optimized, while the shape
of the base and the Z-axis link (orange) are fixed.
- Monoped (Fig. 3b) With a non-actuated base (blue) that
can move freely along a vertical prismatic link (2 bars),
it includes two optimized links and two actuated revolute
joints [4], [22], [30].



(a) Manipulator (b) Monoped

Fig. 3: Robot models used in our tests.

TABLE I: Manipulator cost function weights

Weight Type Value

Mechanical power Running 1e−2
Power losses ” 1e−2
Final frame position Terminal 1e4
Final frame velocity ” 1e6
Penalty on the max torque Penalty 1e4
Intermediate frame position ” 1e6
Intermediate frame velocity ” 1e6

Co-design parameters: The hardware optimization in-
volves the following parameters:

- Motor mass 𝑚𝑚 ∈ [0.05,1] kg
- Gear ratio 𝑛 ∈ [3,20]
- Link scaling _𝑙 ∈ [0.8,1.2] (_ = 1 is the nominal case)

The joint friction parameters and the actuator electro-
mechanical properties can be estimated from the first two
parameters. The link scaling _𝑙 represents the ratio between
the link length and the current module design length. A single
scaling parameters is used because, once a given length is
chosen, to keep the relative deflection of the link constant,
the section needs to change too according to a predefined law
as outlined in [4]. This change will also modify the inertia
of the links. In the final section of the results, hardware
and controller parameters are optimized together in the case
of the manipulator. We show that this way it is possible to
increase robustness even further by adding the gain scaling
parameter 𝛾 (introduced in Eq. 1) to the co-design variables.

MANIPULATOR BACK AND FORTH TASK

Task: The task is to displace a fixed mass payload of
0.1 kg from an initial position 𝑝0 (from a initial configuration
𝑞0) up to a given point 𝑝 = 𝑝0 + [−0.1,−0.1,0.1]⊤ m, and
then bring it back to 𝑝0. At the intermediate and final
positions the joint velocities must be zero.

Hyper-parameters: The parameters related to CMA-ES
are the number of generations 𝑁𝑔𝑒𝑛 = 10, and the number
of problems per generation 𝑁𝑝𝑜𝑝 = 10000. Parallelization
is used to speed up computation. On a standard desktop
computer, ≈102 hours were necessary for solving 105 prob-
lems, with a mean time per problem of 3.7 s, including the
simulation phase. The OCP has 1000 nodes and 𝑑𝑡 = 1 ms;
the cost weights are reported in Tab. I. For the realization b
the value of 𝜎b = 0.2 was selected and 𝑁𝑠𝑖𝑚 = 100.

individuals

Fig. 4: Robust cost metric Lb evolution trend during CMA-
ES (orange curve). Lb diminishes increasing the number of
runs of Alg. 1 (the number of the overall evaluated individ-
uals), while the standard cost L increases (blue curve).

Discussion: The values obtained with the standard
method (without robustness optimization) and its robust
counterpart are compared. Fig. 6b shows that the standard
method applies very high torques when the joint velocities
are null (initial, intermediate and final configurations) to
minimize the mechanical power (4). However, this solution
is hardly applicable to the real system due to bandwidth lim-
itations. Position and velocity tracking is better in the robust
case as illustrated qualitatively in Fig. 6a and quantitatively

by the lower RMSE =

√︃
Σ
𝑁𝑠𝑖𝑚

𝑖=0 | |xbi −x★ | |22/𝑁𝑠𝑖𝑚 in Tab. II.
The hardware parameters in Tab. II show that, to provide a
high impulsive torque, the standard method selects bulkier
motors, dissipating less energy by Joule effect and more
energy by Coulomb friction as reported in Tab. II. On the
other hand, the robust method induces higher Joule losses,
and selects smaller motors, but overall requiring less torque
and adding less mass to the system Tab. II. Reasonably, both
methods select the link size to reduce the moving masses
and system inertia. In Fig. 4 the cost metric profiles in case
of the standard and the robust approach are shown versus
the evolution of CMA-ES (all the evaluated individuals of
each generation). Here we notice that the improvement of
the robust metric Lb is accompanied with a degradation of
the standard metric L. The robust version penalizes a lot
the designs and controls that are not able to fulfill closely
the task (given the high weight on the final position, this
results in a cost orders of magnitude greater than the standard
one). Despite this (expected) trade-off, the optimization of
Lb produces designs that are able to follow more closely
the task under perturbations. In Fig. 5 the convergence of
Lb to the empirical expected value is shown, for different
histories of b and different random seeds. From the trend it
is noticeable that after around 100 simulations the deviation
is two standard deviations from the empirical expected value,
while for 1000 simulations we can consider Lb completely
converged. Fig. 5 also shows that the computational time is
roughly linear with the number of simulations (blue curve).
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Fig. 5: Monte Carlo evaluation of Lb progressively in-
creasing the number of simulations 𝑁𝑠𝑖𝑚. For a number of
simulation runs each orange curve represents the value of Lb

obtained with a different random seed, in blue the associated
computation time is plotted.

TABLE II: Results for the manipulator back and forth task.

Quantity Robust Standard

Cost L 9.58e−3 3.5e−3
Cost Lb 33.42 2e3
_𝑙 [0.83, 1.02, 0.86] [0.80, 0.80, 1.08]
𝑚𝑚 [0.05, 0.05, 0.05, 0.06] [0.2, 0.76, 0.49, 0.4]
𝑛 [16.7, 11.6, 11.8, 15.2] [17.1, 11.8, 11.4, 15.3]
RMSE 0.287 1.836∑

𝑖 𝑃𝑚,𝑖dt [J] -0.9 -1.7∑
𝑖 𝑃𝑡,𝑖dt [J] 6.5 1.8∑
𝑖 𝑃 𝑓 ,𝑖dt [J] 1.3 3.2

MONOPED JUMP

We selected a jumping task, a more complex scenario
involving contact phases, to optimize a hopping leg.

Task: The robot has to perform a jump with the base
in a given time, and stabilize the system after touch-down.
In the OCP this task is enforced weakly as a penalty on the
prismatic joint 𝑧 position.

𝑙 𝑗𝑢𝑚𝑝 (𝑧) =
{

0 if 𝑧 ≥ 𝑧𝑟𝑒 𝑓
| |𝑧− 𝑧𝑟𝑒 𝑓 | |22 if 𝑧 < 𝑧𝑟𝑒 𝑓

(8)

This task encourages motions that are jumping above the
reference height threshold (𝑧𝑟𝑒 𝑓 = 0.4 m), but still allows
smaller structures that under-perform the task. At the same
time, letting the maximum height unspecified is beneficial to

TABLE III: Non-weighted cost residuals after perturbation
for the manipulator case.

Robust Standard

Quantity ` (∑𝑟) 𝜎 (∑𝑟) ` (∑𝑟) 𝜎 (∑𝑟)

Actuation penalty 0.00 0.00 0.00 0.00
Mechanical power -0.44 1.54 64.54 10.2
Joule losses 8445.60 32.3 2408.0 143.6
Joint friction 1983.59 49.6 8343.0 223.5
Placing position 4.7e-5 2.19e-6 1e-6 2.8e-10
Placing zero velocity 0.531 0.173 6.44 4.74
Final position 0.193 0.136 21.41 13.2

(a) Robust method.

(b) Standard method.

Fig. 6: Manipulator back-and-forth tracking. Solid lines rep-
resent reference trajectories, dashed lines represent the mean
of simulated trajectories; shaded regions show the deviation
±3𝜎 around the mean.



TABLE IV: Results for the monoped co-design

Quantity Robust Standard Weights

Hardware
Scaling [1.2, 0.973] [0.87, 0.8]
Motor mass [0.125, 0.282] [0.812, 0.05]
Gear ratio [5.43, 7.83] [5.19, 7.00]
Metrics
Cost L 50.91 13.67
Cost Lb 631.08 1.09e4
RMSE on 𝑥★ 1.893 4.675
Mechanical power -16.67 -111.24 10
Joule power 49.02 76.03 10
Joint friction 16.00 48.21 10
Penalty
Base penalty 0 0 103

Foot penalty 0 0 104

Knee penalty 0 0 104

Actuation penalty 0.0035 0.012 104

Regularization
Friction cone 1.52 1.054 10−1

Jump threshold 2.53 0.00 105

Contact at zero 0.046 0.021 103

Terminal state 1.27 0.028 103

find solutions that satisfy the task timing sequence and the
dynamics. In the OCP there are four predefined phases for
the jumping motion:

- Contact phase: the foot contact with the ground is
enforced in the dynamics for a fixed number of nodes

- Flying phase: the contact with the ground is broken
and the monoped is jumping. At the intermediate node
the cost (8) is applied.

- Impact phase: the foot velocity at the new contact point
is set to zero and a small regularization is added to
penalize landing of the foot far from the origin.

- (Post-impact) contact phase: the leg, while in contact
with the ground, can decelerate the base motion and
stop the system.

Hyper-parameters: For CMA-ES the following parame-
ters were chosen: 𝑁𝑔𝑒𝑛 = 5, 𝑁𝑝𝑜𝑝 = 1000. The OCP has 1000
nodes and 𝑑𝑡 = 1 ms; the cost weights are reported in Tab. IV.
For the realization b the value of 𝜎b = 0.2 was selected and
𝑁𝑠𝑖𝑚 = 100.

Cost comparison: Fig. 7 shows the reference joint
velocities for robust and standard methods. Qualitatively the
simulated trajectories are similar to the ideal trajectories.
A jump of the base is performed even if perturbations and
actuator bandwidth limitations make the monoped perform
worse, anticipating the contact phase with the ground. This
means that the optimized motion needs high accelerations
that are not feasible with the more accurate hardware model-
ing introduced in the simulation. The reference trajectories of
the standard case are minimizing the cost, but such optimality
does not translate to the real system, as these trajectories
are also more brittle and not easy to follow in perturbed
scenarios.

Cost landscape: To better understand the impact of
the modified framework, in the case of the monoped, an
additional investigation is proposed. It explores the value of
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(a) Robust method.
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Fig. 7: Monoped jump: solid lines represent reference trajec-
tories, dashed lines the mean of the simulated trajectories,
while shaded regions show the deviation ±3𝜎 around the
mean. Note that the prismatic joint is underactuated.
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Fig. 8: Monoped jump: contour plot of the robust and
standard cost as functions of the motor mass 𝑚𝑚 and gear
ratio 𝑛. Two very different optimal regions can be seen

the standard and robust cost against combinations of the
actuator parameters. The costs have been evaluated on a
grid of motor mass and gear ratio parameters, reconstructing
the landscape of the standard cost L and the robust one
Lb . The task and problem formulation does not change but,
in this exploration, the actuator is chosen to be the same
for both joints and link lengths are fixed to the nominal
values so to visualize the landscape of the cost functions
against variations of two parameters in Fig. 8. The robust
cost adds insights that the standard cost is not able to capture,
hence resulting in different cost landscapes. In the standard
case, minimizing L, the best hardware combination involves
large motors and large reductions. Conversely, such choice
is highly penalized in the robust case, when joint friction
and actuator bandwidth are accounted for. One explanation
is that the increased motor size increases the inertia and non-
linear dynamic effects, so the controller has to apply higher
feedback torques to compensate for perturbations. Moreover,
in our parametric model, larger motors are accompanied by
increased rotor inertias, and thus greater reflected inertias.
In the robust case instead, smaller motors are selected
with a reductions that do not reach the maximum values.
This seems to hint that, when robustness comes into play,
more transparent1 hardware improves performance, which is
aligned with recent studies on the subject [31].

CONTROLLER PARAMETERS OPTIMIZATION

To further improve the controller robustness, the optimiza-
tion of the gain scaling factor 𝛾 (as in Eq. 1) was introduced
in the outer loop. In this case, for the same task in III, a
single actuator choice was optimized to be used for all the
manipulator joints and with 𝛾 ∈ [0.1−10]. The optimization
was done with a population of 1000 individuals evolved for 5
generations. The optimum was found for hardware values in
a similar range of the previous manipulator results, at 𝑚𝑚 =

0.05, 𝑛 = 15.7, _ = 1.13 and for 𝛾 = 6.57. The value of the

1As detailed in [31] transparent actuators can be obtained by minimizing
friction and reflected inertias at the joint level, so with quasi-direct-drive
actuation and low rotor inertia. This way the actuator bandwidth and
back-drivability are both increased. These properties are necessary for
proprioception and rapid control corrections
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Fig. 9: Effect of the scaling 𝛾 with respect to the robust cost
Lb . Each dot represents an individual of the optimization.
The presence of a minimum can be seen

robust cost though is significantly lower than what observed
in the case of unscaled gains, with the value Lb = 10.17.
Plotting the values of Lb against the 𝛾 results in Fig. 9.
Here we a value of 𝛾 greater than the unit is overall leading
to a decrease of Lb . The explanation is that the Riccati gains
obtained by DDP are optimal but only in a close proximity
with respect the ideal trajectory. This is not the case with the
addition of perturbations in the simulator: an amplification of
the correction seems to be a good option to reach the final
goal. It can be observed however that this trend stops at
higher values of 𝛾, where a sharp increase of the robust cost
is induced instead. With this last example shows that, with
this framework, optimizing even simple controller parameters
is possible at a reduced computational cost.

IV. CONCLUSIONS AND FUTURE WORK

The main contribution of this work is a co-design frame-
work that includes the information of a feedback controller
performance in simulation. This addition, with respect to our
previous contribution [4], is an important step to evaluate
the hardware properties in silico before starting the system
integration of real prototypes. Our approach shows relevant
improvement to robust tracking and requires little tuning:
the hardware and trajectories that are less impacted by noise
are selected without explicitly introducing the notion of
robustness in the OCP itself. This has been detailed in depth
for two different robotic platforms. Interestingly in both cases
the selected hardware is chosen to be more transparent,
hinting at a trade-off between energetic optimality and the
capability to counteract perturbations. The major drawback
of the method lies in the local nature of the controller. To
overcome this limitation, an extension was proposed and
successfully tested. It consist in optimizing a scaling of the
feedback gains at the same level as the design parameters,
in the external loop. As future work we plan to investigate
the substitution of the controller with even more general
approaches, such as MPC or RL, which allow a online
replanning of the trajectory.
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