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Abstract—In this paper, we address the mobile robot lo-
calisation problem by combining relative measurements with
intermittent measurements collected from range sensors (e.g.,
Ultra-Wide Band transmitters) with measurements on the relative
motion of the robot. We present some basic results on the
possibility of reconstructing the state using a very small number
of measurements from two different anchors by setting up a
system of linear equations. Next, we study how the observability
of a trajectory can be quantified by the condition number of the
system matrix, and hence related to the manoeuvres executed by
the robot and to sampling time used to collect the measurements.
As discussed in this paper, this result can be used as a basis to
define control strategies aimed to maximise observability.

I. INTRODUCTION

Wireless positioning systems such as Ultra-wide band
(UWB) have increasingly gained popularity as a viable so-
lution for localisation in indoor environments, where Global
Positioning System (GPS) is not available. As an example,
UWB systems based on TWR protocol which estimates the
Time of Flight, (ToF) between the UWB anchors and tags
can provide real-time range estimation at the level of tens
of centimetres [1]. However, TWR equipped with scheduling
access protocols such as TDMA, FDMA, ALOHA, etc., forces
the anchors and tags to transmit a message within a time slot or
a frequency band, which results in limited scalability of these
systems when a large number of tags are active in the same net-
work [2]. In addition, due to a wide range of different factors
(such as limited sensing range and signal attenuation caused
by interference, reflection, obstruction, etc.), the presence of
reliable measurements is not always guaranteed [3]. What is
more, massive deployment of UWB anchors is not viable in
many important applications and is expensive anyway. In order
to deal with this type of resource limitation, it is possible to
exploit odometry, IMUs and relative measurements in between
two different measurements from the anchors [4], but the real
problem is that when measurements from the different anchors
are collected at different times (e.g., due to their sparsity), we
cannot apply standard multilateration techniques.

In this paper, we consider this exact case: a robot moves, it
has a perfect knowledge of how much its has moved from the
last point and in which direction, but it is able to collect one
anchor measurement at a time (intermittent measurement). As
discussed in this work, localisation can still be possible solving

a linear system if the a sufficient number of measurements
(even at different moments) from at least two different anchors.
This problem can be generally be framed within the definition
”state observability” (or within the related notion of ”state
constructibility”). However, since a non holonomic mobile
robot is a non-linear system, the observability property is
very much linked to the specific trajectory followed by the
system rather than to the system itself. This brings us to the
problem of which manoeuvres generate trajectories that are
particularly easy to reconstruct. Since our approach hinges on
the solution of a system of linear equations, we can establish
a clear relation between observability and condition number
of the system matrix. This metric is closely related to the
uncertainty of the state reconstruction, and, as shown in the
paper can be expressed in terms of the sequence of input
applied to the system (i.e., of the trajectory followed), and
of the sampling time used to collect the measurements. This
technique paves the way for using the condition number as a
means to generate trajectories that optimise the reconstruction
uncertainty.

II. MODELS

In this section, we first present the system dynamic and
the measurement model used for a mobile robot localisation
problem. Then we will discuss the global observability anal-
ysis under a set of intermittent measurements, a condition in
which either zero or one wireless ranging measurements are
used at each time step for localisation.

A. Robot Model

The model of the system is a unicycle robot moving
according to the following dynamicsẋẏ

θ̇

 =

v cos θ
v sin θ
ω

 , (1)

with s = [x, y, θ]T as the state of the system, where x, y is
the robot position and θ is the orientation of the vehicle with
respect to axis Xw of the reference frame 〈W 〉, where v and
ω are the robot forward and angular velocities, respectively.
Assuming that the velocity components are kept constant
(a customary assumption) during the k-th sampling interval



[kδt, (k + 1)δt), with δt as the sampling period of the robot
proprioceptive sensors (i.e., odometer), we can consider the
following discrete–time equivalent dynamics for the robot [5]:

xk+1 =xk +AkCk,

yk+1 = yk +AkSk,

θk+1 = θk + φk,

where 

Ak = vkδt,

Ck = cos(θk), if wk = 0

Sk = sin(θk),

Ak = 2 vkωk
sin(φk

2 ),

Ck = cos(θk + φk

2 ), if wk 6= 0

Sk = sin(θk + φk

2 ),

(2)

and where φk = ωkδt.

B. Measurement Model

The UWB ranging is considered as the exteroceptive mea-
surement system in this work with ToF (Time of Flight), which
is regarded as the distance between the tag (mounted on the
robot) and the i-th anchor, i = 1, . . . , n, at time kδt, which
defines the system output as

zk,i = γk,i

√(
xk −Xi

)2
+
(
yk − Yi

)2
. (3)

We assume that γk,i = {0, 1}, ∀k, i, and that
∑n
i=1 γk,i ≤ 1,

i.e., at each time step at most one measurement is available.
Our objective in this study is to first investigate the con-

ditions through which it is possible for a mobile robot with
dynamics (1) and with intermittent measurements (3) to re-
construct its initial state s0, assuming the knowledge of the
set of intermittent ranging measurements and the sequence
of the system inputs vk and ωk, which is an observability
problem [6].

III. OBSERVABILITY ANALYSIS AND METRICS

In this section, we will first show how the set of intermittent
ranging measurements obtained through time 0 up to K from
a given number n of UWB anchor nodes can be used to
reconstruct the robots’ initial condition. This study can be
referred to as a global observability problem [4]: a system is
globally observable when its initial state s0 can be determined
without ambiguity from a set of exteroceptive measurements.
It is worth noting that, for nonlinear systems, observability is
not a structural property of the system itself, but rather of its
trajectories. Thus, we will particularly focus on two general
types of trajectories: 1) rectilinear trajectories (obtained by
vk 6= 0 and ωk = 0, ∀k) and 2) curved trajectories (obtained
by vk 6= 0 and ωk 6= 0, ∀k). Next, we will discuss how the
observability analysis can potentially yield uncertainty control
using robot trajectory synthesis and/or measurements sampling
time control through system observability maximisation.

A. Global observability analysis

We will start by recalling a result of [4].

Theorem 1. Consider a robot with kinematic (2), output
function (3), n = 1 anchor and with known ego-motion data.
The system state is unobservable for any trajectory.

Proof. See [4].

Let us now switch to a more compelling case of Theorem 1,
in which we extend the result that a curved trajectory with
n = 2 anchors is globally observable when ranging mea-
surements are collected simultaneously, while rectilinear paths
are not [4]. Indeed, we analyse the problem by adding the
measurement intermittency: notice that in this case as well,
the observability property depends on the specific trajectory
followed (i.e., for rectilinear trajectories, the state s0 is not
observable). In particular, if the robot moves along a curved
trajectory and it is able to collect a sufficient number of
intermittent ranging measurements, then the system state is
globally observable, as reported in the next theorem.

Theorem 2. Consider a robot with kinematic (2), output
function (3), n = 2 anchors and with known ego-motion, i.e.,
Ak, Ck, Sk and φk in (2) are supposed to be known exactly.
If the robot moves on a curved trajectory (i.e., vk 6= 0 and
ωk 6= 0 for k = 0, . . . ,K) and collects at least m = 3 ranging
measurements for each of the two anchors, s0 is globally
observable.

Proof. Let us define with pk = [xk, yk]T the position of the
robot, where p0 is of course its initial position. Moreover,
assuming that the vehicle is moving on a curved trajectory, let
us define the sequence of robot manoeuvres up to time kδt as

fk =

k∑
i=0

vi
ωi

(
sin

i∑
j=0

φj − sin

i−1∑
j=0

φj

)
,

gk =

k∑
i=0

vi
ωi

(
cos

i∑
j=0

φj − cos

i−1∑
j=0

φj

)
− v0
ω0
,

(4)

which are obtained by the sequence of inputs defined in (2).
Therefore, the sequence of positions pk can be given by the
following linear relations

p1 =p0 +

[
f0 g0
−g0 f0

] [
c0
s0

]
,

p2 =p0 +

[
f1 g1
−g1 f1

] [
c0
s0

]
,

...

pK+1 =p0 +

[
fK gK
−gK fK

] [
c0
s0

]
,

(5)

where c0 = cos(θ0) and s0 = sin(θ0).
Consider two anchors located in X1, Y1 and X2, Y2, re-

spectively. Now, let us assume that six measurements form
the two anchors at arbitrarily different time steps K =
{k1, . . . , k6} are collected, i.e., the set of measurements (3)



is {zk1,1, zk2,1, zk3,1, zk4,2, zk5,2, zk6,2}, that is three from
each anchor at arbitrary time steps.

By defining the following quantities F =
[fk1−1, . . . , fk6−1], G = [gk1−1, . . . , gk6−1],
δz

(m)
i,j = z2ki,m − z2kj ,m, δfi,j = fki−1 − fkj−1,

δgi,j = gki−1 − gkj−1 (where fk and gk are given in (4)),
α
(1)
i = fki−1X1 − gki−1Y1, β(1)

i = gki−1X1 + fki−1Y1,
α
(2)
i,j = δfi,jX2 − δgi,jY2 and β

(2)
i,j = δgi,jX2 + δfi,jY2, we

can define the following vector of measurements

h =
1

2


δz

(1)
2,1 − f2k2−1 − g2k2−1

δz
(1)
3,1 − f2k3−1 − g2k3−1

δz
(2)
5,4 + f2k4−1 + g2k4−1 − f2k5−1 − g2k5−1

δz
(2)
6,4 + f2k4−1 + g2k4−1 − f2k6−1 − g2k5−1

 , (6)

and the following motion matrix

M =


gk2−1 fk2−1 −β(1)

1 −α(1)
1

gk3−1 fk3−1 −β(1)
2 −α(1)

2

−δg3,4 −δf3,4 β
(2)
3,4 α

(2)
3,4

−δg3,5 −δf3,5 β
(2)
3,5 α

(2)
3,5

 . (7)

By defining q = [s0,−c0]p0 and b = [c0, s0]p0, we have

d =


q
b
c0
s0

⇒ h = Md,

yielding the following Least Squares (LS) solution

d̂ = (MTM)−1MTh. (8)

Therefore the state estimate ŝ0 can be derived as

x̂0 =
b̂ĉ0 + q̂ŝ0
ĉ20 + ŝ20

, ŷ0 = − q̂ĉ0 − b̂ŝ0
ĉ20 + ŝ20

, θ̂0 = arctan

(
ŝ0
ĉ0

)
,

(9)
where the normalisation ĉ20 + ŝ20 is introduced to compensate
for residual uncertainties on the solution d̂ in (8) (more on
this point in Section IV).

To conclude the discussion, when the vehicle is following
a rectilinear path (i.e., vk 6= 0 and ωk = 0, ∀k), the matrices
in (5) boil down to vkδtI2 and, hence, there is no solution
to (8) for m = 2.

It is worthwhile to note that, for rectilinear trajectories, a
number of n > 2 non collinear anchors are needed to have a
solution to (5), thus yielding the same result of [4].

B. Observability metric: the Condition number

The closeness to singularity for the estimation error covari-
ance matrix of ŝ0 in (8) determines the degree of observability
of the system state [7]. However, if the residual of the linear
solution (8) is small or moderate, the sensitivity of the least
square problem to the perturbations in the coefficient matrix
M is quickly dominated by the condition number κ(M) [8].
The importance of condition number as an observability
metric is three-fold. First, it allows us to get insights into

the degree of observability of the system and thereby the
initial state estimation uncertainty. Second, the structure of
the two stochastic components of (8), i.e., M and h, makes
the derivation of a closed form covariance rather involved and
challenging. Third, due to the high nonlinearity of the system
equations and the high condition number, the computation
of the resulting statistical moments based on the first or
second order Taylor expansion can be highly inaccurate even
in the presence of small measurement uncertainties. Therefore,
we first derive an explicit form of the condition number of
M, which, for a square non-singular matrix, is defined as
κ(M) = ‖M‖‖M−1‖, where ‖.‖ represents the Frobenius
matrix norm induced by the (vector) Euclidean norm and given
by the ratio between the maximum and minimum eigenvalue
of M. For a rectangular matrix M, κ(M) = ‖M‖‖M+‖,
where M+ is the pseudo inverse of the matrix M. Hence,
given (8) for the two anchors case, we have

κ(M) =‖M‖‖M−1‖

=

√
(L1u1 + L2u2)(L2u1u23 + L1u2u24)

u23u
2
4D

(10)

where

L1 =1 +X2
1 + Y 2

1 ,

L2 =1 +X2
2 + Y 2

2 ,

D =(X1 −X2)2 + (Y1 − Y2)2,

u1 =f2k2−1 + f2k3−1 + g2k2−1 + g2k3−1,

u2 =2f2k4−1 − 2fk4−1(fk5−1 + fk6−1) + f2k5−1 + f2k6−1+

+ 2g2k4−1 − 2gk4−1(gk5−1 + gk6−1) + g2k5−1 + g2k6−1,

u3 =− fk4−1gk5−1 + fk4−1gk6−1 + fk5−1gk4−1+

+ fk6−1gk5−1 − fk5−1gk6−1 − fk6−1gk4−1,

u4 =fk3−1gk2−1 − fk2−1gk3−1.

As it can be readily observed, for each anchor configuration,
the system inputs ωk and vk, the sampling time δt and the
measurement times K have a direct impact on the condition
number of the LS solution. This fact shows that the analysis of
the condition number can be employed to control the initial
state reconstruction uncertainty by a suitable choice of the
vehicle inputs and of the measurement sampling instants. In
the next section, we will provide the empirical evidence of the
solution (10) and will show how it can accurately model the
system uncertainty.

IV. RESULTS AND DISCUSSIONS

To substantiate with empirical evidence the analysis carried
out in this paper, we assume a sampling time δt = 100 ms and
a time horizon of K = 60 time steps, i.e., k = 0, . . . ,K. The
unicycle moves with a constant linear velocity vk = 1 m/s,
∀k. The vehicle is assumed to move on a curved trajectory
(indeed, for rectilinear trajectories no solution exists, as stated
in Theorem 2), with angular velocity ωk = l0.1 rad/s.
Six intermittent ranging measurements are collected at times
K = [0, 11, 23, 35, 47, 59]. We assume two anchors deployed



  

(a) (b)

  

(c) (d)
Fig. 1. Condition number (a,c) and corresponding state estimation error
(b,d) of the LS solution versus 200 different angular velocities ranging
from 0.1 rad/s to 3.1 rad/s. Two different sets of ranging measurements are
considered, which are chosen equally spaced in the interval k = 0, . . . , 60
(a,b) and k = 0, . . . , 90 (c,d).

randomly in the environment, while three measurements are
collected from each anchor. The analysis of the explicit form
of the condition number derived in (10) is reported in Figure 1-
a versus the angular velocity, computed along 200 sampling
points with l ∈ [1, 31]. To expose the influence of the
measurement sampling instants, Figure 1-c reports the results
for K = 90 time steps, with ranging measurements sampling
instants given by K = [0, 17, 35, 53, 71, 89]. Next for the
analysis of the initial state estimation sample covariance, a
Monte Carlo (MC) test with 5000 iterations was carried out
for each selected value of the angular velocity ωk, where
i.i.d. zero-mean Gaussian uncertainties were applied on both
the system inputs and ranging measurements. The standard
deviation of the additive uncertainty for the linear and angular
velocities were σv = 0.1 m/s and σω = 0.05 rad/s, respec-
tively, while for the ranging measurements σz = 0.05 m,
which superimpose a fairly moderate noisy condition to the
system.

Here, two important points should be emphasised. First,
the condition number is independent from the initial pose of
the robot. In other words, for any random initial pose, the
condition number in Figure 1 is exactly the same, whereas this
is not necessarily true for the initial state sample covariance.
However, the different pose in the same environment will
majorly change the magnitude of the error in the graphs
of Figure 1, while the shape of the uncertainty remains
qualitatively the same for any pose in the same environment.
This fact will be further empirically proved through the next
set of simulations. Second, the MC test is only used for the
computation of the covariance matrix and not for the condition
number. As can be seen from the Figure 1, the trace of the state
estimation error covariance (obtained by MC for a fixed initial
pose) and the condition number are quite similar, indicating
that the condition number of the LS solution can effectively
be used as a metric for the state observability degree.

  

(a) (b)

  

(c) (d)

  

(e) (f)

  

(g) (h)
Fig. 2. State estimation error variance of LS (a,c,e,g) and NLLS (b,d,f,h)
with different angular velocities with the same initial configuration and the
same number of time steps (i.e., K = 70). The robot internal measurement
sampling time for the first case (a, b) is δt = 0.1 ms, for the second case (c,
d) is δt = 0.2 ms, for the third case (e, f) is δt = 0.3 ms and for the fourth
case (g, h) is δt = 0.4 ms.

In the second set of simulations, the comparison between (8)
and a Nonlinear Least Squares (NLLS) solution was carried
out. In addition, in this analysis the impact of robot internal
sampling frequency δt on the initial state estimation uncer-
tainty was investigated. The NLLS solution is computed from
an initial state ŝ0. As a consequence, the first step of the
solution identifies the correction ∆s0 as

∆S0 = (JTJ)−1JT (Z − Ẑ). (11)

which is derived by using the first order Taylor approximation,
with the matrix J = [dTz0 , d

T
z1 . . . , d

T
z5 ]T , as the Jacobian of

the measurement function (3), and dTz0 as the vector of partial
derivatives of the measurement function with respect to the
parameters, i.e, [x0, y0, s0, c0]. Notice that Z and Ẑ are the
vector of the actual and estimated ranging measurements,
respectively. Following the approach in [9], we finally find
the initial correction ∆s0 that iteratively refine the initial state
estimate as follows

ŝ
(i+1)
0 = ŝ

(i)
0 + ∆s0 ,



 

(a)

  

(b) (c)
Fig. 3. Performance analysis of the proposed linear solution in reconstructing
the initial position of a robot (i.e. x0 = −5.8 m, y0 = 10.3 m and θ0 =
−3.1 rad) with 10 different curved trajectories generated with in the set (12).
The RMSE plots related to the (b) initial position p0 and (c) orientation θ0
estimate are reported as a function of the angular velocity ωk . The impact
of the different ωk from 0.1 rad/s to 3.1 rad/s on the generated trajectories
are qualitatively illustrated in (a) by changing the trajectory colour from light
grey to dark grey, respectively.

where the index i identifies the number of iterations of
the NLLS. The final solution thus obtained minimises the
difference between the actual set of measurements Z and the
estimated measurements Ẑ obtained by (5).

At the end of the iterations, the vector ŝ
(i)
0 , is trivially

converted to d(NLLS) =
[
q, b, s0, c0

]
, and the initial state

estimation covariance is calculated in an MC fashion with
10000 iterations for both approaches. In order to make this
analysis sensible, we kept the initial state for both solutions
the same. For the sake of this analysis, the initial guess at the
start of the NLLS algorithm ŝ0 was defined as the true initial
state superimposed by an i.i.d. zero-mean Gaussian noise
with standard deviation as σx0

= 0.5 m, σy0 = 0.5 m and
σθ0 = 0.3 rad for each MC trial. The results of the comparison
are reported in Figure 2. In all the reported simulations,
the robot moves for K = 70 time steps and collects the
measurements at times I = [0, 13, 27, 41, 55, 69]. The test
was repeated four times with four different robot internal
measurement sampling time δt, as shown in the Figure 2: the
LS and NLLS solutions are quite similar which indicates the
reliability of the LS solution.

Finally in the last scenario, the performance of the so-
lution (8) with six intermittent measurements has been in-

 

(a)

  

(b) (c)
Fig. 4. Performance analysis of the proposed linear solution in reconstructing
the initial position of a robot (i.e. x0 = −17.3 m, y0 = 4.3 m and θ0 =
−0.4 rad) with 10 different curved trajectories generated with in the set (12).
The RMSE plots related to the (b) initial position p0 and (c) orientation θ0
estimate are reported as a function of the angular velocity ωk . The impact
of the different ωk from 0.1 rad/s to 3.1 rad/s on the generated trajectories
are qualitatively illustrated in (a) by changing the trajectory colour from light
grey to dark grey, respectively.

vestigated in two different configurations. In both cases, the
robot generates a curved trajectory with 10 different values
of constant ωk ranging from 0.1 rad/s to 3.1 rad/s with
constant forward velocity of vk = 1 m/s, while an i.i.d.
zero-mean Gaussian noise were applied on both the system
inputs and ranging measurements with standard deviations as
σv = 0.1 m/s, σw = 0.05 rad/s and σz = 0.05 m. Figure 3,
demonstrates the first scenario in which the robot generates 10
different curved trajectories with the following angular motion
pattern

Ω1 = [11:20 × ωk, −11:30 × ωk, 11:20 × ωk], (12)

i.e., with clockwise and counterclockwise rotations. In partic-
ular, 11:j is a row vector with all ones with length j elements.
The toy trajectory obtained is depicted in Figure 3-a. The Root
Mean Squared Error (RMSE) plots related to the initial posi-
tion and orientation estimations which are computed through
MC simulations with 10000 trials are depicted in Figure 3-
b and Figure 3-c. Figure 4, illustrates the second simulation
scenario in which the robot moves with the following angular
velocity

Ω2 = [−11:40 × ωk, 11:20 × ωk, 11:10 × ωk]. (13)

The RMSE plots related to the initial position and orientation



TABLE I
MAXIMUM AND MINIMUM RMSE WITH DIFFERENT VALUES OF THE
UNCERTAINTIES WHEN THE NORMALISATION (9) IS APPLIED OR NOT.

Uncertainty RMSEx, y[m] (9) RMSEx, y[m] (14)
σv σω σz min max min max
0.01 0.01 0.01 0.08 2.63 0.15 5.26
0.02 0.02 0.02 0.16 4.55 0.31 17 · 103
0.04 0.03 0.03 0.25 5.22 0.49 1.14 · 105
0.08 0.04 0.04 0.35 5.94 0.69 2.72 · 105
0.1 0.05 0.05 0.44 7.19 0.87 5.9 · 105

estimations for the second scenario are depicted in Figure 4-
b and Figure 4-c. As can be seen, in both cases, the RMSE
depends on the chosen trajectory. In particular, it becomes
evident how the chosen trajectory, the angular velocity value
ωk, do have an impact on the achievable RMSE.

Finally, Table I, shows the numerical inconsistency of the
solution (14) in the presence of different levels of uncertainties.
In particular the table reports the numerical results of the first
scenario (Figure3) in terms of minimum and maximum RMSE
along x and y, when the normalisation (9) is applied and when
it is not applied

x̂0 = b̂ĉ0 + q̂ŝ0, ŷ0 = b̂ŝ0 − q̂ĉ0, (14)

thus proving the benefit of the normalisation factor.

V. CONCLUSIONS

In this paper we have presented some observability results
for a mobile robot moving across a space instrumented with a
sparse infrastructure of range sensors. We have discussed con-
ditions to reconstruct the state collecting measurements from
two anchors. We have also studied how, in these conditions,
the type of trajectory followed and the sampling time affect
the system state constructibility. Our next steps will move
toward using this result to define formally correct strategies
for motion control that maximise the system observability (i.e.,
the possibility of reconstructing the system state).
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