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Crak Detetion in Lossy Two-Dimensional Struturesby means of a Mirowave Imaging ApproahSalvatore Caorsi*, Andrea Massa**, Matteo Pastorino***, and Fabio Righini***

AbstratThe purpose of this paper is to present a mirowave imaging approah for the de-termination of the position, the orientation and dimensions of a rak loated insidea lossy dieletri host medium. The inversion proedure is based on a geneti algo-rithm whih allows to iteratively generate a sequene of trial solutions minimizinga suitable ost funtion. The dependene of the performanes of the proposed mi-rowave imaging approah on the ondutivity value of the host medium is heked.Moreover, the robustness of the algorithm to operate with noisy data is evaluated.Finally, the reonstrution of an irregular rak is onsidered.
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1 IntrodutionThe use of interrogating mirowaves for inspeting dieletri materials or onduting stru-tures oated by dieletris has been proposed from long time. However, mirowave tomo-graphi tehniques are relatively news in this �eld.In this paper we propose an approah for data inversion in tomographi imaging whihan be of interest in the light of nondestrutive evaluation (NDE) appliations. Theusually proposed di�ration tomography aims at reonstruting an �image� of the objetunder test, e.g. a pixel matrix (usually, two-dimensional imaging is performed) in whiheah pixel orresponds to a disretization ell (whose dimensions essentially determine thesystem resolution) [1℄.At mirowave frequenies, the sattering mehanisms must be taken into aount in thereonstrution proedure. Consequently, di�ration tomography is muh more omplexthan lassial CT approahes based on approximations (e.g., straight ray propagation).The omplexity results in a large omputational load, mainly in terms of CPU time, forthe data inversion and the image formation [1℄.However, in NDE areas [2℄, [3℄, [4℄, the generation of a omplete image of the target isnot always required. The objet is usually known and what is of interest is only a defet inthe known ross setion. The inspetion proess should aurately loalize, orientate andshape the defet. At mirowave frequenies, the inverse problem that must be solved is ahighly nonlinear one. The possibility of multiple solutions may result in false loalizationsor artifats that an be very problemati in several appliations.Stohasti optimization proedures [5℄, [6℄, [7℄ seem to be able to reah the �global�solution of the problem. Consequently, they are potential inversion tools. Proedures ofthis kind (in partiular the geneti algorithms (GAs)) have previously been proposed formirowave imaging purposes [8℄. Nevertheless, their main drawbak is the omputationaltime required to ahieve the solution when many unknowns must be determined. In themirowave imaging framework, this problem is overame by hybridizing the GA-based3



proedure with a deterministi method (see for example [8℄, [9℄, [10℄ and the referenestherein). In NDE appliations, the number of unknowns onsiderably redues and thesearh spae an be limited by imposing some deterministi onstraints arising from thea-priori knowledge on the problem at hand.It should be noted that a number of approahes based on the use of GAs has beenalready proposed in the NDE �eld. These approahes are mainly onerned with thedetetion of raks by using eddy urrent tehniques. For example, a lassi binary-oded GA has been in [11℄, where the interation of the exiting ECT oil with arbitraryshape raks (parallel with eah other and perpendiular to the surfae of an in�nite non-ferromagneti ondutor plate) is alulated by using integral equation. A onstrainedGA assoiated with a �nite-element modeling for solving 2D inverse problems in ECThas been also proposed in [12℄. Moreover, a numerial example of rak detetion using aprobe that an operate from DC to medium frequeny has been presented in [13℄, in whiha �nite element method is used for the diret problem solution and a GA is applied asinversion tool. A proess monitoring system has been developed in [14℄ for old headingappliations. In that work, a GA has been used to selet the small subset of waveformfeatures neessary to develop a robust arti�ial neural network for the di�erentiationamong old head mahine onditions. Another evolutionary algorithm has been onsideredin [15℄ for solving the eletromagneti NDE inverse problem onsisting in �nding theposition, dimension, ategories, type, shape or number of �aws in a onduting samplestarting from the information obtained by a ECT probe. Sine a high number of degreesof freedom are present in the hoie of the parameters governing these kind of algorithm,paper [15℄ is a preliminary attempt to use a meta-algorithm aiming to �nd the bestvalues for the operator parameters. Essentially, this meta-algorithm is a GA having aspopulation a set of evolutionary algorithms.
4



2 Mathematial FormulationIn Figure 1, a lassi tomographi on�guration is represented. An inident wave is gen-erated by the transmitting antenna and impinges on the objet to be inspeted. To dealwith a two-dimensional salar problem, the inident wave is assumed to be transversemagneti (TMz) with the eletri �eld vetor polarized in the same diretion of the axisof the ylindrial objet. Generally, the aim is to inspet the ross-setion of the ylinder,whih is assumed to be homogeneous only in the z diretion. A set of probes is loatedaround the objet. The measurement probes and the transmitting antenna jointly rotatearound the objet in order to ollet multiview information (the use of multiview proess-ing is of fundamental importane in inverse problems, as it results in a redution of theill-onditioning).At mirowave frequenies, there is a ompliated relationship between measured dataand spatial distributions of dieletri parameters of the objet under test. This relation-ship mathematially models the laws of the e.m. sattering and an be written as [16℄,[17℄: Ev;msatt = Ev;mmeas � Ev;min = =v;m f�g (1)where:� Ev;msatt: sattered �eld (z -omponent) at point m (m = 1; :::;M) for the v-th view(v = 1; :::; V );� Ev;mmeas: measured eletri �eld;� Ev;min : inident eletri �eld;� � : objet funtion de�ned as � = ("�1)�j �2�f"0 being " and � the dieletri permit-tivity and ondutivity of the ross setion (in general, inhomogeneous quantities),respetively; 5



� =v;m: �rst-order Fredholm operator having as kernel the Hankel funtion of seondkind and zero order [16℄;� M , V : numbers of measurement probes and views.In imaging appliations [1℄, the target is the reonstrution of the objet funtion in thewhole ross-setion. If highly ontrasted bodies are to be inspeted, �inverting� (1) resultsin a umbersome and omplex nonlinear inverse problem.However, in many NDE appliations, the problem is the detetion of a defet in anotherwise known objet (�objet). In this paper, we explore the possibility of identifyingthe position, the orientation and the size of a rak (for simpliity approximated with avoid retangle) in the original struture. The rak is haraterized by: L (length), w(width), � (orientation), (x0; y0) oordinates of the enter (Figure 1). The parameters L,w, and �, are assumed to belong to �nite sets: L 2 fLj; j = 1; :::;�g, w 2 fwi; i = 1; :::; !gand � 2 fp��; p = 1; :::;�g. The unknowns onstitute an array �. The reonstrutionproblem is then to minimize the following funtional:� n�o = 1 MXm=1 VXv=1 ���Ev;msatt � =v;m n�o���2+
2 NXn=1 VXv=1 ���Ev;nin � =v;n0 n�o���2 (2)where:� Ev;nin : inident eletri �eld at the enter of the n-th pixel (the original ross setionis partitioned into N square pixels);� =v;n0 : the operator orresponding to the Volterra equation relating the internal �elds(the so alled state equation) [17℄;� 1, 2: regularization onstants. 6



By using (2), the original inverse problem is reast into a global optimization problem.Sine =v;n0 and =v;m ontain as unknown also the internal total eletri �eld, one anuse the �rst order Born approximation [18℄ (Etot � Ein inside the ross setion). Sinethe Born approximation is not able to deal with strong satterers [19℄, Etot = Etot;z bzis assumed here to be an unknown, and the values Ev;ntot , n = 1; :::; N , v = 1; :::; V areenlosed in the array �.The minimization of � n�o (relation (2)) is obtained by using a GA. The GA evolvesa set of trial arrays, alled a population of individuals, 
 = f�l; l = 1; :::; L
g, towardthe global minimum of the ost funtion [20℄. The individuals are represented by stringof oded unknowns, eah element of whih is alled gene. An hybrid integer-real odingsheme is onsidered. A binary enoding [21℄ is used for the parameters haraterizingthe rak. On the ontrary, eletri �eld unknowns are represented with real-valued genes[22℄, [8℄. Then the following sequene of steps is performed:� Randomly generate an initial population, 
(0);� Compute the value of the ost funtion of eah individual of the urrent population,�(k)l being k the population number;� Generate an intermediate population, 
(k)int, applying the proportionate seletion [6℄operator;� Generate a new population, 
(k+1), applying mutation and rossover operators to
(k)int. These operators are applied in probability, where the rossover and mutationprobabilities are system parameters. As far as rossover operator is onerned stan-dard two-point rossover is used [7℄. The mutation is performed following di�erentstrategies aording to the type of the gene to mutate. If the randomly seleted geneis binary-valued, then standard binary mutation is adopted. Otherwise, the gene ismodi�ed by adding a random value, suh that the obtained solution be physiallyadmissible. 7



� When L
 new individuals are generated, the elitism mehanism [5℄ is applied inorder to always maintain the best solution in the urrent population.The iterative proedure is repeated until a termination riterion is attained. In partiular,the proess is stopped if a �xed threshold for the value of the ost funtion (�) is attainedor if a maximum number of generations is ahieved (Kmax).3 Numerial ResultsTo test the performane of the proposed algorithm, a number of simulations have beenperformed with the use of both noiseless and noisy syntheti data. Let us onsider a lossysquare host objet 0:8�0-sided, being �0 the free-spae wavelength, haraterized by a rel-ative dieletri permittivity "objet(x; y) = 2:0. The satterer is suessively illuminated byV = 4 inident unit plane waves whose impinging diretions are given by #v = (v � 1) 2�V ,v = 1; :::; V . The observation domain is made up of M = 40 measurement points equallyspaed and loated in a irle 0:64�0 in radius.In the �rst example, the e�et of the ondutivity of the host medium on the detetionof a rak is analyzed. A square rak (L = W = 0:2�0) is entered at the point x0 =y0 = 0:1�0. The assumed parameter onerning the GA (hosen aording to valuessuggested in the literature [6℄, [7℄) are the following: rossover probability, p = 0:7;mutation probability, pm = 0:7; dimension of the population, L
 = 80; maximum numberof generations, Kmax = 1000; ost funtion threshold, � = 10�5.In order to quantify the errors in the rak positioning, in the de�nition of the rakarea, and for the eletri �eld predition suitable error �gures are de�ned: = q(x0 � bx0)2 + (y0 � by0)2dmax � 100 (loation error) (3)A = A � bAA � 100 (area error) (4)8



�n = ������ bEv;ntot ���� jEv;ntot j���jEv;ntot j � 100 (field error) (5)being (bx0; by0) the estimated oordinates of the rak, dmax = p2lD the maximum errorin de�ning the rak enter when it belongs to the host satterer, bA and A the estimatedand atual rak areas, respetively, and bEv;ntot the estimated eletri �eld inside the nthsubdomain. Figure 2, shows the behavior of the maximum, average and minimum valuesof the loation (Fig. 2(a)) and area (Fig. 2(b)) errors versus �. As an be seen, thealgorithm performs better in the rak loation than in de�ning the rak dimensions. Asfar as the loation error is onerned, the average value is less than 13% in the range ofvariability of �. On the ontrary, the area error results less than 50% for a ondutivityvalue ranging between 0 and 0:4 (S/m), and onsiderably inreases for larger value of �.For ompleteness, Figure 3 shows the plots of the eletri �eld distribution (� = 3) insidethe investigation domain when � = 0:3 (S/m). In more detail, �gures 3(a) and 3(b) givethe �eld amplitude for the rak-free on�guration and for the referene on�gurationwith the rak, respetively. In order to give some indiations about the onvergeneof the iterative proedure, �gures 3()-3(f ) show the plot of �n inside the investigationdomain for di�erent iterations. Starting from the initial iteration (k = 0), the averagevalue of the �eld error dereases until a perentage value equal to 26% is reahed at thestopping iteration (k = 1000) (Table I).An idea of the data �tting obtained with the presented approah is given in Figure 4and Figure 5. Figure 4 shows the amplitude of the estimated sattered eletri �eld (� = 3)in the observation domain. The reonstruted amplitudes are given in orrespondenewith di�erent iterations and also the atual distribution is reported. Starting from theiterations around k = 400, the agreement between referene and reonstruted amplitudesis very good. For ompleteness, the �tness funtion and related addends (i.e., �Data n�o =PMm=1PVv=1 ���Ev;msatt �=v;m n�o���2 and �State n�o = PMn=1PVv=1 ���Ev;min �=v;n0 n�o���) are shownin Figure 5. The plots on�rm a good �tting with the data related to the sattered eletri9



�eld in the observation domain as well as with those proportional to the inident �eldinside the investigation domain.The results in a noisy environment are onsidered in the seond example where thehost medium is haraterized by a ondutivity � = 0:1 (S/m). To simulate the preseneof the noise in observed data, Gaussian noise is added. The noise is a omplex randomvariable whose real and imaginary parts are independent Gaussian random variables withzero mean and standard deviation given by� = PMn=1PVv=1 ��� bEv;msatt���22NV � SN � (6)being � SN � the signal-to-noise ratio. The results in term of error �gures, derived fromthe inversion proedure when a Gaussian noise haraterized by di�erent power levelsis onsidered, are given in Table II. The in�uene of the noise on the reonstrutionapabilities of the approah is visible. The values of the error �gures inrease as thesignal-to-noise ratio dereases. However it should be noted that the approah show agood robustness to the noise. As far as  and A are onerned the inrease in theerror values results less than 5% and 7% between the strongly and weakly noisy ase,respetively.Finally, the detetion of an irregular rak has been onsidered. Figure 6 is onernedwith the ase of a void rak loated inside a lossy host medium (� = 0:01(S/m)) asshown in Figure 6(a). In partiular, Figures 6(b), 6(), and 6(d) give the images ofthe reonstruted on�guration at the initialization (k = 0), at an intermediate iteration(k = 50), and at the onvergene iteration (k� : �k� n�o < �), respetively. Starting froman initial estimate of the area and loation of the rak randomly hosen (�g. 6(b)), theestimated rak parameters tend to beome more and more similar to the atual one. The�nal image (�g. 6(d)) shows that the rak is orretly loated and also the rak areais similar to the referene one. In partiular, the estimate of the rak area results verygood if we onsider that the onstraint of a retangular rak to be deteted is assumed10



during the iterative proess.4 ConlusionsA two-dimensional inverse sattering method for reonstruting the parameters of a rakloated inside a lossy host medium has been proposed. The method is based on minimiz-ing the mean-square errors between measured and reonstruted sattered and inidenteletri �elds, respetively. Unlike the inversion methods based on deterministi opti-mization tehniques, the proposed approah allows to use the large amount of a-prioriknowledge avoiding the solution to be trapped in loal minima of the nonlinear funtional.The reonstrution tehnique has been tested with syntheti data in both noisy andnoiseless onditions. It has been demonstrated that quite aurate results an be ahievedespeially as far as the rak loation is onerned.Finally, preliminary results onerned with an irregular void rak have been shown.Further improvement in the performane of the proposed approah may be ahieved byadding appropriate penalty terms or by hoosing a more aurate parameterization of therak perimeter. This is left for future works.
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FIGURE CAPTIONS� Figure 1.Problem Geometry.� Figure 2.Reonstrution of a void rak inside a lossy host medium. Minimum, maximum,and average values of (a)  and of (b) A for di�erent values of the host mediumondutivity.� Figure 3.Reonstrution of a void rak inside a lossy host medium (� = 0:3 (S/m)). Am-plitude of the eletri �eld inside the investigation domain (� = 3). (a) Crak-freedistribution. (b) Atual distribution. Field error distribution inside the investiga-tion domain obtained by using the mirowave imaging approah at the iterations() k = 0, () k = 100, () k = 500, and () k = 1000.� Figure 4.Reonstrution of a void rak inside a lossy host medium (� = 0:3 (S/m)). Ampli-tude of the sattered eletri �eld at the measurement points (� = 3). Comparisonbetween atual and reonstruted values.� Figure 5.Reonstrution of a void rak inside a lossy host medium (� = 0:3 (S/m)). Behaviorof the funtional versus the number of iterations.� Figure 6.Reonstrution of a void irregular rak inside a lossy host medium (� = 0:01(S/m)). Images of reonstrution results. (a) Atual on�guration. Reonstrutedon�guration at the iterations (b) k = 0, () k = 50, and (d) k = 1000.
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TABLE CAPTIONS� Table I.Reonstrution of a void rak inside a lossy host medium (� = 0:3 (S/m)). Statistisof the �eld error inside the investigation domain for di�erent numbers of iterations.Simulation in Fig. 3.� Table II.In�uene of the noise on the reonstrution of a void rak inside a lossy host medium(� = 0:01 (S/m)). Error �gures.
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k av f� (x; y)g var f� (x; y)g min f� (x; y)g max f� (x; y)g0 365.40 4519.4 0:29� 10�1 1138.44100 15.47 64.47 0:36� 10�2 43.95500 12.61 29.66 0:26� 10�1 29.651000 12.10 26.00 0:66� 10�2 31.85
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� SN �dB  A av f� (x; y)g10 9.53 49.37 12.66430 7.38 47.11 12.61450 4.92 42.96 12.613
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