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Abstract
Objective. The corticospinal responses of the motor network to transcranial magnetic stimulation
(TMS) are highly variable. While often regarded as noise, this variability provides a way of probing
dynamic brain states related to excitability. We aimed to uncover spontaneously occurring cortical
states that alter corticospinal excitability. Approach. Electroencephalography (EEG) recorded
during TMS registers fast neural dynamics—unfortunately, at the cost of anatomical precision. We
employed analytic Common Spatial Patterns technique to derive excitability-related cortical
activity from pre-TMS EEG signals while overcoming spatial specificity issues.Main results.High
corticospinal excitability was predicted by alpha-band activity, localized adjacent to the stimulated
left motor cortex, and suggesting a travelling wave-like phenomenon towards frontal regions. Low
excitability was predicted by alpha-band activity localized in the medial parietal–occipital and
frontal cortical regions. Significance.We established a data-driven approach for uncovering
network-level neural activity that modulates TMS effects. It requires no prior anatomical
assumptions, while being physiologically interpretable, and can be employed in both exploratory
investigation and brain state-dependent stimulation.

1. Introduction

Transcranial magnetic stimulation (TMS) applied
to the human neocortex produces highly variable
effects [1–3]. This variability can be partially attrib-
uted to the dynamic nature of neural activity in
the stimulated brain area. Rather than treating the
TMS readout as a true effect obscured by noise, this
can be seen as the result of the interplay between
the stimulation effect and the brain’s endogenous
neuronal activity [4]. Such a conceptual approach
to TMS effects allows exploiting variability in the
readout to study dynamic brain states [5]. In this
study, we explored this approach in combination
with machine learning (ML) analysis techniques to

identify functionally relevant patterns of cortical
activity in relation to TMS effects.

Previous studies within the sensorimotor net-
work have associated fluctuations in TMS effects
with the state of oscillatory cortical activity recorded
with electroencephalography (EEG). The power and
phase characteristics of neuronal oscillations recor-
ded just before or at the onset of stimulation have
been linked to the level of TMS-induced excita-
tion of corticospinal pathways, represented by motor
evoked potentials (MEP) [6]. The effects of endo-
genous neuronal oscillations on TMS-evoked activ-
ity may originate in the dynamics of local and global
cortical excitability, i.e. the probability that a given
neuronal population will respond to an input signal
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[7]. Furthermore, excitatory and inhibitory connec-
tions from other regions of the functional network
in study may affect the excitability of the stimulated
area. The connectivity state between communicating
cortical areas may be inferred from their oscillatory
signals by measuring the alignment of their phases
[8]. Indeed, in primates, the spiking rate of individual
neurons was found to depend on the phase-coupling
between local field potentials in distal regions [9].
Thus, relative phases across brain regions, in addi-
tion to local oscillatory power and phase, may par-
tially explain variability in the MEP amplitude. The
variability of TMS effects offers a unique opportun-
ity to investigate state dynamics of the brain network
activity.

Despite active ongoing research, neuronal pro-
cesses modulating TMS effects within the sensorimo-
tor network are still largely unknown. In the con-
text of EEG—TMS studies, some of the obstacles
on this path are low signal-to-noise ratio of EEG
oscillations, mixing of source signals in scalp record-
ings due to volume conduction, and scarcity of
prior knowledge about functionally relevant cortical
sources. To overcome the first two issues, source
activity can be reconstructed through spatial filter-
ing of sensor signals, wherein a weighted average
of sensor signals is taken [10]. However, commonly
used ‘model-based’ source reconstruction techniques
require prior assumptions about source locations as
well as a forward model (i.e. the signal’s source-
to-sensor mixing process) [11]. In the absence of
either, spatial filtering can be achieved with ‘data-
driven’ Blind Source Separation techniques, such as
Common Spatial Patterns (CSP). CSP is designed to
separate a multivariate EEG signal into components
that are most distinguishing between discrete experi-
mental conditions or outcomes [12, 13]. CSP is com-
monly used in the field of brain-computer interfaces
to decode right- vs. left-hand motor imagery from
periods of spatially specific event-related desynchron-
ization detected in EEG signals [14]. In our study,
we used a variant of CSP, called analytic CSP (aCSP),
that is particularly suitable for studying oscillatory
phenomena as the analytic signal (derived using the
Hilbert transform) simultaneously encodes instant-
aneous phase and amplitude using complex num-
bers, and this allows a separation of multivariate sig-
nals based on both amplitude relationships and also
phase relationships. Signal components produced by
aCSP, commonly referred to as spatial patterns, can
capture dynamics of both local oscillatory amplitude
(e.g. standing waves) as well as network-level phase-
specific communication between neuronal popula-
tions (e.g. phase-coupling phenomena and travelling
waves). Employing these components as features in
an ML classifier quantifies their relevance for the
experimental conditions. In principle, aCSP provides
an opportunity to uncover neuronal correlates of

targeted brain function, while requiring little prior
knowledge and/or assumptions about the nature of
the neuronal activity in question.

Within the domain of EEG—TMS, aCSP can be
employed to detect neuronal processes, which inter-
act with the effects of TMS and thus predict stimula-
tion outcomes. Previous studies have shown applic-
ability of ML methods to EEG—TMS-based brain
state identification [15, 16]. We applied aCSP to
an EEG—TMS dataset obtained in the course of
single-pulse TMS of the primary motor (M1) cor-
tex. We used EEG components extracted with aCSP
as features in an ML classifier to predict MEP amp-
litudes from pre-stimulus EEG signals. Furthermore,
we examined the components to identify function-
ally relevant cortical activity and describe its spatial,
temporal, and spectral characteristics [17]. Overall,
this paper proposes a new data-driven approach to
studying the variability of TMS effects and their rela-
tionship with brain activity that could lead to a better
understanding of the underlying neuronal processes.
Such an approach is applicable at an exploratory stage
of an investigation, as well as within the domain of
brain state-dependent stimulation both in research
and clinical application.

2. Methods

2.1. Dataset
The dataset used in this study consisted of 20
EEG—TMS recordings. Experiments were performed
on right-handed healthy adult participants with no
known neurological conditions (12 females, 8 males,
mean age ±SD = 26 ± 4). All participants provided
written informed consent prior to participation.
The study was approved by the ethics committee
at the Faculty of Medicine in the University of
Tübingen (approval ID: 810/2021BO2) and conduc-
ted in accordance with the Declaration of Helsinki.
The EEG—TMS recordings were acquired previ-
ously for other purposes with slight variations in
the experimental protocol. Single TMS pulses (1000–
1200 pulses) were applied over the hand knob area in
the left M1 at 110% of the resting motor threshold
(RMT) at 2–3 s intervals with random jitter (2± 0.25,
2.1 ± 0.1, 3 ± 0.5 s, depending on the protocol of
the given recording). EEG with 126 channels (posi-
tioned following the international 10/10 placement
system) recorded continuous signal from the scalp
with a 5 kHz sampling rate, while two bipolar EMG
channels recorded activity from the abductor pol-
licis brevis (APB) and the first dorsal interosseous
(FDI) muscles of the right hand. The experimental
procedure, the acquired dataset, as well as the data
preprocessing pipeline are described in more detail
elsewhere [15] (the data acquisition description for
participants 1–9 is described in Zrenner et al [18]).
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2.2. EEG preprocessing
EEG data was preprocessed using the methods
described in Metsomaa et al [15]. Briefly, trials
were epoched around the TMS pulse, raw EEG sig-
nal within a 1.5 s window (1.500–0.005 s) before
each TMS pulse was downsampled to 1 kHz, after
which slow trends were removed from the signal.
Noisy channels and trials were excluded from the
data based on their deviation from the respective
median noise level. Then, eye movement artefacts
were removed from the signal with Independent
Component Analysis. Cleaned EEG data were filtered
in the 8–30Hz band with a 6th-order Butterworth fil-
ter and downsampled to 250Hz. The frequency range
of the bandpass filter spanned the alpha- and beta-
range, both of which are known to be functionally rel-
evant oscillatory frequency bands within the sensor-
imotor network [19]. Finally, the signals were trans-
formed into their analytic representation with the
Hilbert transform. The signal within a 0.5 s window
(0.505–0.005 s) preceding the TMS pulse was used for
the subsequent analysis, leaving 124 time samples in
each epoch. The timewindowwas selected such that it
included at least four cycles of each retained frequency
[20].

2.3. EMG preprocessing
EMG signals from the APB and FDI muscles of the
hand were preprocessed in the following way: con-
tinuous EMG signals were separated into 1 s-long
epochs centered at each TMS pulse. Epochs contain-
ing pre-innervation within the 300-ms pre-stimulus
window of the EMG (defined as a maximum peak-
to-peak signal exceeding an individual threshold set
between 30 and 40 µV) were excluded from fur-
ther analysis. Slow trends and TMS-related artefacts
were removed from the remaining epochs (for a
detailed description of the preprocessing procedure,
see Metsomaa et al [15]). MEP amplitudes were cal-
culated on the clean EMG signals as a peak-to-peak
amplitude distance in the 18–55 ms window after the
TMS pulse. MEP amplitudes from the muscle with
the higher average amplitude value for a given sub-
ject were selected for further analysis. All trials were
divided into a ‘High’ and a ‘Low’ corticospinal excit-
ability condition (henceforth referred to simply as
‘High’ and ‘Low’) based on the respective MEP value.
In order to do so, while taking into account pos-
sible slow trends in the amplitudes across the exper-
imental session, a dynamic baseline was defined as a
moving median of 150th order across successive tri-
als. The MEP values were labelled as ‘High’ or ‘Low’
depending on whether they were above or below their
respective baseline.

2.4. aCSP
aCSP was applied to EEG data, following the
approach described in Falzon et al [13] (figure 1).

aCSP decomposes multivariate data into a set of
components using generalized eigenvalue decom-
position (GED). This method takes complex spatial
covariance matrices for each condition as input and
generates a set of eigenvectors and eigenvalues. The
eigenvectors are used as spatial filters to extract signal
components that account for the maximum variance
in one condition and the minimum variance in the
other. These components can be considered as recon-
structed source-level neuronal activity that exhibits
the difference between the experimental conditions.
aCSP analysis was applied to each subject’s EEG data
in the following way.

All available trials in a given condition were
ranked based on their respective MEP values (see
EMG preprocessing). 200 trials with the highest MEP
values in the ‘High’ condition and the same number
of trials with the lowest MEP values in the ‘Low’ con-
dition were selected, leaving 400 trials for the sub-
sequent analysis. This selection aimed to maximize
the separability of the two conditions.

Within each condition, spatial complex-valued
covariance matrices were calculated from the pre-
stimulus analytic EEG signals and averaged across tri-
als. From each trial’s EEG epoch contained in an n×
m complex-valued matrix denoted as X, with n being
the number of EEG channels andmbeing the number
of time samples, a normalized n× n covariance mat-
rixRwas calculated as:R= XX∗

tr(XX∗) . The denominator
in the equation is the trace of the covariancematrix or
the sumof the squares of the samples from each chan-
nel andX* denotes complex conjugate transpose ofX.
The two averaged covariance matrices were then used
for the aCSP analysis.

aCSP was performed by means of GED for each
condition separately, maximizing signal variance in
the chosen condition while minimizing the total vari-
ance (represented by a sum of the two averaged
covariance matrices from both conditions). To pre-
vent overfitting to noise, the GED was regularized
with a coefficient weighted by channel-wise vari-
ances. The regularization coefficient was selected via
a cross-validation (CV) procedure as a value between
1e−8 and 1e−1 (see Classification and CV), and the
channel-wise variances were averaged across all ana-
lyzed trials from both conditions pulled together.

The output of aCSP is represented by an n× n
matrix, where each column is an eigenvector, accom-
panied by a set of n corresponding eigenvalues. These
eigenvectors serve as spatial filters for the sensor-level
EEG signals. The eigenvalues represent the propor-
tional differences in the amount of variance explained
by each eigenvector between the two conditions. We
selected eigenvectors with the largest eigenvalues,
maximizing signal variance for one of the two con-
ditions. Between 2 and 6 spatial filters were chosen
for further analysis, with an equal number of filters
for each condition. The number of filters was selected

3
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Figure 1. Analysis procedure. (A) For each subject, all experimental trials were separated into high and low excitability conditions
according to their corresponding MEP amplitude. (B) Preprocessed pre-stimulus EEG signals from 0.5 s before each TMS pulse
were then divided into two groups according to the condition labels. (C) Covariance matrices of the EEG signals from both
conditions were averaged across trials for each condition and used in aCSP analysis. (D). The aCSP produced spatial filters aimed
at isolating signal components that maximize separation between the two experimental conditions. The effectiveness of
separation was tested in the following way. (E). The pre-stimulus EEG signals were spatially filtered with the aCSP filters. (F). The
variance of the filtered signal components in each trial was employed as features in LDA classification to predict the excitability
condition. The classification accuracy was measured as a proportion of correctly classified trials with respect to the original
labelling based on the MEP amplitude. With the exception of the condition labelling stages (A)–(B), the aCSP analysis underwent
a 5-time 5-fold CV procedure (outer CV layer, (C)–(F)). The average classification accuracy across all CV folds of this layer was
taken as an overall classification accuracy of the given subject. The hyperparameters used in aCSP were derived via an additional
5-fold CV procedure on each iteration of the outer CV layer (inner CV layer, (C)–(F)).

via the CV procedure and differed across the CV folds
(see Classification and CV). Since input covariance
matrices were complex-valued, the resulting aCSP fil-
ters were also complex-valued.

The variance of each aCSP component was then
used as a predictor for the excitability condition label.
Specifically, the variance of each component in a given
trial quantifies the power of that component within
the EEG signal in that trial. The given component’s
predictor feature pwas calculated from the single spa-
tial filter contained in a n× 1 complex-valued vec-
tor f as: p= |f∗Rf |. This yielded one feature value per
trial for each aCSP component (i.e. 2–6 values per
trial, depending on the number of filters in a given
CV fold).

We performed a few variations of the analysis in
order to characterize the predictive components. In
order to verify, whether the predictive component is
time-locked to the stimulation event, we repeated the
analysis with both variance and phase of the compon-
ent time courses as predictor features in LDA. While

variance of a time course served to quantify pres-
ence of the component in the analyzed time window,
phase of a time course served to quantify the extent
to which the activity of the predictive component
was time-locked to the stimulation event, i.e. whether
the time courses were aligned across trials in their
phases with respect to the stimulation event. The
phase was derived from the spatially filtered complex-
valued time course at the last time sample of the ana-
lyzed window (12ms before the pulse) and was trans-
formed into sine and cosine of the angle of the com-
plex value before being passed on to LDA. Next, we
performed the analysis with only phase features as
predictors in LDA. In both cases sine and cosine of
the angle were passed to LDA as two separate fea-
tures. Finally, we tested whether phase-shifted net-
work activity played a role in the prediction of the
excitability state. Instead of using analytic signals, we
performed CSP on real-valued EEG signals that did
not undergo Hilbert transform. Real CSP extracts
purely instantaneous activity (i.e. changes in signal
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variance happening instantaneously across the scalp),
while aCSP extracts both instantaneous and phase-
shifted activity (i.e. changes in signal variance phase-
shifted across the scalp). In addition, we compared
the power of real and aCSP components within the
same trials for each subject by calculating the filters
on the same training set (320 trials), applying them
to the same test set (80 trials), calculating logarithm
of the variance of each component within each trial
andperformingPearson correlation betweenCSP and
aCSP components across test trials.

2.5. Classification and cross-validation
A classification analysis was performed to test
whether the obtained aCSP components were pre-
dictive of the excitability condition. In each iteration
of the analysis, 400 trials from a single subject’s data
were randomly divided into a training and a test set in
a 4:1 ratio, i.e. with 320 trials in a training set and 80
trials in a test set. Both the training and the test sets
included an equal number of trials from each condi-
tion. The aCSP filters were generated using the train-
ing set, and they were then applied to both the train-
ing and the test sets to create predictors for the clas-
sification. Regularized Linear Discriminant Analysis
(LDA) with automatic hyperparameter optimization
was then trained on the training set and applied to
the test set to predict the condition labels from the
variance of the aCSP components. The percentage
of correctly classified test set trials was taken as the
classification accuracy.

To ensure that the classification results were not
driven by possible outliers in the randomly assigned
test set, the results were calculated on and averaged
across various training-test partitions of trials. This
was implemented via a 5-time 5-fold CV proced-
ure (figure 1). Each subject’s data were randomly
split into five equal folds, with one fold assigned
as a test set. The whole analysis including aCSP
and LDA was repeated with different training—test
set re-assignments until all available folds had been
used as a test set once (i.e. five times). Furthermore,
the partitioning of data into folds was repeated five
times to average out the effects of randomness in
the data splitting process. The average classification
accuracy across all 5 × 5 repetitions of analysis
was taken as the classification accuracy of the given
subject.

Furthermore, the CV operated on two levels. The
outer layer was dedicated to the estimation of a given
subject’s classification accuracy and was performed as
described above. The inner layer of CV was dedicated
to the selection of analysis hyperparameters, i.e. the
number of aCSP filters (2, 4 or 6 filters) and the value
of the aCSP regularization coefficient (1e−8, 1e−6,
1e−4, 1e−2, and 1e−1). The hyperparameters were
selected via a 5-fold CV procedure, which was per-
formed anew for each fold iteration of the outer layer.

The combination of hyperparameters that yielded the
highest average classification accuracy across the five
folds of the inner layer was used on the outer layer. In
this way, the optimal hyperparameters were estimated
individually for each CV fold.

2.6. Spatial patterns analysis
The aCSP filters can be viewed as inverse operators
to retrieve neuronal source activity frommultidimen-
sional EEG signals. The filters can be transformed into
spatial EEG patterns, also known as activation pat-
terns or topographies, which are then equivalent to
forwardmodels. These patterns reflect how the source
signal projects onto the sensor space (i.e. source-to-
sensor spatial mapping), and are in principle neuro-
physiologically interpretable.

The spatial patterns could not be obtained directly
from the classification analysis due to the use of a CV
procedure with varying hyperparameters and subsets
of data. Consequently, the spatial patterns used for
interpretation were obtained in a separate analysis
procedure and, therefore, were associated with but
did not directly correspond to either the aCSP com-
ponents used in the classification analysis or the clas-
sification results. The spatial patterns were obtained
in the following way. To obtain the spatial patterns
for a given subject, the aCSP filters were calculated
on all 400 trials, without separation into training
and test sets. The regularization coefficient value was
obtained from a CV-fold of the main analysis with
the highest classification accuracy. The spatial pat-
terns were calculated using the method described in
Haufe et al [17]. The complex-valued n× nmatrixW,
with columns being the filters, was transformed into a
complex-valued n× n matrix A, with columns being
spatial patterns, as:A=W−⊤, where−⊤ denotes the
complex conjugate transpose of the inverse. Before
averaging across subjects, each pattern was individu-
ally normalised to unit-norm.

We selected a single pattern with the largest eigen-
value, i.e. the most distinct between the two condi-
tions, for each condition and each subject for all fur-
ther ‘interpretation’ analysis. The patterns were cal-
culated only for the subjects that yielded classifica-
tion accuracy above chance level (see Statistical ana-
lysis). Since both the filters and the associated spa-
tial patternswere complex-valued, themagnitude and
phase parts of the pattern topographies were visu-
alized separately [13]. The magnitude part repres-
ents the distribution of amplitude across sensors,
and was derived by taking the absolute values of the
complex-valued pattern. The phase part represents
the distribution of phase shifts across sensors. While
the complex-valued aCSP filters used in the main
analysis, as well as the spatial magnitude patterns
derived from them, were reference-free (i.e. had an
averaged reference), the phase patterns derived at the
interpretation stage were re-referenced to particular
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channels in order to visualize relative phase shifts
across the scalp. Before deriving the phase pattern,
the complex-valued ‘High’ pattern was referenced to
the FCC3h channel, so that the value at each chan-
nel quantifies the phase shift between that channel
and FCC3h. Meanwhile, the ‘Low’ pattern was ref-
erenced to the Cz channel. The phase pattern was
then derived by computing the angles of the complex-
valued pattern. The choice of a reference channel
was to some extent arbitrary, selected such that they
result in visually smooth phase shift distributions
across the scalp in the respective group-averaged
pattern to facilitate visual interpretability. All miss-
ing channels were interpolated with spherical spline
interpolation before computingmagnitude and phase
patterns.

2.7. Time and frequency analysis
Filtering EEG signals with an aCSP filter produces a
time course of the extracted signal component. This
time course can be assessed in terms of its temporal
dynamics and spectral characteristics. The following
analysis was performed only on the subjects with
significant classification results. A 1.25 s-long pre-
stimulus analytic EEG signal with a 250 Hz sampling
rate was divided into a training and a test set (160
and 40 trials, respectively, within each condition).
The aCSP filters were then calculated on a 0.5 s win-
dow of the training set and applied to a 1.25 s win-
dow of the test set. The power spectra of the time
courses were estimated within an 8–30 Hz frequency
range, averaged across trials, and then across sub-
jects. To visualize the temporal dynamics of the com-
ponents, the envelope of the filtered signals, reflect-
ing the amplitude as a function of time, was com-
puted by taking the absolute value of the analytic sig-
nal and averaged across trials of the test set, and then
across subjects. Before averaging across subjects, the
envelope was normalized to unit-norm within each
component but across trial-average time courses from
both conditions pulled together, for visualization
purposes.

To further explore the spectral specificity of the
discriminative components, we repeated the main
analysis on signals that were bandpass-filtered to dif-
ferent frequency bands: 4–8, 8–13, 13–30, and 30–
40 Hz within the same time window of 0.5 s preced-
ing the TMS pulse. The frequency bands were not
equal in size but rather were chosen to correspond to
theta, alpha, beta, and low gamma-rhythms, respect-
ively. Of note, theta- and low gamma-bands were out-
side of the frequency spectrum of the main analysis
but were still included for comparison. To explore the
time specificity of the components, the main analysis
was repeated at different latencies of the pre-stimulus
signal, overlapping by 250, 1250–750, 1000–500, and
750–250 ms before the TMS pulse. The signals were
bandpass-filtered to 8–30 Hz, as in the main analysis.

2.8. Statistical analysis
To account for possible deviations of the data from
normality, the significance threshold was determined
by performing a permutation test on each of the 20
subjects. For that, the aCSP procedure was repeated
with the following modification. After the trials were
selected based on their MEP amplitudes (see aCSP)
but before proceeding with the aCSP analysis, the
condition labels were randomly permuted across the
selected trials. The permutation procedure and the
subsequent analysis were repeated 1000 times, and the
resulting classification accuracy values formed a null
distribution of the classification results. The accur-
acy at the 95th percentile of the distribution marked
an upper confidence limit for a given subject and its
average value across subjects was taken as a signific-
ance threshold for all subjects. Of note, the permuta-
tion testwas performed for themain analysis (i.e. with
variance of aCSP components used as a predicting
feature) but not for any further analysis that used
other predicting features, for which statistical signi-
ficance was not evaluated.

Since aCSP analysis was performed on each sub-
ject independently, there is no imposition on the
extracted signal components to represent the same
neurophysiological phenomenon across subjects in
terms of function or spatial localization. The only
explicit commonality between them is the predictive-
ness over the excitability condition. However, the spa-
tial similarity between aCSP patterns from different
subjects would indicate the physiological validity and
generalizability of the individually derived patterns
on a population level. The spatial similarity across the
aCSP patterns was statistically tested with a correl-
ation analysis on a subset of subjects with statistic-
ally significant classification results. For each selected
pattern, channels excluded at the preprocessing stage
were interpolated before the analysis. Then, correla-
tion coefficients were calculated between each indi-
vidual magnitude topography and the group-average
topography. The average correlation coefficient was
then taken as ameasure of similarity. The analysis was
performed separately for each excitability condition.

The statistical significance of the result was evalu-
ated with two permutation tests, by shuffling either
EEG channels within the selected patterns or the
selection of the patterns as such. The first test com-
pared the similarity among the patterns against the
similarity between random spatially uncorrelated sets
of values. Before the correlation analysis, channels
were randomly permuted within each topographical
map. The procedure was repeated 10 000 times, and
the correlation value at the 95th percentile of the
resultant null distribution was taken as a signific-
ance threshold. The second test compared the sim-
ilarity among the patterns against other aCSP pat-
terns, thereby testing the uniqueness and salience of
the patterns associated with the highest eigenvalues.
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When GED is performed, the same number of fil-
ters is generated for each condition as there are chan-
nels present in the EEG data, although only the ones
with the highest eigenvalues are utilized formost ana-
lysis. Here, instead of permuting channels within a
tested pattern, the remaining aCSP patterns from the
same condition were used. On each iteration, a pat-
tern was randomly drawn from a complete set of
patterns within a given condition from a given sub-
ject. Correlation coefficients were calculated between
randomly drawn patterns and their average pattern,
and finally a mean correlation coefficient was taken.
This procedure was repeated 10 000 times, and the
correlation coefficient value at the 95th percentile of
the obtained distribution was taken as a significance
threshold.

2.9. Validation analysis
In order to validate the results, we applied the same
analysis to a different EEG—TMS dataset. This data-
set consisted of recordings from 10 healthy right-
handed adult participants who did not have any
known neurological conditions. Single-pulse TMS
was applied over the hand knob area in the left M1
using 800 pulses at an intensity of 110% of RMT,
with an inter-stimulus interval of 2.25 s and a ran-
dom jitter of ±0.125 s. EEG was recorded through-
out the experiment by a 64-channel system with a 5-
kHz sampling rate, while EMG activity from the APB
and FDImuscles of the right hand wasmeasured with
two bipolar channels. The preprocessing and ana-
lysis pipeline used in the main analysis was applied to
this dataset the same way as described above for the
primary dataset.

3. Results

3.1. Example of an individual analysis pipeline
For illustrative purposes, in the following section we
will present the analysis steps and results using an
individual subject as an example case (figure 2). The
preprocessed EEG epochswere categorized into either
the ‘High’ or ‘Low’ condition based on their corres-
ponding MEP amplitudes (figure 2(A)). From each
condition, 200 trials were selected for further ana-
lysis. The trials with the highest and lowestMEP amp-
litudes above or below the moving median, respect-
ively, were chosen. aCSP was then performed on
the selected data, generating spatial filters targeted at
each condition (figure 2(B)). The EEG data was sub-
sequently spatially filtered to isolate the signal com-
ponents, and the variance of these components in
each trial served as predictors of the condition label
in LDA classification. We employed the nested CV
procedure, repeating the aCSP + LDA analysis mul-
tiple times with different subsets of trials and dif-
ferent hyperparameter values. The overall prediction

accuracy for each subject was determined by calculat-
ing the average classification accuracy across all CV
rounds.

For the interpretation stage, all 400 trials of EEG
data were used in the GED, generating signal com-
ponents without conducting any classification ana-
lysis. We selected only the components with the
highest eigenvalues (i.e. most discriminating between
the excitability conditions) for further interpreta-
tion. The spatial, temporal and spectral characterist-
ics of these components are visualized in figures 2(B)–
(F). As the filters were complex-valued, the mag-
nitude (i.e. absolute value) and phase topograph-
ies are visualized separately (figure 2(B)). Although
the filters themselves are not directly visually inter-
pretable, they can be transformed into spatial pat-
terns that allow for physiological interpretation. The
patterns are visualized as pairs of magnitude and
phase maps (figure 2(C)). When considered together,
they describe the progression of an oscillatory signal
across the scalp. The dynamic nature of the complex-
valued spatial pattern can be alternatively depicted as
the change in voltage distribution as a function of
phase (figure 2(D)). Multiplying the pattern with a
generic unit-amplitude oscillation projected from the
source offers a different view of the voltage dynam-
ics. In further text, we will restrict pattern visualiza-
tion to magnitude and phase topographies, as shown
in figure 2(C).

Finally, we spatially filtered EEG signals with the
aCSP filters to derive time courses of the associ-
ated signal components. The amplitude of these time
courses corresponds to the component’s presence in
the EEG signal at a given point in time (figure 2(E)).
Importantly, the phase of the filtered signal at any
given latency does not play a role in the MEP predic-
tion, only the variance of the component across the
analyzed pre-stimulus window does. The filters were
created based on 0.5 s-long signals but were applied to
longer 1.25 s epochs from a set of trials not used when
generating the filters. For this subject, the presence of
the components in the signal fluctuates with time but
does not exhibit any change in the temporal proximity
to the pulse. However, the presence of the ‘High’ com-
ponent is consistently more evident in the trials that
resulted in highMEP amplitude as opposed to the tri-
als that ended with lowMEP amplitude. This was not
the case to the same extent for the ‘Low’ component.
Additionally, the time courses were decomposed into
their spectral representation (figure 2(F)). Here the
spectral peak in the alpha-frequency band is evident,
for both the ‘High’ and the ‘Low’ components.

3.2. Classification accuracy
To assess the predictive value of the aCSP compon-
ents for MEP amplitude, we used the variance of the
components in each trial as features in a classifica-
tion test (see Classification and CV). The accuracy
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Figure 2. Example results from a single subject. (A) Separation of trials into the ‘High’ (in red) and ‘Low’ (in blue) corticospinal
excitability conditions based on the MEP amplitude. Black line corresponds to a moving median of 150th order separating the
data into the two conditions. (B) Spatial filters generated with aCSP for the ‘High’ (top) and ‘Low’ (bottom) conditions.
Complex-valued spatial filters are visualized as pairs of magnitude (absolute values, left) and phase (right) topographies. (C)
Spatial patterns derived from the spatial filters (in (B)). The complex-valued spatial patterns are visualized as pairs of magnitude
(left) and phase (right) topographies. Phase topographies depict spatial distribution of phase lags across the scalp with respect to a
reference channel (indicated with a black dot). (D) Dynamical depiction of spatial patterns for the ‘High’ (middle row) and ‘Low’
(bottom row) conditions as a function of phase (top row). The spatial patterns from (C) can be alternatively visualized as the
change in voltage distribution across the scalp as a function of a phase of an oscillatory signal projected onto the scalp. See also
figure S1. (E) Time course of the ‘High’ (top) and ‘Low’ (bottom) aCSP components. Time courses are visualized as the real part
(left) and the envelope (right) of the filtered signal, averaged across trials. For comparison, both components were extracted from
the EEG signals from both ‘High’ (in red) and ‘Low’ (in blue) trials. Dashed vertical lines indicate the time of the TMS pulse. F.
Power spectrum of the ‘High’ (top) and ‘Low’ (bottom) aCSP components. Power spectrum was calculated on the spatially filtered
signals.

of the classification, measured as the proportion of
the correctly classified trials with respect to their pre-
defined excitability labels, served as an indicator of
prediction success. The average classification accur-
acy across 20 subjects was 68% ± 8% (mean ± SD),
ranging between 57% and 91%. The statistical sig-
nificance of the individual classification results was
evaluated by establishing confidence limits from a
null distribution (see Statistical analysis). The null
distribution’s median was at 50% for all subjects,
while the group-average upper confidence limit was
59% ± 0.5%. With the significance threshold set at
59%, the excitability condition was successfully pre-
dicted for 19 out of 20 subjects. This accuracy was

achieved when the number of used aCSP components
was allowed to vary across CV folds between 1, 2, or
3 highest components per each experimental condi-
tion (2, 4, or 6 components in total). When restrict-
ing the analysis to the single highest aCSP compon-
ent per condition (2 components in total), the aver-
age classification accuracy was 66% ± 9%, with 16
out of 20 subjects exhibiting significant prediction
accuracy.

We repeated the analysis with the real-valued
EEG signals, rather than their analytic representa-
tion, which would correspond to the standard CSP
approach. Thus, we implicitly testedwhether addition
of phase-shifted network activity to instantaneous
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activity improved prediction of the excitability state.
The average classification accuracy across 20 subjects
was 68%± 8%, ranging between 55% and 92%,mak-
ing the classification success identical between CSP
and aCSP. We further repeated the aCSP analysis,
employing both the component’s variance across the
trial as well as the instantaneous phase at the end of
the analyzed time window (12 ms before the pulse),
as predictor features in LDA. Thus, we tested whether
the effect of the aCSP component on the state predic-
tion was time-locked to the stimulation event. Since
the phase is not a linear measure, it was included in
the LDA in the form of sine and cosine of the phase
as two separate features. The average classification
accuracy across 20 subjects was 67% ± 8%, ranging
between 54% and 92%, making the classification suc-
cess identical with the main results of aCSP, which
included only variance as the predictor. Finally, we
ran the aCSP analysis with only the instantaneous
phase at the end of the window of the component
time course as a predictor in LDA. The average clas-
sification accuracy across 20 subjects was 51%± 2%,
ranging between 48% and 58%, making it essentially
chance level prediction.

3.3. Spatial patterns
To assess the spatial similarity of the aCSP compon-
ents, we derived spatial magnitude maps from the
individual components (see Spatial patterns analysis).
We averaged these maps across subjects and meas-
ured the spatial correlation between each subject’s
map and the average map within each condition (see
Statistical analysis). To evaluate the statistical signi-
ficance of correlation, we calculated confidence inter-
vals (CI) using two approaches: random permutation
of channels (referred to as CI-channel) and random
selection of a pattern from each subject’s full set of
derived aCSP patterns for a given condition (referred
to as CI-pattern).

The magnitude map represents how the compon-
ent’s underlying sources are projected onto the scalp.
The average spatial pattern of the ‘High’ excitability
condition exhibited distributed localization in the left
central—parietal, left frontal—central, right frontal
and occipital areas (figure 3(A)). The analyzed indi-
vidual patterns exhibited significant spatial correla-
tion, although they were no more correlated with
each other than a combination of any other indi-
vidual patterns generated by the aCSP for the ‘High’
condition (Pearson’s r = 0.3, CI-channel = 0.03, CI-
pattern= 0.36).Upon visual inspection, a similar pat-
tern recurred in 6 out of 19 subjects, primarily located
in the left central—parietal area (figure 3(C)).

In the ‘Low’ excitability condition, the average
spatial pattern was localized in the right parietal—
occipital, medial frontal and bilateral temporal areas
(figure 3(B)). The analyzed patterns also exhibited
statistically significant similarity, but to no greater

extent than other patterns from the same condi-
tion (Pearson’s r = 0.25, CI-channel = 0.03, CI-
pattern= 0.34).Upon visual inspection, a similar pat-
tern repeated in 6 out of 19 subjects, localized in the
medial parietal—occipital and frontal areas (in a dif-
ferent subset of subjects compared to the ‘High’ con-
dition, figure 3(D)).

To assess the phase patterns of the components,
we calculated phase maps for subjects with similar
magnitude patterns in ‘High’ (figure 3(E)) or ‘Low’
(figure 3(F)) conditions (N = 6 in each subset). The
phase values represent the phase shift in each channel
with respect to the reference, and their signs indic-
ate the direction of phase progression. The signs are
arbitrary and depend on the choice of the reference
EEG channel, from which the phases were subtrac-
ted. The average phase pattern in the ‘High’ condi-
tion revealed a phase shift relative to the phase in the
FCC3h channel along the posterior—anterior direc-
tion slanting toward the vertex (figure 3(E)). When
re-referenced to more posterior channels (e.g. CP3),
the direction of the phase shift changed, suggesting
the presence of a travellingwave along the posterior—
anterior path through the left central area of the stim-
ulated hemisphere. For the ‘Low’ condition, the topo-
graphical phase distribution showed a phase shift
along the posterior—anterior direction relative to the
phase in the Cz channel, indicating a travelling wave
along the posterior—anterior path through the mid-
central area (figure 3(F)).

Since real and aCSP components performed
equally well in the MEP amplitude prediction, we
verified whether CSP and aCSP isolated the same
EEG components. We did so by running one iter-
ation of both CSP and aCSP analysis on the same
training set (320 trials) and applying the first filters
from both of them to the same testing set (80 trials).
Then we calculated Pearson correlation coefficient
between the log of variance of CSP and aCSP com-
ponents across test trials in each subject. The com-
ponents were significantly correlated in all subjects in
both conditions (p < 0.05), with an average correla-
tion coefficient across subjects in the High compon-
ent of 0.79 ± 0.2, while the average in the Low com-
ponent was 0.81± 0.23.

3.4. Time and frequency analysis
We evaluated the spectral composition of the aCSP
components by analyzing the power spectra of the
spatially filtered EEG signals (see Time and frequency
analysis). To distinguish the spectral characteristics of
the components from the intrinsic spectral properties
of the non-filtered EEG signals, we applied the same
filters to the EEG data from both experimental con-
ditions. Across subjects, the frequencies in the alpha-
frequency range dominated the spectrum, regard-
less of the applied filters or the condition, which the
EEG signals belonged to (figures 4(A) and (B)). The
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Figure 3. Spatial patterns. (A) and (B). Group-average magnitude topography for the ‘High’ (A) and ‘Low’ (B) spatial patterns.
The ‘High’ pattern corresponds to a component explaining the most variance in the high-excitability trials and least variance in
the low-excitability trials, while the ‘Low’ pattern corresponds to a component explaining the most variance in the low-excitability
trials and least—in the high-excitability trials. The colors represent the distribution of amplitude of the component across the
scalp. The average topographies were calculated on the subjects with significant prediction accuracy (N= 19). See also figures S2
and S3. (C) Group-average magnitude topography for the ‘High’ spatial pattern calculated on a subset of subjects with a similar
‘High’ topography (N= 6). (D) Group-average magnitude topography for the ‘Low’ pattern calculated on a subset of subjects
with a similar ‘Low’ topography (N= 6). (E) Group-average phase topography for the ‘High’ pattern calculated on a subset of
subjects with a similar ‘High’ magnitude topography (N= 6, same subset as in (C)). The colors represent the phase shift (in
degrees) with respect to a reference channel (FCC3h channel, indicated with a black dot). All phases were subtracted from the
phase in the reference channel. The channels exhibiting the magnitude below the median of the magnitude distribution were
masked (in grey). (F) Group-average phase topography for the ‘Low’ pattern calculated on a subset of subjects with a similar ‘Low’
magnitude topography (N= 6, same subset as in (D)). The colors represent the phase shift (in degrees) with respect to the
reference channel (Cz channel).

difference in power of the component between the
EEG data from the two conditions was more prom-
inent with the ‘High’ component than with the ‘Low’
one. Furthermore, the difference in power between
the components was more pronounced with the EEG
data from the ‘High’ rather than ‘Low’ condition.

To examine the role of oscillatory activity in dif-
ferent frequency bands in the effect of TMS, we con-
ducted the analysis using narrower bandpass-filtered
EEG signals (figure 5). The highest prediction accur-
acy was achieved when the signals were filtered in
the beta-frequency band (66% ± 8%). However,
this accuracy result is still not as high as with the

broadband 8–30 Hz signal used in the main analysis.
Analysis on the theta-, alpha-, and low gamma-
frequency band-filtered analytic signals resulted in
accuracies of 60%± 7%, 62%± 7%, and 64%± 9%,
respectively (figure 5(A)). We hypothesized that the
lower prediction accuracy with narrower spectral fil-
tering may be due to signal distortion. To test this,
we further divided the beta-band into two narrower
sub-bands, low beta (13–22 Hz) and high beta (22–
30 Hz), and repeated the analysis. The classifica-
tion accuracy decreased to 64% ± 8% for both sub-
bands, which was still 2% higher than the accuracy
obtained with the alpha-band signal (which had a
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Figure 4. Power spectrum and amplitude time course of the aCSP components. Spatial filters were computed on the signals
within a 0.5 s window before the TMS pulse (dashed vertical line in (C) and (D)) and applied to a longer 1.25 s window for
visualization. The filters were applied to a set of trials that were not used in their computation. ‘High’ and ‘Low’ labels represent
which excitability condition either the EEG signals or the components correspond to. (A) and (B). Power spectrum of the ‘High’
(A) and ‘Low’ (B) components isolated from the EEG signals recorded during the ‘High’ (in red) and ‘Low’ (in blue) trials
(mean± standard error of the mean (SEM) across subjects). Power spectrum was averaged across trials and then across subjects
with significant classification accuracy (N= 19). (C) and (D) Time courses of the amplitude are visualized as the envelope of the
‘High’ (C) and ‘Low’ (D) components isolated from the signals from the ‘High’ (in red) and ‘Low’ (in blue) trials (mean± SEM
across subjects). The time courses were averaged across trials, normalized to unit-norm for visualization and then averaged across
subjects with significant classification accuracy (N= 19).

still narrower spectral filter), but equivalent to the
low gamma-band results (which had the same filter
width). The topographical maps appeared to exhibit
more focal patterns when narrower frequency bands
were isolated compared to the results of a broadband
analysis (figure 5(B)).

For consistency, we averaged the topographical
maps from each frequency band across all analyzed
subjects, regardless of the individual statistical sig-
nificance of the classification accuracy. The spatial
patterns revealed that within the alpha-frequency
band, the ‘High’ condition was predicted by sig-
nals from left central—parietal region, while the
‘Low’ condition was predicted by signals frommedial
parietal—occipital and frontal locations. Within the
beta-frequency band, the ‘High’ condition was pre-
dicted by signals localized in the left frontal—
central, right frontal and occipital areas. The ‘Low’
beta-component was localized in bilateral temporal
regions. Notably, we observed that both ‘High’ and

‘Low’ spatial patterns derived from the broadband 8–
30 Hz signal (figure 3(A)) appeared to be superpos-
itions of respective alpha- and beta-specific patterns
(figure 5(B)).

We examined the temporal dynamics of the aCSP
components within the pre-stimulus period preced-
ing the TMS pulse (see Time and frequency ana-
lysis). The amplitude fluctuations of the components
were visualized as an envelope of the filtered signals
(figures 4(C) and (D)). Although the amplitude of
the components varied throughout the 1.25 s period
before the pulse, there were no consistent changes in
the signal immediately before the stimulation onset.
Notably, the amplitude of the component was higher
in the trials from the congruent condition (i.e. the
‘High’ component in the ‘High’ trials) as opposed to
the incongruent one (i.e. the ‘High’ component in
the ‘Low’ trials), and this distinction was more pro-
nounced with the ‘High’ component (figures 4(C)
and (D)).

11



J. Neural Eng. 21 (2024) 036041 M Ermolova et al

Figure 5. ACSP analysis in different frequency bands. (A). Classification accuracy of aCSP analysis of EEG data filtered in four
different frequency bands (mean accuracy± SEM across subjects, N= 20). (B). Magnitude topographies of the ‘High’ (top) and
‘Low’ (bottom) spatial patterns in the four analyzed frequency bands. The ‘High’ and ‘Low’ labels represent, which excitability
condition the patterns correspond to. The colors represent the distribution of the component’s amplitude across the scalp. The
average topographies were calculated on all analyzed subjects (N= 20). Of note, higher accuracy in the beta- and low
gamma-band is at least partially due to broader bandpass filtering of the EEG signals, resulting in less signal distortion.

To further investigate the significance of the sig-
nal’s proximity to the TMS onset, we repeated the
analysis using different time windows relative to
the TMS pulse (figure 6). We observed a marginal
gradual increase in accuracy with increasing prox-
imity to the stimulation onset (figure 6(A)), from
66% ± 8% in the earliest window (1.25–0.75 s) to
68% ± 8% in the latest window (0.5–0 s). The scalp
topographies remained similar across the different
windows (figure 6(B)). Within the ‘High’ patterns,
there was a gradual shift in amplitude ‘bridging’ the
left central—parietal, left frontal—central and right
frontal regions. Similar to the analysis conducted on
different frequency bands described earlier, the spa-
tial patterns were averaged across all subjects included
in the analysis.

3.5. Replication of the results
To validate our findings, we applied the same ana-
lysis to a different EEG—TMS dataset (see Validation
analysis). The average classification accuracy across

11 analyzed subjects was 65% ± 5%, with 10 out of
11 subjects reaching statistical significance in classi-
fication accuracy with the threshold set at 59%. This
accuracy is slightly lower but comparable to the main
results (68% ± 8%). The group-average topography
of the pattern was also consistent with the patterns
of main analysis for both the ‘High’ and ‘Low’ con-
ditions (figure 7). The 3% reduction in classification
accuracy compared to the main analysis may be due
the analysis algorithm being overfit to the main data-
set, due to a lower number of electrodes in the EEG
layout, or due to other possible differences in data col-
lection. Nevertheless, these results successfully replic-
ated our initial findings.

4. Discussion

4.1. Patterns of spontaneous cortical oscillatory
activity predict corticospinal excitability
We showed that aCSP components, derived from
spontaneous oscillatory activity in the pre-stimulus
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Figure 6. ACSP analysis in different time windows. (A). Classification accuracy of aCSP analysis of EEG data from different
overlapping time windows in the pre-stimulus period (mean accuracy± SEM across subjects, N= 20). (B). Magnitude
topographies of the ‘High’ (top) and ‘Low’ (bottom) spatial patterns in the four analyzed time windows. The ‘High’ and ‘Low’
labels represent, which excitability condition the patterns correspond to. The colors represent the distribution of the component’s
amplitude across the scalp. The average topographies were calculated on all analyzed subjects (N= 20).

Figure 7. Spatial magnitude patterns from the validation dataset. Group-average magnitude topographies for the ‘High’ (left) and
‘Low’ (right) components. ‘High’ and ‘Low’ labels represent which excitability condition the patterns correspond to. The colors
represent the distribution of the component’s amplitude across the scalp. The average topographies were calculated on the
subjects with significant classification accuracy (N= 10).
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EEG signals, can predict the post-stimulusMEP amp-
litude. The variance of the aCSP components, reflect-
ing their power in each pre-stimulus window, was
predictive of the stimulation outcome in 95% of the
analyzed subjects, with an average prediction accur-
acy of 68%. The achieved prediction accuracy is com-
parable to other ML-based approaches in decoding
corticospinal excitability states from EEG—TMS data
[15, 16]. This suggests that aCSP, guided by the
readout of stimulation, revealed patterns of cortical
activity that are relevant to the state of corticospinal
excitability and, as such, may modulate the effect of
TMS.

While we isolated source activity corresponding
to high and low excitability states separately, the
high-excitability component was particularly well-
isolated (figures 4(A) and (C)). Compared to the
low-excitability component (figures 4(B) and (D)),
it was more distinct between the two experimental
outcomes. This observation indicates that high MEP
amplitudes have a more explicit relationship with the
state of cortical activity, while low MEP amplitudes
emerge for various reasons and may not be so clearly
predicted by any singular oscillatory process. It is
important to note here that high- and low-excitability
components were used together in classification, so
the classification success does not reflect their indi-
vidual predictive power.

The achieved classification accuracy is relatively
modest compared to the success of CSP applic-
ation in other domains, such as brain-computer
interfaces [21]. There are several possible reasons for
the mis-prediction of single-trial MEPs. In particu-
lar, MEP amplitude reflects excitability not only of
corticospinal neurons in motor cortex but also of
motoneurons in spinal cord [3, 6, 22]. This leads to
two implications: on one hand, corticospinal excit-
ability as proxied by MEP amplitude may not be
decoded from EEG signals in a deterministic way,
and on the other hand, MEP is a noisy measure of
the state of corticospinal excitability, susceptible to
errors in labelling. Additionally, spontaneous oscil-
latory activity in EEG typically exhibits low signal-
to-noise ratio on short timescales, making it challen-
ging to separate weak signals from background noise,
evenwith advanced signal separation techniques [23].
While these confounds are to some extent inherent to
the classification of TMS-probed spontaneous states,
they can still in principle be avoided by targeting other
cortical states which are (1) clearly separable and (2)
have a straightforward relation to the readout meas-
ure. Task-related states rather than spontaneous states
could be one such target.

4.2. Individual scalp topographies are
physiologically valid but not ubiquitous
The aCSP components were derived and selected
individually, with the intention of isolating spa-
tial patterns specific to each subject. Even if the

underlying source activity was shared among indi-
viduals, differences in head geometry and EEG elec-
trode placementwould result in variations in the scalp
distribution of the spatial filters and patterns. Despite
the expected variability, we aimed to assess overlaps in
the scalp topographies of the predictive components.
If the most predictive spatial patterns exhibit simil-
arity across individuals, it would indicate physiolo-
gical validity as well as generalizability of the under-
lying neurophysiological phenomenon at the popula-
tion level.

The distribution of the pattern magnitude across
the scalp was significantly correlated across individu-
als for both high- and low-excitability patterns (see
Spatial patterns). However, although the selected pat-
terns exhibited greater similarity compared to a set
of randomly generated topographies, their similar-
ity was not higher than that of a random selection
of other less predictive patterns generated by the
aCSP on the same data. This suggests that, while the
aCSP patterns were anatomically meaningful, there
was insufficient evidence to conclude that the selec-
ted patterns shared a common source. This may be
attributed to our selection of spatial patterns for fur-
ther interpretation based on their eigenvalues, which
represent the achieved level of separability between
the two conditions [24, 25]. The same spatial pat-
tern may be present in some or all of the subjects but
have a relatively small eigenvalue for some of them,
if patterns with stronger separability are available.
Thus, we do not conclude that the predictive patterns
vary across individuals, but rather that the most sep-
arative ones do. It is important to note that, while
we selected only single components with the largest
eigenvalues for further exploration of their spatial,
spectral, and temporal features, several components
from each experimental condition were sometimes
combined in the classification to achieve the best
prediction.

4.3. Spatial, spectral and temporal characteristics
of the predictive components
The aCSP components obtained from EEG signals
can be viewed as reconstructed oscillatory source
activity, allowing for characterization in terms of their
spatial localization, spectral composition, and tem-
poral dynamics.

The high-excitability component was primarily
localized in the left central—parietal scalp region,
posterior to the stimulation site of the left motor cor-
tex, and in the left frontal—central, right frontal and
occipital areas (figure 3(A)). The alpha-specific oscil-
lations dominated the component’s spectral compos-
ition (figure 4(A)) and originated primarily in the
left central—parietal region, posterior to the stimu-
lated motor cortex (figure 5(B)). These observations
suggest that the high-excitability component partially
represents the sensorimotor mu-rhythm inM1 or the
primary somatosensory cortex (S1). Indeed, phase
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and power dynamics of the sensorimotormu-rhythm
have been associated with changes in corticospinal
excitability, although with inconsistent results [26–
36]. The beta-frequency range activity was less prom-
inent in the component’s spectral composition com-
pared to alpha-oscillations (figure 4(A)), and its local-
ization was distributed between left frontal—central,
right frontal and occipital areas (figure 5(B)). Given
the localization in the left frontal—central region
anterior to that of the alpha-specific topography, this
component may partially represent the sensorimotor
beta-rhythm, propagating along anterior—posterior
axis [19, 37]. Previous studies have associated the
phase or power dynamics of the sensorimotor beta-
rhythm with changes in MEP amplitude, although
with varying findings [27, 36]. It may also simply be a
harmonic of themu-rhythm [38]. Indeed, magnitude
distribution of the broadband spatial pattern in our
study (figure 3(A)) resembled a superposition of the
alpha- and beta-specific patterns (figure 5(B)).

The phase shift progression observed in individu-
als sharing this pattern (figure 3(E)) suggests a trav-
elling wave or phase-coupling along an anterior—
posterior direction, possibly betweenM1 and premo-
tor cortex or S1 and M1 [39–41]. This observation is
supported by the evolution ofmagnitude distribution
of the high-excitability patterns with temporal prox-
imity to the pulse (figure 6(B)). The observed shift
in localization may be a temporal manifestation of a
travelling wave between frontal and central—parietal
regions. Despite these indications of the phase-shifted
activity presence in the aCSP patterns, we did not
verify its importance for theMEP prediction. The real
CSP analysis, limited to only non-phase-lagged amp-
litude dynamics, predicted theMEP class equally well.
Indeed, the variance of the real CSP and aCSP com-
ponents in the same trials was significantly correlated.
This indicates that taking phase-shifted activity into
account did not provide any essential information for
MEP amplitude prediction. Thus, another physiolo-
gical interpretation of the observed high-excitability
pattern could be a change in the dipole orientation
rather than location, representing the spread of activ-
ation within M1 or S1 [42].

The low-excitability component was localized
in the right parietal—occipital, medial frontal and
bilateral temporal areas (figure 3(B)). The alpha-
rhythmic activity prevailed in the power spec-
trum (figure 4(B)) and was localized in the medial
parietal—occipital and frontal areas (figure 5(B)).
The parietal—occipital alpha-rhythm is generally
associated with closed-eyes state and idle state [43].
Strigaro et al [44] found no effect of the eyes-open
versus eyes-closed condition on either RMT or effect-
ive connectivity between visual and motor cortex.
Moreover, our participants were instructed to fix-
ate the eyes on a cross during the experiment. Still,
there has been evidence of a modulatory connection

between visual and motor cortex, probed with either
visual or magnetic stimulation of visual cortex [44,
45]. Alternatively, the appearance of the effect of
occipital alpha activity on MEP amplitudes could be
explained by the coexistence of occipital alpha- and
sensorimotormu-rhythmswithin the same frequency
range. The occipital alpha signals may be detectable
during instances of low sensorimotor mu-activity,
thus corresponding to lower MEP amplitudes, and
vice versa (conceptually similar to the hand vs. foot
imagery scenario in Blankertz et al [14]. The phase
shift progression suggests a possible underlying trav-
elling wave or phase-coupling between parietal—
occipital and frontal regions (figure 3(F)). However,
this observationwas not supported by further analysis
(invariability of the spatial pattern across different
time windows (figure 6(B), comparable prediction
success of real and aCSP, and significant correlation
of variance of real CSP and aCSP components across
trials).

The observed spectral shape of the compon-
ents suggests that alpha-frequency band activity may
be relevant for both excitability conditions. Alpha-
rhythm has been associated with top-down mechan-
isms of selective inhibition and information-gating
[43]. In contrast, the sensorimotor mu-rhythm has
been suggested as a mechanism of temporally con-
strained facilitation, rather than inhibition [32].
However, it is also possible that the alpha-peak reflects
the dominant frequency band within the unfiltered
sensor signals, either due to properties of the underly-
ing sources or due to the general 1/f shape of the EEG
spectrum [46]. The latter is supported by our obser-
vation that prediction success depended on the spec-
tral width of the bandpass-filter rather than on the
specific choice of retained frequencies (figure 5(A)).
Still, the sources of the high- and low-excitability
components were clearly distinct, since their topo-
graphies were localized differently (figures 3(A) and
(B)).

There were no systematic amplitude dynamics in
either components time course within 1.25 s before
the stimulation (figures 4(C) and (D)) and EEG sig-
nals from any latency within that period were equally
successful in MEP prediction (figure 6(A)). Thus, a
longer temporal window of the signal is necessary to
verify the timescale of the neural activity involved.
For reference, Hussain and Quentin [16] also found
no difference in the success of MEP prediction when
applying LDA to the power of oscillatory signals in
different time windows within a 3-s period before
TMS.

4.4. Other approaches to decoding corticospinal
excitability withML
It is worth briefly considering the difference between
the current study and previous studies that used ML
to decode corticospinal excitability frompre-stimulus

15



J. Neural Eng. 21 (2024) 036041 M Ermolova et al

EEG.Metsomaa et al [15] employed data-driven indi-
vidual spatial and temporal filtering of EEG signal for
decoding MEP amplitude from pre-stimulus oscil-
latory source activity phase-locked to the stimula-
tion onset. The essential difference of our approach
is that the targeted activity is not time- (or phase-
)locked to the stimulation event. Similar to that
study, the component does not necessarily origin-
ate from an anatomically restricted neuronal gener-
ator; instead, it may represent functionally coherent
activity of a distributed network [13, 25]. However,
due to the involvement of phase lags, the compon-
ent’s time course may aggregate not only simultan-
eous but also phase-delayed activity of the network.
Hussain and Quentin [16] employed power of differ-
ent spectral bands in the pre-stimulus EEG signals as
predictors of theMEP amplitude in LDA. In the main
analysis of the current study, the EEG signals were
broadband-filtered and thus were not frequency-
specific. Moreover, rather than using sensor-level
power features, we reduced signal dimensionality
with aCSP and then supplied the isolated components
to the classifier.

4.5. Limitations of the study
The use ofMEP amplitudes as means for categorizing
stimulation outcomes into discrete conditions has its
specifics. MEP amplitude, like corticospinal excitab-
ility, is inherently a continuous measure rather than a
discrete one [47]. Discretizing the continuous meas-
ure, while necessary for the current analysis, omits a
certain level of the underlying complexity of the data.
Nonetheless, we opted for the discrete measure for
two main reasons. Firstly, in the simplest brain state-
dependent stimulation paradigm, the decision space
for stimulation is discrete (deliver or not deliver).
Thus, having discrete information about the ongo-
ing brain state (e.g. present or absent) makes it easier
to inform the decision. Secondly, when applying stat-
istical analyses to continuous measures (e.g. regres-
sion), assumptions need to be made about the shape
of the relationship between the analyzed variables
(e.g. linear or non-linear). Nevertheless, future stud-
ies may consider incorporating non-discrete readout
or extracting non-discrete brain states using other sig-
nal extraction methods besides CSP.

When interpreting the results of our analysis per-
formed on the signals filtered in different frequency
ranges, it is important to consider that the use of
narrowband frequency filters may distort the sig-
nal, worsening the estimation of spatial covariance
[48]. Indeed, we observed lower classification accur-
acy when narrower-filtered signals were analyzed (see
Time and frequency analysis). However, adopting a
more frequency-specific approach seemed to improve
the isolation of the aCSP components in terms of their
spatial localization (figure 5(B)). Future studies may
go for either one of the two approaches depending

on whether the focus is on maximization of predic-
tion accuracy or maximization of interpretability of
the results.

5. Conclusion

We employed a machine-learning approach in com-
bination with blind-source separation in the form
of aCSP to derive predictors of corticospinal excit-
ability from spontaneous EEG activity. The isolated
oscillatory patterns represented network-level oscil-
latory activity, and the variance of these patterns pre-
dicted theMEP amplitude.We found predictive activ-
ity within the analyzed 0.5 s time window before the
TMS pulse in the 8–30Hz frequency range. The activ-
ity predictive of high corticospinal excitability was
localized in the lateral central–parietal region close
to the stimulated motor cortex. The activity predict-
ive of low corticospinal excitability was localized in
the medial parietal–occipital and frontal areas. The
predictive components from both conditions had a
spectral peak in the alpha-frequency band. Overall,
we established a data-driven approach to uncover-
ing network-level oscillatory activity that modulates
TMS effects. The aCSP approach requires no anatom-
ical priors, while being physiologically interpretable,
and can be employed in both exploratory investiga-
tion and brain state-dependent stimulation.
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