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GEOMETRIC SIMPLE CONNECTIVITY AND
LOW-DIMENSIONAL TOPOLOGY

V. POENARU

to the memory of L.V. Keldysh

1. Introduction

I feel very honoured to have been invited to contribute with a paper to this
volume dedicated to the memory of Ljudmila Vsevolodovna Keldysh who was an
important mathematician and also a very remarkable person indeed. I got to know
her in 1961 when, as a young mathematician from Rumania, I have spent some
time in Moscow. I gave some lectures in the topology seminar of Ljudmila Keldysh,
I have been several times been a guest in her home and, in that same period, I
became a friend of her son Serghei Novikov. It was quite an exciting episode of my
life.

The main part of this largely informal paper is to explain the present status
of my program for the Poincaré Conjecture. Of course, I am fully aware of the
announcement made by Grisha Perelman of a proof of the complete Thurston ge-
ometrization Conjecture (I have even lectured to my Italian colleagues about it, or
rather about the very little I understand of the work of Perelman and Hamilton.)
But the point is that my own proof of the Poincaré Conjecture is, modulo very
serious verification (in particular of the nevralgic [PoV-B], see below) finished too.
Moreover the argument have hardly anything to do with dimension three, they are
all 4-dimensional and so, even if they may only allow some partial steps in the direc-
tion of the full Thurston Conjecture, they do have potential applications indeed, in
the realm of 4-dimensional topology where, to the best of my knowledge the Ricci
flow does not say anything very strong (except, possibly, in the Kähler context.)

So, you may also take this paper, if you wish to do so, as kind of a very informal
announcement. Bibliography has been kept to a minimum; only references to papers
containing proofs for (some of) the statement I make have been given. But there
one can also find the other references which one might wish to have,too.

Thanks are due to David Gabai, Frank Quinn and Barry Mazur for their helps
and encouragements. David actually did much more than that, since some of the
results stated below are result of joint work with him.

A very condensed version of this paper has been presented as a 45 minutes lecture
at the April 2003 meeting of the AMS in New York.

2. A Program for the 3-dimensional Poincaré Conjecture

My program is an almost entirely 4-dimensional construction and I will start
by explaining why this is not such a completely unreasonable idea, to begin with.
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Let ∆3 be a homotopy 3-ball and, starting with it, consider the following compact
bounded 4-manifold

(2.2.1) X4
0 = (∆3 × I)#p#(S2 ×D2);

in all this paper “#” will mean connected sum along the boundary. Assume now
that we would know (which we actually don’t, hence the question mark added to
the formula below) that

(2.2.?) X4
0

?= B4#p#(S2 ×D2).

This would imply the Poincaré Conjecture. One can see this as follows.
By taking the boundaries of the two terms in formula (2.2.?) we get

2(∆2#p#(S2 ×D2)) = 2(B3#p#(S2 ×D2)),

and hence there is an embedding of ∆3 into the universal covering

2(B3#p#(S2 ×D2))∼,

a standard object which embeds into R3. But any smooth embedding S2 ⊂ R3

(and in all this discussion we have tacitly assumed that we are in the diff category)
bounds a 3-ball, according to an old theorem of Alexander. For the little argument
above, it is essential that we stick to dimension four, and do not go to dimensions
> 4; in dimension five or more, for instance, the analogue of (2.2.?) is known be
true, but this does not help at all with the Poincaré Conjecture itself.

Before going on, I will explain what the “geometric simple connectivity” from
the title of this paper means. A smooth manifold Mn (which may be with ∂M 6= ∅
and not necessarily compact) is said to be geometrically simply connected if
it admits a smooth handlebody decomposition without handles of index λ = 1.
Alternatively there exists a smooth proper function Mn f−→ R+ all the singularities
of which are in intMn and of Morse type, such that

i) There are no singularities of index λ = 1.
ii) The restriction f |∂Mn is also Morse and all of its “non fake ” singularities

are also with λ 6= 1. Here “non fake” means that they command actual
changes in topology for the set f−1(−∞, c].

Clearly if Mn is g.s.c. (by which we will mean geometrically simply-connected)
then π1M

n = 0 and it is instructive to see what is the answer for the following
natural question

(Q) π1M
n = 0 −→ Mn g.s.c. ?

If Mn is compact, the answer to (Q) is yes if n ≥ 5 (Smale), no if n = 4 (there
is a subtle obstruction discovered by Casson, when M4 is contractile, connected
with the representations of π1∂M4) while if n = 3 the arrow in (Q) is equivalent
to the Poincaré Conjecture. Notice that Casson’s result quoted above implies that
the non trivial factors of the 5-cube, discovered more than forty years ago by Barry
Mazur and by the present author (Po-Mazur manifolds) are not g.s.c. If Mn is
open and if π∞1 Mn = 0 then the answer to (Q) is yes again, provided that n ≥ 5
(see [PoTa1]). If Mn is both non-compact and with ∂Mn 6= ∅ then there is no
reasonable theorem, to the best of my knowledge.

With this my program for the Poincaré Conjecture (a 1994 overview of which
can be found in [Ga]) consists of three steps
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step i Go from ∆3 to the following smooth open 4-manifold

(2.3) X4 def= int[(∆3 × I)#∞#(S2 ×D2)].

For this we have now the following theorem

Theorem 1. X4 is geometrically simply-connected.

The proof of this theorem about which more things will be said later
in this paper, is contained in [PoI], [PoII], [PoIII], [PoIV-A and B], and
[PoV-A]. And so we move to the next Step II.

step ii This step is written down, at least in a preliminary version, but it still
require a lot of checking as well as a finalized version, reason for which I
state it here with a question mark. We consider any homotopy 3-ball ∆3

for which we construct the X4 from (2.3). The next step takes the form of
an implication which is totally independent of theorem 1.

Theorem 2 (?). If the open X4 is geometrically simply-connected, then
so is the compact ∆3 × I.

We will refer to this second step, which still remains to be completely
firmly established , as “PoV-B”.

We move now to the third and last step.
step iii Just like step II this third step also takes the form of an implication, which

is totally independent of Theorem 2 (?) above.

Theorem 3. Let ∆3 be a homotopy 3-ball which is such that ∆3 × I is
geometrically simply-connected. Then ∆3 = B3.

It should be obvious that, together, the three theorems above imply the Poincaré
Conjecture. Before saying more things concerning the three statements above, I will
make a general comment. Everything said above is supposed to hold in the diff
category and this is not just a piece of pedantry. Of course for 3-manifolds, the
top, pl and diff categories are all equivalent. But we are in dimension four in
this approach and at several crucial points some form or other of Hauptvermutung
has to be involved. And as we know from gauge theory, Hauptvermutung, as
such, is violently false in dimension four. For instance, R4 admits uncountably
many distinct pl structures. But according to an old theorem of J.H.C. Whitehead
there is uniqueness for the pl structures compatible with a given diff structure,
irrespective of the dimensions involved. So, we can use this result, provided we
never leave the diff category.

We will discuss now Step I above. I will start by introducing the “sort of links”.
By definition these are non compact manifolds W 4 with non-empty boundary, such
that for some 1 ≤ α ≤ ∞

(2.4) intW 4 = R4
standard, ∂W 4 =

∞∑
1

S1
i × intD2

i (null-framing is assumed here).

Here is the most obvious example of a sort of link (and, at the same time, the
justification for the name). Consider, to begin with, a smooth pair, and this is how
I like to think about links or knots

(2.5)
(
B4,

N<∞∑
1

S1
i ×D2

i ⊂ ∂B4
)
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(with B4, from now on, the standard smooth 4-ball). With this, the manifold

(2.6) W 4 = B4 −
(
∂B4 −

N∑
1

S1
i × intD2

i

)

is, indeed, a sort of link in the sense of the definition which we just gave. Moreover,
a sort of link of this particular type will be said to be smoothly tame.

Here is an example of a sort of link which is, I believe, smoothly wild. Start with
the Whitehead pair of solid tori T0 ⊂ T1 and then iterate indefinitely the same
embedding

T0 ⊂ T1 ⊂ T2 ⊂ T3 ⊂ · · ·
This leads to the classical Whitehead manifold

Wh3 =
∞⋃
0

Tn.

It is a standard fact that for this open contractible manifold (which is not R3, since
π∞1 Wh3 6= 0) we have the diffeomorphism

Wh3 × (0, 1) =
∞⋃
0

Tn × (0, 1) = R4
standard.

With a slight modification of this formula, we can get a sort of link, namely

W 4 def= {(intT0)× (0, 1]} ∪
∞⋃
1

Tn × (0, 1),

with ∂W 4 = (intT0) × 1. It turns out that this “sort of knot” is a Casson handle
which, I believe, is known to be smoothly wild. Of course all the Casson handles
are sort of links (with α = 1) and it is known from Freedman’s work that all Casson
handles are topologically standard, and hence topologically tame. Via Donaldson’s
and Gompf’s work, Casson handles which are not smoothly standard (and hence
not smoothly tame either) have to exist.

The sort of links (2.4) with α < ∞ are, in certain sense, natural extensions of
the classical links and knots. But the distinction smoothly tame versus smoothly
wild is absent in the usual word of knot theory. One can speculate whether smooth
wildness is detectable by appropriate topological quantum field theory (TQFT),
but I will not go into that here.

The first result on the road to Theorem 1 is the following result which, at face
value, is a very weak variant of (2.2.?).

Theorem 4. (The smooth tameness theorem). For every homotopy 3-ball
one can find a sort of link V 4 with infinitely many boundary components, i.e. such
that

∂V 4 =
∞∑
1

S1
i × intD2

i ,

and with the following two properties
(A) We have a diffeomorphism of open 4-manifolds

(2.7) int((∆3 × I)#∞#(S2 ×D2)) = V 4 + {the infinitely

many 2-handles
∞∑
1

D2
i × intD2

i corresponding to ∂V 4}.
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The 2-handles concerned here are without lateral boundary.
(B) For any finite N ∈ Z+, the truncation

(2.8) V 4|N def= V 4 −
∞∑

N+1

S1
i × intD2

i

can be smoothly compactified into a copy of B4
standard, i.e. it is smoothly

tame.

The proof of theorem 4, is contained in [PoIV-A and B] (a long paper which, in turn,
relies [PoI] to [PoIII]). This proof which we will not even sketch here, makes heavy
use of an infinite process, which is quite different from the one used by M. Freedman
for the topological 4-dimensional Poincaré Conjecture. For instance, since we want
to stay inside the smooth category, no Bing type shrinking can ever be used in our
context.

The infinite process via which Theorem 4 can be proved, constructs V 4 by putting
together infinitely many compact non simply-connected pieces, a bit like for Wh3.
Also, for each individual finite truncation V 4|N , the same infinite process adds
infinitely pieces at infinity, until the boundary extends to a copy of R3. It turns
out that this is enough for compactifying V 4|N into a copy of B4. The reason is
the following easy fact: In the smooth category, for n ≥ 4 (in particular for n = 4
which is the case of interest for us), there is a unique way to glue Rn−1 to the
infinity of Rn, i.e.

Rn ∪Rn−1 = Rn
+

(all the euclidean spaces considered here are standard).
Notice, on the other hand, that for n = 3 the analogous fact is false, due to

the existence of the Artin-Fox arcs. This will turn out to be a major difficulty, to
be overcome, for the proof of the strange compactification below. It is not being
claimed, in the context of theorem 4 that the compactifications of the various V 4|N
are compatible with each other.

I will give now the main applications of the smooth tameness theorem. Some
definitions will be necessary. Let Y n be a smooth n-manifold (which is not closed).
We will say that Y n is geometrically simply-connected at long distance, if for every
compact subset K ⊂ intY n we can find a compact geometrically simply-connected
submanifold Mn ⊂ Y n, such that K ⊂ Mn ⊂ Y n. In the special case when Y n

is itself compact bounded, there is an equivalent form of this definition, where
only compact objects occur. Let ∂Y n × [0, 1] ⊂ Y n be a collar of the boundary
∂Y n = ∂Y n × 1; define

Y n
small ⊂ Mn − ∂Y n × (0, 1],

i.e. Y n
small is another version of Y n, canonically embedded inside intY n. Then

Y n is geometrically simply-connected at long distance iff there exists a compact
geometrically simply-connected submanifold Mn ⊂ Y n, such that

Y n
small ⊂ Mn ⊂ Y n.

Corollary 5.A The open manifold (see (2.3))

X4 = int((∆3 × I)#∞#(S2 ×D2)),

is geometrically simply-connected at long distance.
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Proof. Consider a compact subset K ⊂ X4. We can always find a N < ∞, such
that

(2.9) K ⊂ (V 4|N) +
{
the 2-handles

N∑
1

D2
i × intD2

i

} ⊂ X4.

Now, since the sort of link V 4|N is smoothly tame, the

Z4 def= (V 4|N) +
N∑
1

D2
i × intD2

i

which appears in (2.9), is the interior of a compact bounded geometrically simply-
connected manifold M4. This M4 can be slightly pulled inside its interior, so as to
get the desired engulfing of K by M4

K ⊂ M4 ⊂ Z4 ⊂ Y 4.

Corollary 5-B. For any homotopy 3-ball ∆3, the 4-manifold ∆3× I is geome-
trically simply-connected at long distance.

Proof. We define An = (∆3 × I)#n#(S2 × D2), and consider the standard
inclusions An ⊂ intAn+1. With this, our X4 has the compact exhaustion

X4 =
∞⋃
0

An.

We consider the compact subset A0 = ∆3 × I ⊂ Y 4, to which we apply corollary
5-A; this gives us a compact geometrically simply-connected M4 ⊂ Y 4, such that

A0 = ∆3 × I ⊂ M4 ⊂ Y 4.

By compactness, there is a finite n such that we also have

A0 ⊂ M4 ⊂ An.

Since the inclusion A0 ⊂ An is standard, if we kill the #n#(S2 ×D2) of An with
3-handles, so as to get ∆3 × I, the resulting inclusion A0 ⊂ ∆3 × I is just our
(∆3 × I)small ⊂ ∆3 × I, and hence the last formula also yields

(∆3 × I)small ⊂ M4 ⊂ ∆3 × I.

This ends the proof of Corollary 5-B of the smooth theorem. We still need
another big step before we can get to theorem 1. This is the following result, the
proof of which is to be found in [PoV-A].

Theorem 6. Let ∆3 be a smooth compact 4-manifold which is such that ∂∆4 is
a homology sphere and which, moreover is itself geometrically simply-connected at
long distance. Then the smooth open 4-manifold

int(∆4#∞#(S2 ×D2))

is geometrically simply-connected.

Clearly (Corollary 5-B)+ (Theorem 6) =⇒ Theorem 1.
This is about as much as we will say concerning Step I, here, we will come back

to the more problematic Step II in the next section, and so we move now to a short
discussion concerning the Step III. By assumption our ∆3 is now such that ∆3 × I
is geometrically simply connected.
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Let us consider any smooth manifold pair like (2.5), call it now

(2.10) LK =
(
B4,

k<∞∑
1

S1
i ×D2

i ⊂ ∂B4
)

with null-framing. (This is really what one would like to be a link, as opposed to
a pair

∑k
1 S1

i ⊂ M3 which one would call a “classical link”.)
Starting with (2.10) we perform the following 2-stage construction:

(2.11.a) We fist perform an infinite connected sum along the boundary, far from∑k
1 S1

i ×D2
i , call this process

B4 =⇒ B4#∞#(S2 ×D2).

(2.11.b) Then we erase any piece of boundary, for B4#∞#(S2×D2), except for∑k
1 S1

i × intD2
i itself, which produces the following non-compact 4-manifold (with

non-empty boundary)

V 4(LK) def= int(B4#∞#(S2 ×D2)) ∪
k∑
1

S1
i × intD2

i .

Notice that while

(2.12) B4#∞#(S2 ×D2)

is not a uniquely defined object, as long as the end-point structure is not specified,
the V 3(LK), which is called a stable sort of link, is unique, once LK (2.10) is given.
We state now the main result of the present section

Theorem 7. (The strange compactification theorem). Let ∆3 be a
homotopy 3-ball which is such that ∆3 × I is geometrically simply-connected.

Then there exists a link LK (2.10) with the following two properties.
A) If we use LK in order to add k handles of index two to B4, then we get a

diffeomorphism

(2.13) (∆3 × I)#(k#(S2 ×D2)) =

= B4 +
{
the k handles of index two

k∑
1

D2
j ×D2

j defined by LK
}
,

an equality which re-expresses the geometric simple connectivity of ∆3 × I.
B) For the stable sort of link V 4(LK) which is attached to our LK we can

find a noncompact smooth 4-dimensional W 4 with a connected and simply-
connected boundary W 4 = ∂W 4 and also a smooth embedding

(2.14) (V 4(LK), ∂V 4(LK))
ξ−→ (W 4,W 3)

such that:
B-1) The restriction ξ|intV 4(LK) is a diffeomorphism intV 4(LK) ≈ intW 4.
B.2) If we consider the core curves

(2.15) Γ def=
k∑
1

S1
i ⊂

k∑
1

S1
i ×D2

i = ∂V 4(LK),

then the classical link (W 3, ξ(Γ)) is trivial.
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Before discussing the statement, I will give right away its main application.

Corollary 8. Let ∆3 be a homotopy 3-ball which is such that ∆3 × I is geo-
metrically simply-connected. Then ∆3 = B3.

Sketch of Proof. Since ∆3 × I is geometrically simply-connected, we have, ac-
cording to Theorem 7, an LK (2.10) with the properties A), B). We also have the
classical link Γ ⊂ S3 = ∂B4 which comes along with (2.10); we denote

π = π1(S3 − Γ).

We consider now the fundamental group at infinity for the non-compact space
V 4(LK), namely

π∞1 V 4(LK) = lim←−
C

π1(V 4(LK)− C),

where the inverse limit runs over the compact sets C ⊂ V 4(LK); it turns out that,
with some care, we can handle the base-point problems, and this huge topological
pro-group is well-defined.

The non-compact space V 4(LK) has two, completely distinct, compactifications,
namely

(2.16.a) The standard compactification which is, by definition the one-point
(Alexandrov) compactification of (2.12).

(2.16.b) The one-point compactification W 4 ∪ {∞}, which we call strange, pro-
vided by theorem 7.

Each of then two compactifications gives us a way for computing π∞1 V 4(LK). If
we use the standard compactification, we get

(2.17) π∞1 V 4(LK) = lim←− (π ? Fn)

when “?” means free product and Fn means the free group with n generators. If
we use the strange compactification, then we get, on the other hand

(2.18) π∞1 V 4(LK) = lim←− Fn.

This pro-free group is a very complicated topological group, which is actually not
free; but it can shown (via Grushko) that every finitely generated subgroup is free.
Since (2.17) combined with (2.18) gives us an injection π ⊂ lim←− Fn, it follows that π
is free. So (according to a well-known theorem of Papakyriakopoulos the classical
link (S3, Γ) is trivial. It follows then from (2.13) that

(2.19) (∆3 × I)#k#(S2 ×D2) = B4#k#(S2 ×D2).

But this last formula is the same as (2.2) (without question mark now !) and so
proceeding exactly as we have done in the beginning of this section we get ∆3 = B3.

I will go back now to theorem 7. Extending the boundary
∑

S1
i × intD2

i of
V 4(LK)) to the connected W 3 = ∂W 4 involves again an infinite process not unlike,
the one via which one proves theorem 4. I will not discuss here, at all, the very
delicate process of gluing W 3 to the infinity of V 4(LK), but rather talk about the
part of the story concerning the pair (W 3, Γ) itself.

The infinite process turns out to provide two “canonical structures” for (W 3, Γ).
I) The first structure. The inclusion Γ ⊂ W 3 extends to a PROPER embedding

(2.20)
k∑
1

(D2
i − Ci) ↪→ W 3
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where each Ci ⊂ intD2
i is a Cantor set and where

k∑
1

∂(D2
i − Ci) = Γ.

We will say that Γ can be pulled to the infinity of W 3. Here is an easy fact
concerning this notion.

Lemma 9. Let X3 be an open simply-connected 3-manifold which is simply-
connected at infinity (for which we will use the notation π∞1 X3 = 0).

If Γ ⊂ X3 is a classical link which can be pulled at infinity, then (X3, Γ) is
trivial.

Proof. Inside each D2
i − Ci we choose a finite system of simple closed curves

{γi} which split off from Di − Ci a disk with finitely many holes d2
i , such that

∂d2
i = Γ ∩ (D2

i − Ci) + {γi}. Since π∞1 X3 = 0, if we choose {γi} sufficiently close
to the infinity of X3, then we can find an extension g of Γ ⊂ X3 appearing in the
following diagram (the triangle of which is not commutative)

Γ ⊂ ∑k
1 d2

i
//

� _

²²

X3

g
zzvvv

vv
vv

vv
v

∑k
1 D2

i

where Γ =
∑k

1 ∂D2
i and where the singular map g has the Dehn property Γ ∩

M2(g) = ∅, where we have denote by M2(g) ⊂ ∑k
1 D2

i the set of double points of g,
i.e. the set of those x ∈ ∑k

1 D2
i such that card g−1g(x) > 1. Using Dehn’s lemma

we can produce another extension of Γ ⊂ X3 to an embedded system
∑k

1 D2
i ⊂ X3.

Without the π∞1 hypothesis, lemma 9 no longer holds; one can use the Whitehead
Wh3 in order to see this.

We go back now to (2.20); our W 3, which is build by an infinite process, is a
wild manifold just like Wh3, in the sense that

π∞1 Wh3 6= 0.

So, (2.20) above cannot guarantee us that (W 3, Γ) is trivial. [Incidentally, also,
π2W

2 is very large, but we will ignore this fact in the present paper].
Fortunately for us, the infinite process produces also a second “canonical struc-

ture” for (W 3,Γ).
II) The second structure. This is a lamination L of W 3, by planes.
I will start by briefly recalling some basic facts concerning laminations, a notion

which is due to W. Thurston. So let X3 be a 3-manifold which is with ∂X3 = ∅.
A lamination L of X3 is defined by a closed subset

K = K(L) ⊂ X3

such that X3 admits a smooth atlas X3 = ∪αUα with coordinate charts

(Uα, Uα ∩K) = (R2 ×R,R2 × {Cantor set}).
This is analogous to a foliation F of X3, except that now the transverse structure
is a Cantor set, instead of being the real line. Like for foliations we can talk about
plaquettes R2 × {x} with x ∈ Cantor, out of which one builds up connected (2-
dimensional) leaves L2 for L. Again like for foliation, the leaves L2 have extrinsic
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topologies induced from L2 ⊂ X3 but also intrinsic 2-manifold topologies. The
connected components of the open subset X3 −K(L) will be called 3-dimensional
leaves of L. Such a 3-dimensional leaf admits a natural completion L

3
, with L3 =

intL
3

and ∂L
3

= {the union of L2’s adjacent to L2}. For L
3

one has again to
distinguish between extrinsic topology (the only one to be considered here.)

What I have just defined is a lamination without singulation Our lamination L
of W 3 will have singularities which are somehow similar to the 1-prong singularities
for measured foliation of surfaces with positive Euler characteristic ([FLP]); they
turn out to be relatively benign and we will ignore them here.

It would be wrong to think of laminations as being just another variation on
the theme of foliations. Here is an instance of a specific phenomenon for which
there is no foliation counterpart. It is possible that all L2’s be contractible without
the inclusion map H∗(L3) −→ H∗(X3) being injective. This turns out to be one
of the many obstacles which one has to overcome, in the proof of the strange
compactification theorem.

So, for our W 3, the infinite process creates a lamination L (with mild local
singularities). Here is a list of Properties of the Laminations L of W 3.

(2.21.1) Each (non-singular) leaf L2 of L is a plane.
(2.21.2) Each 3-dimensional leaf L3 of L has

π1L
3 = π∞1 L3 = 0.

(2.21.3) For the link Γ ⊂ W 3 we have

Γ ∩K(L) = ∅.
All the three properties above are very good, but the next one is not.
(2.21.4) The completed 3-dimensional leaves L

3
of L can be wild, in a sense which

I will explain now.
Notice, first, that each connected component L2 ⊂ ∂L

3
has its location at the

infinity of L3 completely determined by a PROPER embedded arc

[0, 1) α−→ L3,

which I call the wick of L2 (inside L3), and which is defined as follows. Consider
a tubular neighbourhood L2 × [0, 1] ⊂ L

3
, with L2 × 1 = L2 ⊂ ∂L

3
and a point

x ∈ L2 = R2. Then α[0, 1) = x× [0, 1).
The point is that inside the very nice L3 the wicks can be Artin-Fox type arcs

and this is what makes L
3

wild (and it also accounts for π∞1 W 3 6= 0.)
Fortunately, the good properties (2.21.1) to (2.21.3) are enough to save the day,

since we have the following

Lemma 10. 1) As a consequence of (2.21.1) to (2.21.3) all the links (L3, (L3∩Γ)
are trivial.

2) As an immediate consequence of 1), (W 3,Γ) is also trivial.

Proof. Because of (2.21.3) each component S1
i of Γ (2.15) falls completely inside

a 3-dimensional leaf L3. We will assume L3
i 6= L3

j now, but the general case is not
much more difficult. Inside L3

i the S1
i can again be pulled to infinity and, since

π∞1 L3
i = 0 (2.21.2), by lemma 9, the classical link (L3

i , S
1
i ) is trivial.

All this should give vague idea about how one achieves B-2) in Theorem 7.
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The proof of theorem7 is contained in the long series of papers [PoVI] and the
construction of the good LK and of W 4 ⊃ V 4(LK) which these paper give, is too
long and intricate to be given here. By contrast the description of (W 3,L) alone is
quite short. Here is how it goes.

The infinite process produces (among many other things), the following data.
(2.22.1) A non-compact 3-manifold T 3, which is an infinite connected sum (along

the boundary) of elementary pieces, each of which is an infinite connected sum
(along the boundary) of elementary pieces, each of which is either S1 × D2 or
S2 × I. There are infinitely many pieces of both kinds and also the end-structure
is complicated, (the space of ends is a Cantor set.)

(2.22.2) Inside ∂T 3 we have an injection
∞∑
1

γi ⊂ ∂T 3,

where each γi is a simple closed loop, and the set of γi’s is conjugated to a free
basis of π1T

3.
(2.22.3) There is also a second injection

∞∑

i

(∆2
j , ∂∆2

j ) ⊂ (T 3, ∂T 3),

where the ∆”
j is an embedded disk, with int∆2

j ⊂ intT 3 and with

∂∆2
j ∩ γk =

{
a unique transversal intersection point, if j = k,

∅, if j 6= k.

With this data, we have

(2.23) W 3 = int{T 3 + [the infinitely many handles of index

λ = 2, defined by
∞∑
1

γi ⊂ ∂T 3]},

and this W 3 comes also equipped with a natural embedding

Γ ⊂ intT 3 ⊂ W 3,

which is the one from the theorem, and which can be pulled to infinity (2.20).
Notice, before anything else, that if the data above would not concern an infinite

situation, but a finite one, then the analogue of (2.23) would be just R3 − {a
finite set}. But the data (2.22.1) to (2.22.3) as produced by the infinite process,
are not only infinite, but also wild, in the sense that neither

∑∞
1 γj ⊂ ∂T 3 nor∑∞

1 ∆2
j ⊂ T 3 are closed subsets. [Exercise: give a description like (2.23) for the

Whitehead manifold Wh3.]
We would have reached a dead end, if it were not for the following basic fact:

(2.24) Only finitely many ∆2
j ’s touch Γ.

Achieving (2.24) puts actually enormous constraints on the infinite process which
creates all these things.

The lamination L is defined by taking the limit points of (2.22.3). More specifi-
cally

(2.25) K(L) = {the set of points x∞ ∈ intT 3 for which
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there exists an infinite sequence xi ∈ int∆ni ,

with ni →∞ and lim xi = x∞} ⊂ W 3.

With this, the crucial property (2.21.3) is an immediate consequence of (2.24) above.

Remark. It is essential that the
∑∞

1 int∆i ⊂ intT 3 accumulate nicely, making
(2.25) a lamination. By contrast, the accumulation pattern of

∑∞
1 ∆2

i ⊂ T 3 is very
wild on ∂T 3. It is actually very hard for a 3-dimensional lamination to exhibit good
boundary behavior.

3. On Step II of the Poincaré Program, and other loose ends

As we have already said Step II of the program consists of the following impli-
cation, a first version of the proof of which is already written, but which still needs
careful checking, as well as a more complete finalized writing up

(3.1) IF X4 = int[(∆3 × I)#∞#(S2 ×D2)] is g.s.c. =⇒ ∆3 × I is g.s.c..

This [PoV-B], i.e. the (3.1) above (but do not look for the corresponding reference,
although it appears between brackets, it is only a manuscript not ready for circu-
lation, yet) has been the object of a long collaboration with David Gabai and so
has been another project, which as an outgrowth of it, and about which I will say
a few words now.

Let us consider a smooth embedding of Sn−1 into Sn and remember that ac-
cording to the classical work of Barry Mazur (supplemented by contribution from
Smale, Kervaire and Milnor) this is standard in the diff category if n 6= 4. We
talk here of the celebrated Schoenflies problem, of course. Moreover Barry has also
shown that, even if n = 4, this is certainly so in the top category and even almost
so in the diff context. More precisely, let ∆4

Schoenflies , also called a smooth 4-
dimensional “Schoenflies ball”, be the closure of one of the two regions into which
the smoothly embedded S3 splits S4. The Barry has shown, long ago, that

(3.2) ∆4
Schoenflies − {a boundary point} diff== B4 − {a boundary point },

which, of course, immediately implies that

(3.3) int∆4
Schoenflies

diff== R4
standard.

There is now an idea (which was triggered by a suggestion which Michael Freedman
made some years ago to David Gabai and myself) that the techniques of [PoV-B],
if they really work, could be very useful with the 4-dimensional smooth Schoenflies
problem too. Here is a first item in the direction and I only give it here with a big
question mark.

Proposition 11 (??). Let ∆4
Schoenflies be a smooth 4-dimensional Schoenflies

ball which is geometrically simply-connected. Then this ∆4
Schoenflies is standard, i.e.

diffeomorphic to the standard 4-ball.

The alleged proof is a mixture of 4-dimensional and 2-dimensional topology;
Barry’s old result above play a big role too. Now much more recently (but this
really is by now “work in progress”) I have realized that it might be possible to
twist around the arguments of [PoV-B] and use the obvious consequence of (3.3)
that int∆4

Schoenflies is geometrically simply connected, so as to, hopefully, show that
any smooth 4-dimensional Schoenflies ball is g.s.c.. In the [PoV-B] i.e. (3.1) a great
use is made of the collar “with defects” X4− int(∆3×I). For ∆4 = ∆4

Schoenflies one



GEOMETRIC SIMPLE CONNECTIVITY AND LOW-DIMENSIONAL TOPOLOGY 13

is supposed to use now, in a similar fashion, the bona fide collar int∆4− int∆4
small.

For many years, the fact that the product structure ∆3 × I (very much used in
[PoV-B]) is absent for ∆4

Schoenflies was a stumbling block but there seems now to be
a way which might allow us to go around this. Together with Proposition 11 (??),
this would completely settle the smooth 4-dimensional Schoenflies problem indeed.

There are other outgrowths of the (techniques of the) Poincaré program and I
will end this section with some hints concerning my program for “π∞1 M̃3 = 0”.
The issue now is to show that for any closed 3-manifold M3, the universal covering
space M̃3 is simply-connected at infinity. Some time ago I had put out a preprint
which was supposed to contain a complete proof of π∞1 M̃3 = 0, but then a gap was
detected in one part of that paper, last year. By now I hope that I have managed
to fill in completely the gap in question; but I have not written up, yet, a new
paper. The point is that, if the full Thurston geometrization conjecture is proved,
then this would vastly supersedes the π∞1 M̃3 = 0. [Putting together the Poincaré
Conjecture and π∞1 M̃3 would only show that for any closed M3,

M̃3 = S3 − {ends of π1M
3},

where in the Cantor case the embedding of the end space into S3 is tame. I call this
very weakened form of Thurston Conjecture, the “topological uniformization”.] So
I am not in a great hurry to write these things up, right now. On the other hand,
my approach to π∞1 M̃3 = 0 is mostly high-dimensional (not just n = 4 but with an
n al least 7 or 8) and so I am trying to extract, from my proof, final results. going
beyond the dimensional n = 3.

By now I should explain a bit the whole issue, from scratch. Many years ago,
Serghei Novikov asked a number of questions concerning closed n-manifold Mn

which are K(π, 1). It might have him who first raised the issue of the simple
connectivity of their M̃n’s. But then, about 1982 M. Davis proved that for all
n ≥ 4 there are closed Mn = K(π, 1) with π∞1 M̃n 6= 0. For n = 3 the issue is
equivalent to our “π∞1 M̃3 = 0”, for all closed M3’s. About 1990 myself, A. Casson
and others have shown that if π1M

3 satisfies various nice geometric conditions (like
almost-convexity, which implies Gromov hyperbolicity, combability, which implies
“automatic”, a.s.o.), then indeed π∞1 M̃3 = 0. About the same time, I started
connecting the issue of π∞1 to geometric simple connectivity, and it is to this that
I will come now, as it befits the title of this paper.

The diagram below gives various notions extending geometric simple-connectivity,
the arrows meaning here “implies”

g.s.c. (for manifolds)

⇓
(3.4) g.s.c. at long distance (for manifolds)

⇓
weakly geometrically simply-connected

⇓
Dehn exhaustibility.

The notion of g.s.c. at long distance has already been used in the corollary 5-A (and
5-B) above. The last two notions make sense for any locally finite simplicial complex
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(and even for general locally compact spaces); it is even a meaningful question what
they mean for a finitely presented group G. We will say that X is weakly g.s.c. if
it has an exhaustion by finite simply-connected subcomplexes. We will say that X
is Dehn-exhaustible if for any compact k ⊂ X there is a commutative diagram

(3.5) k
� � i //� p

ÃÃB
BB

BB
BB

B K

g
}}zz

zz
zz

zz

X

where
a) K is compact, simply connected.
b) The map g is an immersion, for which we denote by M2(g) ⊂ K the set of

points x ∈ K such that card g−1(g(x)) > 1.
c) The following “Dehn condition ” is satisfied

(ik) ∩M2(g) = ∅.
The connection with π∞1 (and, incidentally, with dimension n = 3 too) is
the following implication

Proposition 12. If V 3 is an open simply-connected 3-manifold which is Dehn-
exhaustible, then π∞1 V 3 = 0.

This is the classical Dehn lemma, in disguise. The connections involved in (3.4)
are even more interesting. Under same condition which I will not specify more
here, the following things happen. Consider a locally finite complex X and some
high-dimensional regular neighbourhood Nn(X). Assume that in between X and
Nn(X) we can sandwich an n-manifold Wn

(3.6) X
� � // Wn � �

J
// Nn(X)

such that Wn is weakly g.s.c. and the inclusion J is proper (J−1(compact)
= compact). Then X is Dehn-exhaustible. It should be stressed that here the
singularities (=non-manifold points) of X are not allowed to be too nasty. Notice
also that this allows us to read the third arrow in (3.4) not only as “implies” by
also as “descends to”.

With all this, the very general idea of the π∞1 program is to construct a (singular)
3-dimensional object which is such that, on the one hand it enters in a diagram like
(3.6) above and, on the other hand, Dehn exhaustibility can descend from X to

M̃3 − {a closed, totally disconnected, tame subset.}
The most interesting issue, concerning this circle of ideas is where the symmetry
of M̃3 comes in, i.e. why should π∞1 M̃3 be zero when π∞1 Wh3 6= 0. I cannot go
into this here and now and only refer to the items [Po7] (which contains, in a first
approximation, a vague description of the π∞1 program) and to the more technical
[PoTa2].
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