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Abstract

Phase transitions are fundamental phenomena in (quantum) many-body sys-

tems. They are associated with changes in the macroscopic physical proper-

ties of the system in response to the alteration in the conditions controlled

by one or more parameters, like temperature or coupling constants. Quan-

tum phase transitions are particularly intriguing as they reveal new insights

into the fundamental nature of matter and the laws of physics. The study

of phase transitions in such systems is crucial in aiding our understanding of

how materials behave in extreme conditions, which are difficult to replicate in

laboratory, and also the behavior of exotic states of matter with unique and

potentially useful properties like superconductors and superfluids. Moreover,

this understanding has other practical applications and can lead to the devel-

opment of new materials with specific properties or more efficient technologies,

such as quantum computers. Hence, detecting the transition point from one

phase of matter to another and constructing the corresponding phase diagram

is of great importance for examining many-body systems and predicting their

response to external perturbations.

Traditionally, phase transitions have been identified either through analytical

methods like mean field theory or numerical simulations. The pinpointing

of the critical value normally involves the measure of specific quantities such

as local observables, correlation functions, energy gaps, etc. reflecting the

changes in the physics through the transition. However, the latter approach

requires prior knowledge of the system to calculate the order parameter of

the transition, which is uniquely associated to its universality class. Recently,

another method has gained more and more attention in the physics community.

By using raw and very general representative data of the system, one can resort

to machine learning techniques to distinguish among patterns within the data

belonging to different phases. The relevance of these techniques is rooted in

the ability of a properly trained machine to efficiently process complex data

for the sake of pursuing classification tasks, pattern recognition, generating

brand new data and even developing decision processes.

The aim of this thesis is to explore phase transitions from this new and promis-

ing data-centric perspective. On the one hand, our work is focused on the

developement of new machine learning architectures using state-of-the-art and

interpretable models. On the other hand, we are interested in the study of the
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various possible data which can be fed to the artificial intelligence model for

the mapping of a quantum many-body system phase diagram. Our analysis is

supported by numerical examples obtained via matrix-product-states (MPS)

simulations for several one-dimensional zero-temperature systems on a lattice

such as the XXZ model, the Extended Bose-Hubbard model (EBH) and the

two-species Bose Hubbard model (BH2S).

In Part I, we provide a general introduction to the background concepts for

the understanding of the physics and the numerical methods used for the sim-

ulations and the analysis with deep learning. In Part II, we first present the

models of the quantum many-body systems that we study. Then, we discuss

the machine learning protocol to identify phase transitions, namely anomaly

detection technique, that involves the training of a model on a dataset of nor-

mal behavior and use it to recognize deviations from this behavior on test

data. The latter can be applied for our purpose by training in a known phase

so that, at test-time, all the other phases of the system are marked as anoma-

lies. Our method is based on Generative Adversarial Networks (GANs) and

improves the networks adopted by the previous works in the literature for the

anomaly detection scheme taking advantage of the adversarial training pro-

cedure. Specifically, we train the GAN on a dataset composed of bipartite

entanglement spectra (ES) obtained from Tensor Network simulations for the

three aforementioned quantum systems. We focus our study on the detection

of the elusive Berezinskii-Kosterlitz-Thouless (BKT) transition that have been

object of intense theoretical and experimental studies since its first prediction

for the classical two-dimensional XY model. The absence of an explicit sym-

metry breaking and its gappless-to-gapped nature which characterize such a

transition make the latter very subtle to be detected, hence providing a chal-

lenging testing ground for the machine-driven method. We train the GAN

architecture on the ES data in the gapless side of BKT transition and we show

that the GAN is able to automatically distinguish between data from the same

phase and beyond the BKT. The protocol that we develop is not supposed to

become a substitute to the traditional methods for the phase transitions de-

tection but allows to obtain a qualitative map of a phase diagram with almost

no prior knowledge about the nature and the arrangement of the phases – in

this sense we refer to it as agnostic – in an automatic fashion. Furthermore, it

is very general and it can be applied in principle to all kind of representative

data of the system coming both from experiments and numerics, as long as

they have different patterns (even hidden to the eye) in different phases.

ii



Since the kind of data is crucially linked with the success of the detection,

together with the ES we investigate another candidate: the probability density

function (PDF) of a globally U(1) conserved charge in an extensive sub-portion

of the system. The full PDF is one of the possible reductions of the ES which

is known to exhibit relations and degeneracies reflecting very peculiar aspects

of the physics and the symmetries of the system. Its patterns are often used

to tell different kinds of phases apart and embed information about non-local

quantum correlations. However, the PDF is measurable, e.g. in quantum gas

microscopes experiments, and it is quite general so that it can be considered

not only in the cases of the study but also in other systems with different

symmetries and dimensionalities. Both the ES and the PDF can be extracted

from the simulation of the ground state by dividing the one-dimensional chain

into two complementary subportions. For the EBH we calculate the PDF

of the bosonic occupation number in a wide range of values of the couplings

and we are able to reproduce the very rich phase diagram containing several

phases (superfluid, Mott insulator, charge density wave, phase separation of

supersolid and superfluid and the topological Haldane insulator) just with an

educated gaussian fit of the PDF. Even without resorting to machine learning,

this analysis is instrumental to show the importance of the experimentally

accessible PDF for the task. Moreover, we highlight some of its properties

according to the gapless and gapped nature of the ground state which require

a further investigation and extension beyond zero-temperature regimes and

one-dimensional systems.

The last chapter of the results contains the description of another architecture,

namely the Concrete Autoencoder (CAE) which can be used for detecting

phase transitions with the anomaly detection scheme while being able to auto-

matically learn what the most relevant components of the input data are. We

show that the CAE can recognize the important eigenvalues out of the entire

ES for the EBH model in order to characterize the gapless phase. Therefore

the latter architecture can be used to provide not only a more compact ver-

sion of the input data (dimensionality reduction) – which can improve the

training – but also some meaningful insights in the spirit of machine learning

interpretability.

In conclusion, in this thesis we describe two advances in the solution to the

problem of phase recognition in quantum many-body systems. On one side,

we improve the literature standard anomaly detection protocol for an auto-
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matic and agnostic identification of the phases by employing the GAN net-

work. Moreover, we implement and test an explainable model which can make

the interpretation of the results easier. On the other side we put the focus

on the PDF as a new candidate quantity for the scope of discerning phases of

matter. We show that it contains a lot of information about the many-body

state being very general and experimentally accessible.
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Chapter 1

Many-body states and quantum

entanglement

A quantum state is the mathematical description of a quantum system which

provides the probability distribution of the outcomes of possible measurements.

When such a state is a vector of the Hilbert space ψ ∈ H, the state is said to

be pure. The expectation value of a generic operator Â is then:

⟨Â⟩ = tr(ρÂ) = ⟨ψ|Â|ψ⟩, (1.1)

where ρ = |ψ⟩⟨ψ| is the density matrix operator that is positive semi-definite,

Hermitian and has trace one. If the state is not pure but can be written as

a linear combination of pure states, it is mixed. Usually mixed states are

associated to fluctuations or errors in experiments because the system, when

measured, will collapse in one of the pure states with a probability given by

the coefficients of the linear combination. As a consequence of the spectral

theorem, it always exists a set {|ϕλ⟩} living in H, so that the density matrix

is decomposed:

ρ =
∑
α

pλ|ϕλ⟩⟨ϕλ|, (1.2)

with the non-negative coefficients pλ summing up to one. The expectation

value of Â can then be written as:

⟨Â⟩ = tr(ρÂ) =
∑
λ

pλ⟨ϕλ|Â|ϕλ⟩, (1.3)
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4 Chapter 1. Many-body states and quantum entanglement

so the dependence on the probability distribution pλ is explicit. While the

trace of the density matrix is one, the trace of the squared density matrix

takes the name of purity :

tr(ρ2) =
∑
λ

p2λ ≤ 1. (1.4)

This quantity is considered as a measure of how much the state is pure. If it

is one, then the distribution of pλ is peaked on a single pure state, while if the

distribution is completely flat meaning the probabilities are pλ = 1/dim(H)

the state is maximally mixed.

1.1 Quantum Entanglement

The concept of quantum entanglement is one of the most interesting and miste-

rious aspects of quantum mechanics that has gained increasing attention after

the Einstein-Podolsky-Rosen (EPR) paradox formulation [1]. It is related to

the correlations among the degrees of freedom of a quantum system which

cannot be explained classically. Within the quantum information framework,

entanglement is considered a resource for quantum tasks such as quantum

computation and quantum communication. More specifically for our purpose,

it is a universal compression that was proven to be very useful for the charac-

terization of a quantum many-body system whose description is cursed by an

exponentially growing number of degrees of freedom.

We can introduce entanglement through the quantification of the amount of

information that can be retrived from one system A about another system B

which has been in contact with A. Following the discussion of Bell in its semi-

nal work [2], A and B could be spin one-half particles created somehow in the

singlet spin state – hence a pure state – and moving freely in opposite direc-

tions. The EPR paradox arises when we assume that locality is obeyed: when

the A spin component is measured, for instance, in the z-direction and results

+1, then according to quantum mechanics the measure of B spin z-component

when it is far apart will be −1. Assuming locality, the only way of explaning

the correlated outcomes is that they must be predetermined. However, such

predetermination is not contemplated in the quantum mechanical description

of the singlet. One option to include predetermination of the result is to in-

clude an additional hidden variable in the quantum mechanical description
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of the initial state as is formalized in [2] in form of one of the famous Bell’s

inequalities. Those were proven to be violated by quantum systems after-

wards [3, 4, 5, 6]. Eventually, this “spooky action at a distance” phenomenon

that violates locality took the name of entanglement.

In the following we consider the division of a pure system in two complementary

subportions (bipartition) in a more systematic way. We denote with A and B

two complementary subsystems with their respective Hilbert spaces HA and

HB. Their union is AB with HAB its Hilbert space. When the state of the

entire system takes the form of:

|ψ⟩ = |ϕ(A)⟩ ⊗ |χ(B)⟩ (1.5)

where |ϕ(A)⟩ (|χ(B)⟩) is a state in HA(B) it is known as separable or product

state. The negative definition of entanglement is: A is said to be entangled

with B (or AB is entangled) when AB is not separable.

We can extend to the more general mixed case by retrieving the density ma-

trices. The state of the entire system is separable when its density matrix can

be written as:

ρ =
∑
λ

pλρ
(A)
λ ⊗ ρ

(B)
λ , (1.6)

where in this case ρ
(α)
λ = |ϕ(α)

λ ⟩⟨ϕ(α)
λ | for the α-subsystem and {|ϕλ⟩(α)} a basis

for Hα.

Before treating the measures of entanglement, it is useful to relate it to the

concept of mixedness. The reduced density matrix of one subsystem with

respect to the other is computed with a partial trace on the total density

matrix:

ρredA = TrB[ρ] =
∑
i

⟨χ(B)
i |ρ|χ(B)

i ⟩ , (1.7)

being |χ(B)
i ⟩ a basis for HB. Now if we consider a pure entire AB state, then

the reduced density matrix of A is:

ρredA =
∑
λ

pλρ
(A)
λ . (1.8)

It is immediate to see that the condition for which the state is separable, so

not entangled, implies that the distribution pλ is peaked on a single vector of
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the A Hilbert space:

ρredA = |ϕ(A)⟩ ⟨ϕ(A)| , (1.9)

hence a pure state is said to be entangled when the reduced density matrix of

one subsystem is not (classically) mixed. It is also straightforward to define

a proper measure for entanglement of pure states starting, for instance, from

the purity. The situation for mixed states is quite more involved and still

cutting-edge of current research.

1.2 Entropy (Von Neumann)

The von Neumann entropy [7] is a straightforward adaption of the Shannon

entropy [8] of a discrete probability distribution from information theory to

density matrices in quantum statistics. Entropy is generally regarded as a

measure for the average amount of information that we gain about a random

variable by triggering and observing one outcome. The definition of the Von

Neumann entropy is:

S(ρ) = −Tr[ρ ln ρ] (1.10)

where the trace operation is performed on a complete basis of the Hilbert space

where the system lives. Through the decomposition of the density on a basis,

the entropy has a more simple expression:

S(ρ) = −Tr
[∑

λ

pλ |ϕλ⟩ ⟨ϕλ| ln
(∑

k

pk |ϕk⟩ ⟨ϕk|
)]

= −
∑
λ

pλ ln[pλ]. (1.11)

If the system is in a pure state, the density matrix is idempotent and S(ρ) =

2S(ρ) would hold, leading to the unique option of zero entropy. It can be

further demonstrated that entropy is zero if and only if the state is pure while

is maximum for a maximally mixed state, once pλ is flat. One can use the

Von Neumann entropy as a measure of the amount of mixedness of the re-

duced density matrix of the a bipartition of a pure state [9] and hence of

the amount of entanglement S(A) = −Trρred ln ρred. Indeed, other properties
contribute to the elegibility of the Von Neumann entropy as a measure of en-

tanglement [10, 11]. We expect a measure of entanglement to quantify the

amount of information that can be retrieved from one subsystem about the

other, but meanwhile it should not change if we perform a local operation on

either one of the subsystems. This is the case for the Von Neumann entropy
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which is invariant under the so-called Local Operations and Classical Commu-

nications (LOCC) which also account for classical broadcasting of information.

For any valid reduced density matrix ρred – namely positive semi-definite, her-

mitian, trace-one operator – the entropy is real and non-negative. Moreover,

it possesses the property of additivity: if A and A∗ are independent systems,

then S(ρA ⊗ ρA∗) = S(ρA) + S(ρA∗). The collection of these properties can be

considered as a recepy for a good measure of entanglement for bipartite pure

states, i.e. a function giving a unique ordering of entangled states.

The situation for mixed states is rather more complicated. For instance, the

bipartite Von Neumann entropy is not a well-defined measure in the latter case.

One can easily convince oneself with a simple contraddiction for the mixed,

separable ensamble of two qubits A and B ρ = 1
2
(|00⟩ ⟨00| + |11⟩ ⟨11|) whose

Von Neumann entropy is S(ρredA ) = ln(2) due to the classical correlations. At

this point, it is possible to reduce the entropy using LOCCs. Immagine that

the two qubits are separated in space and in one laboratory Alice performs

the following operations on the A qubit: either she project the qubit in the |1⟩
state or she project it on |0⟩ and then she applies σx. Once she has done one

of the two operations, she communicates with Bob so he performs the same

one on qubit B. The resulting composite state is described by ρ′ = |11⟩ ⟨11|
which has zero entropy. This is clearly a contraddiction because LOCCs are

not supposed to change entanglement.

The object of our interest are pure ground-states of quantum many-body sys-

tems, so we will not focus on the thorny issue of mixed states. We mention

some possibilities for the measure of entanglement for those states following

the much more complete treatment in [11]:

• Entanglement of formation considers all the possible decompositions that

realize a given mixed state in terms of pure states. The entanglement of

formation is defined as the minimum weighted average (the weights are

pλ) of the bipartite von Neumann entropy of the pure states over all the

possible realizations.

• Distance-based measures (or relative entropy) employs the distance be-

tween the mixed state and the nearest separable state. The measure is

defined choosing a proper distance function between the desity matrices

(e.g. Kullback-Leibler, Ulmann fidelity, etc.).
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• Operational-based measures like distillable entanglement that considers

the amount of Bell states which can be distilled from n-copies of the

mixed density matrix by means of LOCCs; entanglement cost on the con-

trary counts the amount of maximally entangled states that are needed

to realize n-copies of the mixed state.

1.3 Area-law

In our work, we are interested in the properties of the ground-state of one-

dimensional quantum many-body system on a lattice. Whereas the general

description of the quantum many-body state is very hard because of the ex-

ponential growth of the Hilbert space in the number of costituents, we are

focusing on a very peculiar corner of it. In such a region the number of pa-

rameters for a proper description is not affected by the curse of dimensionality

but is limited when the system is not critical or is polynomial for the crit-

ical one [12]. The concept of bipartition that was introduced so far for the

practical quantification of the amount of entanglement, becomes instrumental

in the formalization of the above statement. The limited growth of degrees

of freedom in one-dimensional systems is indeed reflected in a linear increase

of the leading term of the entanglement entropy in the size of the boundary

between the bipartitions.

Figure 1.1: Sketch of a system biparti-
tion in the two complementary subpor-
tions A and B with ∂A the boundary of
the A part. We mainly deal with those
states of the system which lie in a small
corner of the entire Hilbert space and
possess the area-law property of the en-
tanglement entropy.

This phenomenon is actually more

general, it is valid also for higher di-

mensional frameworks and is usually

denoted as area-law. In formula:

S(ρredα ) ∝ Ld−1
α (1.12)

where Lα is the linear size of the

d-dimensional subportion α. In the

context of quantum field theory, this

behaviour has some tradition started

by the intriguing phenomenon of

Bekenstein-Hawking black hole en-

tropy [13, 14]. It was proved that this peculiar scaling happens for the free

Klein-Gordon field [15] and for conformal systems [16] which could be related
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in some cases to the physics of black holes. On the other side, the limited

number of parameters for an efficient description of area-law systems, gained

increased interest in the context of numerical simulation as will be clear from

the next section.

A demonstration of the validity of area-law for one-dimensional gapped systems

with a local hamiltonian can be found in [17] meaning that the entanglement

entropy is bounded by a constant which is independent on the system’s size.

For gapless (critical) systems this is no longer the case and the scaling of the

entropy versus the size is logarithmic. Moreover, due to the link with conformal

field theory at criticality, the coefficient of the logarithm has to do with the

central charge of the underlying conformal field theory [12, 16, 18]. Another

noticeable subject is the form of the corrections to area-law – aka the sub-

leading terms – which acquire a universal and peculiar behaviour in presence

of topological order [19, 20].

At last, it is worth mentioning another perspective about the restricted number

of parameters necessary for the treatment of the systems described before that

act as a springboard for the discussion about the numerical method in the next

section. The fact that a system can be simulated by considering only a rele-

vant smaller portion of the Hilbert space is the key on which renormalization

methods rely. We can easily introduce their operating principle in an intuitive

way: immagine that a system living in a Hilbert space of a given dimension

is described by a certain microscopic theory. In order to build an easier, ef-

fective description, all the non-relevant degrees of freedom must be integrated

out while the original couplings in the Hamiltonian are modified accordingly

(renormalized). If a limited number of parameters is sufficient to describe the

system, the new effective theory will be a good approximation of the original

one. The theory about renormalization procedure provides a systematic ap-

proach to this task and allows for a physically motivated cancellation of the

irrelevant couplings. In general it can keep track of the coupling modification

as the renormalization flow proceedes. Usually this methods are successful

when there is a natural separation of scales involving distances/energies. The

relevant phenomena for this thesis involve for example a diverging correla-

tion length at criticality meaning that the low-energy scale (low-wavelength

behaviour) dominates the physical properties of the system.

Since the system is one-dimensional, the interactions are local and we pursue

the ground state properties, the scaling of entanglement as genuine quantum
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correlations is anyway bounded at most to a logarithmic growth. Being true

that it is still growing with the system size, the increase is not as drastic as for

volume-law (S(ρredα ) ∝ Ld
α). Moreover, when the system is not critical, area-

law behaviour dominates and hence one can expect that a class of ansätze

which is efficient in approximating low-entangled state (as generated by the

Density Matrix Renormalization Group) provides a good description of the

relevant states.

1.4 Schmidt decomposition

A lot of entanglement properties for a pure bipartite state can be explored

starting from the Schmidt decomposition. As we commented above, a pure

state is not always separable, therefore one should provide two orthonormal

basis for the two complementary subspaces |i⟩A and |j⟩B to properly describe

the total state as:

|ψ⟩ =
dim(A)∑
i=1

dim(B)∑
j=1

Λij |i⟩A |j⟩B , (1.13)

where the matrix of the coefficients Λij is generically a rectangular matrix

since we do not assume that the two subspaces have the same dimension. One

can always perform a singular value decomposition (SVD) of the matrix Λ

which allows to write the rectangular matrix as the product Λ = UDV † (see

Fig. 1.2 for an illustration), where U and V are dim(A)×min(dim(A), dim(B))

dimensional and min(dim(A), dim(B)) × dim(B) dimensional matrices with

orthonormal columns and row respectively (one of them being squared matrix

is unitary) and D is a diagonal min(dim(A), dim(B))×min(dim(A), dim(B))

matrix with the non-negative singular values λα. By applying the SVD, the

state of Eq. (1.13) can be re-written as:

|ψ⟩ =
dim(A)∑
i=1

dim(B)∑
j=1

min(dim(A),dim(B))∑
α=1

UiαλαV
†
αj |i⟩ |j⟩

=

min(dim(A),dim(B))∑
α=1

λα

dim(A)∑
i=1

Uiα |i⟩

dim(B)∑
j=1

V †
αj |j⟩

 ,

(1.14)
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Figure 1.2: Pictorial representation of the singular value decomposition of a
rectangular matrix Λ. The matrix Λ is decomposed into the product of three
matrices: U , D and V †. The columns of U and V † are orthonormal and the
diagonal elements of D are the singular values λα.

and the Schmidt decomposition finally reads:

|ψ⟩ =
r∑

α=1

λα |φα⟩ |θα⟩ , (1.15)

where |φα⟩ and |θα⟩ are orthonormal bases of A and B because of the orthonor-

mality properties of U and V and r = min(dim(A), dim(B)) is the Schmidt

rank. The Schmidt decomposition provides a nice and numerically efficient

way to compute the spectrum of the reduced density matrix because the par-

tial trace can be easily applied to the state as written in (1.15):

ρredA =
r∑
α1

λ2α |φα⟩ ⟨φα| , ρredB =
r∑
α1

λ2α1
|θα⟩ ⟨θα| . (1.16)

Notice that the reduced density matrices of the two subspaces share the same

spectrum with a number of eigenvalues bounded by the smaller dimension

among the spaces. The singular values λα are also called Schmidt values and

their square correspond to the eigenvalues of the reduced density matrices.

1.5 Entanglement Spectrum

With the tools introduced above, we can now define the bipartite entangle-

ment spectrum (ES) of a pure state. The latter corresponds to the set of the

logarithm of reduced density matrix eigenvalues of the two subspaces:

ξα = − log λ2α. (1.17)
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so that the reduced density matrix of A, being always positive semi-definite,

can be cast in an exponential form in the spirit of a partition function:

ρredA =
1

Z
e−HE with HE =

r∑
α=1

ξα |φα⟩ ⟨φα| (1.18)

where HE is the Entanglement Hamiltonian. The constant Z, written in anal-

ogy to thermodynamics, ensures the correct normalization Tr(ρredA ) = 1 but

can also be included in the exponent showing that the meaningful information

in the ES is not contained in the absolute magnitudes of its eigenvalues but

rather in their relative magnitudes. Despite its suggestive form which resem-

bles the one of a system coupled with a thermal bath, the above expression

is not a true Boltzmann formula because HE does not correspond to the real

Hamiltonian restricted to the A subsystem.

The ES and its Hamiltonian have been studied for a plethora of systems. The

first achievements were obtained with the Bisognano-Wichmann theorem in

the context of generic field theory [21] and for conformal field theories after-

wards [22]. The seminal work by Li and Haldane [23] demonstrated that the

low-lying part of the ES contains universal features associated with topological

properties. This has aroused great interest and triggered the study of ES as a

very powerful tool for the detection and characterisation of topological phases.

Among numerous fascinating properties of the ES, the notion of entanglement

Hamitonian in its very natural definition has been also intensively debated and

is still a research topic. A great summary of the obtained results about the

ES can be found in [24].



Chapter 2

Numerical simulation of

quantum many-body systems

As previously anticipated, the concepts grounded on the renormalization pro-

cedure had a huge impact also on the numerical simulation of quantum many-

body systems. The idea is to build a good approximation of the ground state

of the system by considering only a relevant portion of the Hilbert space. Sev-

eral so-called decimation procedures for eliminating the irrelevant degrees of

freedom for the proper description of the ground state of such systems be-

gan to be developed in the 1990s, following and adapting the original seminal

work of Wilson [25, 26]. The translation of the original renormalization group

procedures for the study of the thermodynamic-limit ground-state properties

is based on the replacement of the energy levels with lattice sites. Unfortu-

nately, the first schemes turned out to be very poor as shown in the work

by White and Noack of 1992 [27] where a numerical real-space renormaliza-

tion group was proven to be ineffective for a tight-binding model emulating

the particle in a box. The procedure was anyway conceptually crucial for the

further developements which lead to the introduction of the Density Matrix

Renormalization Group (DMRG) [28, 29]. The first receipt for the real space

numerical renormalization procedure is summarized as follows:

1. A sub-portion A of the system called block and containing L sites is

chosen small enough so the Hamiltonian acting on it HA can be exactly

diagonalized

2. A compound block AA of length 2L is formed and the Hamiltonian

13
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HAA is formed accounting for the two single-blocks Hamiltonian and the

interblock interations.

3. HAA is diagonalized by keeping only m lowest-lying eigenvalues.

4. HAA is projected on the truncated space spanned by the m eigenvectors

new matrix Htr.
AA

5. Loop from step 2 until the whole system is covered by compound of

blocks.

The key point is that the decimation (or truncation) of the highly energetic

eigenstates of each block should not contribute to the ground state of the

overall system. The numerical advantage lies in the low dimension of the

Hamiltonian to be diagonalised after each decimation step. Unfortunately,

even in very simple scenarios, the first procedure leads to some problems due

to the boundary conditions of the single block. [27].

White’s brilliant breakthrough [28] consisted in the observation that, in order

to have a general procedure, one should carefully consider which states must

be retained for a block A when it is immersed in an environment, i.e. the case

of the true thermodynamic limit in which A is ultimately embedded. In this

context, he showed that the set of states which is particularly suitable for rep-

resenting the properties of a composite block AA for the decimation procedure

is that formed by the leading eigenvectors of the reduced density matrix of

AA. Assuming that a system composed of L sites with a Hilbert space of di-

mension m(S) spanned by a basis {|n(S)
L ⟩} is described by the Hamiltonian HL.

An enlarged block Hamiltonian HL+1 is created by adding a site to the system.

The basis that spans the new space can be written as {|n(S)
L ⟩ ⊗ |σ(S)⟩} where

{σ(S)} is a local basis for the new site. Now the environment is mimicked by

embedding the system in an environment of the same size by an analog con-

struction, hence a superblock of length 2L + 2 is formed. The approximation

to the ground state at thermodynamic limit is chosen to be the ground state

of the superblock, obtained by numerical diagonalization:

|ψ⟩ =
m(S)∑

n
(S)
L =1

d∑
σ(S)=1

d∑
σ(E)=1

m(E)∑
n
(E)
L =1

ϕn
(S)
L ,σ(S),σ(E),n

(E)
L |n(S)

L ⟩ ⊗ |σ(S)⟩ ⊗ |σ(E)⟩ ⊗ |n(E)
L ⟩ .

(2.1)
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where the dimension of the system S (environment E) is N (S) = m(S) × d

(N (E) = m(E) × d). The decimation prescription which leads to the DMRG

can be interpreted as one of the following three lines of argument:

• If the superblock state of (2.1) describes the physical state of the system

through the reduced density matrix ρred.S (obtained by tracing out the

environment) and we assume that its eigenvalues are ordered by magni-

tude p1 ≥ p2 ≥ · · · ≥ pN(S) , then it can be demonstrated that retaining

only the first χ(S) dominant eigenvalues of ρred.S is the optimal choice for

reducing the error in the expected value of a generic observable bounded

on the system. The error in the estimate is proportional to the truncated

weight
∑N(S)

α=χ(S)+1 pα.

• The quadratic norm of the distance || |ψ(S)⟩−|ψ̃(S)⟩ || of the state approx-
imation |ψ̃⟩ =

∑χ(S)

i=1

∑N(E)

j=1 Λij |i⟩ |j⟩ with truncated space to the true

generic state |ψ⟩ =∑N(S)

i=1

∑N(E)

j=1 Λij |i⟩ |j⟩ can be minimized by keeping

the χ(S) eigenvectors |i⟩ of the system with the largest eigenvalues of the

reduced density matrix ρred.S . The error is the truncated weight of the

previous point.

• The entanglement-wise optimization can be applied after a Schmidt de-

composition:

|ψ⟩ =
NSchmidt∑

α=1

λα |w(S)
α ⟩ |w(E)

α ⟩ , (2.2)

and the Schmidt number NSchmidt ≤ min(N (S), N (E)) once the assump-

tion N (S) ≥ N (E) is relaxed. The truncation of the Schmidt values to

χ(S) ≤ NSchmidt states by keeping the largest in magnitude means that

only a fraction of the entanglement between the system and the envi-

ronment is allowed. The discarded, low-probable, correlations are those

corresponding to the truncated values.

The formulation of the infinite-system DMRG algorithm [28] can now be de-

scribed following the aformentioned procedure with the following steps:

1. Consider a lattice of L sites forming the system block S living in a Hilbert

space spanned by m(S) states {|n(S)
L ⟩} and an Hamiltonian HS

L bounded

to the block. Another block for the environment E is formed accordingly.
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2. The new system block S ′ is formed by adding a new site. The new

basis is then {|n(S)
L ⟩ ⊗ |σ(S)⟩} containing N (S) = m(S) × d states. The

same construction is performed for the environment E → E ′. The entire

superblock of length 2L + 2 contains S ′ and E ′ and the Hamiltonian

acting on it is denoted by H2L+2.

3. The Hamiltonian H2L+2 is diagonalized, its eigenvalues and eigenvectors

are sorted in decreasing order.

4. The reduced density matrix of the system ρredS′ = TrE′ρ is determined and

only χ(S) leading eigenstates are kept in order to form a new reduced basis

for S ′. The reduced diagonalizing matrix composed of the kept χ(S) on

the columns is denoted by T and is N (S) × χ(S) dimensional.

5. The new effective (truncated) Hamiltonian for the system S ′ is formed by

decomposition on the new reduced basis of the block Htr
L+1 = T †HS

L+1T

and becomes the new Hamiltonian of the system as S ′ → S and E ′ → E

for the next iteration starting from step 2. The iterations stop once the

final wanted length for the system is reached.

During the DMRG steps, observables can be computed both at the end of the

optimization and between every growing step. A detailed description of the

observables’ computation is provided later below, once the DMRG algorithm

is re-formulated in the context of matrix product states.

The infinite DMRG method as in its original prescription leads to some prob-

lems mainly due to the fact that in the early steps the blocks are small and

the chosen relevant states are likely to be very different from a block of the

same size embedded in the bulk of the big final system. The finite DMRG

manages to substantially cure these problems. The idea is that once the infi-

nite DMRG steps lead to an L sized system, the growing procedure is stopped

and an optimization of the obtained superblock is applied. The optimization

recalls the same steps of the infinite algorithm but the growth of one block

(e.g. the system) is accompained by the shrinkage of the complementary block

(e.g. the environment). The procedure is quite efficient if the infinite algo-

rithm stages are stored so that for every optimization step, the decription of

the blocks is already available. This further processing of the final state is

called sweeping: every sweep proceeds until the shrinking of the system or the

environment reaches some minimum size and the growing can the start again
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at the expense of the complementary block. Convergence is usually checked

through stabilization of the results from sweep to sweep. It is worth men-

tioning that convergence must be checked also varying the number of kept

states χ(S) as free parameter of the algorithm since it can happen that the

apparently converged finite-system results are instead effect of the trapping in

a low-entangled metastable state.

From now on, we will report the mechanisms of the DMRG in a more detailed

way but by following a more modern path. The latter derives from a unrelated

initial development of the optimization of a particular class of ansatz devoted

to the approximation of quantum systems, namely the Matrix Product States

(MPS). The early stages of the adoption of this family of variational states lead

to several astonishing advances, one of them being the exact expression of the

one-dimensional AKLT state [30]. The MPS connection to DMRG was done

only a few years after their discovery [31, 32]. Eventually, it was recognized

that the finite DMRG gives rise to quantum states which can be written in

MPS form [33].

The DMRG algorithm and its expression in terms of MPS language, repre-

sented a fundamental milestone for a new state-of-the-art level of accuracy in

the simulation of one-dimensional quantum many-body systems. Currently,

for such systems, it still maintains this supremacy in the majority of the cases.

These systems are usually hard to study and an exact solution is available

only in few cases (e.g. with Bethe ansatz [34], exact diagonalization, quantum

Monte Carlo [35]). In many applications of DMRG, the accuracy is limited by

machine precision, quite independently of the nature of the microscopic Hamil-

tonian. In this work we are only concerned with the simulation of the ground

state but the possibilities do not end here and extend to other purposes as

real-time dynamics, excited states or thermal ensambles. Moreover, thanks to

the very general map of a lattice system to a Tensor Network developed from

the MPS, the idea could be extended to the simulation of two-dimensional

systems by means of the projected entangled-pair states (PEPS) [36]. Despite

the technical complexity of the algorithm and their computational demanding

nature that make PEPS not able to reach the same standing as MPS yet, they

are considered a promising tool for the simulation of two-dimensional systems

and have already been used to study a wide range of physical phenomena, such

as quantum phase transitions and topological phases of matter. Advances in

computational resources and algorithmic developments are expected to over-
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come some of their limitations in the future.

2.1 Matrix Product States

In the following, we will show that any one-dimensional pure quantum state

can be written exactly in MPS form. Once this is established, the natural dec-

imation scheme applicable to MPSs is presented so that they can be intuitively

linked to the numerical procedure of DMRG. Being a very convenient language,

supported also by an opportune pictorial representation, the MPS formalism

is also used to present the detailed optimization procedure which leads to the

determination of the ground state of one-dimensional quantum systems as well

as the numerical calculation of observables (e.g. local observables, correlators,

energy, etc.), of the entanglement properties and the realization of boundary

conditions.

Figure 2.1: a pictorial rep-
resentation of the |↑↓↑⟩ 3-
qubits state. In particular
the cube contains the coef-
ficients of the tensor ϕi1i2i3

whose indices run over the
single particle doublets.

We can introduce the MPS starting from a

generic one-dimensional normalized pure quan-

tum state on a lattice of L sites with d-

dimensional local state spaces {ij}j=1,...,L that

can be written as:

|ψ⟩ =
d∑

i1,i2,...,iN=1

ϕi1i2...iL |i1⟩⊗|i2⟩⊗...⊗|iL⟩ (2.3)

where the coefficients ϕi1i2...iL are exponentially

many (dL) in the lattice size and are collected in

a big tensor structure (see Fig.2.1 for an exam-

ple of a 3 spin-half qubits) where the dimensions

of the tensor retrace the local physical ones. A

decomposition of such a tensor can be done in terms of smaller objects via

additional new indices following a systematic procedure.

The idea is to separate the state in blocks by means of the SVD: we can start by

reshaping the tensor into a matrix of dimension d×dL−1 that will be indicated

with the notation ϕi1(i2...iN ) after the fusion of all the indices but from the

first one; the unique new index contains the Cartesian product of all the fused

ones [37] (see Fig. 2.2 for the illustration of the fusion operation). The state
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Figure 2.2: Coefficient of the many-body wavefunction in their tensor shape
drawn in the tensor network diagramatic representation (left). The open legs
are the physical indices. The version of the tensor with fused links is depicted
on the right. The new index j is the cartesian product of all the fused ones.

now reads:

|ψ⟩ =
d∑
i1

d∑
i2...iN

ϕi1(i2...iN ) |i1⟩ |i2...iN⟩ . (2.4)

We have already seen that SVD allows to separate the tensor in two contribu-

tions bounded to the complementary parts of the Hilbert space:

ϕi1(i2...iN ) =

r1∑
α1

U i1
α1
λα1(V

†)(i2...iN )
α1

. (2.5)

Notice that the physical indices have been written as superscript just for the

sake of clarity. From now on, we are not going to assign an additional index

to tensors that contain the physical one il for indicating their position along

the lattice since they are unambiguously identified by it; for instance U il
αl−1αl

≡
(Ul)

il
αl−1αl

. Reabsorbing the terms as done before, the Schmidt decomposition

yields:

|ψ⟩ =
r1∑
α1

λα1

(
d∑
i1

U i1
α1

|i1⟩
)(

d∑
i2...iN

(V †)(i2...iN )
α1

|i2...iN⟩
)

=

r1∑
α1

λα1 |φα1⟩ |θα1⟩ ,

(2.6)

The virtual index α1 has been introduced running up to the Schmidt rank r1.

The reduced density operators for the two subspaces – the first site and the

rest of the system – can be written in the same spirit of Eq. (1.16).

The same protocol can be iteratively repeated for splitting the indices of all

the other sites and resumming consecutively the diagonal matrices λ on the

right after the SVDs decompositions. Ultimately, what is left is an exact

decomposition in a (left-canonical) MPS:

|ψ⟩ =
∑
i1...iL

∑
α1...αL

Ai1
α1
Ai2

α1α2
...AiL−1

αL−2αL−1
AiL

αL−1
|i1...iL⟩ . (2.7)
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Figure 2.3: Pictorial representation of the matrix product state. Every tensor
(blue ball) is linked with the neighbours by closed legs meaning that the indices
are contracted. The open legs (im) represent the physical indices running over
the local Hilbert space basis.

It is called left-canonical because according to the recipe used for the decom-

position, all the tensors have orthonormal columns A
ij
αjαj+1 = U

ij
(αj)αj+1

for all

i ∈ {1, L− 2} but for the last one AiL
αL−1

= λαL−1
(V †)iLαL−1

.

The decomposition does not change the order of the amount of coefficients if

at each SVD the number of kept singular values is equal to the lowest of the

dimensions of the decomposed matrix. Maximally, the dimensions of the A

matrices is then (1 × d), (d × d2), ..., (dL/2−1 × dL/2), (dL/2 × dL/2−1), ..., (d ×
d2), (1 × d) recaling the exponential growth of degrees of freedom. In order

to make the MPS tractable from a numerical point of view, the dimension of

the matrices must be truncated up to a number of allowed virtual states χ at

the most. Therefore, from dL coefficients, the number becomes of the order

L×χ2×d that is polynomial in the dimension of the system. χ takes the name

of bond dimension and is a free-parameter of the simulation which is strictly

linked to the representational power of the MPS. We will see immediately how

this parameter can be related to the truncated weight of DMRG and puts

a limit on the maximal amount of entanglement present in the MPS state.

In particular, the procedure for the decimation of the states in the DMRG

language becomes a truncation of the kept singular values’ maximum number.

The MPS structure can be very conveniently graphically represented as in

Fig. 2.3 where every A matrix is a circular box, the physical indices are ver-

tical legs and the αj indices are horizontal legs connecting the matrices (all

connected legs are summed over).

2.2 Gauge freedom

The MPS of Eq. (2.7) is written in general terms. The adopted sequential

decomposition relying on the SVD that was carried out to transform a general

state in the MPS form is not unique meaning that different MPSs can represent

the same state. This redundancy is associated with a gauge freedom and
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concretely corresponds to an invariance under a set of linear transformations

of the tensors A of the MPS chain which have no impact on the physical degrees

of freedom. In practice, it is easy to understand such a freedom considering

the following illustration:

One can insert an identity 1 = X−1X inside the closed leg between tensors

A and B and reabsorb X−1 and X in A and B respectively, giving rise to

two new tensors A′ and B′. Since this operation is always possible, if the MPS

provides a good description of a physical state, the physical information cannot

be affected by this operation. The latter property can be instead exploited to

drastically increase efficiency in the numerical simulation.

Nevertheless, let us recall the fact that the MPS of (2.7) is left-canonical: every

tensor A but the last one on the right fuilfills this property:∑
α

Aim
αβA

† im
αβ′ = 1ββ′ (2.8)

that pictorially is shown in Fig. 2.4 where the left canonical tensors are indi-

cated with a triangle so that they can be distinguished from the more general

circular ones. By performing the same iterative decomposition as before but

Figure 2.4: In the picture the diagram of the equation (2.8). The shape of
the tensor indicates the direction of the contraction used to employ the left
canonical form obtained with the gauge transformation.

starting from the right, it is straightforward to obtain a right-canonical MPS

for which the first tensor on the left now is written as Ai1
α1

= U i1
α1

and all

the others A
ij
αjαj+1 = (V †)

ij
αjαj+1 . The equivalence of the two forms is just

another example of the gauge freedom, it is indeed possible to transform a

left-canonical MPS into a right-canonical one by absorbing the singular values

matrix λα sequentially on the adjacent matrix U on the left and performing
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again an SVD so that a sequence of V † is kept on the right and ultimately the

first tensor becomes Ai1
α1

= U i1
α1
. It is also possible to mix the decomposition

of the state from left and right hence obtaining an MPS in general canonical

form. The tensor of coefficients ϕi1i2...iL is decomposed in the following way:

ϕi1i2...iL =
∑

α1α2...αL

U i1
α1
U i2
α1α2

...U il
αl−1αl

λαl
V †
αlαl+1

...V †
αL−1αL

(2.9)

The special site l is often called orthogonality center since all the tensors on the

left and on the right possess orthogonality properties. Eventually, in Fig. 2.5

the reason why the gauge freedom is a resource for numerical calculations

manifests clearly for the computation of the norm of a given MPS. The norm

can be represented just as the contraction of all the physical legs of the MPS

in Eq. (2.7) with the correspondent physical legs of the adjoint version of the

same MPS. The operation is sketched in the Fig. 2.5 for a left-canonical MPS.

Due to the orthonormality properties in this gauge, all the tensors but the far

right one respect Eq. (2.8) and the contractions become trivial. The non-trivial

contraction is the one between the last tensor and its adjoint which is the only

one that must be computed. The procedure is usually employed also for the

Figure 2.5: Procedure for the contraction aimed at computing the norm of
a state in the MPS representation. The definition of an orthogonality center
allows to spare numerical effort. A smart employment of the gauge freedom
leads to the most convenient form of the MPS in such a way that the norm
consists in a unique double contraction (last step).

sake of computing the expectation values of local operators: the orthogonality

center is placed on the site on which the local operator acts, thus simplifying

the contractions on its left and right.

2.3 Matrix product operators

A natural generalization of the MPS structure can be written for operators,

the idea is to consider the matrix elements of operators as written as chain of
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tensors like for the state coefficients:

⟨⃗i|Ô|i⃗′⟩ = W i1,i′1W i2,i′2 ...W iL−1,i
′
L−1W iL,i

′
L (2.10)

where the matricesW are the analog of matricesA of (2.7), and |⃗i⟩ = |i1, . . . , iL⟩
correspond to physical indices.

Figure 2.6: Represen-
tation of the building
block of an MPO.

For carrying out the generalization explicitely, let us

consider first the general shape of an operator acting

on the many-body Hilbert space:

Ô =
∑

{⃗i}{i⃗′}

o⃗i,⃗i′ |⃗i⟩ ⟨⃗i′| (2.11)

The main difference from the state coefficients is that

the tensor o⃗i,⃗i′ has both ingoing and outgoing physical

legs.

Any operator can actually be brought into the form

of a chain of matrices by following the same idea of decomposition of the

MPS, indeed o⃗i,⃗i′ = oi1i2...iL,i′1i′2...i′L can be reshaped as o(i1i′1)(i2i′2)...(iLi′L) and

then decomposed in the same way as in the previous section. The resulting

expression for the operator yields:

Ô =
∑

{⃗i}{⃗i′}

∑
α1,...,αL

W i1,i′1
α1

W i2,i′2
α2,α3

...W
iL−1,i

′
L−1

αL−2,αL−1W
iL,i

′
L

αL |⃗i⟩ ⟨⃗i′| . (2.12)

and takes the name of Matrix Product Operator (MPO). The building blocks

of the MPO are tensors with 4 legs, two physical legs running on the input and

output physical state’s basis and the MPO bond indices (see Fig. 2.6). The

application of a MPO to a MPS runs as:

Ô |ψ⟩ =
∑

{i}{i′}

∑
α1,...,αL

∑
β1,...,βL

(W i1,i′1
α1

W i2,i′2
α2,α3

...W
iL−1,i

′
L−1

αL−2,αL−1W
iL,i

′
L

αL )·

· (Ai′1
β1
A

i′1
β1
...A

i′L−1

βL−2,βL−1
A

i′L
βL−1

) |i⟩
=
∑
{i}

∑
α1,...,αL

∑
β1,...,βL

Bi1
α1β1

Bi2
α1α2β1β2

...B
iL−1

αL−1αLβL−1βL
BiL

αLβL
|i⟩

(2.13)

where in the rightmost side the contractions B
ij
αjαj+1βjβj+1

=
∑

i′j
(W

ij ,i
′
j

αj ,αj+1A
i′j
βj
)

are performed. The result of the multiplication is still an MPS with a dimen-

sion corresponding to the combination of the original MPS and MPO dimen-
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sions.

The computation of local observables expectation values becomes straighfor-

ward thanks to the MPO representation of operators. Moreover, because of

the clear pictorial representation, the stategy for the contractions becomes very

intuitive.

To make a concrete example, let’s consider a local operator acting on the third

site of the chain:

Ô3 = 11 ⊗ 12 ⊗ Ô3 ⊗ 14...1L

=
∑

{⃗i}{⃗i′}

1i1i′11i2i′2o
i3i′3
3 1i4i′4 ...1iLi

′
L |⃗i⟩ ⟨⃗i′| =

∑
i3,i′3

o
i3i′3
3 |i3⟩ ⟨i′3| (2.14)

is already in MPO form. In order to simplify the calculations one can exploit

the gauge freedom in such a way that the minimum number of contractions

is performed. The point is to properly define the orthogonality center of the

canonical form that is the tensor for which on the right(left) everything is

in the right(left) canonical form. Also in this case, the expectation value

⟨ψ|Ô3|ψ⟩ on the state ψ written in MPS form is conveniently represented with

the illustration in Fig. 2.7.

Figure 2.7: Simplification of the contractions for the expectation value of the
local operator Ô3. The orthogonality center is taken to be the third site.

2.4 MPO representation of the Hamiltonian

In this section we will cover the procedure for the translation of the Hamil-

tonian in MPO language. We do it for a concrete simple example as the

transverse field Ising model Hamiltonian in order to grasp the principles. Gen-

eralizing to other models has a quite straighforward implementation though.

The Hamiltonian involves only on-site and nearest-neighbour term, it reads:

H =
∑
j

−JŜx
j Ŝ

x
j+1 + hŜz

j (2.15)
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where Sx,z are the components of the spin operator labeled with the site’s num-

ber of the lattice. The full Hamiltonian in its expanded version corresponds to

the sum of locally acting operators involving generic neighbouring sites l and

l + 1:

Hl = −Jl(1⊗1⊗...⊗1⊗Ŝx
l ⊗Ŝx

l+1⊗1⊗...⊗1)+hl(1⊗1⊗...⊗1⊗Ŝz
l ⊗1⊗...⊗1).

(2.16)

The translation procedure to the MPO form retraces the so called matrix

product diagrams or finite automata/state-machine [38, 39, 40]. We consider

a local building block of an MPO, namely W
il,i

′
l

αl,αl+1 , not as different matrices

for each physical index, it is instead promoted to an operator-valued matrix

Ŵαl,αl+1
acting only locally at site l where the bond indices run over virtual

states. Furthermore, we adopt the convention that when the operator-valued

Figure 2.8: Drawing of the local operator in the finite state machine language.
The initial state I and the final state O are connected with an intermediate one
(A) that is reached after the appearance of the spin operator. Another spin
operator along the x direction is applied in order to reach the output state.
On the other side the external field along z. The identity operators applied to
the initial and final state are intended to make the picture the most general
possible, both for boundary operators and bulk ones.

matrices are multiplied together over the bond indices, the contained operators

are combined through the outer-product. We aim to obtain the expression

for each matrix so that the full combination along the chain gives the total

Hamiltonian H = Ŵα1Ŵα1,α2 ...ŴαL−1,αL
ŴαL

. For the transverse field Ising

model, the matrix is the following:

Ŵαl,αl+1
=

I

A

O

I A O1̂ Ŝx
l hlŜ

z
l

0 0 −JlŜx
l

0 0 1̂

 (2.17)
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where we introduced 3 virtual states (I,A and O) over which the bond indices

αl, αl+1 run. Placing one term inside the matrix means selecting the operator

to be applied to account for the transition from one input state in the l bond

to the output state in the following l + 1. One can think of running over the

string of (2.16) from left to right: the string of identities that does not change

the initial state called I is tanken into account by filling the transition I→I

with the identity. Another possibility is to encounter the non-trivial operator

Ŝx that changes the virtual state from I→A. After that, the subsequent factor

is fixed to −JŜx so from A one goes to another different state O and the former

factor sits in A→O. The state O stands for a completed interaction term for

the l bond and one will find only identities afterwards. O→O is again trivially

the identity operator. At this point, the missing term is the transverse field,

since at I no non-trivial operator has already been found along the string and

from O one can find only identities, the hŜz operator occupies the transition

from I→O, without any needed intermediate state. All the other transitions

are forbidden. The intuitive sketch of the transition is reported in Fig. 2.8.

Is is easy to prove that the contraction of two subsequent matrices following the

aforementioned procedure Ŵαlαl+1
Ŵαl+1αl+1

allows for the collection of the term

−JŜx
l Ŝ

x
l+1 + hŜz

l + hŜz
l+1 on the top right corner. If the Hamiltonian has open

boundary conditions, the first and the last matrices will be a row vector (of

operators) and a column vector respectively. The full contraction on the bond

indices yields the total Hamiltonian. This representation is formally proven to

be optimal and leads to a bond size of the MPO tensors of χl = Nl + 2 where

Nl is the number of interaction operators crossing the bond (l, l + 1) [41].

2.5 Variational iterative ground-state search-

ing

The algorithm for computing the approximation to the ground state is based

on a variational technique on the class of MPS states. Suppose to have an

initial MPS ansatz that approximates the state that we denote with |ψ({Ai})⟩
– this could be an MPS filled with random numbers of the desired shape and

size. The goal is that of optimizing its parameters (its tensors Ai) so that the
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energy is minimized ([37, 42]):

min
{Ai}i=1,...,L

⟨ψ({A∗
i })|Ĥ|ψ({Ai})⟩
⟨ψ|ψ⟩ = min

{Ai},λ
(⟨ψ|Ĥ|ψ⟩ − λ ⟨ψ|ψ⟩)

= min
λ

[
∂

∂{A∗
i }
(⟨ψ|Ĥ|ψ⟩ − λ ⟨ψ|ψ⟩) = 0

]
.

(2.18)

On the right side of the equation, the minimization is redefined as extrem-

ization with the introduction of the Lagrange multiplier λ. Eventually, the

optimal |ψ({Ai})⟩ will be the ground state approximation and λ its energy.

The total minimization should be done simultaneously on all the tensors mak-

ing this a hard non-linear optimization problem. As an approximation, the

minimum over λ can be performed iteratively one site at a time. To clarify,

we explicitely write the extremization involving the Ai tensor:

min
λ

[
∂

∂{A∗
i }
(⟨ψ|Ĥ|ψ⟩ − λ ⟨ψ|ψ⟩) = 0

]
∀i
⇔

∂

∂{A∗
i }
A†

iH
effAi = λ

∂

∂{A∗
i }
A†

iN
effAi ∀i,

(2.19)

where Heff = Heff
A1,...,Ai−1,Ai+1,...,AL

is the contracted MPO of the Hamiltonian

over all the tensors of the MPS except for the i-th one. N eff is nothing else but

the overlap ⟨ψ|ψ⟩ fully contracted except for Ai (see Fig. 2.11 for the schematic

representation). The single optimization step does not lead to the optimal state

but will lower the energy and find a variationally better approximation of the

ground-state. Usually the iterations are stopped when the energy does not

change anymore or when a maximum number of iterations is reached.

The derivative of a chain of tensors with respect to one them corresponds to

the whole chain without that specific one. The intuitive diagram is in Fig. 2.9

below. Therefore, Eq. (2.19) is that of Fig. 2.10. The latter is in the form of

Figure 2.9: Pictorial representation of the derivative of a chain of tensors with
respect to one of them.
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Figure 2.10: Pictorial representation of the step of the variational iterative
ground-state search.

a generalized eigenvalue problem

min
λ

HeffAi = λNAi ∀i, (2.20)

for every site of the chain: in order to find the MPS approximation of the

ground state of a given Hamiltonian, one starts from an initial unbiased ansatz

and iteratively optimizes the tensors by solving a generalized eigenvalue prob-

lem for every site.

The numerical efficiency, can be boosted by exploiting once again the canonical

form. The choice of the orthogonality center on the operator Ai to be optimized

allows for a much simpler expression for the right hand side of (2.20) since all

the tensors for the orverlap on the left and on the right of Ai contract to

the identity. In such a gauge, the generalized eigenvalue problem becomes a

standard eigenvalue problem that can be solved more efficiently for the lowest

eigenvalues and eigenvectors (see Fig. 2.11 for the diagram of the simplification

and Fig. 2.12 for the new form of equation (2.20)). For this scope, the usually

adopted technique involves Lancsoz [43] or Jacobi-Davidson [44] large sparse

matrix solvers to decrease the complexity when the dimension of the matrix to

be diagonalized (at worst dχ2 with χ the maximal bond dimension) is too large

for an exact full diagonalization. The standard procedure for the iterative

optimization is to consecutively sweep on the chain from left to right and

viceversa so that the orthogonality center of the MPS can be moved from

one site to the neighbouring one minimizing the operations. It probably does

not sound so surprising at this point that the aforementioned ground state

searching can be related to the finite-size version of DMRG presented in the

introduction of the chapter. Actually the two methods are exactly identical

if the optimization of the DMRG superblock with the sweeping procedure is

done on a single site and not on two sites (one of the system S and the other of

the environment E) at the same time. On the contrary, the MPS optimization
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Figure 2.11: Schematic representation of the simplification of the right hand
side of the generalized eigenvalue problem (2.20) by exploitation of the canon-
ical form.

Figure 2.12: Final simplified version of the generalized eigenvalue prob-
lem (2.20) in the canonical form.

can be mapped exactly to the finite DMRG by optimizing two neighbouring

tensors on the chain simultaneously. A very nice description of the relation

between the two languages can be found in Ref. [33]

2.6 Numerical Efficiency

The MPS gauge as well as the implementation of the iterations for the ground

state searching have no unique prescription. The freedom of choosing the order

of the different contractions – which are in the end just pairwise matrix multi-

plications – allows for the optimization of the numerical scaling. The number

of operations for a contraction, indeed, strongly affects the final applicability

of the method since a more costly scaling can prevent the simulation to run in

reasonable time for a given system.

It is very easy to compute the number of operations needed during a contrac-
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tion: we count the number of dimensions of all open indices of both tensors

and we multiply by the dimensions of the indices that will be contracted over.

For instance the contraction of two tensors with indices α, β and γ, β, δ where

α, γ, δ = 1, ..., χ and β = 1, ..., d over β requires dχ3 operations. The order of

operations for the norm of the MPS of Fig. 2.3 with a bond dimension χ and

a physical dimension d without resorting to the canonical form is O(dχ3L),

hence linear in the system size. This represents just one of the examples where

the smart employment of the canonical form can drastically reduce the com-

putational cost.

2.7 Symmetries in tensor networks

When dealing with numerical efficiency, one essential aspect is represented by

the embedding of symmetries in the tensor network formalism. From the quan-

tum mechanical side, the advantage of taking into account symmetries is well

known and consists in the reduction of the full problem into a set of decoupled

ones. The reduced problem has clear physical properties associated to the

conserved quantities related to the symmetries because of Noether’s theorem.

The fact that the conserved quantities are commuting with the Hamiltonian

allows for the convenient choice of the eigenbasis labeled by the respective

quantum numbers that makes the Hamiltonian block diagonal. Indeed, once

the selection rules introduced by the symmetries are applied, a large number of

matrix elements becomes zero. From the numerical point of view, it is natural

to imagine that the rewriting of the tensors in terms of the symmetry sectors

allows for a more efficient computation both speed and memory-wise. Gen-

erally speaking, employing symmetries in the MPS formalism implies dealing

with smaller configurational space, therefore improving the accuracy. More-

over, the targeting of specific sectors restricts the variational search to those

states which have defined quantum numbers instead of approaching the prob-

lem from a “gran canonical” perspective (e.g. with the introduction of the

chemical potential in the model). Clearly the latter implies a reduction of the

computational complexity and results in a more precise approach than the one

accounting for multiple sectors at once.

The encoding of symmetries in tensor networks is not always convenient both

from a matter of efficiency and complexity though. The ones that are more

straighforwardly implemented are those which transform independently each
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degree of freedom of the system without making them interact. Specifically, if

U(g) is the unitary representation of the group element g belonging to a given

group G, for the latter symmetries it is possible to decompose the representa-

tion in disjointed transformations which act only locally U(g) = ⊗jVj(g) ∀g ∈
G at site j. Concerning the complexity, a general procedure for the implemen-

tation of Abelian symmetries is explained in great detail in [37] while for non-

Abelian groups the situation is quite more complicated due to the non-trivial

Clebsch-Gordan coefficients.

Just to give the flavour about the implementation in the Abelian case taken

from [37]: the first step is – once known the one-dimensional unitary irreducible

representations in form of phase factors – to transform every link index ir of

the a tensor with r = 1, ..., n links with a tuple ir ≡ (lr, δr) where l labels the

principal quantum number and δ accounts for the degeneracy. Each link then

corresponds to an irreducible representation of the group labeled by l and δ.

In order to make the tensor itself symmetric, the invariance property under the

application of symmetry transformations to the links must be ensured. The

links become directed (incoming and outcoming) to select the invariance under

the direct representations and inverse (hermitian conjugate) ones. Eventually,

the invariance is translated through the quantum number fusion rules to iden-

tify only some allowed matchings among the total possible combinations of the

quantum numbers. Only those matches have nonzero elements in the tensor,

hence the number of free parameters is reduced.

The book keeping overhead of the implementation pays out immediately when

treating a system responding to the same symmetries. Indeed, all the sectors

are dynamically decoupled and one can always deal with the separate, usu-

ally low dimensional, sectors without loosing generality. Anyway, one must

be careful when forgetting about the ensamble of the sectors as a whole for

instance when the SVD is performed. Even though the symmetric matrix

structure is block diagonal, the truncations during the decimation procedure

should compare all the singular values and not only the ones at the sector

level. Otherwise, the truncation itself could lead to artificial spurious sym-

metry breakings. Another crucial point is that symmetric tensors introduce

contraints in the representation of a state, therefore it can happen that for some

symmetry broken systems (e.g. for the case of the Néel state) the simulation

can be counterintuitively more expensive.
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2.8 Entanglement and correlations

For an MPS in mixed canonical form where a bond matrix λαl
is connected

to two orthonormal sets of tensors as in Eq. (2.9), the bipartite entanglement

properties are naturally extrapolated from the reduced density matrix. In

particular, the system is then divided in left and right portions with a cut at

site l of Eq. (2.9). Assuming that the number of allowed states is bounded by

χ in the virtual legs, the entanglement entropy is maximized in the situation

where the distribution of the coefficients is flat λαl
= 1/

√
χ ∀αl = 1, ..., χ. In

general, the entropy of the MPS is then bounded:

S = −
χ∑

αl=1

λ2αl
log λ2αl

≤ 2 logχ, (2.21)

which clearly does not scale with the size L of the chain, therefore the MPSs

can only efficiently represent area-law states by construction. This also means

that for the simulations of critical ground states with logarithmic corrections

to the constant entropy S ∝ const. + log(L), the bond dimension must be

increased linearly in the system size to properly capture the long correlations.

Anyway, in such a case the number of parameters is “only” polynomial in L.

Once again, the eigenspectrum of the reduce density matrix is equivalent to the

squared singular value spectrum λαl
obtained from the SVD decomposition.

Hence, the decimation on the SVD spectrum assumes equivalent meaning to

the one in the DMRG spirit.

2.9 Boundary conditions

Boundary conditions are a crucial aspect of the simulation of lattice models

and fortunately they can be handled also in the MPS formalism; indeed, for

the systems investigated in this Thesis we often resort to periodic boundary

conditions (PBC). There are several possibilities for the realization based on

different translations of the lattice topology to the tensor network. Some tensor

networks are preferable than others and in general the design has an impact

on the numerical stability of the simulation. For the PBC, the most known

implementation is to link the first and the last tensor of the MPS, thus taking
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the trace of the tensor product:

|ψ⟩ =
∑

i1,...,iN

∑
α1,...,αN

Ai1
αN ,α1

Ai2
α1,α2

...AiN−1
αN−2,αN−1

AiN
αN−1,αN

|i1, ..., iN⟩

=
∑

i1,...,iN

Tr[Ai1Ai2 ...AiN−1AiN ] |i1, ..., iN⟩ .
(2.22)

The tensor diagram is the following:

Unfortunately, despite ensuring a true translational invariant and periodic

ansatz, this solution is not always numerically stable and neither efficient be-

cause of the loopy geometry [45] that impairs the existence of a canonical form.

Only loop-free ansätze can exploit the canonical form as a huge boost to the

efficiency. Another option is to consider the same trick on the Hamiltonian

MPO level, the inconvenience is that during the sweeping procedure when the

physical information is transmitted through the tensors’ optimization, the con-

nection between the first and the last part of the chain relies only upon the

trace link. Some issues, in particular concerning the homogenization, make

this realization not so effective. In order to circumvent the problem, one can

employ Tree Tensor Networks [37], or – as we do here for nearest neighbour

interacting models – by mapping the ring onto a chain with tailored next-

nearest neighbor couplings and boundary nearest neighbor ones [46]. The loop

disappears from the MPS form and gets adsorbed inside the MPO. The basic

idea of such “snake” pattern is shown in Fig. 2.13 for a very little system with

an even number of sites. Despite a slightly bigger MPO and a bit of extra

book keeping for the post-processing of observable measurements, the numer-

ical calculations are demonstrated to be efficient and stable [46]. Also in our

work, we do not encounter any problem related to the small asymmetry of the

first and last link of the chain with respect to all the others.
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Figure 2.13: Sketch of the scheme used to mimic periodic boundary conditions
with a computational open boundary conditions ansatz.



Chapter 3

Deep Learning

Deep learning is a subfield of machine learning that has been gaining a lot of

attention in the last years. It comprises a set of algorithms inspired by the

structures and functions of the human brain and based on so called artificial

neural networks (NN). Such networks are employed nowadays in a huge variety

of contexts like computer vision [47], speech recognition [48], natural language

processing [49], generation [50], decision making [51] and so on, all under

the hat of the artificial intelligence (AI) field (see the great textbooks [52,

53] and references therein). The success of deep learning resides precisely

in the meaning of “deep”: it refers to the use of multiple layers in the NN

where increasing the number of layers can be interpreted, at this point, just

as increasing its complexity. The analogy with the brain is instrumental to

understand the basic ideas behind the operation of a NN: its constituents are

called neurons, they are connected between each other and organized in layers.

The neurons in the first layer (the input layer) are connected to the neurons

in the first hidden layer, the neurons in the first hidden layer are connected

to the neurons in the second hidden layer and so on. The last layer contains

the output neurons. When some sort of information is given to the input layer

it is transmitted through the network and somehow manipulated toward the

output. The incredible power of NN arises from their ability of processing the

input in a non-linear way: in a simplified picture every neuron is activated

when the synthesis of its inputs overcomes a certain threshold. Concretely,

the neuron provides to the following ones a non-linear function (activation

function) of a weighted sum of its inputs. The activation function represents

the key ingredient which makes NNs universal approximators (see 4.7 of [54]).

In addition to their representation power, another important advantege of

35
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NNs is the computational efficiency. This efficiency does not refer only to the

processing of the input (which is indeed just mainly a matrix multiplication

algorithm) but to the optimization of the parameters of the network happening

during learning. This aspect will be clarified in detail later on.

While NN framework is very general and mathematically solid, the choice of

the structure of the network (or architecture) is crucially connected with the

task to be solved. This is due to the fact that an AI system needs to acquire its

own experience in order to “learn” how to solve a task and its way of doing it

is through extraction of patterns from training data. All the learning process

is nothing but a tuning (or optimization) of the model such that it is able to

process the data in a way that the extracted features are the most significant

ones for the problem at hand. Since the problems can be very different, the

important patterns could be of completely different nature such are objects in

an image or letters in a word or even more abstract concepts as the emotions

contained in a speech. Therefore, the architectures able to optimally process

such kind of data are different.

The last missing concept about deep learning that we want to mention in this

brief introduction is the data-driven paradigm. The whole procedure for the

training is aimed at making the NN build complex concepts and new repre-

sentation of the data in an automated way. In order to do so, the model must

analyze and interpret the provided data so it can learn from them. The out-

come depends on the way in which they are processed for the sake of acquiring

knowledge and being able to generalize on unseen examples.

3.1 Structure and training of a NN: concepts

and a concrete example

The atom of a NN is the artificial neuron. Suppose that we have an input vector

x⃗, the artificial neuron performs a linear combination of the input components

through some weights w⃗ (plus an eventual bias b) and applies a non-linear

activation function g to the result:

y = g(w⃗ · x⃗+ b). (3.1)
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The weights w⃗ and bias b are free parameters of the neuron and since they

the target to be optimized during the training, they are called learnable pa-

rameters. In other words, the aim when training a model is to find the best

set of parameters which maximize the accuracy of the NN prediction on the

task at hand. Since the usual optimization is gradient-based, the function g

must be differentiable. The most common activation functions are the sigmoid

function, the softmax function, the hyperbolic tangent and the rectified linear

unit (ReLU). In a NN all the neuron units are organized in a layered structure

where neurons from one layer send outputs to the following one. One com-

mon instance is the fully connected network (FCNN) where every neuron of

a layer is connected to all the neurons of the previous and following one. We

denote with y
(j)
i the output of the i-th neuron of the j-th layer and in such an

architecture it can be written with the recursive relation:

y
(j)
i = g

(∑
k

w
(j)
ik y

(j−1)
k + b

(j)
i

)
. (3.2)

Figure 3.1: Two examples of images from the training set of the MNIST
dataset.

To understand the training mechanism we resort now to a concrete problem,

namely the classification of handwritten digits from the MNIST database. The

latter is very often taken into account to benchmark the performances of ML

models for the sake of classification and consists in few tens of thousends of

fixed-size images of 28×28 grey-level pixels (see Fig. 3.1 for two examples). Ev-

ery image is a drawn digit between 0 and 9 and has a corresponding label. The

dataset, as for all the datasets in ML, is divided into a training set containing

those images which are used for the parameter optimization of the model and

a test set used once the model is already trained and containing new examples

which the model has not seen at training-time. The test set is of fundamental
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importance to check the generalization ability of the trained model that is its

capacity of accurately carry out the task on unseen examples. Generalization

is often monitored also at training time by means of the validation set – con-

taining new images with respect to the training one as well – over which the

learnable parameters’ optimization is temporary frozen. More concretely, we

choose as an example a training set of 60, 000 images and a validation set (used

also as test) of 10, 000 images. We aim at carrying out a classification task:

each image is given as input to a FCNN in form of a flattened vector with 784

components having values from 0 (black) to 1 (white). We design the NN so

that it has as output 10 neurons whose values are in [0, 1] coinciding with the

probabilities of the input to belong to a given class, namely the predicted digit

label. In this regard, the trained NN is supposed to emulate the probability

distribution function of the classes’ list.

The explicit example of the MNIST classification problem, offers the chance to

introduce some missing crucial concepts about deep learning. In order to make

the NN learn to solve the classification task from the data, we want to tune

the free parameters so that once one of the examples from the training set is

fed to the NN, the output set of probabilities resembles the true label with the

best possible accuracy. The idea behind the optimization is the minimization

of a user-given metric for the accuracy of the prediction on the training data,

namely the minimization of the loss. For the moment, we consider one natural

loss function between two (discrete) probability distibutions, namely the Cross-

Entropy. Given two discrete probability distributions p and q on the same

support X , the cross-entropy of q relative to p reads:

H(p, q) = −Ep[log q] = −
∑
i∈I

p(i) log q(i) (3.3)

where Ep is the expected value with respect to p. In our case we deal with a

multiclass classification problem, so the support contains the digits i = 0, ..., 9

(classes). Supposing that we have a certain number N of realizations x⃗n=1,...,N ,

we aim at minimizing the average loss:

L = − 1

N

N∑
n=1

∑
i∈I

p(i|x⃗n) log q(i|x⃗n). (3.4)

where we indicate with p(i|x⃗n) the set of probabilities of the classes for the

sample x⃗n in training set corresponding to the provided label. Specifically,



3.1. Structure and training of a NN: concepts and a concrete example 39

p(i|x⃗n) is encoded as a one-hot vector (a vector with all zero components but

from one which is equal to one) with one on the component correspondent to

the class of the label. q(i|x⃗n) is the output of the NN and depends on the

learnable parameters that we indicate as θ standing for the collection of all the

weights and the biases of the neurons.

At this point, the training can be formalized as an optimization problem to

find the optimal parameters θ⋆:

θ⋆ = argminθL(θ). (3.5)

The high-dimensional minimization can be tackled with gradient descent when

the chosen loss function is differentiable in the network parameters. Therefore,

the parameters are updated with an iterative procedure by following the di-

rection of the negative gradient of the loss. The magnitude of the shift is set

with the learning rate α:

θ′ = θ − α∇θL. (3.6)

Assuming a convex loss function, the gradient descent is guaranteed to converge

to its global minimum. However, the problem of local minima for non-convex

functions can be usually dealt with by means of the stochastic version of gra-

dient descent. In deep learning the typical trick consists in the evaluation of

the gradient and the subsequent optimization on several batches of samples

stochastically drawn from the training set. For our training, we always made

use of Adam [55] optimizer that is considered among the state-of-the-art tech-

niques. In addition to the stochasticity with the batched training, it adapts

dynamically the learning rate based on the first and second moments of the

gradient.

Another key point of the NN training concerns the numerical efficiency. When

dealing with very deep networks with a huge number of parameters, it is fun-

damental to perform an efficient optimization to cut the training time. In this

respect, the backpropagation algorithm [53] is always employed and already

built in the common libraries for the NNs implementation. The idea is quite

easy: the dependence of the loss on the parameters is inherited from the out-

put value of the network in the first place. The output can be written as a

function of the neurons of just the previous layer and so on and so forth. All

the derivatives on the loss with respect to the parameters can be decomposed

following the chain rule and going backward in the networks’ structure up to



40 Chapter 3. Deep Learning

the input. For simplicity, we consider the vectorized form of Eq. (3.2):

y(j) = g(W (j)y(j−1) + b(j)), (3.7)

where now W (j) is a matrix of weights for layer j whose rows run over the

neurons of the j-th layer and columns of the j− 1-th one. Following the chain

rule of the derivatives with respect to a generic parameter θ, it is easy to derive

the following recursive equation which relates the derivative of the output y(j)

to the ones of the previous layer y(j−1):

∂y(j)

∂θ
=
∂g

∂θ

[
∂W (j)

∂θ
y(j−1) +W (j)∂y

(j−1)

∂θ
+
∂b(j)

∂θ

]
. (3.8)

The essence of the backpropagation procedure is rooted in the nested structure

of the derivatives. The latter can be exploited from the last layers to the initial

ones by keeping track of the various contributions to the error in the prediction.

Figure 3.2: Results of the training of a fully connected network with 80 neurons
in the hidden layer. The training loss is shown in red solid line, the validation
loss in orange dashed line. The shaded area indicates the standard deviation
of the loss over the batches of data within a given epoch. The accuracy scale is
on the right y-axis and the performance is plotted in blue. The final accuracy
value, namely the number of correctly classified images in the test set, is of
97.2%.

Now, with all the ingredients presented above about the learning mechanism of

a NN, we explore its details on the concrete example of the MNIST classifica-

tion problem. The first implemented architecture is a fully connected network

which takes as input the handwritten digits images as a flattened vector of

28 × 28 = 784 components. The first layer has 80 neurons with a rectified

linear unit (ReLU) activation function. The second and last layer consists of
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10 neurons containing the predicted ouput probabilities for the input image of

belonging to one of the classes. The network is trained on the entire training

set and the weights are updated via the Adam optimizer with an initial learn-

ing rate of α = 3× 10−3. Each epoch contains several optimization steps, one

for each batch of data in the training set (each batch was chosen to contain 100

images). At every step, the gradient of a cross-entropy loss function between

the predictions of the network and the target labels are computed. In Fig. 3.2

the behaviour of the training loss, the test loss (used as validation set) and

the accuracy (scale on the right y−axis) for the classification of the test set

is reported for this first network. After just 7 epochs, the network is already

able to correclty classify the 97.2% of the unseen data in the test set. The

mean losses are represented with solid lines while their standard deviations

with shaded regions around the mean.

In order to visualize what happens to the learnable parameters at training

time, we report in Fig. 3.3 the evolution of the weights in the last layer of the

above-mentioned FCNN (left) and the correspondent gradients. The heatmaps

are histograms of the parameters (gradients) counting their number (color

dimension) for a certain value (y−axis) as the training proceeds (epochs on

the x−axis). The weights evolve from the random initialization and tend

to stabilize in the last epoch when the majority of their gradients is zero.

Meanwhile, the training loss in Fig. 3.2 decays as well as the test loss, reaching

very similar values near 0.1. A lower loss in the prevision is evidently followed

by a better accuracy in the classification.

The trend of the curves in Fig. 3.2 is quite optimal apart from the fine-tuning

of the hyperparameters (such as the learning rate) or some subtleties con-

cerning the choice of the non-linearities which can allow for a slightly better

performance of the network. Now we present some other configurations that

are instead more problematic but instrumental to see in practise how delicate

can be the choice of a model. The first one leads to underfitting : when the

number of the degrees of freedom of the network – or its complexity – is not

big enough, the result of the predictions cannot reach a good level. This is rep-

resented in the left panel of Fig. 3.4 for a network with only 20 neurons in the

first layer. The performance of such a network is compared with the baseline

given by the previous presented model (gray and black lines). The losses and

the accuracy of the 20 neurons network are visibly worse than the previous

case and one could prove that even proceding further with the training does
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Figure 3.3: Evolution of parameters (left) and their gradients (right) of the last
layer of the FCNN with 80 hidden neurons for the MNIST classification. The
heatmaps are histograms of the parameters/gradients counting their number
(color dimension) for a certain value (y−axis) as the training proceeds (epochs
on the x−axis). The weights evolve from the random initialization and tend
to stabilize in the last epoch when the majority of their gradients are zero.
Meanwhile, the training loss in Fig. 3.2 decays as well as the test loss, reaching
very similar values near 0.1.

not substantially increase the accuracy.

The other fundamental problem is overfitting : in this case the number of de-

grees of freedom of the network is too big. What usually happens in this

scenario is that the training loss reaches very low values, meaning that the

network really is learning to perform the wanted task (regression, classifica-

tion, reconstruction, etc.) on the training set very well. On the contrary,

the generalization ability of the network is more and more compromised, thus

the results on the test set become worse or stop to improve. The resulting

model has not built abstract concepts which allow for a good generalization

on unseen data but has rather optimized its paramenters in a way that is best

suited for the training data only, even learning their statistical noise. The

latter situation is represented in Fig. 3.4 on the right for a network with 784

neurons (the same as th input dimension) in the first layer. After the initial 1-2

epochs, the training loss keeps decreasing but this is not followed by the test

loss. Indeed the accuracy becomes stagnant or even decrease. The zero-level

solution to this very frequent problem is called early stopping and consists in

stopping the training when the validation loss reaches its minimum. Already

at the 2nd epoch the results are indeed better than the baseline because the

model is way more powerful than the 80 neurons version. While early stopping

can be a good solution to overfitting, it is not really systematic when the loss
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Figure 3.4: Left: underfitting. The network with 20 neurons in the first layer is
compared with the baseline (gray and black lines) of the FCNN with 80 hidden
neurons. The losses and the accuracy are visibly worse than the baseline and
one could prove that even going ahead with the training does not substantially
increase the accuracy. Right: overfitting. The network with 784 neurons in
the first layer is compared with the baseline (gray and black lines). After the
initial 1-2 epochs, the training loss keeps decreasing but this is not followed by
the validation loss. Indeed the accuracy becomes stagnant or even decrease.

profile as the training proceeds is not as smooth and regular as in the easy

cases presented here. To tackle the problem even with very complicated net-

works and highly dimensional loss landscapes, two other solutions are widely

employed in machine learning. One is regularization: a penalty for weights

with big magnitude is added to the loss therefore the network is encouraged to

perform good predictions on the training set with a lower number of weights

or with smaller ones. Regularization actually can be extended also for other

specific contraints and provides a very useful method to gain more control on

the automatic optimization of the parameters. At the same time, one must

be aware that adding a lot of regularization can lead to a very biased learning

where the network is too constrained. The typical regularizations for strug-

gling against overfitting are L1 and L2 regularization [56] corresponding to

penalties proportional to the absolute value of the parameters ∝∑Nparam

i |θi|
or to the squared parameters ∝ ∑Nparam

i θ2i . Sometimes the biases are not

regularized and the above terms only contain the weights. The other clever

way of sistematically avoid overfitting is dropout [57]. The idea is quite simple:

during every training epoch a random fraction of the neurons of the network is

“dropped out” meaning that the neurons’ forward and backward connections

are temporarily removed. By dynamically randomly changing the switched-off

neurons, the network is proven to become more robust against statistical noise

in the training data and to perform a better feature extraction for the pre-

diction. The only parameter to be tuned in this case is the percentage of the
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Figure 3.5: Comparison of the validation performances of the overfitting FCNN
with 784 neurons (yellow) with the same network equipped with different regu-
larization terms and dropout as in the legend. The baseline (gray) corresponds
to the FCNN with 80 hidden layers. Clearly, the regularization terms allow
for a better generalization of the network.

dropped neurons (up to maximum 30 − 50% of them). We report in Fig. 3.5

the comparison of the validation performances of the FCNN with 784 neurons

when the regularization terms and dropout are added in order to increase the

generalization ability of the network.

3.2 Autoencoders

In this section, we describe the main ingredient that we use for implementing

the recognition of phases for quantum many-body systems with a machine-

driven protocol, namely the deep Autoencoder (AE) architecture. The AE is

a network devoted to the efficient non-linear encoding of unlabelled data, hence

in the framework of unsupervised learning where the training is not carried out

by adapting the prediction of the network on the “right answer” which tags

the data. The main working principle of the AE is to learn a mapping from the

input space to a lower-dimensional latent space, where the data is encoded in

some automatically generated meaningful representation. The encoding is val-

idated so that from the latent space, it is possible to reverse the transformation

and faithfully reconstruct the input through another portion of the network.

Being a very powerful tool, it has many applications such as dimensionality

reduction, data compression, feature extraction and de-noising [53].

To address the encoding problem, AE resorts to non-linear mapping. The

structure is divided in two parts: the first is called Encoder and takes as input

a d-dimensional vector and maps it to the latent space (also called bottleneck,
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of dimension k). The second part, a.k.a. the Decoder, re-maps the latent space

back to the d-dimensional original space. The problem of creating an almost

lossless compression is actually really un-trivial and the AE takes advantage of

the non-linearity and the automatic way of learning from the dataset the ab-

stract concepts in the bottleneck over other more simple methods like Principal

Component Analysis (PCA)[58].

From a probabilistic point of view: consider some probability distribution

p(x⃗) that has a support of dimension d. The goal of the AE is to learn an

ϕ parametrized encoding function to the latent space fϕ(x⃗) = z and a θ

parametrized decoding one gθ(z) = x⃗′ such that the expected value on p of

the reconstruction error is minimized. We denote with d(x⃗, x⃗′) as the measure

of the reconstruction quality. The optimal parameters ϕ and θ for the AE are

found by solving the minimization problem:

argminϕ,θEp(x⃗) [d(x⃗, gθ(fϕ(x⃗)))] . (3.9)

In practice, we do not know p(x⃗) but rather we have N samples that we

assume to be drawn independently and identically distributed from it, therefore

the goal becomes to minimize the empirical reconstruction error, a.k.a. the

reconstruction loss. The measure of the distance d(x⃗, x⃗′) is usually chosen to

be the squared Euclidean distance, but other choices are possible according to

the nature of the input data. We will introduce afterward another appropriate

candidate for dealing with probability distributions as input, which is the

Kullback-Leibler divergence measuring the difference between two probability

distributions. We sketch in Fig. 3.6 one possible structure of an AE made of

fully connected layers.

For the sake of discerning between quantum phases, we enhanced the perfor-

mances of the AE architecture with the adversarial training. The latter step

can be implemented by adding to the AE a discriminator network that is

trained to distinguish between the original data and the reconstructed one.

The full network takes the name of Generative Adversarial Network (GAN)

consisting in a generator (the AE in our case) and a discriminator. Usually,

GANs are designed to generate synthetic data that closely resembles the train-

ing data they were provided with. The generator network’s purpose is then

to generate new data samples by learning the underlying patterns and dis-

tribution of the training data. Often it takes low-dimensional random input,

referred to as noise or latent variables, and transforms it into synthetic data
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Figure 3.6: Schematic representation of a fully connected Autoencoder. The
Encoder fϕ maps the input x to the latent space z and the Decoder gθ re-maps
z back to the original space for the reconstructed version of the input x′. The
training is performed by minimizing the distance d(x, x′) between the input
and its reconstruction.

samples through a decoder. Its goal is to generate realistic data samples that

are indistinguishable from the real data.

On the other hand, the discriminator network is responsible for distinguishing

between real and generated data samples. It is trained on both real and syn-

thetic data and learns to classify them correctly. During training, the generator

and discriminator networks are trained simultaneously in an adversarial man-

ner: the generator aims to fool the discriminator by generating realistic data

samples that the discriminator cannot differentiate from real ones. Conversely,

the discriminator aims to become more accurate in distinguishing between real

and generated data samples. This adversarial process drives both networks to

improve their performance iteratively.

Through this adversarial competition and iterative training process, GANs

can learn to generate high-quality synthetic data samples that capture the

underlying distribution of the training data. They have been successfully used

in various domains, such as image generation, text generation, and even music

and video synthesis. They have contributed to advancements in areas like

computer vision, natural language processing, and creative applications (see

the review [50] and references therein).

As mentioned above, our generator does not take noise as input but is rather

a full AE. The rationale of this choice resides in the anomaly detection scheme
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which we are going to describe in detail, together with the description of our

GAN impementation, in the results chapter.





Chapter 4

Introduction to quantum phase

transitions

This chapter is devoted to the review of some fundamental concepts about

quantum phase transitions. The majority of the information presented here is

derived from the textbooks by Subir Sachdev [59] and by Amit Dutta et al. [60].

Rather than conducting a thorough exploration of the properties of quantum

phase transitions, we aim to provide a general overview that emphasizes some

keywords that will be encountered later in the thesis.

In our everyday life, we typically observe classical phase transitions, such as for

instance the water-vapor transition. Along such transitions, the physical prop-

erties of a given medium undergo a transformation in response to alterations

in external conditions controlled by a parameter like temperature or pressure.

This transformation can be abrupt and marked by a discontinuous change in

some thermodynamic quantity, referred to as first-order phase transitions, or

it can be continuous. The identification of the external conditions at which

the transformation occurs defines the phase transition point or critical point.

While discontinuous changes are generally associated to absorbtion or release

of latent heat, in the continuous case, due to thermal fluctuations, the phases

becomes indistinct at the critical point (critical opalescence). Following the

example of [60] we can consider a translational invariant system in d dimen-

sion with a critical temperature TC . The transition from one phase to another

is usually also connected to an order parameter O(x) that has a thermal ex-

pectation value of zero below TC and is finite in the other phase. Near the

critical point, the order parameter vanishes with a power-law dependence on

49
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the distance from the critical temperature ⟨O(x)⟩ ∼ |T − TC |β. Also the two-

point correlation function of the order parameter at different spatial positions

⟨O(x1)O(x2)⟩ that has usually an exponential decay at large distances in the

high temperature phase, changes its behaviour at the critical point as a conse-

quence of the divergence of its typical length scale set by the correlation length

ξ. The latter, indeed, diverges with ξ ∼ |T −TC |−ν , where ν is another critical

exponent. As a consequence, at the critical point the concept of typical scale

is lost and the system becomes scale invariant. Furthermore, other thermody-

namical quantities such as the specific heat and the susceptibility diverge at

the critical point with algebric scalings whose exponents are related to the ones

above. The connected power-law dependencies already represent a quite no-

table feature, but there is more! Perhaps, the most striking property of phase

transitions is that even the numeric values of the critical exponents depend

only upon the dimensionality and the symmetries of the system and of the or-

der parameter, allowing for a classification based on classes of equivalence also

named as universality classes. The critical behaviour of all the models within a

given universality class is the same and irrespective of the microscopic details

of the model itself. It is worth pointing out that the abovementioned diver-

gences and discontinuities occur only at the thermodynamic limit because all

the thermodynamical quantities for a finite system are analytical functions of

their variables.

Unlike thermal phase transitions, which are driven by thermal fluctuations,

most of the quantum phase transitions are caused by quantum fluctuations that

arise from the Heisenberg uncertainty principle. Compared to their thermal

analogue, quantum phase transition can occur at zero temperature where the

system is in its ground state. The control parameter becomes now a coupling

constant g in the Hamiltonian that determines an inbalance between different

non-commuting terms. Whereas deep in a quantum phase the physics is domi-

nated by a single term resulting in a ground state which is also its eigenstate, in

an intermediate coupling regime the physics is governed by the interplay of var-

ious states in form of a superposition of the non-commuting terms’ eigenstates.

This also represent another motivation for the study of such phenomena from

the interacting many-body systems’ perpective: the most explored regimes are

usually the weak coupling Hamiltonian and the strong coupling limit so the

study of the intermediate region is left apart. Moreover, the quantum nature

of the fluctuations generates a more rich phenomenology in comparison to the

classical case and many more universality classes have been identified.
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Quantum phase transitions are associated to non-analiticity points of the

ground state energy of the infinite system as a function of g, instead of the free

energy of their classical counterpart. At the quantum critical point (QCP),

in most cases the characteristic energy scale of the fluctuations ∆ (being for

example the energy gap between the ground state) vanishes as ∆ ∼ |g− gC |νz
where ν and z are again critical exponents. For the finite system the gap does

not really close but the transition manifests itself with an avoided level cross-

ing between the ground state and the first excited state’s energies. The order

parameter is now a quantum expectation value and scales as O ∼ |g − gC |β
near the QCP.

While the dynamics of a classical system over time is not a significant factor

in the analysis of thermal phase transitions at equilibrium, for the quantum

case, space and time are connected with each other. We should indeed make

a distinction when dealing with correlation functions: on the one hand there

are the equal-time connected correlation functions for a distance r and, on

the other, the equal-space version for different times. The former includes the

definition of the characteristic correlation length scale ξ far from the QCP:

G(r) = ⟨O(0, t)O(r, t)⟩ − ⟨O(0, t)⟩ ⟨O(r, t)⟩ ∝ e−r/ξ

rd−2+η
(4.1)

where η is the anomalous dimension of the order parameter (or Fisher expo-

nent). The qualitative change in the nature of the ground state spatial cor-

relations along the QCP is usually accompanied by a power-law divergence of

the spatial correlation length ξ ∼ |g− gC |−ν . The latter has a different scaling

with respect to the equal-space correlation length ξτ but the two are anyway

related via the already encountered z factor by ξτ ∼ ∆−1 ∝ ξz. Together

with the qualitative change in the correlations, also the dispersion relation of

fluctuations is strongly modified at the critical point due to the closure of the

gap. The closure of the gap, indeed, provides the system access to excitations

that cost an infinitesimal amount of energy and therefore are easily populated.

Both for thermal and quantum, the emergence of an order parameter that is

finite on the “ordered” side, is associated with a spontaneous symmetry break-

ing of the (equilibrium or ground) state meaning that the chosen configuration

does not respect the symmetries of the underlying physical theory. It is worth

mentioning that symmetry breaking is not a necessary condition for a phase

transition to happen though. In fact, for classical systems with d ≤ 2 or
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one-dimensional quantum systems with sufficiently short-range interactions –

particularly relevant for this thesis – the spontaneous breaking of a global con-

tinuous symmetry is not even possible as a consequence of the Mermin-Wagner

theorem. In such low-dimensional systems, long wavelength fluctuations cost

little energy and are able to destroy the true long-range order. However, the

theorem does not prevent the existence of a phase transition in the sense of a

diverging correlation length ξ such as for the Berezinskii-Kosterlitz-Thouless

transition where there exist a high-temperature/disordered phase with expo-

nential fallof of the correlation function and a low-temperature/ordered phase

with power-law decay (quasi long-range order).
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In this part, we present our results for the data-driven approach to the detec-

tion of phase transitions in quantum many-body systems. The content is a

unification of our pubblications [61, 62] as well as additional outcomes of our

research and some results contained in [63].

Traditionally, phase transitions have been characterized using analytical meth-

ods possibly exact – in a very limited set of cases – or through mean field

approaches; or more and more often resorting to numerical simulations. The

detection normally consists in the measure of specific quantities (local ob-

servables, correlation functions, energy gap, etc.) which reflect the changes

in the physics through the transition from one thermodynamical state to an-

other. The main concern of such an approach is the prior knowledge about

the system needed for computing the order parameter that is associated to its

universality class. Very recently, another strategy has gained more and more

attention in the physics community: the idea is to consider raw and very gen-

eral data extracted from the system and distinguish between different patterns

within the data by resorting to machine learning techniques [64, 65, 66, 67,

68, 69, 70, 71, 72, 73, 74, 75]. As already introduced in the previous chapter,

the relevance of these techniques is rooted in the ability of a properly trained

machine to process extremely complex data in an efficient way for the sake

of pursuing classification tasks, pattern recognition, generation of brand new

data responding to some constraints and even development of decision pro-

cesses. Our proposal is to follow this new promising data-centric perspective

with a two-fold contribution: on the one hand, we improve the recently devel-

oped machine learning architecture for the automated unsupervised detection

of phase transition by employing state-of-the-art models from the artificial in-

telligence community; on the other hand we propose and study a new, very

general and experimentally measurable, quantity that can be used as a proxy

for the scope.

The chapter is organized as follows: in the first part we present the models of

the quantum systems on which we tested our detection algorithms. These were

numerically simulated for obtaining the ground state by means of MPS ansätze

in order to have access to the relevant quantities. The latter models are the

XXZ spin chain, the extended Bose-Hubbard model and the two-component

Bose Hubbard model. Than we present the Generative Adversarial Network

(GAN) that we use for detecting changes in the ES patterns along a very sub-

tle phase transition, namely the Berezinskii-Kosterlitz-Thouless (BKT) tran-
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sition, through an anomaly detection scheme. The results of the detection are

reported for all the three models together with an analysis of the ES in the

different regimes. Afterward, we show the characterization of the candidate

proxy quantity: the full probability density function (PDF) of a globally U(1)

conserved charge in an extensive sub-portion of the system. We focus in this

case on the extended Bose Hubbard model, hence analyzing the PDF of the

boson number in a sublattice, and we discuss a simple educated fit of the PDF

that allows for a complete mapping of the phase diagram. In the final part,

we describe another machine-learning architecture, namely the Concrete Au-

toencoder, that can be used to perform an automated feature selection task

on the input data. We show that the model is capable of suggesting the most

relevant eigenvalues of the ES in order to reconstruct the entire spectrum in

one phase of the system. Therefore, this model is highly interpretable and its

use can provide both a means for automatically distinguishing between differ-

ent phases and an indication of which are the most important features in the

data for characterizing those phases.



Chapter 5

Models

Below we list the main features of the models which we consider in this thesis

for the purpose of detecting quantum phase transitions. The description is

not intended to be completely exhaustive but it is rather a summary of the

models’ relevant features for the problem at hand. For the details we point to

specific works or reviews (and their references) in the literature.

5.1 XXZ model

Figure 5.1: Sketch of the ground state phase diagram of the XXZ model. The
three phases are: ferromagnet (FM), paramagnet (PM) and antiferromagnet
(AFM).

The XXZ spin chain is an exatly solvable model that generalizes the Heisen-

berg chain by introducing an anisotropy in the spin interaction. It has been

extensively studied in the literature (see the very good reviews in [34, 76]).

For this reason, we use this model as a benchmark since its phase diagram is

precisely known. The Hamiltonian of the XXZ model is given by:

HXXZ = −J
L−1∑
j=1

[
1

2
(S+

j+1S
−
j + S+

j S
−
j+1) + ∆Sz

j+1S
z
j

]
, (5.1)
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where Sα = 1
2
σα (σα being the Pauli matrices) and J is positive and sets

the scale of the energy in our notation. At zero temperature, by changing

the anisotropy ∆, the model has three different phases. For ∆ > 1 the ground

state is gapped and exhibits ferromagnetic order where all the spins are aligned

in either +z or −z direction; in the ∆ → ∞ limit it is a product state and

the low-energy excitations are magnons. This is a phase with broken sym-

metry because the state does not exhibit the discrete Z2 symmetry of spin

reflection under which the Hamiltonian is invariant. The Heisenberg chain is

recovered when ∆ = 1. In this limit, the Z2 symmetry is enlarged to the full

rotational symmetry and, as a consequence of the Goldstone’s theorem, the

ground state has a gapless spectrum. For |∆| < 1, the configuration is para-

magnetic with zero magnetization, the correlations show power-law behaviour

thus the phase is critical. In this phase the low energy is effectively described

by the Tomonaga-Luttinger liquid [77] (see also appendix A). In the ∆ < −1

regime, the ground state is gapped and has antiferromagnetic order. When

∆ → −∞ in the thermodynamic limit, the ground state is again symmetry

broken is chosen from on of the two degenerate Néel states |N1⟩ = |↑↓↑↓↑ ...⟩
and |↓↑↓↑↓ ...⟩. The total magnetization is zero in this case but the staggered

one is finite. The low-energy excitations are domain walls or flipping in the

Néel order such that two spins are consecutively aligned. The ∆ = −1 config-

uration is also known as isotropic Heisenberg antiferromagnetic point and is

probably the most interesting regime of the XXZ model. When this point is

crossed from the paramagnetic side, a BKT phase transition from the gapless

paramagnet to the gapped antiferromagnetic state occurs: the gap opens up

with a non-analytic dependence on the anisotropy ∆ corresponding to a corre-

lation length [76] ξ ∝ e
− π√

∆+1 . The phase diagram of the XXZ model is shown

in the sketch of Fig. 5.1.

5.2 Extended Bose Hubbard model

The one-dimensional Extended Bose Hubbard is a non-integrable model that

also has been thoroughly analized in literature: detailed information on both

the numerical and experimental aspects about this model can be found in [78,

79, 80, 81, 82, 83, 84, 85, 86] and references therein. The Hamiltonian for an
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Ut

V

Figure 5.2: Sketch of the Extended Bose-Hubbard ring with hopping parame-
ters t, on-site interaction U and nearest-neighbour interaction v.

L-sites system is:

H =
L∑

j=1

(
−t(b†j+1bj + h.c.) +

U

2
nj(nj − 1) + V njnj+1

)
, (5.2)

where b
(†)
j is the annihilation (creation) bosonic operator and nj = b†jbj the

number operator on site j along a one-dimensional chain. The hopping co-

efficient is denoted by t and is set to 1 giving the energy scale in our no-

tations, while U and V are the on-site and nearest-neighbour interaction

strengths. The zero-temperature phase diagram of the unitary integer filled

lattice, ν = N/L = 1, presents a number of prototypical quantum phase tran-

sitions [84, 85], namely (i) a BKT transition between a gapless superfluid (SF)

and a gapped Mott insulator (MI) phases, (ii) a quantum phase transition

between the MI and a topological Haldane insulator (HI), and (iii) an Ising

type transition between the HI and a charge density-wave (CDW) state. It

has been recently pointed out that a phase-separated regime between SF and

supersolid (SF + SS) [73, 86] is present in the bottom right corner of the phase

diagram (for large V and small U).

In the V = 0 case, the model resembes the well-known Bose-Hubbard model

with the famous BKT transition between the superfluid and the Mott insulator.

The phase transition results from the competition between the delocalization

effects of the kinetic term, which reduce the phase fluctuations, and the local-

ization effects of the interaction term, which reduce the on-site particle number

fluctuations. The Mott insulator has an energy gap so that the smallest cost

for a particle-hole excitation is finite. The gap opens with the typical BKT

behaviour as [83]:

∆ ∝ e−const/
√

(1/Uc)−1/U (5.3)



60 Chapter 5. Models

that makes the determination of the critical value Uc much more difficult in

the one-dimensional setup. The superfluid configuration has the features of

the Tomonaga-Luttinger liquid: the low energy excitations are collective modes

(phonons) with linear dispersion relation and the correlation functions show an

algebraic decay with an exponent that depends on the model parameters. On

the other hand, the insulating phase lacks of such an order and is characterized

by an exponential suppression of the ⟨b(†)j bj+r⟩ correlator [84]. The addition of

the nearest neighbour interaction term enriches the physics: in the CDW, the

phase is characterized by a staggered diagonal order (−1)r⟨δnjδnj+r⟩ where

δnj is the boson number fluctuation from average filling that decays to a con-

stant value. For very large V the typical pattern of density wave ...202020...

for the occupation number appears. The extended interactions can also stabi-

lize the HI phase which possesses hidden order that can only be revealed by

non-local string correlations [84]. The presence of edge modes in this phase

can also be observed in some some degeneracies in the ES [85]. The nature of

the excitations in this exotic phase consists in an interplay between charge ex-

citations and neutral ones: this has been studied in [84] by observing the single

particle gap, which is finite in all the insulating phases and closes at the MI-HI

transition; and the neutral gap which closes both at the MI-HI and HI-CDW

transitions. Finally, for the present unitary filling case, a phase-separated re-

gion consisting of a supersolid and superfluid part has been recently studied

in [86], as signaled by power-law decay of ⟨b(†)j bj+r⟩ and uniform density in the

superfluid part whereas the supersolid region still has quasi long-range order

for the correlator but staggered local density.

5.3 Two-component Bose-Hubbard model

The last model that we study is a generalization of the Bose Hubbard model

for two species. Cold atomic gases with two hyperfine levels (denoted in the

following with A and B) confined in optical lattices of L sites can be described
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Figure 5.3: Sketch of the 2-component Bose-Hubbard ring with hopping pa-
rameters t̃α = tαe

−i2πϕα/L (twisted periodic boundary conditions), on-site
intra-species interactions Uα and inter-species interaction UAB. The two fluxes
ϕα pierce the ring and give rise to bosonic currents jα in the ground state and
allow to study the superfluid properties of the system. We limit our study of
the ES for the phase detection task to the tα = t a real number.

by the following Hamiltonian:

H = HA +HB +HAB,

Hα =
L∑

j=1

[
−
(
tαb

†
j+1,αbj,α + h.c.

)
+
Uα

2
nj,α(nj,α − 1)

]
,

HAB = UAB

L∑
j=1

nj,Anj,B,

(5.4)

where the operators b†j,α, bj,α, nj,α are the analogue of the Bose-Hubbard case

but they are labeled with the flavour index α ∈ {A,B}. The single species

HamiltonianHα accounts for the hopping between neighboring sites and for the

on-site repulsion characterised by the parameter Uα > 0, therefore matching

Eq. (5.2). The Hamiltonian HAB describes the inter-species on-site interaction

with strength UAB. We limit ourselves to a zero temperature, Z2 symmet-

ric mixture where tα = t, Uα = U = 10t and filling να ≡ Nα/L = ν/2, in

terms of the number of atoms Nα. The phase diagram of the 1D model is very

rich and has not yet been determined with the same accuracy as in higher di-

mensions [87, 88]: to our knowledge the most complete analysis can be found

in [89]. For the purpose of the present thesis we focus on a small region of

the parameter space where only two phases appear: the two-superfluid (2SF)

phase and the pair-superfluid (PSF) phase. The 2SF phase is characterised by

both components A and B being superfluid. The low energy spectrum consists
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of two gapless linear (Goldstone) modes corresponding to a density (in-phase)

and a spin (out-of-phase) mode. In the PSF phase, the two components are

paired and the spin-channel acquires a gap. This phase is sometimes consid-

ered the bosonic counterpart of the much more relevant phenomenon of pair

condensation occurring in fermionic systems.
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Figure 5.4: The correlation functions of Eq. (5.5) (the (a) panel is Gα, (b) is
RD and (c) is RS) as function of the conformal distance for a unitary total
filling system ν = 1, t = 1 and U = 10. The orange points concern a regime in
which the system is in PSF phase while the blue ones concern the 2SF phase
and we represent with a color gradient from dark to light different system’s
sizes from L = 8 to L = 64. The dashed lines are exponential and algebraic
fits depending on the expected behaviour of the functions for UAB/U = −0.1
and the solid one for UAB/U = −0.5.

In order to study the superfluid properties of the system we made use in [63]

of a standard technique involving twisted periodic boundary conditions [90].

The hopping between neighbouring sites in the single species Hamiltonian is

modified as t̃α = tαe
−i2πϕα/L and tα, ϕα ∈ R+ so that an artificial flux ϕα

pierces the periodic one-dimensional chain (a ring). In [63] we have shown

that the addition of the latter term results in persistent superfluid currents

whose behaviour is affected by the inter-species interaction and related to

the so called Andreev-Bashkin effect [91] that is not going to be discussed in

this Thesis though. Having access to the superfluid densities of the system
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allowed us to characterize the transition between the 2SF and PSF regime.

The prediction for the critical value of UAB when it occurs are compared with

our machine-driven analysis. In [63] we also took into account the scaling of

correlation functions in those phases, in particular:

Gα(x) = ⟨b†i+x,αbi,α⟩,
RD(x) = ⟨b†i+x,Ab

†
i+x,Bbi,Bbi,A⟩

RS(x) = ⟨b†i+x,Abi+x,Bb
†
i,Bbi,A⟩.

(5.5)

The single-body correlations, Gα, have a mixed density/spin (in/out-of-phase)

character. The two contributions can be instead isolated with the help of

two-body correlations: RD concerns the superfluid character of pairs of A−B

particles and therefore the density channel, while RS relates to particle-hole

pairs and therefore the spin channel [89, 92].

Away from commensurate effects, possibly leading to a Mott insulator, the

density channel is always superfluid, i.e., RD scales algebraically (a.k.a. quasi

long-range order [77]). A change in RS and Gα from algebraic to exponential

decay happens instead when entering the PSF phase, due to the opening of a

gap in the spin channel. This is illustrated in Fig. 5.4, where the correlations

measured for different system sizes (L = 8, 16, 32, 64, 96) are reported for two

sample parameter values deep in the 2SF (blue) and PSF (orange) phases. The

numerical value of the exponent of the power-law decay is associated to the

Luttinger parameters of the effective low-enery theory of the system (see [89]

and appendix A).

5.4 Numerical details

We employed MPS ansätze with embedded symmetries (in particular U(1))

for computing the ground state of all the systems and extracting the ES or

the PDF. The XXZ system, the simple BH without the nearest neighbour

interaction and the BH2S were simulated for [63] with open boundaries for

XXZ and BH and with periodic boudaries for BH2S. The EBH with the full

interaction term for computing the PDF was instead considered afterwards and

with periodic boundary conditions. All the periodic systems are implemented

by means of the “snake” pattern in the couplings of the MPO (see previous

Chapter for the details).
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For the bosonic models, we set the maximum occupation to Nmax = 4 bosons

per site (EBH) and N
(tot)
max = (NA + NB)max = 6. Setting a proper number

of states through the bond dimension of the MPSs, we can reliably compute

relevant quantities for several system sizes, with a discarded probability at

most of 10−9.



Chapter 6

Detection of the BKT transition

with GAN

6.1 Anomaly detection scheme

Anomaly detection is a process of identifying unexpected patterns or behaviors

in data that deviate from the normal pattern. The goal of anomaly detection is

to automatically recognize instances in data that are unusual or represent some

type of outlier and therefore may be indicative of a problem, fraud, or error.

This is a crucial task in various domains and applications where it can help

prevent financial loss, security breaches, health problems and so on (see [93]

and references therein).

The basic idea behind anomaly detection is to learn the normal patterns in

data and then flag any observations that fall outside the normal range as

anomalies. A machine learning based anomaly detection method can be clas-

sified into one of two main categories: supervised or unsupervised. As usual,

a supervised method uses labeled data to train a model that is then used to

predict anomalies in new, unlabeled data. Unsupervised anomaly detection

methods (the ones which we use here), on the other hand, do not use labeled

data and rely on three main approaches: statistical methods, clustering, and

neural networks. Statistical methods employ basic statistical measures such as

mean, standard deviation, and probability distributions to identify anomalies.

For example, entries in a dataset drawn from a Gaussian distribution that

show values lying more than three standard deviations away from the mean

65



66 Chapter 6. Detection of the BKT transition with GAN

might be considered anomalies. Clustering methods group similar data points

into clusters, and anomalies are identified as points that are significantly dif-

ferent from the other points within the clusters. Also neural networks, such

as autoencoders and recurrent neural networks, can be used for solving the

problem. Their ability to learn the underlying structures in the data allows to

identify anomalies as points that do not fit the learned structure of the normal

data.

Here we report the anomaly detection algorithm we use in [61] that is based on

the idea in [73] but resorts to an improved architecture, namely a Generative

Adversarial Network (GAN). Our aim is to map the phase diagram of a many-

body system using the anomaly detection scheme as in the following: we train

the GAN on some unlabeled, representative data of the state of the system

in one phase, hence corresponding to some region in the space of the Hamil-

tonian’s parameters. A test-time we provide the model some data from other

regions of the parameter space: different phases with respect to the training

one will be anomalies for the model.

6.2 GAN architecture

The anomaly detection protocol that we implemented is based on a GAN

architecture composed by a full Autoencoder (AE) and a discriminator. Before

addressing the role of the discriminator, we briefly describe how the AE can

be used to detect anomalies. The parameters of the encoder ϕ and decoder θ

(see previous section 3.2) are optimized during the training on samples that

belong to a chosen region of the phase diagram (normal samples). After the

training, the AE has learnt some hidden representation of the data in the

bottleneck. Our assumption is that once data from another phase are fed to

the AE, their hidden representation will be different making the AE lose the

ability of reconstructing them with a good accuracy. The “degree of anomaly”

or anomaly score can be quantified directly from the reconstruction loss Lrec ≡
d(x, x′) between the input and the output of the AE.

In the exploration of a phase diagram, this scheme has several advantages

because, for instance, it allows to choose the region of the normal data where

their production is numerically favourable or where the physics of the system is

well understood. Nevertheless, it allows for a scan of the phase diagram in an
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Figure 6.1: Sketch of the GAN architecture we used for the phase transition
detection. The Autoencoder (AE) takes in input a vector with the eigenvalues
of the ES (x) and operates an encoding and a decoding to its reconstructed
version x′. The discriminator takes in input x or x̂ and gives a real number y′.

unsupervised way because no prior knowledge of the possible phase labelling

is required.

The standard training procedure for the AE involves the minimization of the

reconstruction loss but it has been demonstrated that the adversarial train-

ing usually improves the optimization of the parameters and entails a better

reconstruction [53]. We decide to provide the AE with a discriminator that

takes x or x′ as input and outputs a single real number y′. The composite

structure is a GAN [50] of which we show an example in Fig. 6.1. The role of

the discriminator is to distinguish if the vector in input is a real example (one

given as input) or a fake one (the reconstructed examples by the AE). For real

examples the output of the discriminator should reach y′ = 1 whereas for fake

examples y′ = 0. The two networks are trained together in a competitive way

and every training step is made of two sub-steps:

• the discriminator is optimized alone in order to be able to predict that

Nbatch samples from the dataset are real and that their reconstructions

by the AE are fake.

• the AE – that is a full-fledged generator of samples – is optimized in order

to fool the discriminator, hence making it predict that the reconstructed

samples of the batch are real.



68 Chapter 6. Detection of the BKT transition with GAN

Algorithm 1 Training of GAN

1: Initialize the parameters θAE of the autoencoder network AE
2: Initialize the parameters θD of the discriminator network D
3: Initialize the weights λ and ϵ for the losses
4: for number of training epochs do
5: for k steps do
6: Forward the batch samples xi, i ∈ [1, Nbatch] in the AE
7: Update the discriminator by ascending the stochastic gradient:

∇θD

1

Nbatch

Nbatch∑
i=1

[logD(xi) + log (1−D(x′i))]

8: Update the AE by descending the stochastic gradient:

∇θAE

1

Nbatch

Nbatch∑
i=1

[ϵLrec(xi, x
′
i) + λ log (1−D(x′i))]

9: end for
10: end for

The pseudo-code of the training procedure is reported in Algorithm 1. Since

the discriminator can be seen as a binary classifier, the gradient ascent at line 7

of Algorithm 1 can be converted to a minimization of the following adversarial

loss:

Ladv(y, y
′) = y log(y′) + (1− y) log(1− y′), (6.1)

where the target values of the classifications are asigned as y = 1 for real

samples and y = 0 for fake ones when the discriminator is trained, whereas

y = 1 for the reconstructed samples is set when the AE is optimized. As

in common practise for actualizing the adversarial competition, we separately

train the sub-networks by freezing the respective parameters’ optimization.

Since in general the reconstruction loss and the adversarial loss range within

intervals of different magnitudes, we combine them adding some weights in the

overall loss (see line 8 of Algorithm 1):

Ltot = λLadv(y, y) + ϵLrec(x, x
′). (6.2)

The hyperparameters λ and ϵ are tuned in order to balance the influence of

the individual losses as well as the learning rates of the two subnetworks’ op-

timizers. At test-time the discriminator is not necessary anymore: the AE

– that have benefited from the adversarial training – faces the whole phase
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diagram and the anomaly score is computed. We employ a GAN architecture

implemented with PyTorch [94] and the code is public at [95]. Among all the

possible structures for the layers, we tried to adopt a Convolutional Neural

Network (CNN) whose principle is to convolve the layers with some filters but

we find that the dense structure outperforms the CNN for our task. Probably,

the full-connectivity among the neurons in the former structure plays an im-

portant role for the success of the reconstruction. We also employed MaxPool

filters for the down-sampling of the input in the encoding process (by consid-

ering the biggest values and neglecting the smallest ones in a fixed size sliding

window) and for the decoding part the UpSample is used for going back to the

original space (it fills the holes created by the up-sampling to a bigger dimen-

sion through customized interpolations). Moreover, a skip connection between

two latent layers is added to improve the model performance. It consists in

the transfer of an encoding intermediate layer’s information, i.e. for example

xE, to the same-size layer in the decoder xD before the activation function.

In Fig. 6.1 this is represented with an arrow. Skip connections were first in-

troduced to prevent gradient vanishing in deep networks and then in residual

networks in order to overcome the so-called degradation problem (see [54, 96]

and references therein). Supposing that xE is transformed toward the decoder

with a function F (xE) and the symmetric layer in the decoder xD = σ(F (xE))

is obtained by applying an additional non-linearity σ, the skip connection

xD = σ(F (xE) + xE)

does not introduce neither extra-parameters nor computational complexity.

Nevertheless, the optimization of the new F (namely the residual mapping) is

easier thanks to the information of xE and was found to lead to the learning

of good abstract representations in the bottleneck, rather than local details of

the data [97]. All the manipulations on the data are made through standard

built-in methods of the PyTorch library.

6.3 Features of the symmetry resolved ES

The reason why we choose the ES as a dataset is that it is a well-known quantity

that exhibits distinct properties both in gapless and gapped phases [22, 98,

99], and its degeneracy pattern is often used to discriminate different kinds of
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topological phases [23, 100]. Its structures embed information about non-local

quantum correlations, as formalized within the bulk-boundary correspondence

framework [101, 102, 103]. Both ad-hoc defined order parameters [104, 105]

and machine learning driven approaches [68, 73] have been employed for the

detection of phase transitions. Before showing the results of our anomaly

Figure 6.2: Entanglement spectrum for the L = 600 open XXZ chain at ∆/J =
−0.5 ((a) and (b)) and for the ∆/J = −1.2 ((c) and (d)). In (a) the parabolic
envelopes’ structure is the marker of the emergent CFT. Panel (b)− (d) shows
the same data of (a)− (c) obtained by subtraction of the lowest parabola ξk=0

and by setting the distance between ξk=1
δN=0 and ξk=0

δN=0 equal to one in order to
better appreciate the equally spaced structure and the degeneracies.

detection scheme with the GAN, we describe our dataset in a quite detailed

way. Specifically, we show here the characteristic features of the ES for all the

three models presented above in a region of the phase diagram where the BKT

transition occurs. Our analysis is focused on precise regions of the control

parameters: −1.5 ≲ ∆ ≲ 0 between the paramagnetic (PM) gapless region

and the anti-ferromagnetic (AFM) one for the XXZ chain, 0 ≲ U/t ≲ 5 and

V = 0 between the SF and the MI for the BH model and −0.4 ≲ UAB/U ≲ 0

(U = 10t) for the BH2S, where the system is either in double superfluid regime

or in pair superfluidity.

In Fig. 6.2 and Fig. 6.3, we plot the logarithm with base 10 of the reduced
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density matrix eigenvalues ξ = − log10(pi) for a bipartition of the systems in

two halves. Those are related to the eigenvalues of the entanglement Hamil-

tonian as presented in the previous Chapter and the base 10 is a convenient

choice for the readout of the order of magnitude. The eigenvalues are labeled

by the symmetry sector, corresponding for the XXZ to the number of spin-

less interacting fermions resulting from the mapping of the Hamiltonian under

Jordan-Wigner transformations [34], the number of bosons for the BH and the

number of bosons for each species for the BH2S. All the numbers are referred

to the total amount of particles in one of the bipartitions. Since there are

multiple eigenvalues for each sector, they can be ordered in a decreasing way:

we label every eigenvalue with the (shifted) sector number, δN = N −Nmean,

and with the sorting index, k.

Figure 6.3: Entanglement spectrum for the L = 256 open BH chain at U/t = 1
((a) and (b)) and for the U/t = 4 ((c) and (d)). The parabolic structures in the
gapless phase are very clean with respect to the ones of the XXZ model (see
Fig. 6.2): we observed a very slow convergence to the thermodynamic limit for
the spin chain indeed.

The XXZ and the BH model exhibit parabolic structures at fixed k and the

parabolas with different k have the same curvature. Besides, the parabolas

are translated by multiples of the difference between the first and the second
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eigenvalues of the δN = 0 sector:

∆ξ0 = ξk=1
δN=0 − ξk=0

δN=0. (6.3)

As a consequence, by subtracting every parabola by the first one (k = 0) and

by rescaling with ∆ξ0, the manipulated ES displays some equally spaced struc-

tures with integer distances whose degeneracies are explained through a map-

ping with energy spectra of boundary conformal field theories [98]. These con-

formal structures are then destroyed after the phase transition to the gapped

phase. We show the results for the XXZ and the BH models in Fig. 6.2 and

Fig. 6.3.

Figure 6.4: Entanglement spectrum of the L = 64 BH2S chain with periodic
boundary conditions in the gapless phase for UAB/U = −0.15. In (a) we show
the parabolic surfaces on the δNA/δNB plane only for the first four envelope
for clarity. In (b) and (c) we plot the diagonal sections of the paraboloids
corresponding to the density (δNA = δNB) and the spin channel (δNA =
−δNB) respectively. After the phase transition to PSF, only the eigenvalues
of the density channel (b) maintain the conformal behaviour while the spin
channel acquires a gap as shown below in Fig. 6.5.

The presence of such parabolas (and their degeneracy counting) from a finite

system is not guaranteed to be reliable though, since finite-size effect can spoil

the conformal structures. For this reason, the ability of generalization typical

of a machine driven approach is crucial for carrying out the pattern recognition

for pursuing the distinction of the different regimes.
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Figure 6.5: Entanglement spectrum of the L = 64 BH2S chain with periodic
boundary conditions in the gapped PSF phase for UAB/U = −0.35 in analogy
to Fig. 6.4. In the spin channel (c) the envelopes are clearly no more parabolic.

More interesting properties are found in the generalization of the BH chain

to the BH2S model where the situation is more complicated. The symme-

tries associated to the A and B number of particles’ conservations provide two

labels for the sectors δNA and δNB. The parabolas become equally spaced

paraboloids in the region 2SF phase (see Fig. 6.4). As already anticipated,

once the system undergoes the phase transition to PSF the gap opens only

in the spin channel. Indeed, as evident from Fig. 6.5 after the opening of the

gap, the arrangement of the ES eigenvalues on the density channel slice of the

paraboloids (δNA = δNB) still behaves according to the above-mentioned con-

formal structures while it loses these fascinating properties in the spin channel

(δNA = −δNB). It is furthermore relevant that in the PSF the parabolic en-

velopes observed in the density channel are the only preserved, while the ES

does not exhibit parabolas in any other direction on the δNA/δNB plane. We

did not find any analysis about this generalization in the literature.

6.4 Further data analysis of the ES

In the previous section we have shown the peculiar structures appearing in the

deep gapless and gapped phase, but we are not going to give as input to the
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Figure 6.6: ES of the XXZ (left) and BH model (right) as a function of the
control parameter. In the legend the first digit identifies the symmetry number
(δN in the notation of the manuscript) and the second digit is the sorting index
k.

GAN the symmetry resolved ES. In fact, the idea is to develop a generic proce-

dure which should work regardless of the availability of the symmetric sectors.

In such a case, the (low-lying) ES for a given configuration of the Hamiltonian

parameters can be thought of as a vector in a high-dimensional space whose

components are the eigenvalues. Since the transition is of the BKT universality

class, we do not expect an abrupt change in the data patterns inbetween the

deep phases, where the transition occurs. We show in Fig. 6.6 the evolution of

several ξi for a 400 sites XXZ chain as a function of ∆ and for a 256 sites BH

chain as a function of U/t. We filter the sectors and plot only the ones with

δN ≥ 0 since the others have degenerate values due to particle-hole symmetry.

In the figure, multiple crossings between the eigenvalues happen and one could

in priciple resort to the location of the crossings in order to perform a detection

of the phase transition, in the spirit of level spectroscopy [106]. This is clearly

a non-trivial task – considering the amount of points where crossings occur

– which requires additional model-specific knowledge. Moreover, we show in

the following that blindly considering the lowest-lying ES crossing (as it might

seem somehow physical to do) can erroneously lead to the wrong extrapolation

of the transition point. For the XXZ model it is worth mentioning that the

additional SU(2) symmetry at the transition point ∆ = −1 forces the ES to

arrange into precise multiplets even for finite system sizes. This is not the

case for the BH model in contrast. Actually, according to the deep analysis of

Ref. [98], the transition to the MI is associated with a precise value of the ratio

ηC =
ξ01−ξ00
ξ10−ξ00

= 1
4
. While this implies a series of crossings in the thermodynamic

limit for the eigenvalues ξk+1
0 and ξk±2 ∀k in correspondence to the critical value

UC , the same behaviour is not anymore guaranteed for finite sizes, as it can
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be clearly seen in the right panel Fig. 6.6 for k = 0. Indeed, by looking at the

left panel of Fig. 6.7 (i.e., the analogue of Fig. 3 of [98] with our data), the

empirical η does not reach the critical ηC before the true transition point at

finite size and the above mentioned crossings is avoided.
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Figure 6.7: In the left panel the η ratio as a function of the interaction for
the BH model for different system’s sizes. In the right panel, three different
extrapolations to the thermodynamic limit of the predicted critical coupling:
the blue line according to the critical ηC = 1/4 method explained in the text,
the brown line following the crossing between ξ20 and ξ1±2 and the green line
following the first visible crossing between ξ10 and ξ1±1.

Even if the finite system does not contain the relevant crossing, in the left

panel of Fig. 6.7 we show a possible extrapolation towards the thermodynamic

limit of the pseudo-critical values UC(L) correspondent to ηC = 1/4 (in blue).

Moreover we plot in brown the true relevant first available crossing between ξ20

(the third eigenvalue in the δN = 0 sector) and ξ1±2 (the second eigenvalue of

the δN = ±2 sector). The two extrapolations nicely agree with each other and

predict a critical value compatible with the one established in the literature

(the shaded red area is computed considering the values from the literature as

listed in [107]). Instead, following the lowest-lying ES crossing between ξ10 and

ξ1±1 one would have obtained the wrong green scaling line in the right panel of

Fig. 6.7.

We want to stress once again that our aim is to develop a method that is

completely agnostic about the model-dependent value of ηC at the transition

and about the symmetry number labelling of the eigenvalues which are both

fundamental ingredients of the detection through the level spectroscopy.

From now on, we are going to treat the low-lying ES from a data science per-

spective: every configuration of the Hamiltonian parameter, is then associated



76 Chapter 6. Detection of the BKT transition with GAN

−5 0 5 10

Principal Component 1

−2.5

0.0

2.5

5.0

7.5

10.0

12.5

15.0

P
ri

n
ci

p
al

C
om

p
on

en
t

2

−1.4

−1.2

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

Figure 6.8: First two principal components of the PCA applied to the XXZ
spectra for a 200 sites chain as a function of ∆ (color dimension).

with a vector of eigenvalues. As we have seen in Fig. 6.6, its evolution as a

function of the control parameter is rather complex and since the vector lives

in a high-dimensional space we cannot easily visualize it. One possible solution

is to resort to a dimensionality reduction algorithm such as the PCA [58] in

order to come back to a low-dimensional representation. In Fig. 6.8 we show

the first two principal components of the PCA – which explain approxima-

tively the 80% of the dataset variance – applied to the XXZ spectra for a 200

sites chain as a function of ∆. The selected dataset is composed of about

700 different spectra for values of ∆ ranging between −1.4J and 0. The color

dimension represents the value of ∆. The two values of the two components

already allow to separate between different patterns in the ES depending on

the phase but, unfortunately, due to the nature of the BKT the data points

do not cluster. The configurations in the two deep phases are, instead, con-

tinuously connected. In spite of that, the region of the transition appears to

be located approximately at the elbow of the curve. Since the PCA is a linear

transformation of the vectors, we expect that the employment of non linearities

as in a NN can sensibly improve the ability of distinction.
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6.5 Results with GAN

In order to carry out the BKT detection, we consider the biggest eigenvalues

of the ES in magnitude for various system’s sizes for all the three different

models. We sort them in a decreasing way for the first ES corresponding

to the origin of the phase diagram and we then maintain the same ordering

so that the GAN is always fed with coherent levels. The GAN has no clue

about the charge and ordering-index sector and therefore it has no a priori

knowledge about the underlying parabolic structures. The maximum number

of eigenvalues that was used, namely the input dimension for the GAN, is 64

since smaller eigenvalues are more easily affected by numerical error and, due

to their magnitude, give a negligible contribution to the reconstruction loss.

We divide a portion of the data that we are sure belong to the gapless phase

in two disjoint datasets: training set and validation set. Hence the training

data show the above-described conformal structures. The validation points are

instead taken from an interval of the parameter space adjacent to the training

on the side toward the transition. With this splitting, we set a threshold both

for the training reconstruction loss (L̄tr
rec) and the validation loss (L̄val

rec) at

training time. The idea is that if we pick the validation points sufficiently far

apart from the phase transition, we can check the ability of generalization of

the network on unseen examples that we know belong to the same phase of the

training set. In this way, we can be sure that the network is not overfitting the

training data and that the reconstruction loss is not low due to the learning of

statistical noise. Moreover, since in the first attempt we are training a different

model for every system’s size, we can make sure that the level of the losses are

compatible and the comparison between the resulting loss curves is reasonable.

With our GAN architecture we are able to achieve training losses of the 10−3

order within 250 epochs. It is fundamental to reach good values of precision for

pursuing an accurate reconstruction of the ES’s structures since the magnitude

of the eigenvalues drops rapidly after the first leading ones. This level of

precision is sufficient to faithfully reproduce at least the first two parabolas of

the ES in the gapless region whereas the AEs become unable to reconstruct the

structures after the phase transition. The training was performed by setting

λ = 0.1 and ϵ = 10 in Eq. (6.2). The typical threshold for the losses in the

training and validation region for the XXZ model are L̄tr
rec = 0.00005 and

L̄val
rec = 0.0001, for the BH model are L̄tr

rec = 0.005 and L̄val
rec = 0.02 and for the

BH2S model are L̄tr
rec = 0.005 and L̄val

rec = 0.05. The parameters of the network
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Figure 6.9: The reconstruction loss percentages as a function of ∆/J for dif-
ferent sizes of the systems (indicated in the legends). The location of the BKT
transition in the thermodynamic limit is reported with the dashed red line.
The training set include points in the yellow interval whereas the validation
samples are taken from the green interval. All the curves show an abrupt rise
in the proximity of the transition.

were optimized through ADAM optimizer with learning rates of the generator

lrG= 0.01 and of the discriminator lrD= 0.0001. For both optimizers, a

CosineAnnealingLR scheduler (see in documentation of [94]) was employed in

order to adjust the learning rate at training-time and improve the convergence.

In this first part we provide the results for all the three models and we discuss

the differences between them: once again, for every size of a given system a

different GAN architecture was trained and evaluated. The best scenario would

be to obtain a zero loss (perfect reconstruction of the GAN) in the training

phase and very high loss in all the other phases, hence emulating a fictitious

order parameter of the transition. However, the transition for the finite system

is not sharp, especially for the BKT universality class. We expect a much more

evident jump in the loss for other transitions, like Ising or first order.

We show the results for the XXZ model in Fig. 6.9 for which we have trained

the GANs with samples taken from the region −0.65 ≤ ∆/J ≤ 0 (about 550

points included in the yellow shaded region of the plot) and validated with

configurations in −0.8 ≤ ∆/J < −0.65 (green shaded area). The loss rises

near the phase transition at ∆ = −1J , indicated with the red dashed line.

The enhancement of the change in the loss respects the expected behaviour

as a function of the system’s size, toward the thermodynamic limit. As a

difference with respect to the previous works involving the same scheme [73,
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Figure 6.10: The reconstruction loss percentages as a function of U/t for dif-
ferent sizes of the systems (indicated in the legends). The location of the BKT
transition in the thermodynamic limit as numerically estimated in the studies
listed in [107] is represented as a red shaded region. In this case the loss starts
to rise already in the validation region but remains under the 10%, instead in
the region of the transition the behaviour of the curves changes according to
the size of the system. Even by changing the training window (see below), the
splitting of the curves remains very closed to the transition.

108] in which the authors exploit tensor network techniques for the simulation

of the thermodynamic limit, we cannot expect a sudden change in the ES

structures along the transition.

The BH training consists in about 500 points from the interval 0 ≤ U/t ≤
2.5 and the validation from 2.5 < U/t ≤ 3. The results for the model are

represented in Fig. 6.10. In this case the location of the transition can only be

computed numerically. We show in the figure the estimate of the critical value

as a shaded region that is computed considering the values from the literature

(as listed in the Table 1 of [107]) and providing an interval centered in their

mean and large as the standard deviation. The losses of the GANs start to

increase already just outside the training set (remaining below 10% though)

but the sharp rise occurs near the latter region. Quite peculiarly, the curves

of different system’s sizes begin to separate from each other in the vicinity of

the critical point.

Finally, for the BH2S model there are about 200 samples from the region

−0.1 ≤ UAB/U ≤ 0 as training points and the validation ones are from−0.15 ≤
UAB/U < −0.1. The results for the model are represented in Fig. 6.11. For this

model, there is no analytical prediction of the critical value and the location
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Figure 6.11: The reconstruction loss percentages as a function of UAB/U for
different sizes of the systems (indicated in the legends). The predicted value
for the BKT is still uncertain. The plot shows a trend very similar to the
single species BH model. We hypothesize that the transition should happen
in the −0.25 < UAB/U < −0.2 interval where the curves begin to separate in
analogy to the previous case. This result is in good agreement with the results
of the study of the RS(x) correlation.

of the transition is still uncertain. In the Supplemental Material of [63] (see

also references therein) we detect the PSF transition from the curvature of the

fitting function of the RS(x) correlation in the log-log plane (as in Fig.5.4 panel

(c)): since the latter correlation decays exponentially in the PSF phase and,

instead, algebraically in the 2SF phase, the curvature is expected to be zero in

the latter case. Therefore the fit is a line in the log-log plane representation of

RS while the curvature starts to be finite in the PSF regime and the line bends.

α

UAB/U

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

−0.5 −0.45 −0.4 −0.35 −0.3 −0.25 −0.2 −0.15 −0.1

PSF

Figure 6.12: The values of α for different system’s sizes: L = 8, 16, 32, 64, 96
(from light to dark colors). An increase in the α amplitude is associated to an
exponential trend of the RS correlation function.
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Figure 6.13: The loss curves for the XXZ with L = 400 sites in (a) and for
the BH model with L = 256 sites in (b) for different training regions indicated
in the legend and accordingly to the curves’ color by the shaded regions. The
KL divergence is represented with the black dashed line, whose values must
be consulted in the rightmost y-axis.

We report the calculations of the curvature, named α also here in Fig. 6.12.

Despite the small resolution in the UAB values, the curves cross between each

other for values of −0.25 ≤ UAB/U < −0.2. Since the losses in Fig. 6.11 show

a trend very similar to the single species BH model, if we hypothesize that the

transition should happen where the curves of different sizes begin to separate,

the agreement with the curvature method will be very good.

In order to check the stability of the algorithm, we verified that the results do

not show substantial differences when the training intervals are rescaled. We

report in Fig. 6.13 the results obtained by varying the width of the training

window in the parameter space for the XXZ and the BH model. The loss

computed from the GAN reconstruction is also compared with the Kullback-

Leibler divergence (KL) defined as follows:

DKL(P ||Q) =
∑
i

P (xi) log

(
P (xi)

Q(xi)

)
, (6.4)

which is a measure of the relative entropy between two probability distribu-

tions and therefore is a proper measure for the distance between two ES. The

reference distribution was taken to be the ES at the origin of the phase diagram

and the distance from it was computed for every ES labelled with the control

variable. It is represented in Fig. 6.13 as a black dashed line whose values run

over the rightmost y-axis. For the XXZ case the KL has a delayed and slow

change after the transition while for the BH model the change occurs in the

right region but with a much less sharp rise than the loss performed with the
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Figure 6.14: The reconstruction loss percentages for the three models when
the GAN is trained the single smallest system’s size and then evaluated on
the datasets of all the other sizes. The training and validation regions are the
same as in Figs. 6.9,6.10 and 6.11. The BH2S is actually trained on the 64 sites
system because we observe a quite mediocre performance in the reconstruction
for the model trained on that size, probably due to the fact that the system is
too small and strong finite size effects play a crucial role.

GAN. On the one hand, the KL divergence line shows how the measure of the

distance between representative quantities of the ground state in two differente

phases provides an interesting measure to observe changes due to the phase

transition, in the spirit of ground state fidelity [109]. On the other hand, it

is not sufficient. The GAN flexibility through the anomaly detection scheme

allows, instead, to have at disposal a more powerfool tool that can automat-

ically find the common factor among different patterns within one phase and

differentiate them from the patterns of the other regimes.

We obtain very similar results to Figures 6.9,6.10 and 6.11 when training only

one GAN per model on a single system’s size and then do the evaluation on the

datasets of all the other sizes. This procedure could be extremely useful when

the computational cost of producing a training set is particularly high and a
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Figure 6.15: Loss curves for the BH model when the GAN is trained in the MI
phase. The training and validation regions are the yellow and green windows
respectively. Even though the GANs are probably overfitting the very limited
datasets, the behaviour of the loss in the anomalous phase is quite interesting.

rough estimation of the phase diagram boundaries is enough in a first approach.

We represent in Fig. 6.14 the loss curves for the XXZ, the BH and the BH2S

models when the GAN is trained on a single system’s size and then evaluated

on the datasets of all the other sizes. The training and validation regions are

the same as in the previous figures. Even though the loss is not really low in the

training phase – anyway remaining below 10% –, the increase happens again

near the transition. Quite interestingly, the loss also goes up approaching the

origin of the phase diagram (∆ = 0 and U = 0 respectively): presumably it is

due to the fact that those are singular points where the absence of anysotropy

and repulsive interaction makes the ground state possess different properties.

Since the data points in the gapped phase are not as numerous as for the gapless

one, we cannot perform an equally detailed analysis with the anomaly detection

protocol with a training on that side. However, we can still check the behaviour

of the loss function in the region of the transition. We report in Fig. 6.15 the

results obtained for the BH model when the GAN is trained in the MI phase.

The typical threshold for the losses in the training and validation region were

higher than before, with L̄tr
rec = 0.008 and L̄val

rec = 0.07 respectively. Despite

the rise of the curves seems to start earlier than the expected transition, it is

worth mentioning that their behaviour in the gapless region is quite interesting:

after the sharp increase the loss stabilizes meaning that, even if the GAN is

not able to reconstruct the ES in the gapless phase, the level of error remains

almost constant for abnormal examples within another phase. We attribute
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Figure 6.16: Loss curve for the BH model (L = 256) when the GAN is trained
in the transition region (yellow shaded area). The loss increase outside the
training region remains below 10%, meaning that the network has learnt fea-
tures of both the gpless and gapped phase.

the worse performance to the very limited number of training examples (about

100 samples per system’s size) that probably results in overfitting networks

(even making use of regularizations) and poor generalization.

Lastly, another natural question about the anomaly detection scheme is what

happens if one does not know the arrangement of the phases at all and tries to

train the model with configuration points coming from the transition region. In

this case we observe a completely different loss profile as in Fig. 6.16 for the L =

256 BH chain. The loss increase outside the training region is very restrained

and always stays below 10%. We argue that the GAN, being trained on data

coming from both the phases, has learnt how to reconstruct quite faithfully the

ES in both the cases and therefore it does not identify any anomalies. Even

without any knowledge of the phase diagram, it is possible to find the proper

regions where to train by iteratively scanning several training windows and

looking at the resulting loss profiles.

6.6 Loss threshold and precise transition de-

tection

At this point the missing piece for completing the anomaly detection protocol

is the definition of a threshold for the loss function in order to state what are
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the configurations belonging to the same phase of the training points and what

are the ones of other phases. Setting a threshold by hand is not a systematic

criterion, hence we propose to look at the knee of the loss curves, defined

as the point where the loss curve has the maximum curvature, meaning that

the change rate is the maximum possible. In the thermodynamic limit, we

expect this point to approach the true critical value since the loss increase

should become sharp. We report in Fig. 6.17 the knees of the loss curves for

the XXZ, the BH and the BH2S models. The knee position was computed

by resorting to the library described in [110], where the authors provide a

general approach to on line and off line knee detection that is applicable to a

wide range of systems. The knee position is formally defined for continuous

functions and the comparison of the results of the method on discrete sets

of data is very well explained and motivated. The location of the knees are

reported as vertical dashed lines using the same color code as the dimension of

the system in Fig. 6.17: the XXZ shows a quite slow convergence of the knee

position toward the transition while the BH has a very good agreement with

the literature results already for small system sizes. For the BH2S model we

only report the knee position of the biggest system (L = 128) because we miss

some points for the other sizes. The predicted pseudo-critical point is quite

near the region −0.25 < UAB/U < −0.2 estimated with the α coefficients of

the correlation function fit but clearly more resolution would be needed for a

more consistent comparison.

Despite the results look very promising, primarily because the critical posi-

tions are quite near the expected values even for finite (and sometimes small)

systems, we think it is worth to keep in mind the main purpose of the anomaly

detection scheme. We believe that the machine learning approach to the phase

diagram mapping should not be considered as an alternative to the physi-

cally well-motivated traditional techniques studying the order parameter (when

present), the gap and so on. The real use case of these method should be as a

complementary tool to the traditional techniques when the phase arrangement

is not clear or when the order parameter is not well defined, or again when

an automatic procedure is needed to roughly (and if used carefully even quite

precisely) draw the phase boundaries.
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Figure 6.17: Zoom on the transition regions for the same loss curves as in
Fig. 6.9,6.10 and 6.11. The vertical dashed lines represent the knee of the
curves position as computed with the method described in [110]. For the
anomaly detection protocol applied on finite systems, we believe that a loss
threshold systematically set on the curve knee can provide a good estimate of
the pseudo critical point. Notice that for the BH2S model only the knee of the
L = 128 curve is reported because all the other would lie deeper in the gapless
side (in analogy to the BH) but we lack some points to obtain an acceptable
resolution in the coupling UAB.

6.7 Conclusions

In this section we show that the ES represents a reliable quantity to look at

in order to perform a machine-driven detection of the elusive BKT transition

for one-dimensional quantum systems by assuming almost no prior knowledge

about them. We face such a task by using a GAN that benefits from the

adversarial training in an anomaly detection scheme. We find that such an

architecture is a valid candidate for the purpose of discerning the change of

the patterns of the ES. We support our claim by presenting the results of

the application of the anomaly detection scheme on numerical data for the

XXZ, BH and BH2S models. Although we discuss the results obtained with
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the analysis of the ES, our method is very general and can be applied to any

representative quantity of the many-body state that embeds the changes in the

physics associated to the phase transition. For all the three models we show

that the results are quite promising and the GAN can give a good estimate of

the critical point which in some cases agrees with the literature results even for

quite small system sizes. Let us conclude by remarking once again, that this

approach is not supposed to become a substitute to the traditional methods

for the phase transitions detection but allows to obtain a qualitative map of a

phase diagram with very little knowledge about the nature and arrangement

of the phases in an automated fashion.





Chapter 7

Gaussian fit of PDF

In the previous sections 6.3 and 6.4 we have shown that the properties of the

bipartite ES represent a powerful indicator of the many-body wave-function

properties, specifically for the purpose of characterizing the quantum phase

transitions. Actually, in recent years, several other quantities of bipartite sys-

tems have emerged within the quantum information and condensed matter

theory cross-fertilization. With their help, quantum phases of matter between

them have been studied, and put in relation with the underlying quantum field

theories. A first prominent example is the log-scaling of the von Neumann

(and, more generally, of any Rènyi) entanglement entropy with the bipartition

size for one-dimensional critical systems with local Hamiltonians [12, 16, 111]:

fitting the coefficient in front of such law is arguably one of the best ways to

estimate the so-called central charge c of the associated conformal field theory

(CFT). As a counterpart, we have already described the features of the full

ES both in gapless and gapped phases but several other characteristics have

been studied in the literature starting from the degeneracy patterns of topo-

logical phases [23, 100], the embedded information about non-local quantum

correlations [101, 102, 103] and the relation between specific eigenvalues for

the definition of ad-hoc order parameters [104, 105]. Indubitably its wealth

of structures containing properties of the physics of the system makes the

ES a very suiting tool for machine learning approaches [68, 73] for the phase

transitions’ detection task. Last, but certainly not least, the evolution of

entanglement quantities under the system dynamics has recently unveiled the

existence of new kinds of non-equilibrium phase transitions for quantum many-

body systems under random projective measurements or unitary gates [112,

113].

89
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As a consequence of the above, considerable efforts have been spent towards

making such entanglement features measurable in the laboratory [114, 115,

116, 117, 118]. Among the many, the so-called number entanglement entropy

is gaining a prominent role: its operational definition refers to the probability

density function (PDF) of a U(1) globally conserved charge in an extensive

sub-portion of the system, also for mixed states [119]. Evidences of its distinc-

tive dynamical behaviour as a hallmark for many-body localization have been

recently obtained both numerically and experimentally [120, 121, 122].

Some specific properties of the PDF have been explored in the past, above all

its second momentum or, in other words, the amount of charge fluctuations F
across sub-systems. As explained in [123], a lot of properties of the fluctuations

are shared with the entanglement entropy: for a gapped phase, they exhibit

a strict area-law behaviour, F ∝ Ld−1, with L the linear size of the partition

and d the spatial dimension of the system, whereas for a gapless phase there

appears a logarithmic correction: F ∝ Ld−1 lnL [124]. In particular for a

Luttinger liquid, the scaling coefficient is related to the K-parameter, thus

yielding yet another piece of information about the underlying field theory (in

the Appendix A we present the results of such a scaling analysis for the fitting

of K in a specific case).

We propose in the following a new approach to map out the phase diagram

of quantum many-body systems by considering the full PDF. We are able to

detect all the phase transitions of the one-dimensional extended Bose-Hubbard

(EBH) model at zero temperature by performing a simple and yet very general

procedure consisting of some educated fits of the PDF only, therefore without

resorting to any phase-specific quantity like order parameter or correlation.

We show how the PDF, being intimately related with the ES, preserves its

intrinsic abundance of information about the nature of the phases. This can

be exploited for an agnostic and automatic detection, as done with the machine

learning solutions to the problem like the one we presented before. The huge

advantage of the full PDF is its availability in experiments, e.g. with quantum

gas microscopes, and not only in numerical simulations like the ones we perform

here via MPS. We also show that a finite-size scaling analysis of the PDF

leads to a pretty precise determination of the phase boundaries and that some

previously found functional forms of the PDF for limiting scenarios [111, 125,

126, 127, 128, 129] can be connected to each other.
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7.1 Number probability density function in the

EBH model

We consider the ground state of the EBH model as divided in two equal com-

plementary portions A and B. While the total number of particles is conserved,

the number in the single region can fluctuate. The measurement of a deviation

δN = m from the average density happens with a probability:

p(δN = m) = Tr(ρredA ΠN/2+m) =
∑
i

p
(m)
i , (7.1)

where ΠN/2+m is the projector on the sector with N/2 + m occupancy. We

introduced the eigenvalues pi of the reduced density matrix ρredA with an ad-

ditional label m referring to the inbalance in the number of particles in the

A region: NA = N/2 + m. Once again, being the p
(m)
i s the natural metric

on which truncations of the Tensor Network representation are performed, the

PDF is automatically at disposal without extra computational costs. It is

worth noticing that in an experimental setup with access to site-resolved pop-

ulations, the PDF is obtained by bin-counting the occupation numbers in half

of the system [120].

For gapless one-dimensional phases described by a CFT, the PDF is a Gaus-

sian,

p(m) ∝ exp(−βm2), (7.2)

due to the presence of a free bosonic generator in the theory [123, 126, 130].

This is also associated to the equally spaced parabolas of the ES which were

described before: ξkm = ξ00 + k∆ξ0 + βm2, where the sorting index k denotes

also the order of the parabola (some could be degenerate), ξ00 is the lowest

eigenvalue of the ES in the m = 0 sector, ∆ξ0 the difference between the

lowest and the second eigenvalue in the m = 0 particle sector [98] as defined in

Eq. 6.3. As we will detail below, we expect instead the PDF of gapped phases

to exhibit sensible deviations from this picture [99].

From the operational perspective, the differences between Gaussian and other

PDF profiles can be captured via the average residuals of a two-parameters

linear fit, namely

Res = 1/Nm

∑
m

(log p(m) + βm2 + β′)2, (7.3)
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Figure 7.1: Phase diagram of the EBH model traced with the residuals of the
PDF’s quadratic fit p(m) ∝ e−βm2

for a L = 64 system. Details about the
phase transitions along the dashed and dotted cuts are shown in Fig. 7.4. The
PDFs correspondent to the configurations marked with the colored shapes are
displayed below in Fig. 7.5.

with Nm the number of fitted points and β′ a normalization-related parameter.

In Fig. 7.1 we plot the logarithm of such quantity over the span m ∈ [−4, 4]

for a fit performed upon the distribution values for m ∈ [−2, 2].

This simple procedure turns out to be very effective to map out the entire phase

diagram even without prior knowledge of the phases and the PDF shapes to be

expected. We find perfect agreement with previous studies [73, 84], without

resorting to any investigation of the correlation functions or gap nor to the

use of machine learning techniques and – even more importantly – by using

an experimentally accessible quantity.

In this respect, in analogy with Fig. 7.1, we reproduce the phase diagram of

the EBH model by looking at the residuals of the Gaussian fit on data of a

simulated experiment. Instead of considering the numerical PDF of each pair

of couplings (U, V ), we sample a given number of shots NS from it. Every shot

corresponds to a value for the inbalance in the number of particles m among

the two subsystems. Once the samples are extracted, we fit the histogram

of the sampled distribution and compute the residuals from there, therefore

emulating an actual experiment that deals with the counting of the particles

from the snapshots of the system. The results are very promising, as shown

in Fig. 7.2. For a low number of samples (NS = 100 and NS = 500, top row)

the only distinction between the deep MI and CDW phases is possible. The

phase separated SS-SF is already well distinguishable for the reasons explained
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Figure 7.2: Phase diagram as of Fig. 7.1 obtained from different simulated
experiments: the PDF is fitted from 100,500,1000,10000 shots (from left to
right, top to bottom).

in the following. Once one proceeds up to NS = 10, 000 shots (bottom right),

the level of detail is good enough to even appreciate the HI and, in general, to

be comparable to a numerical study. Notice that those numbers of snapshots

are normally achievable in state-of-the-art experiments with ultracold atoms

on lattice since the current repetition time of an experiment is of the order of

seconds. An hypothetical strategy could be to roughly draw the phase diagram

with a few samples for every (U, V ) on a coarse grid and then refine the phases’

borders with a greater (nonetheless feasible) number.

Both in Fig. 7.1 and in Fig.7.2 even with only 100 samples, our method properly

identifies the recently postulated SF+SS phase, which appears as a very noisy

region for large V and small U . This is a consequence of the alternation of

uniform density regions and density-wave ordered ones: the PDF is peaked on

a value which is not necessarily the average density but depends on the location

of the supersolid domains. Since the PBC let these domains emerge in random

positions along the ring, this gives rise to the above-mentioned noise. In order

to better grasp the situation in this phase, we plot in Fig. 7.3 the PDF for

(U, V ) = (0.5, 4) of a system of length L = 64 sites. The PDF is clearly not

centered in m = 0 in contrast with all the other discussed phases. Indeed, by

looking at the density profile of the system in the inset, a supersolid domain
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Figure 7.3: In the main plot the PDF of a configuration in the phase separated
regime SF + SS for a system of L = 64. The inset shows the correspondent
profile of the density.

has emerged with a periodic structure in the left region of the lattice while the

right region is flat and with a superfluid character. A very detailed explanation

about the phase separation can be found in [131].

The nature of the phase transitions is reflected in the evolution of the residuals

in their vicinity: in Fig. 7.4 we show the trend of the average residuals for two

cuts (also indicated in Fig.7.1 with dotted and dashed lines) of the phase

diagram and different system’s sizes (L = 16, 32, 64, 128, 256 from light to

dark color). The first cut of Fig. 7.4 (a) contains two gapped-to-gapped phase

transitions for fixed U = 5, from MI to HI and from HI to CDW as indicated

with a dotted line in Fig. 7.1. The location of the critical points is easily

determined by the abrupt decrease of the residuals which becomes sharper

and sharper as the length of the ring increases: in the two insets Fig. 7.4 (b-c)

a detail on the scaling of the critical VC against the inverse of the system size

is shown together with a linear fit. The extrapolation of the critical values is in

perfect agreement with previous studies, i.e., V = 2.95±0.05 for the transition

MI-HI and V = 3.525± 0.05 for HI-CDW [84].

The second cut Fig. 7.4 (d) encompasses the gapless-to-gapped BKT phase

transition from the SF to the MI at V = 0. The plot is very similar to the one

obtained with the GAN in the previous chapter. It would be interesting to find

a scaling procedure for the residuals, similarly to what is performed for the

superfluid stiffness and/or the K-Luttinger parameter in standard approaches:

At the moment, this remains an open problem. We stress, however, that the
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β parameter of the linear fit offers a direct experimental access to the K-

Luttinger parameter [123]. For completeness, we describe the results of such

an analysis in Appendix A (see, also, Ref.[77, 78] therein) and we obtain a

critical value Uc ≃ 3.36 ± 0.01 in perfect agreement with previous studies

as reported in [107]. From the Gaussian fit perspective, the location of this

transition corresponds to the uprising of the residuals.

Figure 7.4: Residuals of a Gaussian fit of the PDF p(m) ∝ e−βm2
for different

system’s sizes L = 16, 32, 64, 128, 256 from light to dark color in the proximity
of (a) the gapped-to-gapped phase transitions MI-HI-CDW along the cut U =
5 and (d) the gapless-to-gapped phase transitions SF-MI (BKT) for V = 0. In
the insets, the location of the residuals’ minimum is fitted against the inverse
of the system’s size in order to extrapolate the critical VC for the MI-HI phase
transition (b) and the HI-CDW transition (c).

7.2 PDF for gapped phases

So far we presented the results of a pure Gaussian fit of the PDF as a tool

for the mapping of the phase diagram. The procedure relies on the presence

of a gapless phase where the PDF is Gaussian. Actually, a more detailed look

at the PDF unveils more information than the simple residuals to Gaussian

fitting discussed above. In Fig. 7.5 we present some prototypical configurations

in the different phases, corresponding to the coloured symbols in the phase

diagram of Fig. 7.1: e.g., panel (a) shows the perfect parabola for the SF

phase ((U, V ) = (0.5, 0.5)). The striking feature is that all PDF profiles can

be captured by proper shifts and combination of Gaussian envelopes, as we

explain here below.

The shape of the PDF deep in the gapped phases can be computed resort-

ing to boundary-linked perturbation theory [99]. For example, the ES lev-
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Figure 7.5: (color online). The logarithm of the PDF (black points) is
plotted for a representative configuration of the (a) SF phase (red star,
(U, V ) = (0.5, 0.5)), (b) MI phase (green pentagon, (U, V ) = (5.5, 0.5)), (c)
CDW phase (gray square, (U, V ) = (2, 4.5)), and (d) HI phase (brown dia-
mond, (U, V ) = (5, 3.3)). The gray lines show the fit of the PDF in terms of
Gaussian envelopes and their shifts, as discussed in the main text. For both
MI and CDW, the behaviour is linear for small |m|, in compliance with hori-
zontally shifted parabolas: on the right we show the shift of parabolas’ minima
from m = 0 as a function of the inverse distance from the critical point for MI
(e) and CDW (f). It is apparent that they tend respectively to 1 and 2 deep
in the phases, as predicted by perturbation theory in the text. For the HI, the
dominant feature is a vertical shift between parabolas for the different parities
of m: (g) shows a magnification thereof.

els for the MI are obtained by consecutive applications of the kinetic term

H ′ =
∑L

j=1−t(b†j+1bj + h.c.) on the zero-order ground state, i.e., | . . . 111 . . .⟩.
We are then interested primarily in achieving a given inbalance m with the

minimal number of moves (i.e., perturbative orders of H ′). In the case of a

single boundary, it is rather easy to see that the leading order amounts to

(t/U)|m|(|m|+1)/2, up to a global weight depending on the ratio between the

accumulated bosonic factors and the excitation energies along all possible se-

quences of moves.

In particular, by following the standard prescription with a perturbation H ′ =

λW to the original hamiltonian, the relevant states at k-th order in our case

are:

|β(k)⟩ ∝ λk
Wβl1Wl1l2 ...Wlk−3lk−2

Wlk−2α

EβαEl1α...Elk−2α

|α(0)⟩ (7.4)
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using the notation for the perturbation matrix elements and energies:

Wβα ≡ ⟨β(0)|W |α(0)⟩,
Eβα ≡ E

(0)
β − E(0)

α .
(7.5)

All the other terms are sub-leading because, for fixed m, require more than the

minimum number of moves in order to transport the particles from subsystem

B to A (and vice-versa for negative m) and hence belong to a higher pertur-

bative order. The recipe for the calculation of the full corrections, involves

the summation of all possible combinations for moving m particles though.

Such a summation must be weighted with the ratio between the accumulated

bosonic factors resulting from ⟨β|∑L
j=1−t(b†j+1bj + h.c.) |α⟩ and the energy.

For the single boundary case, by following the above mentioned protocol one

finds that the amplitude of the states is proportional to (t/U)
|m|
2

(|m|+1) for

the MI starting from the ground state |1, 1, ..., 1, 1⟩ (in agreement with [99]).

When dealing with two boundaries, simple combinatorics leads to p(m) ≃
log(t/U)

⌊
(|m|+1)2

4

⌋
. The expression describes a symmetric envelope around

the average number of particles, which could be recovered also by consider-

ing two symmetrical Gaussians shifted by ∓1 with respect to m = 0, for the

positive and negative values of m, respectively. Remarkably, we find such hor-

izontally shifted envelopes to persist with reduced offset when approaching the

critical point, finally merging back when transitioning to the superfluid phase,

see Fig. 7.5 (b-e).

We also highlight here that a similar shift is the dominating feature of the PDF

for the CDW phase (dark gray square for (U, V ) = (2, 4.5)), this time tending

to ±2 deep in the perturbative regime, hinting at the underlying structure of

the zero-order ground state, i.e., | . . . 0202 . . .⟩, see panel 7.5(c-f).

The appearance of the |m| dependence in the exponent due to a non-zero shift

of these double parabolic envelopes can be exploited to distinguish such gapped

phases from all the others. We verified that the values of the α coefficient of

the fit:

− log[p(m)] = α|m|+ βm2 + γ (7.6)

is non-zero only in the MI and CDW. The change rate of the coefficient along

the phase transitions manifests again their nature as represented in Fig. 7.6. In

the latter, we plot the value of the α coefficient as a function of the couplings

of the model, in analogy to Fig. 7.1. The non-zero value of this coefficient
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Figure 7.6: Linear dependence of the logarithm of the PDF for small m as a
function of the interactions.

is the reason why a purely quadratic centered fit p(m) ∝ e−βm2
fails in the

above mentioned phases, giving rise to big residuals. For the single boundary

partition of some specific models, instead, the PDF may assume asymmetric

shapes, see a very nice description for the XXZ open chain in [99].

Finally, a direct inspection of the PDF in the HI phase (brown diamond

(U, V ) = (5, 3.3)) reveals the typical footprint of the topological order. A

detailed description can be obtained by truncating the maximum site occupa-

tion to nmax = 2 bosons and mapping the EBH model to a spin-1 Heisenberg

model [132, 133, 134]. In this framework the configurations of the HI appear

as a dilute anti-ferromagnet of doblons(2) and holons(0) separated by an unde-

termined number of single occupations(1), | . . . 21 . . . 10 . . . 21 . . . 10 . . .⟩ [133].

Noticeably, the PDF of this topologically gapped phase, panel 7.5 (d), re-

sembles very closely the Gaussian PDF of the gapless phase, with the only

deviation of a slight shift for even/odd Gaussians (see Fig. 7.5 (g)), alluding

to the underlying parity-string order parameter. This explains the sensibly

reduced, though still sizeable, residuals in Fig. 7.1.

The inclusion of the linear term via the α coefficient in the fit can give addi-

tional insight in the phase diagram mapping. By performing a fit of the form

of Eq. (7.6) to the PDF and computing the residuals of the fit, we can faith-

fully reproduce the PDF of the SF, MI and CDW phases, thus leaving only

the SS+SF and HI regions. We plot the results of the residuals in Fig. 7.7.
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Figure 7.7: Phase diagram of the EBH model drawn with the residuals of the
PDF’s fit including the linear term for a L = 64 system. The SS+SF and HI
regions are identified by the high value of the residuals.

7.3 Conclusions

In conclusion, we have shown that the probability density function of the oc-

cupation number of a portion of the system (and simple fits thereof) can be

a powerful agnostic inspection tool for the phase diagram of quantum many-

body systems. For the extended Bose-Hubbard model, the obtained results are

comparable with much more sophisticated analysis both via traditional meth-

ods dealing with gap scalings and correlation functions [84] and via modern

machine learning approaches fed with the ES [73]. We claim that the PDF

provides the best intermediate quantity between the whole ES and the bi-

partite number fluctuations [111] also for automatic detection protocols, since

it combines the advantage of being easily accessible in modern experiments

(e.g., quantum gas microscopes) with the wealth of information about the full

many-body state, while requiring little prior knowledge about the emerging

phases. Moreover, we foresee the method to be valid more in general: an ex-

tension beyond zero-temperature regimes and one-dimensional systems will be

an appealing follow-up of this work.





Chapter 8

Feature selection

This chapter is devoted to the applications of a particular kind of autoencoder

which can be used to perform an automatic feature selection protocol. The

theme of feature selection is quite important and very timely in deep learning

for several reasons: in our case the goal is to select automatically the most rel-

evant features for the problem of detecting phase transitions and thus remove

the irrelevant or redundant ones so that the model can predict with increased

accuracy; moreover, feature selection allows to make the model interpretable,

therefore helping to understand the underlying patterns in the data. The ar-

chitecture that we use is called Concrete Autoencoder (CAE) and it is inspired

by the work [135]. We will present here the results of the study made with the

CAE for the detection of the BKT in the BH model using the entanglement

spectrum as input data. We aim at selecting the most important eigenvalues

of the ES to be used for such a detection task.

In section 3.2 we have described how the AE architecture is implemented to

learn a compression function fϕ : Rd → Rk with k < d and a decompression

gθ : Rk → Rd with known shape but unknown parameters θ and ϕ, s.t. the

reconstruction of the input x⃗′ is a copy of x⃗. During the training, the AE’s

weights are optimized so that they minimize the empirical reconstruction error

d(x⃗, x⃗′) over the training dataset D = {x⃗1, . . . , x⃗N} of i.i.d samples of some

unknown p(x⃗).

Now we use a very peculiar compression function fϕ that selects a subset of the

input features x⃗ belonging to S s.t. dim(S) = k < d from which the input can

be entirely reconstructed. This task is appropriate for those datasets where

101
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lots of features are correlated to a minimal subset of independent ones. We

do not want to specify some a priori choice for the subset though, instead, we

want the network to learn automatically what is the best subset of features so

that the reconstruction error is minimized. The only free parameter is then

the hidden dimension k in the bottleneck of the AE. This filtering procedure

is a kind of automatic feature selection and can be pursued with a special

trainable mask to be applied to the input. The latter can be formalized as a

matrix multiplication:

fϕ(x⃗) =Mϕ · x⃗, (8.1)

where Mϕ has d columns and “one-hot” rows labeled with i, m⃗
(i)
j = 0, 1 and∑d

j=1m
(i)
j = 1 ∀i so that fϕ(x⃗) = u⃗ ∈ Rk whose components are a subset of x⃗

components. The Mϕ dependence on the ϕs must be differentiable so they can

be eligible to learnable parameters. The solution discussed in [135] consists

in the sampling of the mask from a concrete distribution over the parameters

ϕ ∈ (0,∞) that is implemented as follows:

m
(i)
j (ϕ, T ) ∼

exp[(log ϕ
(i)
j − g

(i)
j )/T ]∑d

l=1 exp[(log ϕ
(i)
l − g

(i)
l )/T ]

≡ Softmax[(log ϕ
(i)
j −g(i)j )/T ], (8.2)

where T ∈ R≥0 plays the role of a temperature and g
(i)
j = − log[− logU

(i)
j ] with

U
(i)
j ∼ Uniform(0, 1) samples of the uniform distribution. The g

(i)
j are then

samples of the so called Gumbel distribution and the resulting entries of the

mask m
(i)
j ∼ Concrete(ϕ

(i)
j , T ) become samples of the concrete distribution. To

better grasp the general properties of the weights, let us consider the extreme

case in which the temperature goes to zero T → 0. The softmax computation

in Eq. (8.2) then smoothly approaches the discrete argmax computation for

each row i (index is omitted):

Concrete(ϕj, T → 0) = onehot[argmax(log ϕj − gj)] ∈ Rd, with

Prob {mj = 1} =
ϕj∑d
l=1 ϕl

,
(8.3)

corresponding to the Gumbel-Max trick, a special instance of reparametriza-

tion trick. Sampling from the concrete distribution at zero temperature yields

to an equivalent sampling from a categorical distribution with parameters ϕ(i).

Therefore, instead of a direct sampling of the mask, we rely on another dis-

tribution (the Uniform one at the lowest level) plus a deterministic function

(sum of the logarithms of ϕs and gs plus the argmax function). Eventually,
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this is crucial for getting a differentiable map of the ϕs. At this stage, the

zero temperature appearing in the differentiable Softmax function makes it

the non-differentiable argmax function but a finite value ensures m(i)(ϕ, T ) to

be continuous relaxations of the argmax [136]. As long as the temperature is

not zero, the parameters can be optimized through their gradients.

The plan for the automatic feature selection on a reconstruction task is hence

the following: we choose as encoding function of the auto-encoder the layer

specified in (8.1) called from now on a concrete selector layer. We initialize

the matrix of the parameters ϕ ∈ Rd×k with small random positive numbers and

the temperature T with a high value. The concrete selector layer is sampled

from the concrete distribution but it is not sparse and linear combinations

of the input features are stochastically explored. During the training, the

temperature is lowered according to an annealing schedule that drives it to a

very small value so that the filtering of the concrete selector becomes more

and more sparse. Eventually, it selects only single input features in each row

and the parameters ϕ and θ are optimized to obtain a good reconstruction.

Assuming that the procedure converges to a sufficiently low level of the re-

construction error, the autoencoder with the concrete selector is capable of

reconstructing the entire input data of the training set from a subset of rel-

evant features D only. The other assumption is that, during training, the

components of every row ϕ(i) are converging to a sharp distributions peaked

on one dominant component. When this is the case, the method succeeds

in carrying out the automatic selection. For the sake of clarity, we sketch a

pseudo-code of the training procedure in Algorithm 2.

While implementing the concrete selector and testing on the ES dataset, we

actually ran into the problem of the same feature being selected multiple times.

Instead, we want the concrete selector to be able to choose k input components

which are different between each other. This problem is solved by considering

only one vector of parameters ϕ ∈ Rd whose components are interpreted as

probabilities of the input features to be selected. Every row of the mask

weights is then sampled directly on the same vector in a way that ensures Mϕ

to have orthonormal rows: once the temperature parameter is decreased to

zero, the mask’s rows are different one-hot vectors in the Rd space.
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Algorithm 2 Training of Concrete Autoencoder

1: Initialize concrete selector encoder with small positive ϕ
2: Initialize decoder network gθ with random initial θ
3: Initialize initial temperature T0 and final temperature Tf = TB
4: Initialize learning rate λ
5: for epoch b of total B do

6: update temperature T = T0

(
TB

T0

)−b/B

7: for step c of total C do
8: sample m(i) ∼ Concrete(ϕ(i), T ) ∀i ∈ [1, . . . , k]

9: reconstruct ⃗̂xj = gθ[Mϕ · x⃗j] ∀j in the batch

10: compute the loss L =mean(||⃗̂xj − x⃗j||2)
11: optimize the parameters through gradients:

θ → θ − λ∇θL

α → α− λ∇αL
12: end for
13: end for

8.1 Training for the ES dataset

We report here some details about the training of the CAE on the ES dataset

for the BH model with L = 256 sites. The training is performed with the Adam

optimizer [55] with a learning rate of 5 × 10−3 over a training set composed

of around 500 examples from the interval 0 ≤ U/t ≤ 2.5. We also considered

again a validation set of examples from the 2.5 ≤ U/t ≤ 3 interval. The con-

crete selector is initialized with random small and positive ϕ and the initial

temperature is set to T = 10. The temperature is decreased afterwards to

0.01 in 150 epochs with an exponential falloff. The concrete selector is used as

unique encoding layer of the auto-encoder: in this way we set a quite restric-

tive constraint affecting the maximum complexity of the encoding network in

favour of interpretability. The architecture can be improved by employing the

concrete selector as first layer and some additional encoding layers so that the

interpretability is possible even though it is not referred to the bottleneck’s

features. In our implementation, the latent space is indeed forced to learn a

subset of the input giving a fully explainable picture in terms of sectors of

the ES. The decoding layer is made of three dense layers of dimension d/2,

d/2 and d (the output one) and hyperbolic tangent activation functions except

for the last layer that has Softmax in order to ensure that the output is a

probability distribution. Dropout [57] with a probability of 0.3 was added to
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prevent overfitting.
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Figure 8.1: Evolution of the probability of the first k parameters ϕ (left) and
of the trace of (Mϕ)

T ·Mϕ (right) as a function of the number of iterations.
The dimension of the latent space of the CAE is k = 3. The temperature is
decreased exponentially from T = 10 to T = 0.01 and represented with a red
line referred to the right-most axis in logarithmic scale.

During training, some metrics are monitored: for a given k, namely the car-

dinality of the subset of input features to be chosen by the concrete selector,

we monitor the sum of the probabilities ptopk =
∑k

j p(ϕj) of the first k pa-

rameters ϕj in magnitude. In a succesful training, after an initial exploration

of the possible combinations of input components, the CAE must converge

to a situation where the biggest k parameters have a probability that sums

up to one while all the others are suppressed as the temperature decreases.

This is a good indication that the CAE has chosen the subset. Moreover, we

also monitor the orthogonality of the rows of Mϕ via the trace of (Mϕ)
T ·Mϕ

which must converge to k for selecting different input components. Clearly, the

reconstruction error for both training and validation sets is also considered.

We report in Fig. 8.1 the evolution of the aforementioned metrics as a func-

tion of the number of iterations, for a CAE with a k = 3 latent space. The

probability ptopk/k reaches approximately 1 after 20 epochs. Concerning the

measure of orthogonality, the trace divided by k approaches one around the

80-th epoch where the temperature is of the order of 0.1. The reconstruction

error and the validation error are comparable to each other and reach values

around 0.015.

The evolution of the parameters ϕ normalized as probability values is reported
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Figure 8.2: The probability (color
scale) of the ES sectors for the 256
sites BH system to be selected by the
concrete selector layer as the train-
ing proceeds. The sectors are labeled
by symmetry number δN (first digit)
and k ordering index (second digit)
in the same notation described in sec-
tion 6.3. After the random initial-
ization with almost uniform probabil-
ity, the layer becomes more and more
sparse: the sector of the eigenvalue ξ10
dominates over the others after only
few iterations followed by ξ00 and ξ1±1.
The temperature is represented in the
bottom panel.

in Fig. 8.2. Every ϕj is uniquely associated to a specific component of the

input, hence eigenvalue of the ES. When the ptopk/k reaches 1, the vector of

parameters is already sparse meaning that the concrete selector has chosen the

most relevant features for the reconstruction. Since from this point the recon-

struction error keeps decreasing, we suppose that after the first exploration,

once the features are selected, the optimization is mainly done on the level of

the decoder, in order to enhance the reconstruction of the entire ES.
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Figure 8.3: Original eigenvalues (left) and reconstructed eigenvalues by the
first CAE model with k = 3 (right) for the 256 sites BH model as a function
of U/t. The CAE was trained with configurations from the region 0 ≤ U/t ≤
2.5. Despite the low dimensionality of the latent space, the CAE is able to
reproduce quite faithfully the ES even outside the training window, up to the
transition region.

We present here the results of three different CAEs on the ES dataset for

the BH model with L = 256 sites. The first model has a latent dimension

of k = 3 and after the training the selected eigenvalues are ξk=0
δN=0, ξ

1
0 and

ξ1−1, where for the notation about the index of the eigenvalues we refer to the

same as in section 6.3. The training is performed with configurations from

the region 0 ≤ U/t ≤ 2.5. It is very interesting to examine in depth the

strategy that the CAE chooses for the sake of reconstruction now that we

have precise information about the eigenvalues that it takes into account. For

this CAE the first one is the lowest, that sets the scale of the ES and the

position of the minimum for the first conformal parabola of the ES. As we

have seen in section 6.3, the second eigenvalue is fundamental for computing

the ratio that allows to collapse all the equidistant parabolas to horizontal

lines (see Eq. (6.3)). A last, the third eigenvalue is fundamental for computing

the η quantity (see section 6.4 and [98]) necessary for determining the critical

point in the spirit of level spectroscopy. It is quite surprising that the CAE

is able to learn automatically the best strategy to reconstruct the parabolic

shapes which are the main characteristics of the gapless regime without having

any notion about them. On the other hand, it demonstrates the promising

potential of the CAE regarding the explainability of the machine learning

model for distinguishing between phases of the system. With those three

eigenvalues the CAE is able to properly reconstruct the ES for all the values of

the interaction strength U/t up to the region of the transition to the gapped
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Figure 8.4: Reconstruction of the symmetry resolved ES for the 256 sites BH
model with k = 3 CAE for three values of the interaction strength: on the
left for U/t = 0.5 deep in the SF phase, in the central panel for U/t = 3 still
in the SF regime but closer to the transition and outside the training window
and on the right for U/t = 4 in the gapped phase. The diamonds represent
the reconstructed eigenvalues while the dots are the ground truth. The sectors
chosen by the concrete selector are highlighted with the blue rectangles.

phase without having any notion of the U value at disposal. The reconstruction

of the ES is reported in Fig. 8.3 and compared with the original spectrum.

Moreover, we show in Fig. 8.4 the comparison between the original ES and the

reconstructed one with a symmetry resolved representation for three values of

the interaction stength: on the left for U/t = 0.5 deep in the SF phase where

the training is done, in the central panel for U/t = 3 still in the SF regime

but closer to the transition and outside the training region. On the right we

show the comparison for U/t = 4 in the gapped phase. The chosen sectors

are highlighted with blue rectangles around the true eigenvalues (dots), the

reconstructed ones are represented with diamonds. Even in the gapped phase,

the CAE keeps building parabolic ES, therefore failing in the reproduction task

and obtaining a reconstruction loss. We observed that with only 3 available

degrees of freedom in the latent space, the generalization abilities of the CAE

are quite poor and the shapes of the parabolas are almost always the same for

all the values of the coupling.

In Fig. 8.5 we present the analogue plot of Fig. 8.4 for another instance of

the CAE with latent dimension k = 3. Due to the random initialization,

the selected eigenvalues can be sometimes different and for this instance they

correspond to ξ10 , ξ
1
1 and ξ1−1. Those are the lowest sectors of the second
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Figure 8.5: Reconstruction of the symmetry resolved ES for the 256 sites BH
model with k = 3 CAE for three values of the interaction strength: U/t =
0.5 (left), U/t = 3 (center), U/t = 4 (right). The diamonds represent the
reconstructed eigenvalues while the points are the original ones. The chosen
sectors by the concrete selector are highlighted with the blue rectangles. For
this model they are different from the previous one and the reconstruction
quality in the gapped phase is affected by the specific selection.

parabola, meaning that the CAE is again focused on the parabolic envelopes

and has probably encoded the information about the vertical shift between

the towers somehow in the decoding layers. As a consequence: in the MI

phase the CAE reconstruct parabolas based on the relative positions of the

observed sectors without success. Indeed, in the gapped phase the ξ10 eigenvalue

progressively drifts away from ξ00 , destroying the equidistant parabolas and

reaching a peculiar U and W shape for the first and second order of eigenvalues

respectively, deep in the MI. In this phase, the CAE reconstruction results in

flat structures.

The last example is a CAE with latent dimension k = 4 with a training region

further from the transition 0 ≤ U/t ≤ 1.5. The chosen eigenvalues are found to

be almost always ξ00 , ξ
1
0 , ξ

1
−1 and ξ

1
1 even with different random initial weights.

The reconstruction of the ES is shown in Fig. 8.6. After the transition has

occured, the CAE always outputs equidistant parabolas which are never flat

as in the previous case. Also for this configuration we plot in Fig. 8.7 the

spectra for U/t = 0.5, U/t = 3 and U/t = 4. Looking at the loss profile

as a function of the coupling U/t, already the k = 4 CAE is able to provide

very good results for the anomaly detection. The very simple concrete selector

is sufficient to automatically grasp the underlying features in the ES, which
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Figure 8.6: Reconstructed eigenvalues by the third CAE model with k = 4
for the 256 sites BH model as a function of U/t (for the original spectrum
see Fig. 8.3). The CAE was trained with configurations from the region 0 ≤
U/t ≤ 1.5 so much smaller than in the previous cases.

are very structured in the gapless phase and suggests to look at the most

reasonable eigenvalues to derive all the others.
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Figure 8.7: Reconstruction of the symmetry resolved ES for the 256 sites BH
model with k = 3 CAE for three values of the interaction strength: U/t =
0.5 (left), U/t = 3 (center), U/t = 4 (right). The diamonds represent the
reconstructed eigenvalues while the points are the original ones. The chosen
sectors by the concrete selector are highlighted with the blue rectangles and
are concretely related to the most important low-lying eigenvalues of the ES
for the gapless phase. After the transition has occured at U/t = 4, the CAE
always reconstructs equidistant parabolas.
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8.3 Conclusions

We have shown that the CAE represents a valuable tool for the sake of pur-

suing an automatic feature selection of the input features while performing an

anomaly detection protocol to detect phase transitions. We employed the CAE

to learn how to reconstruct the ES of the 256 sites BH model by automatically

selecting the most important eigenvalues of the ES for the gapless phase and

reconstructing all the others from them. The advantages of the CAE for the

feature selection are mainly its generality and ease of use. We believe that the

inclusion of the CAE in the GAN architecture studied in chapter 6 can be a

very promising approach since it offers the added-value of interpretability. We

aim at evaluating the performance of the CAE for other datasets and systems

in the future. It can be of particular use in simplifying analyses involving very

raw data with a large number of related quantities, especially when the char-

acterization of the phases relying on such quantities chosen for the detection

is not clear.





Chapter 9

Discussion and Conclusions

In this thesis, we provided a data-driven approach to the detection of quan-

tum phase transitions. The goal of this study was twofold: to identify and

to benchmark a machine learning protocol as a tool for discerning among dif-

ferent quantum phases with minimal prior knowledge about the system under

investigation and, on the other hand, to explore some general quantities to

be used as features for the machine learning model. Moreover, we wanted to

address the problem of interpretability, which is an hot-topic in the artificial

intelligence community, and aims at making the prediction of the model more

transparent to the user.

Firstly, we propose the Entanglement Spectrum (ES) as a reliable quantity for

machine-driven detection of the elusive Berezinskii-Kosterlitz-Thouless (BKT)

transition in one-dimensional quantum systems. By utilizing a Generative Ad-

versarial Network (GAN) trained on the spectra belonging to the gapless phase,

we develop an anomaly detection scheme to effectively discern the changes in

ES patterns when feeding the trained network with data from other phases.

Applying the scheme to numerical data simulated with MPSs from various

models including the XXZ spin chain, the Bose Hubbard model, and the two-

component Bose Hubbard model, we obtain promising results and estimate

critical points even from small system sizes’ data. While our method is tested

on ES, it can be applied to any representative quantity of the many-body state

embedding some changes along the phase transitions, automatically providing

a map of the phase diagram.

Secondly, we demonstrate the power of the probability density function (PDF)
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of the bosonic occupation number in exploring the phase diagram of quantum

many-body systems. The PDF, along with simple fits, serves as an accessible

and informative intermediate quantity between the full ES and the number

fluctuations. Our results for the extended Bose-Hubbard model align well

with sophisticated traditional and machine learning analyses. We believe that

the PDF combines the advantages of experimental accessibility and rich in-

formation about the full many-body state, making it suitable for automatic

detection protocols. We also suggest the extension of this method to non-zero

temperature regimes and systems beyond one dimension.

Lastly, we showcase the value of the Concrete Autoencoder (CAE) as a tool for

feature selection in anomaly detection protocols for phase transitions. By us-

ing the CAE, we successfully reconstruct the ES of the 256-site Bose-Hubbard

model, automatically selecting the most significant eigenvalues for the gapless

phase and reproducing the remaining ones. The CAE’s generality and ease

of use make it a promising addition to the GAN architecture explored for the

anomaly detection scheme, providing interpretability alongside its function-

ality. Future work involves evaluating the CAE’s performance on different

datasets and systems, particularly for raw data with numerous related quan-

tities and unclear phase characterizations.



Appendix A

Luttinger parameters

The low-energy behaviour of all the models considered in this thesis in the

gapless phase can be effectively described by the Tomonaga-Luttinger liquid

theory [77]. The latter theory is actually able to characterize the properties of

any one-dimensional massless system by means of two phenomenological pa-

rameters, namely the Luttinger parameters K and u, appearing in the hamil-

tonian:

HLL =
u

2π

∫ [
K(∂xθ)

2 +
1

K
(∂xϕ)

2

]
dx (A1)

where the field ϕ encodes the long wave-length fluctuations around the average

density of particles ρ(x) = ρ0 +
1
π
(∂xϕ) and (∂xθ) = Π(x) is the canonically

conjugate momentum of ϕ. The two Luttinger parameters are computed by

fitting the low-energy spectrum of the system and once they are fixed, all

the properties of the system are determined. Moreover, all the asymptotic

properties of the correlation functions can be exactly obtained as a function of

those parameters within the theory. Clearly, due to such a universal effective

description, also the bipartite entanglement properties are common to all the

models responding to the theory. In particular, the entanglement entropy

leading scaling for the infinite system is the one of a free bosonic CFT with a

central charge of c = 1 and the fluctuations exhibit the same specific scaling

up to a prefactor depending on K as extensively described in [123].

In the following we present the results of the fitting of the Luttinger parameters

for the BH model and the two-component BH model. In the first case the value

was extrapolated from the density fluctuations of a subsystem as the second

moment of the PDF described in chapter 7. Thanks to the predicted values
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Figure A1: Detection of the BKT transition by means of the second moment of
the PDF distribution, i.e. the number fluctuations (see [124]). (left) the curves
of the effective Luttinger parameter K∗ values for different sizes of the system
as a function of U (t = 1 and V = 0). The critical true value is expected at
K = 2 from the Luttinger theory (dotted black line). The gray regions stand
for the single standard deviation confidence interval as from the estimates of
literature summarized in Table 1 of [107]. (right) shows with diamonds the
pseudo-critical values extracted from the crossing of theK∗ curves withK = 2,
as a function of the reciprocal of the log-size. With a linear fit (red dashed
line) the extrapolation of UC to the thermodynamic limit is the intercept.

of K at the transition point between the SF phase and the MI phase, we were

able to compute the critical value UC of the interaction strength at which the

BKT transition occurs. In particular, the determination of the critical point

is done resorting to the expected Luttinger parameter K = 2. The procedure

is also experimentally realizable and is normally carried out via a fit of the

fluctuations trend versus the (log of) the bipartition length of the subsystem

at fixed system size. In order to obtain the true value of K, one must perform

an extrapolation to the thermodynamic limit, therefore considering different

system’s sizes.

We report the results of such analysis in Figure A1. On the left, the effective

K∗ per size of the system is shown in the region of the BKT. We plotted as a

guide-to-the-eye a gray shaded area representing the critical region as from the

numerical studies listed in [107] and as gray dashed line the expected critical

value of the Luttinger parameter K = 2. We derive the values of the pseudo-

critical U where the effective K∗ crosses with K = 2 and we perform a fit

against the inverse log of the system’s size (see right plot of A1). Eventually

we obtain the estimate of the critical coupling UC = 3.36 ± 0.01 which is in

perfect agreement with the results in the literature.

For the BH2S model, the Luttinger description in the 2SF phase for our system
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Figure A2: The curves of the effective Luttinger parameter K∗
S values for

different sizes of the system as a function of UAB/U (U = 10). The gray regions
stands for the expected interval for the transition as predicted in Fig. 6.12.

corresponds to the Hamiltonian of two coupled Luttinger liquids. The Hamilto-

nian can be diagonalised by introducing the density (D) and spin/polarisation

(S) channels:

Hµ=D/S =
uµ
2π

∫ [
Kµ(∂xϕµ)

2 +
1

Kµ

(∂xθµ)
2

]
dx, (A2)

where ϕD(S) = (ϕA ± ϕB)/
√
2 and θD(S) = (θA ± θB)/

√
2 are the bosonic fields

related to the fluctuations of the phase and the amplitude of the total density

(spin) of the two coupled superfluids. There’s an additional non-linear coupling

between the densities of the two Luttinger liquids due to the inter-species

interactions which can be perturbatively accounted for by a term proportional

to UAB cos(2
√
2θS). This term is irrelevant in the 2SF phase and relevant

in the PSF phase. As long as the Hamiltonian Eq. (A2) holds, an algebraic

decay characterises the correlation functions (a.k.a. quasi-long-range order) of

Eq. 5.5 with a precise dependence on the Luttinger parameters KD and KS:

Gα(x) ∝ |d|−
1

4KD
− 1

4KS ,

RD(x) ∝ |d|−
1

KD ,

RS(x) ∝ |d|−
1

KS .

(A3)

Here we expressed the algebraic decay in terms of the natural measure of the

distances between sites on a ring geometry, i.e., the chord function [123]:

d(x/L) =
L

π
sin
(πx
L

)
, (A4)
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where L is the number of sites and x ∈ N the linear distance between the

sites. For very large rings the expression further simplifies according to the

substitution d → x. Since we are interested in the region between the 2SF

phase and the PSF phase, we show in Figure A2 the results of the fit of the

Luttinger parameter KS which is expected to jump to zero at the critical UAB

for which the system enters the PSF phase. Since our systems are finite, K∗
S

exists in both the phases but the error in the fit becomes higher and higher

after the critical coupling.
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[33] Ulrich Schollwöck. “The density-matrix renormalization group in the
age of matrix product states”. In: Annals of Physics 326.1 (2011). Jan-
uary 2011 Special Issue, pp. 96–192. doi: https://doi.org/10.1016/j.
aop.2010.09.012 (cit. on pp. 17, 29).

[34] Fabio Franchini. “An Introduction to Integrable Techniques for One-
Dimensional Quantum Systems”. In: Berlin, Heidelberg: Springer In-
ternational Publishing, 2017. doi: 10.1007/978-3-319-48487-7 (cit. on
pp. 17, 57, 71).

[35] David Landau and Kurt Binder. A Guide to Monte Carlo Simulations
in Statistical Physics. USA: Cambridge University Press, 2005 (cit. on
p. 17).

[36] F. Verstraete and J. I. Cirac. “Renormalization algorithms for quantum-
many body systems in two and higher dimensions”. In: (July 2004).
arXiv: cond-mat/0407066 (cit. on p. 17).

http://dx.doi.org/10.1016/j.physrep.2016.06.008
http://dx.doi.org/10.1016/j.physrep.2016.06.008
https://doi.org/10.1016/j.physrep.2016.06.008
https://doi.org/10.1016/j.physrep.2016.06.008
http://dx.doi.org/10.1103/PhysRevB.4.3174
http://dx.doi.org/10.1103/PhysRevB.4.3174
https://doi.org/10.1103/PhysRevB.4.3174
https://doi.org/10.1103/PhysRevB.4.3174
http://dx.doi.org/10.1103/RevModPhys.47.773
http://dx.doi.org/10.1103/RevModPhys.47.773
https://doi.org/10.1103/RevModPhys.47.773
http://dx.doi.org/10.1103/PhysRevLett.68.3487
http://dx.doi.org/10.1103/PhysRevLett.68.3487
https://doi.org/10.1103/PhysRevLett.68.3487
http://dx.doi.org/10.1103/PhysRevLett.69.2863
http://dx.doi.org/10.1103/PhysRevLett.69.2863
https://doi.org/10.1103/PhysRevLett.69.2863
http://dx.doi.org/10.1103/RevModPhys.77.259
https://doi.org/10.1103/RevModPhys.77.259
https://doi.org/10.1103/RevModPhys.77.259
http://dx.doi.org/10.1103/PhysRevLett.59.799
http://dx.doi.org/10.1103/PhysRevLett.59.799
https://doi.org/10.1103/PhysRevLett.59.799
http://dx.doi.org/10.1103/PhysRevLett.75.3537
http://dx.doi.org/10.1103/PhysRevLett.75.3537
https://doi.org/10.1103/PhysRevLett.75.3537
http://dx.doi.org/10.1209/epl/i1998-00381-x
http://dx.doi.org/10.1209/epl/i1998-00381-x
https://doi.org/10.1209/epl/i1998-00381-x
https://doi.org/10.1209/epl/i1998-00381-x
http://dx.doi.org/https://doi.org/10.1016/j.aop.2010.09.012
http://dx.doi.org/https://doi.org/10.1016/j.aop.2010.09.012
https://doi.org/https://doi.org/10.1016/j.aop.2010.09.012
https://doi.org/https://doi.org/10.1016/j.aop.2010.09.012
https://doi.org/10.1007/978-3-319-48487-7
https://arxiv.org/abs/cond-mat/0407066


122 BIBLIOGRAPHY

[37] Pietro Silvi et al. “The Tensor Networks Anthology: Simulation tech-
niques for many-body quantum lattice systems”. In: SciPost Physics
Lecture Notes (Mar. 2019). doi: 10.21468/scipostphyslectnotes.8 (cit.
on pp. 18, 27, 31, 33).

[38] Gregory M. Crosswhite and Dave Bacon. “Finite automata for caching
in matrix product algorithms”. In: Phys. Rev. A 78.1 (July 2008). doi:
10.1103/physreva.78.012356 (cit. on p. 25).

[39] Michael P. Zaletel et al. “Time-evolving a matrix product state with
long-ranged interactions”. In: Phys. Rev. B 91.16 (Apr. 2015). doi:
10.1103/physrevb.91.165112 (cit. on p. 25).

[40] Garnet Kin-Lic Chan et al. Matrix Product Operators, Matrix Product
States, and ab initio Density Matrix Renormalization Group algorithms .
2016. doi: 10.48550/ARXIV.1605.02611. eprint: 1605.02611 (cit. on
p. 25).

[41] S. Kung and D. Lin. “Optimal Hankel-norm model reductions: Multi-
variable systems”. In: IEEE Transactions on Automatic Control 26.4
(1981), pp. 832–852. doi: 10.1109/TAC.1981.1102736 (cit. on p. 26).
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Locality and Perturbative Structure of Entanglement Spectra in Gapped
Systems”. In: Phys. Rev. Lett. 108 (22 May 2012), p. 227201. doi:
10.1103/PhysRevLett.108.227201 (cit. on pp. 69, 91, 95, 97, 98).

[100] Frank Pollmann et al. “Entanglement spectrum of a topological phase
in one dimension”. In: Phys. Rev. B 81 (6 Feb. 2010), p. 064439. doi:
10.1103/PhysRevB.81.064439 (cit. on pp. 70, 89).

[101] Anushya Chandran et al. “Bulk-edge correspondence in entanglement
spectra”. In: Phys. Rev. B 84 (20 Nov. 2011), p. 205136. doi: 10.1103/
PhysRevB.84.205136 (cit. on pp. 70, 89).

[102] Xiao-Gang Wen. Quantum Field Theory of Many-Body Systems: From
the Origin of Sound to an Origin of Light and Electrons . Oxford Schol-
arship Online, 2007. doi: DOI:10.1093/acprof:oso/9780199227259.001.
0001 (cit. on pp. 70, 89).

[103] Bei Zeng et al. Quantum Information Meets Quantum Matter . Springer
New York, NY, 2019. doi: DOI:10.1007/978-1-4939-9084-9 (cit. on
pp. 70, 89).

[104] Xiaolong Deng and Luis Santos. “Entanglement spectrum of one-dimensional
extended Bose-Hubbard models”. In: Phys. Rev. B 84 (8 Aug. 2011),
p. 085138. doi: 10.1103/PhysRevB.84.085138 (cit. on pp. 70, 89).

[105] L. Lepori, G. De Chiara, and A. Sanpera. “Scaling of the entanglement
spectrum near quantum phase transitions”. In: Phys. Rev. B 87 (23
June 2013), p. 235107. doi: 10 . 1103/PhysRevB .87 . 235107 (cit. on
pp. 70, 89).

[106] Atsushi Ueda and Masaki Oshikawa. “Resolving the Berezinskii-Kosterlitz-
Thouless transition in the two-dimensional XYmodel with tensor-network-
based level spectroscopy”. In: Phys. Rev. B 104 (16 Oct. 2021), p. 165132.
doi: 10.1103/PhysRevB.104.165132 (cit. on p. 74).

[107] M. Gerster et al. “Superfluid density and quasi-long-range order in the
one-dimensional disordered Bose-Hubbard model”. In: New Journal of
Physics 18 (2016). doi: 10.1088/1367-2630/18/1/015015 (cit. on pp. 75,
79, 95, 116).

[108] Korbinian Kottmann et al. “Unsupervised mapping of phase diagrams
of 2D systems from infinite projected entangled-pair states via deep
anomaly detection”. In: SciPost Phys. 11 (2 2021), p. 25. doi: 10.21468/
SciPostPhys.11.2.025 (cit. on p. 79).

[109] Paolo Zanardi, Marco Cozzini, and Paolo Giorda. “Ground state fi-
delity and quantum phase transitions in free Fermi systems”. In: Journal
of Statistical Mechanics: Theory and Experiment 2007.02 (Feb. 2007),
p. L02002. doi: 10.1088/1742-5468/2007/02/L02002 (cit. on p. 82).

http://dx.doi.org/10.1103/PhysRevLett.108.227201
http://dx.doi.org/10.1103/PhysRevLett.108.227201
http://dx.doi.org/10.1103/PhysRevLett.108.227201
https://doi.org/10.1103/PhysRevLett.108.227201
http://dx.doi.org/10.1103/PhysRevB.81.064439
http://dx.doi.org/10.1103/PhysRevB.81.064439
https://doi.org/10.1103/PhysRevB.81.064439
http://dx.doi.org/10.1103/PhysRevB.84.205136
http://dx.doi.org/10.1103/PhysRevB.84.205136
https://doi.org/10.1103/PhysRevB.84.205136
https://doi.org/10.1103/PhysRevB.84.205136
http://dx.doi.org/DOI:10.1093/acprof:oso/9780199227259.001.0001
http://dx.doi.org/DOI:10.1093/acprof:oso/9780199227259.001.0001
https://doi.org/DOI:10.1093/acprof:oso/9780199227259.001.0001
https://doi.org/DOI:10.1093/acprof:oso/9780199227259.001.0001
http://dx.doi.org/DOI:10.1007/978-1-4939-9084-9
https://doi.org/DOI:10.1007/978-1-4939-9084-9
http://dx.doi.org/10.1103/PhysRevB.84.085138
http://dx.doi.org/10.1103/PhysRevB.84.085138
https://doi.org/10.1103/PhysRevB.84.085138
http://dx.doi.org/10.1103/PhysRevB.87.235107
http://dx.doi.org/10.1103/PhysRevB.87.235107
https://doi.org/10.1103/PhysRevB.87.235107
http://dx.doi.org/10.1103/PhysRevB.104.165132
http://dx.doi.org/10.1103/PhysRevB.104.165132
http://dx.doi.org/10.1103/PhysRevB.104.165132
https://doi.org/10.1103/PhysRevB.104.165132
http://dx.doi.org/10.1088/1367-2630/18/1/015015
http://dx.doi.org/10.1088/1367-2630/18/1/015015
https://doi.org/10.1088/1367-2630/18/1/015015
http://dx.doi.org/10.21468/SciPostPhys.11.2.025
http://dx.doi.org/10.21468/SciPostPhys.11.2.025
http://dx.doi.org/10.21468/SciPostPhys.11.2.025
https://doi.org/10.21468/SciPostPhys.11.2.025
https://doi.org/10.21468/SciPostPhys.11.2.025
http://dx.doi.org/10.1088/1742-5468/2007/02/L02002
http://dx.doi.org/10.1088/1742-5468/2007/02/L02002
https://doi.org/10.1088/1742-5468/2007/02/L02002


128 BIBLIOGRAPHY

[110] Ville Satopaa et al. “Finding a ”Kneedle” in a Haystack: Detecting Knee
Points in System Behavior”. In: 2011 31st International Conference on
Distributed Computing Systems Workshops. 2011, pp. 166–171. doi:
10.1109/ICDCSW.2011.20 (cit. on pp. 85, 86).

[111] H. Francis Song, Stephan Rachel, and Karyn Le Hur. “General relation
between entanglement and fluctuations in one dimension”. In: Phys.
Rev. B 82 (1 July 2010), p. 012405. doi: 10.1103/PhysRevB.82.012405
(cit. on pp. 89, 90, 99).

[112] Brian Skinner, Jonathan Ruhman, and Adam Nahum. “Measurement-
Induced Phase Transitions in the Dynamics of Entanglement”. In: Phys.
Rev. X 9 (3 July 2019), p. 031009. doi: 10.1103/PhysRevX.9.031009
(cit. on p. 89).

[113] Yaodong Li, Xiao Chen, and Matthew P. A. Fisher. “Measurement-
driven entanglement transition in hybrid quantum circuits”. In: Phys.
Rev. B 100 (13 Oct. 2019), p. 134306. doi: 10.1103/PhysRevB.100.
134306 (cit. on p. 89).

[114] A. J. Daley et al. “Measuring Entanglement Growth in Quench Dynam-
ics of Bosons in an Optical Lattice”. In: Phys. Rev. Lett. 109 (2 July
2012), p. 020505. doi: 10.1103/PhysRevLett.109.020505 (cit. on p. 90).

[115] Rajibul Islam et al. “Measuring entanglement entropy in a quantum
many-body system”. In: Nature 528.7580 (Dec. 2015), pp. 77–83. doi:
10.1038/nature15750 (cit. on p. 90).

[116] Adam M. Kaufman et al. “Quantum thermalization through entangle-
ment in an isolated many-body system”. In: Science 353.6301 (2016),
pp. 794–800. doi: 10.1126/science.aaf6725 (cit. on p. 90).

[117] Tiff Brydges et al. “Probing Rènyi entanglement entropy via random-
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