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In recent years, several works have addressed the problem of modeling blood
flow phenomena in veins, as a response to increasing interest in modeling
pathological conditions occurring in the venous network and their connection
with the rest of the circulatory system. In this context, one-dimensional models
have proven to be extremely efficient in delivering predictions in agreement
with in-vivo observations. Pursuing the increase of anatomical accuracy and
its connection to physiological principles in haemodynamics simulations, the
main aim of this work is to describe a novel closed-loop Anatomically-Detailed
Arterial-Venous Network (ADAVN) model. An extremely refined description of
the arterial network consisting of 2,185 arterial vessels is coupled to a novel
venous network featuring high level of anatomical detail in cerebral and coronary
vascular territories. The entire venous network comprises 189 venous vessels, 79
of which drain the brain and 14 are coronary veins. Fundamental physiological
mechanisms accounting for the interaction of brain blood flowwith the cerebro-
spinal fluid and of the coronary circulation with the cardiac mechanics are
considered. Several issues related to the coupling of arterial and venous vessels
at the microcirculation level are discussed in detail. Numerical simulations are
compared to patient records published in the literature to show the descriptive
capabilities of the model. Furthermore, a local sensitivity analysis is performed,
evidencing the high impact of the venous circulation on main cardiovascular
variables.

KEYWORDS

haemodynamics, wave propagation, arterial-venous system, cardiovascular diseases,
brain circulation, coronary circulation

1 Introduction

Blood flow modeling and simulation in the cardiovascular system amounts to tackle
several challenges across disciplines: mathematical complexity, connection to clinical
concepts, difficulty of model setting, viability of model validation/verification, quantity of
input data required by models and, eventually, computational cost. In this context, one-
dimensional (1D)modeling offers an approach based on basic physical principles, a relatively
low model complexity (from the mathematical point of view and from the input data
perspective) and proximity between model ingredients and quantifiable/verifiable variables
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in clinical practice, while retaining excellent predictive and
descriptive capabilities in terms of behavior of blood pressure and
flow rate along networks of vessels.

Feasibility and capacity of 1D models in predicting
haemodynamic features have been reported at the different scales
of blood circulation and for many physiological settings. In
fact, the use of 1D models has extended from its application
to studying haemodynamics in large arteries, as proposed in
(Noordergraaf et al., 1963; Avolio, 1980), just to mention a few
seminal works in the field, to understanding waveform composition
mechanisms (Alastruey et al., 2014; Willemet and Alastruey,
2015), to gaining insight about the impact of cardiovascular
diseases (Stergiopulos et al., 1992; Alastruey et al., 2007; Liang et al.,
2009; Willemet et al., 2013), to understanding the connection to
microcirculation networks (Perdikaris et al., 2015), to providing
boundary conditions to 3D blood flow models (Urquiza et al.,
2006; Blanco et al., 2009; Blanco et al., 2010; Malossi et al.,
2013; Perdikaris et al., 2016) and, more recently, to studying
haemodynamics also in large veins (Liang and Liu, 2005; Müller and
Toro, 2014a; Müller and Toro, 2014b; Mynard and Smolich, 2015;
Celant et al., 2021; Toro et al., 2022). Yet, there is plenty of room for
the effective application of 1D blood flow models to study arteriolar
and capillary networks. In this regard, available computational
tools are able to provide, with high detail, morphometrically
significant vascular networks on top of which 1D models can be
set (Karch et al., 1999; Blanco et al., 2013). Up to date, mainly 0D
models have been employed in addressing problems at this scale
(Reichold et al., 2009; Linninger et al., 2013), while the use of 1D
models is limited (Lee and Smith, 2008; Pan et al., 2014).

Another fundamental issue that boosted the spread of
contributions using 1D models is that more mature and
computationally efficient mathematical and numerical tools are
currently available. This has allowed the community to address
increasingly complex 1D simulations, ranging from the solution of
blood flow in extremely large networks of vessels (Blanco et al.,
2015) to the estimation of model parameters from in-vivo
data (Lombardi, 2014), as well as the quantification of model
uncertainties (Chen et al., 2013). Importantly, the resurface of
1D modeling has been accompanied by solid in-vitro validations
(Matthys et al., 2007; Bessems et al., 2008; Alastruey et al., 2011),
in-vivo verifications (Stettler et al., 1981; Olufsen et al., 2000;
Reymond et al., 2009; Reymond et al., 2011), in silico validations
(Grinberg et al., 2011; Xiao et al., 2014) and more recently
methodological head-to-head comparisons (Boileau et al., 2015).

Recently, we have developed the ADAN (Anatomically Detailed
Arterial Network) model (Blanco et al., 2015) which provides
a cutting-edge 1D modeling framework to simulate complex
haemodynamics scenarios. Because of its extreme anatomical detail,
one of the main features of the ADAN model is that it naturally
allows to establish the connection between the vascular anatomy
of large arteries and the distributed arteriolar networks through
the concept of vascular territories (Blanco et al., 2012; Blanco et al.,
2014), making possible to widen the range of physiological and
pathophysiological scenarios addressable by the model. Because
of this, the ADAN model, when properly coupled to arteriolar
networks, is capable of providing a direct pathway to assess coupled
arterial-arteriolar haemodynamics. As example of the potentialities
of the model, we mention the study of steal phenomena reported

in (Blanco et al., 2016a), the study of the role of hypertension
in the mechanisms underlying small vessel disease reported in
(Blanco et al., 2016b), as modeling support of the ambibaric brain
hypothesis (Hachinski and Østergaard, 2021).

The goal of the present work is to describe the first stage of
the development of a novel arterial-venous model featuring high
anatomical detail to perform 1D blood flow simulations. Hereafter,
this model will be referred to as Anatomically Detailed Arterial-
Venous Network (ADAVN) model. To the best of our knowledge,
the ADAVN model is the most complex arterial-venous closed loop
model present in the literature with a one-dimensional description
of systemic arteries and veins. The arterial network of the ADAVN
model is that of the ADAN model, and it is coupled to a novel
venous network that is constructed following equivalent premises.
In this first stage of the model construction, the venous network in
the ADAVN model features high detail in the vascular anatomy of
the cerebral and coronary circulations. The cerebral venous network
is similar to the one built in (Müller and Toro, 2014a; Müller and
Toro, 2014b) in terms of vessels included in the model for this
venous district. This similarity is dictated by the aim of being able
to reproduce the interplay of intracranial pressure and cerebral
venous dynamics described in (Müller and Toro, 2014a) and further
explored in (Toro et al., 2022), with the current version of ADAVN.
This requirement is also reflected in the adopted strategy to describe
cerebral venous haemodynamics by including a differentmechanical
parametrization for cerebral veins and dural sinuses, as well as
in the choice of connecting cerebral veins to dural sinuses via
Starling resistors, as done in (Müller and Toro, 2014a; Toro et al.,
2022). The venous network is composed by 189 veins, featuring 79
venous vessels draining cerebral vascular territories and 14 vessels
draining coronary territories. We refer to this version of the model
as a first model development stage because our intention is that
of incrementally adding anatomical and functional complexity in
future works.

The mathematical model corresponds to the classical 1D
blood flow equations for both arterial and venous vessels with
standard coupling conditions at junctions. The peripheral coupling
between the arterial and venous networks is achieved using lumped
Windkessel models. A lumped model of the heart chambers and
pulmonary circulation is employed to close the loop. The setting of
model parameters, specifically the behavior of the vessel wall and
the parameters of peripheral (terminal) models, will be thoroughly
discussed. Particular attentionwill be given to themethodology used
for the management of arterial supply to and venous drainage from
vascular territories.

As with the ADAN model, the rationale to develop a highly
detailed model of the venous network is the need to assemble,
in an incremental manner, a haemodynamic modeling framework,
capable to accommodate refined anatomical data, basic principles
of human physiology and fundamental knowledge related to
pathophysiological conditions, to performmodeling-based research
on cardiovascular physiology. This includes the possibility to gain
insight into physiological mechanisms of blood circulation as well
as to study abnormal conditions encountered in disease.

One of the major motivations to improve the description of the
venous vascular anatomy is that, due to the fact that blood pressure
in this system is low, if compared to the arterial counterpart, blood
drainage is performed through an extremely complex arrangement
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of vessels that constitutes a highly collateralized network. These
collateral circuits play fundamental functional roles in many
situations, both in health and disease. Blood drainage is of the
uttermost importance in organs such as the brain and the heart.
Moreover, particularly to these organs is the fact that veins are
exposed to complex environments, such as the one established by
the interactions with the cerebrospinal fluid (CSF) and by the impact
of the contraction of the heart, respectively. It can therefore be
appreciated that a detailed vascular model promotes and facilitates
a framework in which the physiological interaction with other
systems of the human body are conceptually natural and more
straightforward to be integrated. As well, there are several other
pathological conditions that trigger the interest in the development
of detailed computational models of the venous system. Some
of them are: extracranial venous strictures (Zamboni et al., 2008);
arteriovenous malformations (Chen et al., 2020); orthostatic stress
intolerance (Stewart, 2013); varicose veins (Gawas et al., 2022) and
portal hypertension (Mauro and Gadano, 2020).

This work is organized as follows.Section 2 presents ADAVN
topology (Section 2.1), the connection between arterial and
venous circulations (Section 2.1.3), the mathematical models and
numerical methods used for the construction of the present model
(Sections 2.2, 2.3) and model parameters (Section 2.4). Next,
in Section 3 we present results in terms of model performance
with respect to major cardiac and cardiovascular indexes, as well
as a local sensitivity analysis. This section is followed by the
discussion of results and considerations about possible future
research (Section 4).

2 Materials and methods

2.1 Arterial-venous network topology

In this section we describe the topology of the vessel
network for both the arterial system and the venous system.
Detailed information of model connectivity is provided in the
Supplementary File adavn_vessels.csv.

2.1.1 Arterial system
The arterial system considered here is the one corresponding

to the ADAN model (Blanco et al., 2014; Blanco et al., 2015),
with subsequent improvements reported in (Blanco et al., 2016a).
The ADAN model was built using data extracted from classical
anatomical textbooks (Dauber, 2007; Netter, 2011) and features
an average male vascular anatomy. This procedure consisted in
manually translating the 2D pictures of vascular circuits featured in
(Netter, 2011) into the 3D space, over a digital dataset of a human
skeleton as scaffold. Arterial vessels listed in (Hood, 1968), with
a well-established name according to the anatomical terminology
were included in the model.

Arterial vessels were outlined in 3D space using cubic splines in
software Autodesk 3ds Max (version 2010) with the aid of a human
skeleton as scaffold. Almost all arteries with a name according to
the anatomical terminology were included in the model. This yields
1,598 named arteries. In addition, the model contains perforator
vessels which supply blood to peripheral regions. The ADAN model
incorporates 28 specific organs (i.e., kidneys, liver, heart, etc.) and

116 vascular territories, which include distributed organs (muscles,
skin, etc.).

Figure 1A presents the arterial network of the ADAVN model.
The coronary network consists of 23 arteries, for an average
left dominant vascular topology. A complete circle of Willis is
considered in the brain circulation, and the intracranial network
contains 162 arteries.

2.1.2 Venous system
The venous system of the ADAVN model includes the largest

veins in the human body. Overall, the venous network is composed
by 189 veins, which drain blood from 66 vascular regions, see
Section 2.2.4. Since the venous system is not as detailed as the
arterial one, most of the peripheral venous vessels drain blood from
more than one vascular territory and/or specific organ, as defined in
the ADAN model. The procedure for the delineation of the venous
system followed the same procedure as explained for the arterial
system. That is, heac venous vessel was manually mapped from the
anatomical textbooks to the 3D space on top of the skeleton scaffold.
However, in this first stage only cerebral and coronary venous vessels
were fully included in the model, while the rest of the venous system
was represented through the major vessels.

The lower limbs are drained by the great saphenous veins (GSVs)
aswell as the anterior andposterior tibial veins, which conduct blood
to the popliteal veins and then to the femoral veins (FVs).

The external iliac veins (EIVs) gather blood from the GSVs and
the FVs, converging with the internal iliac veins to the common iliac
veins, and then to the inferior vena cavae (IVCs).The IVCs also carry
blood from the splanchnic circulation towards the right atrium.

The upper limbs are drained by the radial, ulnar and anterior
interosseous veins. These vessels converge to the brachial veins,
and then to the axillary vein and the subclavian veins (SVs). The
SVs together with the external jugular vein (EJVs), the internal
jugular vein (IJVs) and the vertebral vein (VV)s carry blood to the
brachiocephalic veins (BrVs). The left BrV also collects blood from
the thyroidal territories through the inferior thyroid vein.

The EJVs drain the temporal regions, through the superficial
temporal and posterior auricular veins. Also, the EJVs drain facial
territories through the retromandibular veins, collecting blood from
the facial vein (FVs) and deep facial veisn. Moreover, the FV
anastomose to the IJVs through the common facial veins.

Figure 1B displays the venous network of the ADAVN model.
In the following we describe the components of the venous system
which have been characterized in detail in the current stage of the
ADAVN model. Veins shown in cyan correspond to vessels that
comprise a valve at its proximal extremity.

Cerebral veins have the role of draining the blood from the brain
effectively. The ADAVN model contains 58 cerebral veins, among
which we can distinguish the cortical veins, deep veins such as
internal cerebral and Rosenthal veins and opthalmic veins.

The superior sagittal sinus (SSS) collects blood from the medial
and lateral parts of the cortex through the (occipital, parietal and
prefrontal) superior cerebral veins.

The inferior sagittal sinus (ISS) runs over the corpus callosum
and drains blood from the central part of the brain. The straight
sinus (StS) drains blood from the ISS and from the vein of Galen,
which collects blood from the deep parts of the brain, through the
internal cerebral veins and through the basal veins of Rosenthal.The
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FIGURE 1
Vascular anatomy of the ADAVN model. (A) arterial vascular anatomy with over 2,185 vessels. (B) venous vascular anatomy with 189 vessels. Insets
show details of the circulation circuits in the head and in the heart. Veins colored in cyan contain a venous valve at its proximal extremity.

confluence of sinuses (CoS) provides a connection among the SSS,
the StS, the occipital sinus (OS) and the transverse sinus (TS). After
collecting most of the blood coming from the SSS and the StS, the
TS drains blood from the occipital and temporal superficial parts of
the brain, through the corresponding inferior cerebral veins in that
region. Then, towards the anterior part of the brain the TS connects
to the sigmoid sinus (SiS) and superior petrosal sinus, which in turn
connect to the inferior petrosal sinus (IPS), the cavernous and the
posterior intracavernous sinuses. At that point, the basilar plexus is
also connected, and provides a direct pathway to the confluence of
sinuses through the marginal sinus and the OS.

The Trolard vein and the vein of Labbe provide corresponding
shunts between the SSS, the TS and the superficial middle cerebral
vein, which, in turn, is connected to the sphenoparietal sinus and,
after collecting blood from the opthalmic veins, anastomoses to the
cavernous sinus.

IJVs collect blood from the brain, draining from the SiS and the
IPS, and from face and neck, finally arriving at the BrV.

The lateral anterior condylar vein connects the IJV with the
CoS through the occipital vein, and towards the heart with the
suboccipital sinus, from which the vertebral vein and the deep
cervical brain branch as important collateral pathways for the blood
to be drained towards the BrV.

An additional ingredient of the present model is the existence
of Starling-like elements which are able to account for the venous
waterfall effect between dural sinuses and cerebral veins, wherein,
when a portion of the vessel collapses the flow becomes independent
of the central venous pressure (Müller and Toro, 2014a). This
ingredient targets the hypothesis that establishes that CBF is ruled
by the difference between arterial blood pressure and intracranial
pressure. Figure 2 features the (color change) interfaces at which
Starling elements are placed in the ADAVN model.

Coronary veins drain blood from the heart directly to the right
atrium. There are 13 coronary veins, and the coronary sinus. The
coronary sinus collects blood from the small cardiac vein (SCV), the

posterior interventricular vein, the left ventricular vein, the oblique
vein of left atrium and the great cardiac vein (GCV).The SCV drains
blood from smaller veins of the right heart such as the anterior vein
of right ventricle and other right (marginal, atrial and ventricular)
veins. In turn, the tributaries to the GCV are the posterior vein of
left ventricle, the anterior interventricular vein and the left atrial and
marginal veins.

2.1.3 Arterial-venous connectivity
The criteria and hypotheses to define the connectivity between

arterial and venous peripheral beds were the following:

• each terminal artery is connected to an arteriolar bed, which
can connect to multiple veins;
• the same is valid for each terminal vein, which is connected

to a venular bed, which can receive blood from multiple
arteries;
• connectivity was established according to existing knowledge

on tributary/emissary vessels for vascular territories in the brain
circulation [see for example, (Lang, 1995)] and in the coronary
circulation [see for example, (Hood, 1968)], whenever available.
In other cases connectivity was based on proximity of terminal
arteries and terminal veins;
• the connection between arteriolar and venular beds is modeled

through a purely resistive element to represent the capillary
resistance.

Consider the connectivity model illustrated in Figure 3 with
three terminal arteriolar districts (a1a2, a3) and two terminal venular
districts (v1 and v2), where we have:

• arteriolar bed a1 is a tributary to venular beds v1 and v2, with
corresponding capillary resistances Ra1,v1 and Ra1,v2 ;
• arteriolar bed a2 is a tributary to venular beds v1 and v2, with

corresponding capillary resistances Ra2,v1 and Ra2,v2 ;
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FIGURE 2
Position of Starling-resistor elements in the cerebral venous network,
dividing the vascular network into intracranial cerebral veins (dark
blue) and extracranial dural sinuses (light blue).

• arteriolar bed a3 is a tributary to venular bed v2, with
corresponding capillary resistance Ra3,v2 .

Consequently, in this example

• venular bed v1 is an emissary from arteriolar beds a1 and a2;
• venular bed v2 is an emissary from arteriolar beds a1, a2 and a3.

The definition of the connectivity pattern for all terminal
arteries and all venous vessels is provided in full detail in the

Supplementary File adavn_vessels.csv. Specifically, in that file, the
reader will find the description of the terminal arteries and veins,
and their corresponding vascular districts, as well as the connectivity
among them.

2.2 Mathematical model

This section is devoted to a detailed description of the partial and
ordinary differential equations for all the components present in the
model.

2.2.1 Blood flow in compliant vessels
Classical one-dimensional blood flow equations (Hughes, 1974)

are used to model the evolution of lumen area A, flow rate q and
pressure p in the space-time domain, namely,

{{
{{
{

∂tA+ ∂xq = 0,

∂tq+ ∂x(
q2

A
)+ A

ρ
∂xp = −

f
ρ
,

(1)

where f(x, t) = 8πμ q
A

is the friction force per unit length of the
tube, for a Poiseuille velocity profile, μ is the fluid viscosity and
ρ is the fluid density. The first equation in (Eq. 1) represents
mass conservation and the second one describes the balance of
momentum.The relation between pressure andwall strain and strain
rate is taken as follows

p (x, t) = pext (x, t) + ptm (x, t) . (2)

Here, pext(x, t) accounts for external pressure exerted by tissues
or extravascular fluids on the vessel, while ptm represents the
transmural pressure, i.e., the pressure that is effectively being
supported by stress in the vessel’s wall. In thiswork ptm is different for
arteries and veins. For arteries we consider the tube law previously
used in (Blanco et al., 2015), namely,

part
tm =

πR0h0

A
[[

[

Eeε+Ecϵr ln (eχ + 1) +
Kart
m

2√AA0

∂A
∂t
]]

]

+ part
0 , (3)

where R0 = R0(x) is the vessel radius at reference state part
tm = p

art
0 .

The same is valid for cross-section area A0 = A0(x) and vessel
wall thickness h0 = h0(x). Ee = Ee(x) and Ec = Ec(x) are the effective
Young modulus of the elastin and collagen fibers, respectively,
whereas Km is the effective viscoelastic parameter. Furthermore,
χ = χ(A,x) is

χ =
ε− ε0
ϵr
, (4)

where ɛ0 = ɛ0(A0) is the deformation state for which 50{%} of
collagen fibers have been activated, ϵr = ϵr(A0) is the standard
deviation of the fiber activation state distribution and ɛ = ɛ(A,A0)
is the current deformation state, given by

ε = √ A
A0
− 1. (5)

Tube law (Eq. 3) derives from a mixture theory approach that
accounts for the different components of the arterial wall and their
respective mechanical properties (Urquiza et al., 1995).
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FIGURE 3
Schematic illustration for a generic peripheral circulation model. Terminal arteries ai, i = 1,2,3, give rise to three arteriolar/capillary compartments (with
corresponding compliances Cai

and proximal resistances Rai
). On the other hand, terminal veins vj, j = 1,2, define two venous compartments (with

corresponding compliances Cvj
and proximal resistances Rvj

). Moreover, arterio-venous connections define arterio-venous resistances Rai,vj.

For veins we use a tube law proposed for collapsible tubes and
previously used inmodels comprising a 1Ddescription of the venous
system (Müller and Toro, 2014a; Müller and Toro, 2014b; Toro et al.,
2022). In particular, we use

pven
tm = K[(

A
A0
)
m
−( A

A0
)
n
]+

Km

A0
√A

∂A
∂t
+ pven

0 , (6)

whereK is the effective stiffness of the vessel’s wall, whilem = 10 and
n = −3/2 are coefficients responsible for the description of passive
stiffening (m) and collapse (n).

At vessel junctions/bifurcations conservation of mass and
energy are enforced by

NP

∑
k=1

gk qk = 0, (7)

p1 +
1
2
ρu2

1 − pk −
1
2
ρu2

k = 0, k = 2,…,NP, (8)

where NP is the number of vessels converging at a junction and
gk = 1 if the k-vessel shares an outlet node with the junction
and gk = −1 if the shared node is the inlet one, according to
the local system of reference within each vessel. Eq. 7 enforces
mass conservation by requiring that no net mass change takes
place at a junction/bifurcation node, while (Eq. 8) imposes total
pressure continuity. Enforcing both conditions results in energy
conservation, since the flux of energy is equal to the product of flow
rate q and total pressure p+ 1

2
ρu2.

2.2.2 Heart chambers and valves
The heart and its four valves are modeled as proposed in

(Mynard, 2011;Mynard et al., 2012).The chambermodel is based on
experimental data that showed how the chamber pressure-volume
relation can be modeled as an elastic compartment with prescribed
time-varying elastance (Suga et al., 1973). In this work chamber
pressure is a function of a time-varying elastance and of multiple
interactions between chambers. In particular, chamber pressure is
given by

pα = ppc +Enat,α (Vα −V0,α) −RS,αqout,α +
Enat,α

Esep,α
pCL,α, (9)

with α ∈ {RA,RV,LA,LV}. Here ppc is the pericardial pressure, V0,α
is the reference chamber volume,Vα is the current chamber volume,
RS,α is a source resistance, qout,α is the chamber outflow, Enat,α and
Esep,α are the native chamber elastance and the septal elastance,
respectively. Moreover, pCL,α is the pressure in the contralateral
chamber, e.g., pCL,LA = pRA.

Pericardium pressure is modeled as in (Sun et al., 1997), i.e., as
an exponential function of the pericardial cavity volume

ppc = Kpc exp(
Vpc −V0,pc

Φpc
), (10)

where V0,pc is a volume offset, Kpc and Φpc are empirically
determined constants andVpc is the pericardium volume, computed
as

Vpc = Vmio +Vpcf +∑
α
Vα, (11)

where Vmio and Vpcf are the volumes of the myocardium and the
pericardial fluid, respectively, assumed to be constant.

Native elastance is defined as

Enat,α =
Efw,αEsep,α

Efw,α +Esep,α
− μAV,αqV,α. (12)

Here, qV,α is the ventricular flow, which, together with constant
μAV,α, accounts for changes in effective atrial elastance caused
by the movement of the atrio-ventricular plane, resulting in an
enhancement of atrial filling. Moreover, Efw,α is the free-wall
elastance, given by

Efw,α = kα(
g1,α

1+ g1,α
)( 1

1+ g2,α
)+Emin

fw,α, (13)

with

g1,α = (
t− tonset,α

τ1,α
)
m1,α

, (14)

g2,α = (
t− tonset,α

τ2,α
)
m2,α

, (15)
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where τ1,α/τ2,α are the contraction/relaxation time offsets,m1,α/m2,α
are the contraction/relaxation rate constants, tonset,α is the
contraction/relaxation time onset and kα is

kα =
Emax

fw,α −E
min
fw,α

max
t∈[0,T]
[(

g1,α
1+ g1,α
)( 1

1+ g2,α
)]
, (16)

with Emax
fw,α and Emin

fw,α being the parameters that represent the
maximum and minimum values of Efw,α.

Septal elastance is defined for inter-atrial and inter-ventricular
septa. Therefore, this quantity is characterized as

Esep,α =KCEfw,L +KCEfw,R, (17)

where KC is the septal elastance constant for atria (if α = LA or
α = RA) and ventricles (if α = LV or α = RV), whereas pairs (L,R)
are related to atria (LA,RA) or ventricles (LV,RV). Note that
Esep,LA = Esep,RA and Esep,LV = Esep,RV.

The source resistance RS,α [see (Eq. 9)] is given by

RS,α = KS,αEnat,α (Vα −V0,α) , (18)

where KS,α is a constant.
Cardiac valves are also modelled according to (Mynard, 2011;

Mynard et al., 2012). Time rate of change for flow is given by

q̇β =
1
Lβ
(pup,β − pdown,β −Bβqβ|qβ|) , (19)

with β ∈ {tv,pv, mv,av}, for tricuspid, pulmonary, mitral and aortic
valves, respectively. Note that from now onwards we will use
v̇ = dv

dt
for any time-dependent function v. Moreover, pup,tv = pRA,

pup,pv = pRV, pup,mv = pLA and pup,av = pLV, whereas pdown,tv = pRV,
pdown,pv = ppua, pdown,mv = pLV and pdown,av = pao. Here, ppua is the
pressure of pulmonary arteries, to be introduced in Section 2.2.3,
and pao is the pressure at the root of the aorta. Other parameters in
(Eq. 19) are inertance Lβ and resistance Bβ, which are computed as

Lβ = ρ
leff,β
Aeff,β
, (20)

Bβ =
ρ

2A2
eff,β

. (21)

Where leff,β is a known effective valve length, whereas Aeff,β is the
effective valve orifice area

Aeff,β = (A
max
eff,β −A

min
eff,β)ζβ +A

min
eff,β, (22)

which depends on valve state ζβ, the maximum effective orifice area
Amax

eff,β and theminimumeffective orifice areaAmin
eff,β. In turn, valve state

ζβ is taken as

̇ζβ =
{{{{
{{{{
{

Kvo,β (1− ζβ)Δpβ, if Δpβ ≥ Δpopen,β,

Kvc,βζβΔpβ, if Δpβ
<Δpclose,β,

0, otherwise.

(23)

with Kvo,β and Kvc,β being valve opening and closing constants,
respectively. Moreover, Δpβ = pup,β − pdown,β, while Δpopen,β and
Δpclose,β are threshold opening and closing pressure differences.

2.2.3 Pulmonary system
The pulmonary system is described by the model presented

in (Sun et al., 1997). This model consists of three compartments:
arteries (pua), capillaries (puc) and veins (puv). Each compartment
is described as a CLR lumped parameter model. Compartment
pressure is modeled as an exponential function of its volume

pγ = E0,γV0,γ exp(
Vγ

V0,γ
)+Ωγ ̇Vγ, (24)

with γ ∈ {pua,puc,puv}, where V0,γ is a reference volume, related to
a reference-volume elastance E0,γ and Ωγ is the viscoelastance of the
compartment. Time evolution of volume is described by

V̇γ = qin,γ − qγ, (25)

where qin,γ is the inlet flow for each compartment. In particular, we
have that qin,pua = qpv, qin,puc = qpua and qin,puv = qpuc.Moreover, flow
time rate of change in each compartment is given by

q̇γ =
1
Lγ
(pγ − pdown,γ −Rγqγ) , (26)

with pdown,pua = ppuc, pdown,puc = ppuv and pdown,puv = pLA.

2.2.4 Peripheral beds
In the current model there is no one-to-one relation

between arterial and venous terminals of one-dimensional
networks. Connectivity between terminal arteries and their venous
counterpart was defined in Section 2.1.3.

Peripheral circulation was divided into two compartments:
a proximal compartment (corresponding to arteriolar/capillary
circulation) and a distal compartment (corresponding to
venules/small veins). As a result of these modeling choices, each
terminal artery gives rise to a proximal compartment, which was in
turn linked to Nθ

ven distal compartments. On the other hand, each
terminal vein gives rise to a distal compartment, which was linked to
Nθ

art proximal compartments.This situation is illustrated inFigure 3,
with a specific example. The proximal compartment was linked to
the distal compartment via a proximal resistance Ra. Then, proximal
and distal compartments where linked by a resistance Ra,v, while the
distal compartment was linked to the corresponding terminal vein
via a distal resistance Rv.

Peripheral circulation is modeled as a series of elastic
compartments that can accumulate blood and dissipate energy due
to friction by using standard RCR lumped parameter models. In
such models pressure is a linear function of volume

pθ =
Vθ

Cθ
+ pext,θ, (27)

where Cθ is the compliance of compartment θ, pext,θ is the external
pressure acting on this compartment and Vθ is the compartment
volume, whose time rate of change is defined by the mass
conservation principle

V̇θ = qin,θ − qout,θ. (28)

For proximal compartments we have that qin,ai
is computed by

imposingmass and energy conservation at the interface between the
one-dimensional terminal artery outlet and the lumped-parameter
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model. The same is valid for qout,vj
, which in this case is computed

by imposing coupling conditions that guarantee mass conservation
and momentum balance at the interface between the terminal vein
inlet and the lumped parameter model. For details see (Müller
and Toro, 2014b; Toro et al., 2022). Flow leaving proximal arterial
compartments is computed as

qout,ai
=

Nven,i

∑
l=1

pai − pvl
Rai,vl
. (29)

In turn, flow entering a venous compartment is computed as

qin,vj
=

Nart,j

∑
l=1

pal − pvj
Ral,vj
. (30)

2.2.5 Coronary beds
While the approach for defining arterio-venous connections of

coronary peripheral beds is identical to the one previously exposed,
the mathematical model used here differs in order to account for the
specificity of blood flow dynamics in the cardiac microcirculation.
In fact, here we replace the model defined by Eqs 27, 28 with
the model proposed by (Mynard et al., 2014). If we consider the
connection between a proximal and a distal compartment, instead
of having a simple resistance (Ra,v) connecting both models we
have the circuit depicted in (Mynard et al., 2014, Figure 2). In
practice, the peripheral vascular bed is divided into three layers,
corresponding to the sub-epicardium, the midwall and the sub-
endocardium. Each layer is further divided into two regions, each
having a corresponding compliance and an associated volume.
Moreover, each layer contains three varying resistances, whose
values are a function of the volume of the compartment’s region,
and are subjected to the intramyocardial pressure. According
to (Mynard et al., 2014), the volumes for each layer of a given
compartment are defined as

Vi,λ = V
0
i,λ +Ci,λp

tm
i,λ , (31)

with i = 1,2 and λ ∈ {sub− epi, midwall, sub− endo}. We note
here that we have dropped the index that identifies the specific
compartment for the sake of clarity. However, it must be noted that
the equations presented in this section are valid for each coronary
arterial-venous connection. Here, V0

i,λ is a reference volume and Ci,λ
is the compliance for ith compartment region. Moreover, ptm

i,λ is the
λ-layer transmural pressure for region i, defined as

ptm
i,λ = pi,λ − pim,λ, (32)

where pi,λ is the blood pressure and pim,λ is the intramyocardial
pressure, defined as

pim,λ = CEPλ,ϕ + SIPϕ, (33)

CEPλ,ϕ stands for cavity-induced extracellular pressure and is
considered to vary linearly between the chamber pressure and
the pericardium pressure, while SIPϕ is the shortening-induced
intracellular pressure. In the current model, coronary vessels
perfuse the free walls of the four heart chambers, as well as the
interventricular septa (IVS). Therefore, CEP and SIP are defined

for each one of these portions of the myocardium. Following
(Mynard et al., 2014), we consider CEP as

CEPλ,ϕ = pout,ϕ +wλ (pch,ϕ − pout,ϕ) , (34)

with ϕ ∈ {RA− fw,RV− fw,LA− fw,LV− fw, IVS}. Also, it is
wsub-endo = 5/6, wmidwall = 1/2 and wsub-epi = 1/6. For free walls
we set pout,RA-fw = pout,RV-fw = pout,LA-fw = pout,LV-fw = ppc, while for
inter-ventricular septa we take pout,IVS = pRV. Moreover, pch,ϕ is the
chamber pressure whose wall is perfused by the compartment. For
IVS we set pch,ϕ = pLV, whereas for free walls the choice is obvious.
Finally, SIP is defined as

SIPϕ = αSIP(
pch,ϕ

Vch,ϕ −V
0
ch,ϕ

), (35)

where αSIP = 8.2, while chamber ch is chosen as for the computation
of CEPλ,ϕ.

Each coronary vascular territory has 9 resistances, i.e., Ri
λ, with

i ∈ {1, m,2} and λ ∈ {sub− epi, midwall, sub− endo}. The relation
between resistance and volume, proposed in (Mynard et al., 2014),
is as follows

Rj
λ = R

j
λ,0(

Vj
λ,0

Vj
λ

)
2

, (36)

with j ∈ {1,2} and

Rm
λ = R

m
λ,0
[

[

3
4
(
V1
λ,0

V1
λ

)
2

+ 1
4
(
V2
λ,0

V2
λ

)
2

]

]
, (37)

where Rj
λ,0 and Rm

λ,0 are nominal resistances for Vj
λ = V

j
λ,0, and Vj

λ,0
are compartment volumes for zero transmural pressure.

2.2.6 Intracranial pressure
The interaction between the cerebral vasculature and

intracranial pressure (ICP) is taken into account by adopting the
model proposed by (Ursino, 1988; Ursino and Lodi, 1997). It is
worth noting that this model was first coupled to a one-dimensional
model of the arterial and venous circulation in (Müller and Toro,
2014a). The time rate of change of intracranial pressure is given by

ṗICP =
1

CICP
(V̇cbv + qgen − qabs) , (38)

where Vcbv is the cerebral blood volume, qgen and qabs are
cerebrospinal fluid generation and absorption rates and CICP is the
cranio-spinal cavity compliance, given by

CICP =
1

kICPpICP
, (39)

where kICP is an experimentally determined coefficient. Since in this
work we do not assess pathological perturbations to the baseline
state, we will consider qgen = qabs.

2.2.7 Venous valves
Venous valves aremodeled as described in (Mynard et al., 2012).

The lumped parameter model proposed there is identical to the one
described by Eqs 19–23. The only difference with respect to cardiac
valves is that here the lumped parameter model representing the
valve is placed between two one-dimensional segments representing
a vein.
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2.2.8 Starling resistors
As originally proposed in (Müller and Toro, 2014a), it is

important to include particular non-linear resistances close to the
point where intracranial veins meet dural sinuses. These non-linear
resistances are called Starling resistors and provide a mechanism
through which the downstream haemodynamic conditions are
decoupled from the haemodynamic state at intracranial veins,
whenever dural sinus pressures are lower than the intracranial
pressure. Here, instead of using the ideal diode model proposed in
(Müller and Toro, 2014a), we propose an alternative model, built on
the valve model proposed by (Mynard, 2011). Starling resistors (SR)
are lumped parameter models placed between two one-dimensional
segments. They are located at the point where intracranial veins join
dural sinuses (see Figure 2). Here, the time rate of change of flow is
given by

q̇ω =
1
Lω
(pup,ω − p

*
down,ω −Bωqω|qω|) , (40)

where Bω and Lω are computed as indicated for valves in
Section 2.2.2. While pup,ω is the pressure in the upstream vessel, the
downstream pressure is computed as

p*
down,ω = (pdown,ω − pext,ω)ζω + pext,ω, (41)

which depends on the SR state ζω. In this way we have that for an
open SR the downstream blood pressure is the pressure used to
compute flow accross the SR, while in the case of a closed/collapsed
SR the driving pressure is the external one, which, in turn, for
cerebral vessels corresponds to the intracranial pressure. The time
rate of change of ζω is defined as

̇ζω = {
Kso,ω (1− ζω)Δpω, if Δpω ≥ 0,

Ksc,ωζωΔpω, if Δpω < 0,
(42)

with Kso,ω and Ksc,ω being SR opening and closing constants,
respectively. Moreover, Δpω = pdown,ω − pext,ω.

2.2.9 Coupling conditions
Coupling conditions reported in (Eqs 7, 8) are not the

only wave relations used to couple one-dimensional domains at
bifurcation/junction points. In fact other coupling conditions are
needed. These regard generalized Riemann invariants, which are
quantities preserved along characteristics for hyperbolic systems
of partial differential equations. These quantities are also used to
couple one-dimensional domains to peripheral circulation models
(for terminal arteries and veins), to the right atrium (for inferior
and superior caval veins), and to the aortic valve (for the ascending
aorta). In all these cases generalized Riemann invariants as well
as additional conditions enforcing mass and energy conservation
at discrete level are used to compute coupling conditions. These
aspects are explained in full detail in (Müller and Toro, 2014b) and
(Müller et al., 2016a).

2.3 Numerical methods

The methodology for the discretization of the one-dimensional
blood flow model, as well as its coupling to lumped parameter
models, was presented in several previousworks by the authors.Here

we provide a brief description of the main aspects of the numerical
methods used to discretize the underlying partial and ordinary
differential equations, providing relevant references for each
aspect.

The one-dimensional blood flow model defined by Eqs 1,
2, which constitutes an advection-diffusion-reaction system, is
hyperbolized following the approach presented in (Montecinos
and Toro, 2014; Toro and Montecinos, 2014) in order to obtain a
system of first order partial differential equations. The hyperbolic
character of the resulting first order system holds under certain
assumptions, which include parameter and state ranges encountered
in biomedical applications. For further details on the resulting
hyperbolized system refer to (Montecinos et al., 2014; Müller et al.,
2016a; Müller et al., 2016b).

The hyperbolized system is discretized with an explicit, local
time stepping, second order finite volume scheme (Müller et al.,
2016a), which ensures the preservation of high-order accuracy
at junctions (Müller and Blanco, 2015). The numerical method
is based on the ADER high-order numerical framework, first
reported in (Toro et al., 2001), and for which an up-to-date
review is provided in (Toro, 2020). Here we use the Dumbser-
Enaux-Toro method to solve the generalized Riemann problem
(Dumbser et al., 2008), since this solver can deal with the stiff
source term emerging from the hyperbolic reformulation in a
robust manner. The employed numerical scheme belongs to the
family of path-conservative schemes (Parés, 2006), while for the
computation of numerical fluctuations we used the modification
of the Dumbser-Osher-Toro solver (Dumbser and Toro, 2011a;
Dumbser andToro, 2011b) proposed in (Müller et al., 2016b), which
is well-balanced for varying mechanical and geometrical properties
along vessels. Furthermore, the scheme applies consistent coupling
conditions at junctions of viscoelastic vessels (Müller et al., 2016b).
The local time stepping technique employed here was proposed in
(Müller et al., 2016a), as an adaptation of the method presented in
(Dumbser et al., 2007) to networks of one-dimensional domains.
The maximum local time step is set to Δtmax = 1 ms, whereas the
time step in each vessel is computed in such a way that ensures
synchronization of time at all junctions of the network and non-
violation of the Courant-Friedrichs-Lewy stability condition, for
which CFL = 0.9 is used. Since wave speeds for the hyperbolized
system are much bigger than blood velocities, we consider constant
time steps along the simulation, but in principle the local time
step could be adapted to local flow conditions in run-time. As
for the spatial discretization, the characteristic mesh spacing is
Δxc = 1 cm, vessels shorter than Δxc are discretized with a single
computational cell.

Ordinary differential equations for lumped parameter models
are discretized with an explicit Euler method. Its coupling to one-
dimensional vessels is described in (63). Lumped parameter models
for valves and SRs have a time step equal to the local time step of
the vessels where they are located. From this observation it follows
that the time step of two vessels connected by a valve or a SR are
forced to be equal. The time step for lumped parameter models
regarding the heart and the pulmonary circulation are equal and
are determined in the same way as done for the time integration
along junctions, see (Müller et al., 2016a) for details. The time
step for the discretization of Eq. 38, regarding the ICP, is taken
equal to Δtmax.
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Simulations shown in this work were performed using eight
parallel processes with 8 threads each, yielding a wall-clock
simulation time for a cardiac cycle of approximately 15 min on
computational nodes equipped with Intel R© Xeon R© CPU E5-2650
v2 @ 2.60 GHz processors.

2.4 Model parameters

Here we describe the setting of model parameters for all the
components of the model, maken also reference to the provided
suplementary material.

2.4.1 Blood behavior
Blood is considered as a Newtonian fluid with viscosity

μ = 0.04 P everywhere expect in perforator arteries, for which
μper = 0.01 P is used. For a discussion on this modelling choice
refer to (Blanco et al., 2014). Blood density is ρ = 1.04 g/cm3 for all
vascular districts included in themodel. A fully developed parabolic
velocity profile is considered, resulting in the friction coefficient f
previously specified.

2.4.2 Wall behavior
As previously stated, different tube laws are used for arteries and

veins. Here we describe how parameters found in tube laws (Eqs 3,
6) are determined for all vessels of the ADAVN model.

2.4.2.1 Arteries
Effective YoungmoduliEe andEc and viscoelastic coefficientKart

m
present different values according to the vessel size. In particular,
vessels are divided in three categories according to their radii
as shown in Table 1. Then, effective coefficients for the different
categories are computed by using a simple mixture theory approach,
namely, we haveEje =W

j
e Ee, Ejc =W

j
c Ec and Kj

m =W
j
m Kart

m with
j = {A,B,C} and Ee = 4.0× 106 dyn/cm2, Ec = 1.0× 109 dyn/cm2 and
Kart
m = 3.6× 105 dyn s/cm2. Weights for the mixture theory approach

are provided in Table 2.
Wall thickness for arteries is computed according to the vessel

radius by

h0

R0
= a expbR0 + cexpdR0 , (43)

TABLE 1 Arterial vessel groups according to lumen radius.

Group Lumen radius [cm]

A R0 > 0.18

B 0.07 ≤ R0 ≤ 0.18

C 0.07 > R0

TABLE 2 Arterial vessel wall constituent fractions.

Group A B C

WE 0.85 0.65 0.45

WC 0.05 0.20 0.00

WM 0.10 0.15 0.55

with a = 0.2802, b = −5.053cm−1, c = 0.1324 and d = −0.1114cm−1.
The pressure of the reference state is part

0 = 10
5 dyn/cm2. Finally, the

deformation state for collagen fiber activation is set to ɛ0 = 0.25 and
the standard deviation of the fiber activation state distribution is
taken as ϵr = 0.05.

2.4.2.2 Veins
In this case we follow the approach proposed in (Müller and

Toro, 2014b). For dural sinuses we use m = 1/2 and n = 0, while
for all other veins we set m = 10 and n = −3/2. The pressure of
the reference state is pven

0 = 6666.66 dyn/cm
2. Moreover, the stiffness

coefficient K is computed by assuming that celerity c is related to the
venous radius

cven = cmax
ven − (cmax

ven − cmin
ven )(

R̂−Rmin
ven

Rmax
ven −Rmin

ven
)

1
2

, (44)

with R̂ =max(Rmin
ven ,R0(xmid)). Here xmid is the vessel’s midpoint

coordinate, while Rmin
ven = 0.08 cm and Rmax

ven = 0.80 cm. Once that cven
is known, the stiffness coefficient is computed from the celerity
function evaluated at A0, i.e.,

K =
ρc2ven
m− n
. (45)

Finally, the viscoelastic coefficient in this case is computed as in
(Mynard and Smolich, 2015), using a known relation between the
vessel radius and this coefficient. Here we set Kven

m = K̂R0, with K̂ =
708.98 dyn/cm2 s. This value is based on considerations of the vessel
wall thickness-to-radius ratio, the percentage of smoothmuscle cells
in veins and the relation between material viscosity and coefficient
Km (Alastruey et al., 2011). As it will be seen later on, this choice
guarantees physiologically-sound pressure-area loops.

2.4.3 Cardiac and pulmonary parameters
Parameters for the heart model are provided in Tables S1,

S2 and S3 in Supplementary Appendix A1, for cardiac chambers,
pericardiumand cardiac valvemodels, respectively. Such parameters
are based on values reported in (Mynard and Smolich, 2015)
with slight modifications. Parameters for the pulmonary circulation
model are reported in Table S4 in Supplementary Appendix A1
and are based on values reported in (Sun et al., 1997).

2.4.4 1D network characteristics and stretched
volume

The Supplementary File adavn_vessels.csv provides
information about the connectivity of all vessels of the model,
shown in Figure 1, their length, initial and final radii, as well as
the body region to which the vessel belongs, according to region
numbers provided in Table S6 in Supplementary Appendix A1.
The total stretched volume is set to Vset

stretched = 2273.643 cm3 and
it is enforced by computing the stretched volume V0

stretched at the
beginning of a simulation and injecting/extracting the difference
Vset

stretched −V
0
stretched during the first 3 s of the simulation.

2.4.5 General peripheral beds
In this work we preserved the blood flow distribution of the

ADAN model, as defined in (Blanco et al., 2014). Each terminal
artery in ADANmodel is equipped with a total peripheral resistance
Rk
t and a total residual arterial compliance Ck

a.
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We recall that in our generic peripheral circulation model
θ there are Nθ

art contributing arteries and Nθ
ven draining veins.

Then, a generic kth terminal artery is linked to an ith proximal
elastic compartment with compliance Cai = C

k
a, connected to the

terminal artery by a proximal resistance Rai = 0.15R
k
t . In turn,

the ith proximal elastic compartment can be connected to Nven,i
veins by resistances Rai,vl , with l = 1,… ,Nven,i and equivalent
resistance Rai,equiv = 0.85R

k
t . This resistance is in turn distributed

among the Rai,vl resistances proportionally to the cubed radii of
the Nven,i veins to which the ith proximal elastic compartment is
connected.

The jth terminal vein represents an elastic venous compartment,
connected to the terminal vein via a proximal resistance Rvj,
computed as the characteristic impedance of the terminal vein
Rvj = ρ*c(Â)/Â, with Â the area of the vein at its terminal point.
Finally, the compliance of the venous elastic compartment is
computed as follows. First we define a total systemic venous
compliance Cv,data = 146 mL/mmHg, from which we compute a
residual compliance Cv,res by subtracting the compliance of all one-
dimensional venous domains Cv,1D. This residual compliance is
distributed among all venous elastic compartments by considering
the ratio between the compliance of contributing proximal elastic
compartments Cai over total arterial peripheral compliance Ctot,
since in (Blanco et al., 2014) Cai was determined according to blood
flow distribution, so that the ratio Cai/Ctot is proportional to flow
distribution.

The total number of peripheral circulation units is 60.
The Supplementary File adavn_vessels.ods includes, for terminal
arteries, total peripheral resistance Rk

t and a total residual arterial
compliance Ck

a, as well as arterio-venous connectivity, and the
vascular territory code to which terminal vessels belong.

2.4.6 Coronary beds
Vi
λ,0, with i ∈ {1,2} and λ ∈ {sub− epi, midwall, sub− endo},

are compartment volumes for zero transmural pressure and are
determined according to Vi

perf, the volume of myocardial tissue
perfused by each terminal coronary artery. Vi

perf is determined
by subdividing a total myocardial volume of 246.38cm3, into left
ventricle free wall volume (111.43 cm3), right ventricle free wall
volume (47.62 cm3), interventricular septum volume (58.09 cm3),
left atrial wall volume (15.48 cm3) and right atrial wall volume
(13.76 cm3), as specified in (Lorenz et al., 1999), identifying the
terminal coronary arteries perfusing each of these structures and
assuming that blood flow is proportional to the cube of the
terminal radius or arteries. The computed perfused myocardial
tissue volume Vi

perf for each terminal artery is provided in Table S5
in Supplementary Appendix A1. This volume is then further
subdivided depending on whether the artery connects to one or
two venous compartments, as done for total peripheral arterial
resistance Rai,vl in Section 2.4.5. Once the perfused mycardium
volume is available for each arterio-venous connection, the actual
blood volumes are computed assuming that the perfusion rates are
different, i.e.,

Vi
tot,0 = V

i
perf ρmyo

ηi
100g
, (46)

with η1 = 2.5cm3/100g, η2 = 8.0 cm3/100g and ρmyo = 1.05 g/cm3 the
density of myocardial tissue. Then, each Vi

tot,0 is further subdivided

according to the following relation

Vi
tot,0 = V

i
sub−endo,0 +V

i
midwall,0 +V

i
sub−epi,0, (47)

assuming that Vi
midwall,0 = 0.93V

i
sub−endo,0 and that Vi

sub−epi,0 =
0.87Vi

sub−endo,0.
The same approach is followed for compliances Ci

λ, but in this
case we have that

Ci
tot = V

i
perf ρmyo

κi
100g
, (48)

with κ1 = 9.750110−6 cm5/dyn/100g and κ2 = 1.90501910−4 cm5/dyn/100g
(Mynard et al., 2014), while the subdivision among the three layers
is performed using the same criteria used for volumes.

The compliance of arterioles, i.e., the capacitor directly
connected to a terminal coronary artery, is computed as 0.1∑kC

1,k
tot ,

with k = 1,… ,Na, where Na is the number of arterio-venous
connections departing from a terminal coronary artery. In turn,
the compliance of the capacitor attached to a terminal vein is
computed as 0.1∑kC

2,l
tot, with l = 1,… ,Nv, where Nv is the number

of arterio-venous connections draining into a terminal coronary
vein.

In order to define Ri
λ,0 we assume that the three vascular layers

are connected in parallel, so that we can write

1
Rtot,0
= 1
Rtot

midwall,0

+ 1
Rtot

sub−endo,0

+ 1
Rtot

sub−epi,0

, (49)

and assume that Rtot
midwall,0 = 0.6R

tot
sub−epi,0 and Rtot

sub−endo,0 =
0.2Rtot

sub−epi,0. Next, Rtot
λ,0 is further subdivided into Ri

λ,0, with
i ∈ {1, m,2} by noting that they are connected in series

Rtot
λ,0 = ∑

i∈{1,m,2}
Ri
λ,0, (50)

and assuming that R1
λ,0 = 1.2R

m
λ,0 and R2

λ,0 = 0.5R
m
λ,0. Rtot,0 is the total

peripheral arterial resistance for each arterio-venous connection
Rai,vl , introduced in Section 2.4.5.

All parameters values used for coronary peripheral beds are
based on parameters proposed in (Mynard and Smolich, 2015), with
resistances slightly modified to obtain a total coronary flow equal to
approximately 4.5{%} of the cardiac output.

2.4.7 Intracranial pressure model
The only parameter involved in the intracranial pressure model

is the proportionality constant for the nonlinear cranio-spinal
cavity compliance. According to previous work, this parameter is
set to kICP = 0.15mL−1. We used pICP = 14665.42 dyn/cm2 as initial
condition, along with Eq. 38, to describe intracranial pressure time
evolution.

2.4.8 Valves and Starling resistors
Tables S7 and S8 in Supplementary Appendix A1 provide

information on the location of valves and Starling resistors. The
maximum effective orifice area Amax

eff and the effective lengths leff
were computed as the average of the reference area and diameter of
proximal and distal venous segments connected to the valve/Starling
resistor. Finally, for all venous valves we used Kvo = 0.1, Kvc = 0.03,
while for all Starling resistors we set Kso = 0.01, Ksc = 0.01.
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TABLE 3 Mainmodel-predicted cardiac and haemodynamic variables and reference values reported in the literature.

Heart and ventriculo-arterial coupling

Parameter Units Model Ref. val Ref

LVSV mL 79.02 (40–120) Levick (2010)

LVEF % 64.04 (52–72) Kosaraju et al. (2022)

ELVI mmHg/mL * m2 3.91 4.50(−) Najjar et al. (2004)

EaI mmHg/mL * m2 2.05 2.20(−) Najjar et al. (2004)

EaI/ELVI - 0.56 0.58(−) Najjar et al. (2004)

Pressures

Parameter Units Model Ref. val Ref

MAP mmHg 92.58 88(8) McEniery et al. (2005)

DBP mmHg 71.82 73(8) McEniery et al. (2005)

SBP mmHg 110.1 123(10) McEniery et al. (2005)

MPAP mmHg 14.98 14(3) Lau et al. (2016)

ICP mmHg 11.02 (5–15) Rangel-Castillo et al. (2008)

CVP mmHg 4.68 (0–5) Levick (2010)

PWVCF cm/s 495.23 (550–1,100) Yu et al. (2008)

PWVFP cm/s 728.61 (600–1,000) Sugawara et al. (2009)

ABI - 1.15 (1.11–1.40) Fowkes et al. (2008)

PPA - 1.14 (1.5.1.9) Avolio et al. (2009)

PPA mmHg 33.59 30(6) McEniery et al. (2005)

PPF mmHg 56.75 50(9) McEniery et al. (2005)

Blood flow distribution

Cardiac cycle average flow Units Model Ref. val Ref

Cardiac output mL/s 96.36 83.3(33.3) Cattermole et al. (2017)

Cerebral blood flow mL/s 12.45 12.18(2.12) Ford et al. (2005)

Coronary blood flow mL/s 4.90 4.5(1.36) Sakamoto et al. (2013)

Int. Carotid Art mL/s 4.56 4.62(0.93) Ford et al. (2005)

Vert. Artery mL/s 1.24 1.32(0.72) Ford et al. (2005)

Left Ant. Desc. Artery mL/s 1.55 1.40(0.67) Sakamoto et al. (2013)

Left circumflex Artery mL/s 1.22 1.20(0.62) Sakamoto et al. (2013)

Right Coronary Artery mL/s 2.09 1.88(0.82) Sakamoto et al. (2013)

LVSV: left ventricle stroke volume; LVEF: left ventricle ejection fraction; ELVI: left ventricle elastance index; EaI: arterial elastance index; MAP/SBP/DBP: mean/systolic/diastolic blood
pressure; MPAP: mean pulmonary arterial pressure; ICP: intracranial pressure; CVP: central venous pressure; PWVCF: carotid-femoral pulse wave velocity; PWVFP: femoral-posterior tibial
pulse wave velocity; ABI: ankle-brachial index; PPA: pulse pressure amplification; PPA: pulse pressure in the ascending aorta; PPF pulse pressure in the left femoral artery. A precise description
of the computation of reported indexes is provided in Supplementary Appendix B1.

2.5 Local sensitivity analysis

We computed local sensitivity indexes defined by

S±M,P =
M̂± −M

M
100,

where M is the baseline value of a variable for which we want to
compute local sensitivity indexes andM̂± is the value of the variable
of interest obtained by increasing/decreasing (+/−) parameter P by
10% of its reference value.

3 Results

In this section we illustrate the performance of ADAVN
concerning its capacity to decribe haemodynamics in terms of
quantitative indexes as well as pressure, velocity and flow rate
waveforms. Local sensitivity analysis results are also included.

3.1 Haemodynamic variables

Table 3 reports the values of typical cardiovascular indexes
computed with the ADAVN model. Also, reference values extracted
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FIGURE 4
Comparison of in vivo and model-predicted haemodynamic waveforms for selected systemic, cerebral and coronary vessels. Full names, index
according to the Supplementary File adavn_vessels.csv and the bibliographic reference from which the in-vivo data was digitalized: Asc. Aorta (press.
and flow): Ascending Aorta, 816, (Murgo et al., 1980; Reymond et al., 2009); R. Radial Art.: Right Radial Artery, 3168, (Reymond et al., 2009); Abd. Aorta:
Abdominal Aorta, 843, (Reymond et al., 2009); Sup. Vena Cava (press. and vel.): Superior Vena Cava, 4288, (Cohen et al., 1986); R. Fem. vein: Right
Femoral Vein, 4165 (Chang et al., 2020),*; Supracel. Inf. Vena Cava: Supraceliac Inferior Vena Cava, 4148, (Cheng et al., 2002); R. Sup. Temp. Art.: Right
Superior Temporal Artery, 212, (Reymond et al., 2009); R. Com. Carotid Art.: Right Common Carotid Artery, 736, (Gwilliam et al., 2009); L. Vertebral Art.:
Left Vertebral Artery, 2504, (Reymond et al., 2009); L. Int. Jug. Vein: Left Internal Jugular Vein, 4058, (Müller and Toro, 2014a); L. Ant. Desc. Cor. Art.:
Left Anterior Descending Coronary Artery, 1569, (Davies et al., 2006); Small Cardiac Vein: 4265, (Kajiya et al., 1993).

from the literature have been included. Such indexes regard cardiac
and vascular performance, as well as flow distribution in the
two vascular territories focused by the venous system description,
namely, cerebral and coronary veins. The definition of these indexes
is provided in Supplementary Appendix B1.

3.2 Haemodynamic waveforms

Figure 4 provides a comparison of model-predicted waveforms
versus in-vivo signals for selected arteries and veins in the systemic,
coronary and cerebral circulations.

3.3 Local sensitivity analysis

Variables considered in the computation of local sensitivity
indexes are M = {MAP,PPA,CVP,CO}, where:

• MAP is the mean arterial pressure, computed at the midpoint
of the ascending aorta (vessel with index 816 according to the
Supplementary File adavn_vessels.csv);
• PPA is the aortic pulse pressure, i.e., the difference between

maximum and minimum pressure values over a cardiac cycle
for the ascending aorta;
• CVP is the cardiac cycle-averaged pressure in the right atrium;

Frontiers in Physiology 13 frontiersin.org

https://doi.org/10.3389/fphys.2023.1162391
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Müller et al. 10.3389/fphys.2023.1162391

TABLE 4 Local sensitivitiesS±M,P (and percentage change with respect to nominal values shown in top row) of variablesM = {MAP,PPA,CVP,CO}. Sensitivities
are ranked according to their absolute values. Only the first 20most influential parameters are reported.

Rank MAP (92.58 mmHg) PPA (33.08 mmHg) CVP (4.67 mmHg) CO (96.36 mL/s)

1 Vset
stretched− (−11.48%) Vset

stretched+ (10.18%) Vset
stretched+ (17.06%) Vset

stretched− (−12.22%)

2 Vset
stretched+ (10.9%) Vset

stretched− (−7.07%) Vset
stretched− (−15.92%) Vset

stretched+ (11.62%)

3 Rper− (−5.4%) Ee− (−6.29%) Cv,data− (6.81%) Cv,data− (4.82%)

4 Rper+ (5.05%) Ee+ (6.03%) tonset,RA+ (6.01%) tonset,RA+ (−4.11%)

5 Cv,data− (4.57%) τ2,LV− (3.86%) Cv,data+ (−5.54%) Cv,data+ (−4.1%)

6 Cv,data+ (−3.85%) τ2,LV+ (−3.77%) Emin
fw,RV− (−3.9%) Emin

fw,RV− (3.08%)

7 tonset,RA+ (−3.43%) Cv,data− (3.73%) Emin
fw,RV+ (3.59%) Emin

fw,RV+ (−2.85%)

8 Emin
fw,RV− (2.57%) Emax

fw,LV− (−3.12%) Emin
fw,RA− (−2.28%) Emin

fw,LV− (2.06%)

9 Emin
fw,RV+ (−2.38%) Rper− (2.87%) Emin

fw,RA+ (2.11%) Emax
fw,RV− (−2.02%)

10 Emin
fw,LV− (1.86%) tonset,RA+ (−2.83%) Emax

fw,RV− (1.85%) Emin
fw,LV+ (−1.92%)

11 Emin
fw,LV+ (−1.73%) Cv,data+ (−2.71%) Emax

fw,RV+ (−1.55%) tonset,LA+ (−1.84%)

12 Emax
fw,RV− (−1.71%) Emin

fw,RV− (2.38%) E0,puv− (−1.52%) Emax
fw,RV+ (1.68%)

13 tonset,LA+ (−1.66%) Rper+ (−2.32%) Rper− (1.44%) tonset,LA− (−1.63%)

14 Emax
fw,RV+ (1.43%) Emax

fw,LV+ (2.31%) E0,puv+ (1.38%) tonset,RA− (−1.5%)

15 tonset,LA− (−1.41%) part
0 + (2.24%) Rper+ (−1.36%) Rper− (1.23%)

16 tonset,RA− (−1.32%) Emin
fw,RV+ (−2.03%) Emax

fw,RA− (1.18%) Rper+ (−1.18%)

17 part
0 − (−1.17%) Ec− (−1.74%) tonset,LA− (1.1%) Emax

fw,RA− (−1.12%)

18 part
0 + (1.16%) Ec+ (1.65%) Emax

fw,RA+ (−1.02%) E0,puv− (−1.11%)

19 E0,puv− (−1.04%) KS,LV− (1.62%) cmin
ven − (0.99%) Emin

fw,RA− (1.01%)

20 Emax
fw,RA− (−0.95%) KS,LV+ (−1.59%) tonset,LA+ (−0.93%) E0,puv+ (1%)

• CO is the cardiac output, i.e., the cardiac cycle-averaged flow
rate in the ascending aorta.

Local sensitivity was computed for all model parameters, excluding
network geometry and topology. The total number of considered
parameters was 96 and consequently the total number of
performed simulations was 193, if the reference configuration is
included. Table 4 shows the local sensitivity indexes for the main
cardiovascular markers included in the set M.

4 Discussion

This section is devoted to a discussion of presented results and
how they compare to clinically available observations, followed by an
in depth discussion about local sensitivity analysis results addressing
main determinants of assessed variables as well as the interaction of
different vascular compartments.The section ends with a discussion
on potential applications and future developments.

4.1 Model assessment in terms of
haemodynamic variables

The performance of the model in terms of its capacity to
reproduce a normal haemodynamic state can be assessed from

results reported inTable 3.This table reports a selected set ofmodel-
predicted main haemodynamic variables, as well as references
values found in the clinical literature. ADAVN is able to correctly
reproduce the selected indexes regarding the functioning of the
left heart, as well as those that are used to evaluate the coupling
of the left heart and systemic circulation. The same agreement
can be found for mean pressure values in different vascular
districts, such as main arteries and veins, as well as for the venous
system and for the intracranial compartment. Pressure waveform
characteristics are assessed in terms of pulse wave velocities, as
well as assessing indexes regarding pulsatility and changes of the
pressure waveform as it travels through the arterial system. With
the exception of the pulse pressure amplification index (PPA index
in Table 3), all other evaluated indexes are in good agreement
with clinical data. The low PPA index is due to the fact that in
ADAVN we observe an amplification of the pulse pressure at the
level of the brachial artery that is smaller than the one clinically
observed, since the pulse pressure in the aortic root is within
the physiological range (PPA in Table 3). Furthermore, assessed
model outputs regarding blood flow distribution are also aligned
with reference data. In particular, cardiac output matches reference
average values, as it does its distribution into the two vascular
districtics onwhich this study focuses, i.e., the cerebral and coronary
circulations. A closer look into main feeding arteries of these two
vascular districts shows that these vessels receive blood amounts
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that are in agreement with average flows commonly measured in
these vessels.

4.2 Model assessment in terms of
haemodynamic waveforms

Figure 4 illustrates pressure and flow rate waveforms in sampled
vessels, as well as their typical in vivo-acquired counterparts. Typical
features that characterize arterial blood flow are the dicrotic notch
in the aortic root (subfigure 4. A-I), and the pressure impingement
when moving to peripheral districts, specifically the brachial-
radial pathway (compare subfigures 4. A-I and 4. B-I). Arterial
flow in central arteries is markedly systolic, with a waveform that
changes significantly from the ascending to the abdominal aorta
(compare subfigures 4. A-II and 4. B-II). The blood flow to the
brain yields a characteristic flow rate at the common carotid artery,
which is the consequence of the low-resistance cerebral territory,
resulting in a relatively low diastolic flow rate (see subfigure 4. E-
II). All these results are in agreement with data previously reported
(Blanco et al., 2014; Blanco et al., 2015). Figure 4 also presents
pressure and flow rate waveforms for selected venous vessels. The
pressure waveforms feature the typical characteristics prescribed
by the backward expansive and compressive waves generated by
the right atrium contraction (see, for example, subfigure 4. C-
I). In turn, the flow rate waveforms feature the typical bi-phasic
V-notch after systole, more pronounced as we are closer to the
right atrium such as in the superior vena cava, and diminished
in intensity when we move to distal districts such as the jugular
veins (compare subifgures 4. D-II and 4. F-II). Specific vessels
corresponding to the head and neck circulation are also displayed
in Figure 4. We find here a good qualitative agreement for both
pressure and flow waveforms in the selected arteries and veins.
Concerning the coronary circulation, in subfigures 4. G-I and 4. G-
II, we can see how the model reproduces well the diastolic character
of arterial coronary flow and the systolic pattern in venous coronary
flow.

4.3 Sensitivity of main cardiovascular
variables to model parameters

Table 4 reports results on local sensitivity of mean arterial
pressure (MAP), aortic pulse pressure (PPA), central venous
pressure (CVP) and cardiac output (CO) to the 20 most
influential parameters according to our local sensitivity analysis
study.

4.3.1 On relevance of parameters
Considering the ranking position of parameters for all variables

of interest, it is remarkable to observe how the total stretched
volume (Vset

stretched in Table 4) is the most influential parameter in
all cases. Noteworthy, its contribution is not only ranking first,
but its impact on considered variables is 2–3 times higher than
the impact of second-ranked parameters. Another parameter that
ranks high for most variables is the total venous compliance
(Cv,data in Table 4). This parameter either ranks second or is placed
third to fourth for all variables, with an impact very similar to

the one of preceding parameters in terms of caused percentage
change.

4.3.2 Determinants of MAP
This variable, as all others considered here, is mostly influenced

by the total streched volume. In our model this variable is directly
linked to the total blood volume since the unstressed volume
is assumed fixed and constant in time. Interestingly, while the
second-ranked parameter is the total peripheral resistance, which
regards directly the systemic circulation, the third-to fourth-ranked
parameters regard the venous circulation and the right heart. This
result evidences how a variable normally considered as mainly
characterized by the arterial side of circulation is also strongly
influenced by properties of the venous side, as well as of the right
heart, with a relevant role played by the timing of the right atrium.
Notably, the first parameter regarding the tube law used for arteries
that appears in our rank of most influential parameters for MAP
is the reference pressure part

0 , appearing in tube law (Eq. 3), which
ranks 17-th.

4.3.3 Determinants of PPA
In this case the impact of total stretched volume is less

pronounced than for other variables, but still almost twice
that of the next parameter, which in this case is the reference
elastine Young modulus (Ee). This index shows a stronger
dependence on arterial parameters, such as the relaxation time
τ2,LV and the maximum free wall elastance of the left ventricle
Emax

fw,LV. Interestingly, also in this case the venous system is
contributing with an impact similar to that of the two mentioned
parameters.

4.3.4 Determinants of CVP
The leading role of total stretched volume is also found

here, where it also has the largest impact in terms of percentage
change with respect to the nominal CVP value. The next
parameters in the ranking are always related to the venous
system state and the right heart function. Remarkably, a
parameter regarding pulmonary circulation, the reference-volume
elastance of pulmonary veins, E0,puv, ranks higher than arterial
parameters.

4.3.5 Determinants of CO
As for all other variables, also in this case the leading

role is played by total stretched blood volume. Then, the most
influential parameters regard either the systemic veins or the
functioning of the right heart, evidencing how the role played
by parameters regarding the left heart and the systemic arterial
circulation is less relevant than that played by other cardiovascular
components in determining this fundamental haemodynamic
quantity.

4.3.6 Interaction between arterial and venous
circulation

Results reported in Table 4 put in evidence the strong
connection between the arterial and venous districts. In fact,
parameters regarding the venous circulation or the right heart
rank always high in terms of sensitivity of arterial variables to
model parameters. When considering CVP the connection is less
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evident, with the first parameter related to the arterial system, total
peripheral resistance, ranking only 12-th for this variable. However,
the connection becomes more evident in a variable that can be
considered as indicative of the state on both, the arterial and the
venous compartments, namely, the cardiac output CO, which is
influenced predominantly by venous circulation and right heart
parameters, but where the contribution of left heart and arterial
parameters is more pronounced. This strong connection should be
kept in mind by modellers when addressing modelling questions in
which disregarding the interplay between these two major districts
of circulation might result in a strongly biased description of the
actual physiological processes intended to be described.

5 Concluding remarks and future work

In this work we described the construction of the first version
of the ADAVN model, which combines the most complete existing
arterial model, with a novel venous network model, featuring a
detailed description of cerebral and coronary venous compartments.
Being this the first communication on ADAVN, we have decided
to focus on a detailed description of the model components and
parameters, aiming at reproducibility of published results. In fact,
we provide all necessary parameters and data for the construction
of the model, including the full description of network connectivity
and vessels’ geometry. Having this goal in mind, we have limited
the content regarding modelling results to a general validation of
model outputs with respect to clinical reference data and waveforms
and to a local sensitivity analysis. This set of results allowed us
to discuss the capacity of the model to produce physiologically
sound results, as well as to gain knowledge on the relevance of
model parameters and, more importantly, model districts, in the
determination of global haemodynamic variables. A significant
output of the presented sensitivity analysis is the identification
of a great influence of properties of the venous district in the
determination of main cardiovascular variables. This aspect should
be carefully considered by modellers addressing pathological states
in which the venous system is expected to undergo changes with
respect to a physiological condition, since the impact of those
changes might be dominant over the ones of other vascular districts.

The ADAVN model is a natural evolution of the ADAN model
(Blanco et al., 2015) and is intended to be the backbone on which
to incrementally add model components regarding physiological
aspects of cardiovascular physiology, as well as model components
rearding the interaction of blood with other solid and fluid
compartments such as intracranial tissues and fluids, the respiratory
system, and the lymphatic system. Similar models to ADAVN, but
of reduced complexity in terms of the level of detail of vascular
networks, have been already developed by the authors of this
manuscript to address some of the above named applications
(Müller and Toro, 2014a; Celant et al., 2021; Toro et al., 2022). The
distinctive and unique aspect of ADAVN regarding the fact that
vessels are described not only in terms of connectivity, length and
radius, but also by information on their three-dimensional position,
makes ADAVN an excellent framework to model orthostatic stress,
as well as to explore the role that the extension of currently available
models, as, for example, an assessment of the impact that including
the curvature in 1D vessels, especially at junctions, might have on

model outputs. The ADAVN model allows to explore the impact of
modelling hypotheses on a wide range of spatial scales involving the
arterial and the venous districts.
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