
NeuroImage 254 (2022) 119137 

Contents lists available at ScienceDirect 

NeuroImage 

journal homepage: www.elsevier.com/locate/neuroimage 

In vivo Correlation Tensor MRI reveals microscopic kurtosis in the human 

brain on a clinical 3T scanner 

Lisa Novello 

a , 1 , ∗ , Rafael Neto Henriques b , 1 , ∗ , Andrada Ianu ş b , Thorsten Feiweier c , 
Noam Shemesh 

b , 2 , Jorge Jovicich 

a , 2 

a Center for Mind/Brain Sciences - CIMeC, University of Trento, Rovereto, Italy 
b Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal 
c Siemens Healthcare GmbH, Erlangen, Germany 

a r t i c l e i n f o 

Keywords: 

Double-diffusion encoding 
Kurtosis 
Non-Gaussian diffusion 
Human brain 
Magnetic resonance imaging 
Correlation tensor MRI 

a b s t r a c t 

Diffusion MRI (dMRI) has become one of the most important imaging modalities for noninvasively probing tissue 
microstructure. Diffusional Kurtosis MRI (DKI) quantifies the degree of non-Gaussian diffusion, which in turn 
has been shown to increase sensitivity towards, e.g. , disease and orientation mapping in neural tissue. However, 
the specificity of DKI is limited as different sources can contribute to the total intravoxel diffusional kurtosis, 
including: variance in diffusion tensor magnitudes ( K iso ), variance due to diffusion anisotropy ( K aniso ), and mi- 
croscopic kurtosis ( 𝜇K ) related to restricted diffusion, microstructural disorder, and/or exchange. Interestingly, 
𝜇K is typically ignored in diffusion MRI signal modelling as it is assumed to be negligible in neural tissues. 
However, recently, Correlation Tensor MRI (CTI) based on Double-Diffusion-Encoding (DDE) was introduced for 
kurtosis source separation, revealing non negligible 𝜇K in preclinical imaging. Here, we implemented CTI for 
the first time on a clinical 3T scanner and investigated the sources of total kurtosis in healthy subjects. A robust 
framework for kurtosis source separation in humans is introduced, followed by estimation of 𝜇K (and the other 
kurtosis sources) in the healthy brain. Using this clinical CTI approach, we find that 𝜇K significantly contributes 
to total diffusional kurtosis both in grey and white matter tissue but, as expected, not in the ventricles. The first 
𝜇K maps of the human brain are presented, revealing that the spatial distribution of 𝜇K provides a unique source 
of contrast, appearing different from isotropic and anisotropic kurtosis counterparts. Moreover, group average 
templates of these kurtosis sources have been generated for the first time, which corroborated our findings at 
the underlying individual-level maps. We further show that the common practice of ignoring 𝜇K and assuming 
the multiple Gaussian component approximation for kurtosis source estimation introduces significant bias in the 
estimation of other kurtosis sources and, perhaps even worse, compromises their interpretation. Finally, a twofold 
acceleration of CTI is discussed in the context of potential future clinical applications. We conclude that CTI has 
much potential for future in vivo microstructural characterizations in healthy and pathological tissue. 
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. Introduction 

Mapping microstructural features of the brain, in vivo and non-
nvasively, has been a central endeavour of the MRI community for more
han three decades. Diffusion-weighted MRI (dMRI) has played a key
ole in such microstructural characterizations due to its ability to sen-
itize the MRI signal towards diffusion-driven molecular displacements,
hich then “sense ” tissue boundaries in the range of around > 10 𝜇m (in

ypical clinical settings). Water molecules are highly abundant in tissues
nd can traverse several micrometers in a typical MR-relevant diffusion
ime, making dMRI an excellent indicator of tissue microstructure. At
∗ Corresponding authors. 
E-mail addresses: lisa.novello@unitn.it (L. Novello), rafael.henriques@neuro.fcham

1 These authors contributed equally to this work. 
2 These authors contributed equally to this work as last authors. 

ttps://doi.org/10.1016/j.neuroimage.2022.119137 . 
eceived 4 November 2021; Received in revised form 17 February 2022; Accepted 2
vailable online 23 March 2022. 
053-8119/© 2022 The Authors. Published by Elsevier Inc. This is an open access ar
elatively low diffusion weighting, the unidirectional Apparent Diffu-
ion Coefficient (ADC, Stejskal and Tanner, 1965 ; Le Bihan et al., 1986 )
nd later the rotationally invariant Diffusion Tensor Imaging approaches
DTI, Basser et al., 1994 ) utilized a Gaussian diffusion framework
or quantifying diffusivities, which found numerous applications from
troke detection, to white matter orientation mapping, to characterizing
rogressive changes in brain tissue due to plasticity ( e.g. Moseley et al.,
990 ; Gauvin et al., 2001 ; Anwander et al., 2007 ; Roebroeck et al.,
008 ; Della-Maggiore et al., 2009 ; Scholz et al., 2009 ; Blumenfeld-
atzir et al., 2011 ; McNab et al., 2013a ; Baron et al., 2015 ; Benetti et al.,
018 ; Hasan et al., 2018 ; Jacobacci et al., 2020 , Yon et al., 2020 ,
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or a review see e.g. Mukherjee, 2005 ; Assaf and Pasternak, 2008 ;
ohansen-Berg, 2010 ). 

Deviations from Gaussian displacement profiles were described quite
arly within the framework of q-space MR ( Callaghan et al., 1991 ;
ssaf and Cohen, 1998 ). As high-performance gradient systems be-
ame more readily available in clinical MRI settings, a wider range of
iffusion-weighting regimes could be probed, providing evidence for
on-Gaussian signal decay in q-space experiments also in the human
rain ( Mulkern et al., 1999 ). Since q-space gradients required very high
iffusion weighting and require attenuation of the signal up to the noise
oor, a general methodology for characterizing diffusion weighted sig-
als at an intermediate diffusion weighting regime was elegantly in-
roduced by Jensen et al. (2005) and Jensen and Helpern (2010) . The
nsuing Diffusion Kurtosis Imaging (DKI) methodology is a “signal rep-
esentation ” approach ( Novikov et al., 2018 ; Novikov, 2021 , as op-
osed, e.g. , to microstructural models, for instance: Jespersen et al.,
007 ; Fieremans et al., 2011 ; Zhang et al., 2012 ; Kaden et al., 2016 ;
espersen, 2018 ) based on the cumulant expansion of the dMRI sig-
al up to the second order in b -value (with b = 𝛾2 𝛿2 G 

2 ( Δ − 𝛿/3) for
deal rectangular diffusion-sensitizing gradients, where 𝛾 is the gyro-
agnetic ratio, 𝛿 is the gradient pulse duration, Δ is the separation be-

ween the two leading edges of the gradient pulses, and G is the gradi-
nt pulse’s magnitude). DKI quantifies the excess-kurtosis in water dis-
lacement probability which can be used as an index of diffusion non-
aussianity, which presumably reflects the heterogeneity of the diffu-

ion process in tissue microstructure ( Jensen et al., 2005 ; Jensen and
elpern, 2010 ; Wu and Cheung, 2010 ). DKI has been successfully
dopted to study both the healthy and the diseased human brain, pro-
iding insights into individual anatomical details at high resolution
 Mohammadi et al., 2015 ), development ( Huber et al., 2019 ), ageing
 Falangola et al., 2008 ; Henriques, 2018 ), attention deficit hyperactiv-
ty disorder (ADHD, Helpern et al., 2011 ), neurodegenerative disorders
 Arab et al., 2018 ) such as Alzheimer’s ( Gong et al., 2013 ; Struyfs et al.,
015 ) and Parkinson’s disease ( Wang et al., 2011 ; Kamagata et al.,
013 , 2014 ; Surova et al., 2018 ), and brain tumors ( Raab et al., 2010 ;
aja et al., 2016 ; Delgado et al., 2018 ; Hempel et al., 2017 , 2018 ;
in et al., 2018 ). Indeed, DKI is nowadays implemented on many dif-
erent imaging platforms ( e.g. Leemans et al., 2009 ; Tabesh et al., 2011 ;
ournier et al., 2019 ; Henriques et al., 2021a ). 

By imparting higher b -values, DKI can potentially provide more in-
ormation on the tissue’s diffusion profile than its DTI counterpart ( e.g.

alangola et al., 2008 ; Wang et al., 2011 ; Hui et al., 2012 ; Zhuo et al.,
012 ; Fieremans et al., 2013 ; Steven et al., 2014 ; Lin et al., 2018 ).
owever, at the same time, DKI lacks specificity because many dif-

erent factors can contribute to non-zero excess kurtosis. At the voxel
evel, diffusion kurtosis may arise from mesoscopic effects such as
he orientation dispersion of fibers and their specific configuration
 Lu et al., 2006 ; Henriques et al., 2015 ). At the microscopic level
 i.e. (sub)cellular level, or more generally at the level of pores or mi-
rodomains, where a microdomain can be defined as a uniform sub-
oxel segment, Szczepankiewicz et al., 2015 ), diffusion kurtosis may
rise from different sources, including the following ( Jespersen et al.,
019 ; Henriques et al., 2020 , 2021c ): 

(i) Kurtosis arising from variance of the eigenvalues of individual
diffusion tensors representing tissue microdomains, thus arising
from diffusion tensor shape variance ( i.e. deviations of the shape
of pores or microdomains from a sphere), which is referred to as
anisotropic kurtosis ( K aniso ). 

(ii) Kurtosis associated with the variance in diffusion tensor magni-
tudes across the ensemble of all microdomains, thus arising from
diffusion tensor size variance, which is referred to as isotropic kur-
tosis ( K iso ; the subscript “iso ” here refers to the isotropic part of
the tensor (its magnitude), and does not require any of the tensors
to have identical eigenvalues). 
2 
(iii) Kurtosis associated with non-Gaussian diffusion effects within re-
stricting “pores ” (restricted diffusion, Callaghan et al., 1991),
within complex structures in which diffusion effects are
not completely coarse grained ( Novikov et al., 2014 , 2019 ;
Fieremans et al., 2016 ; Lee et al., 2020a ), or a combination of re-
striction and exchange in exchanging components ( Olesen et al.,
2022 ), both of which are referred to as microscopic kurtosis
( 𝜇K, also previously called intra-compartmental kurtosis, K intra ,
in Jespersen et al., 2019 ; Henriques et al., 2020 ; Henriques et al.,
2021b ). 

Understanding how each of these different sources affect the kur-
osis signal can be challenging. DKI, and, more generally, techniques
ased on Single Diffusion Encoding sequences (SDE, Shemesh et al.,
016 ) with moderate b -values cannot resolve the relative contribution of
ach source without making strong assumptions about tissue properties
 Fieremans et al., 2011 ; Ianu ş et al., 2016 ). Such assumptions, however,
ay confound the specificity of the derived estimates ( Jelescu et al.,
015 ; Lampinen et al., 2017 ; Henriques et al., 2019 ), leading to poten-
ial serious errors in the “microstructural ” interpretation of the metrics
 Jelescu et al., 2016 ; Novikov et al., 2018 ). 

Nevertheless, resolving each diffusion kurtosis source has the poten-
ial of unravelling important microstructural information that can pro-
ide new insights into tissue properties which, in turn, may have clin-
cal impact ( Szczepankiewicz et al., 2015 , 2016 ; Nilsson et al., 2020 ;
lves et al., 2022 ). For this reason, Multidimensional Diffusion Encod-

ng (MDE, Eriksson et al., 2013 ; Lasi č et al., 2014 ; Westin et al., 2016 ;
hemesh et al., 2016 ; Topgaard, 2017 ) methods have been developed
o produce richer diffusion weighting paradigms allowing to explore
orrelations between different spatial dimensions, and, ultimately, to
ield more specific tissue contrasts. Among MDE preparations, Double
iffusion Encoding (DDE, Mitra, 1995 ; Shemesh et al., 2010a , 2016 ,
enriques et al., 2021b ) in the long mixing time regime has been used in
ombination with either trapezoidal or oscillating gradients (Double Os-
illating Diffusion Encoding, DODE, Ianu ş et al., 2017 ; Shemesh, 2018 ),
nd with metabolites spectroscopy to probe the displacements of spe-
ific metabolites (DDE MRS, Shemesh et al., 2014 , 2017 ; Vincent et al.,
020 ; Lundell et al., 2021 ). Such applications stemmed from the ini-
ial theoretical work ( Mitra, 1995 ; Cheng and Cory, 1999 ; Özarslan and
asser, 2008 ; Özarslan, 2009 ; Lawrenz et al., 2010 ; Jespersen and
uhl, 2011 ; Jespersen, 2012 ) and the following experimental obser-
ations confirming that DDE provides signal differences for collinear
nd orthogonal diffusion gradients in locally anisotropic samples with
verall random orientation ( Cheng and Cory, 1999 ; Callaghan and
omlosh, 2002 ) and angular modulations of the signal in the pres-
nce of pores characterized by eccentricity over the plane sampled
y the diffusion preparation ( Shemesh et al., 2010a , 2010b , 2011 ;
hemesh et al., 2012a ). Since then, DDE in the long mixing time regime
as been extensively adopted to provide different parameters associ-
ted with microscopic diffusion anisotropy (a quantity related to K aniso ,
ee methods) which reports on the anisotropy of the tissue at the pore
r microdomain length scale independently to confounding orienta-
ion dispersion effects ( e.g. Jespersen et al., 2013 ; Lasi č et al., 2014 ;
hemesh et al., 2016 ; Ianu ş et al., 2018 ; Henriques et al., 2020 ). Mi-
roscopic diffusion anisotropy has been investigated using DDE in pre-
linical systems in both white and grey matter, e.g. : in fixed grey mat-
er ( Komlosh et al., 2007 ), pig spinal cord ( Komlosh et al., 2008 ), pig
ptic nerve and cortical grey matter, with phantoms mimicking their
espective microstructures ( Shemesh et al., 2010b , 2011 ; Shemesh and
ohen, 2011 ; Shemesh et al., 2012a ), in both in vivo and ex vivo rat
rain ( Shemesh et al., 2012b ; Ianu ş et al., 2018 ; Kerkelä et al., 2019 ), in
x vivo monkey brain ( Jespersen et al., 2013 ), in rat spinal cord injury
 Budde et al., 2017 ), and in ex vivo rat spinal cord ( Shemesh, 2018 ). In
linical systems DDE microscopic diffusion anisotropy estimates have
een reported in pig spinal cord ( Lawrenz and Finsterbusch, 2011 ), and
uccessfully mapped in the in vivo healthy human brain white matter
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 Lawrenz and Finsterbusch, 2013 , 2015 ), cortical grey matter
 Lawrenz and Finsterbusch, 2019 ), in the study of ageing ( Lawrenz et al.,
016 ), and in clinical applications, where it showed increased specificity
ompared to DTI-derived FA in multiple sclerosis lesions ( Yang et al.,
018 ) and has been investigated in Parkinson’s disease ( Kamiya et al.,
020 ). 

In addition to DDE preparations, alternative MDE pulse sequences
ave been adopted in parallel with the aim of resolving the kur-
osis sources: previous studies showed that, under the strict Multi-
le Gaussian Component assumption (MGC), tensor-valued information
f MDE sequences can decompose K t as the sum of K aniso and K iso 
 Szczepankiewicz et al., 2015 , 2019a ; Topgaard, 2019 ). These tech-
iques have been successfully adopted in the study of healthy brain
icrostructure ( Lampinen et al., 2019 , 2020a ; Tax et al., 2020 ), for im-
roving the estimation of different microstructural models ( Topgaard,
017 ; Coelho et al., 2019 ; Cottaar et al., 2020 ), and demonstrated
reat promise for clinical utility ( Szczepankiewicz et al., 2015 , 2016 ;
ampinen et al., 2020b ; Winther Andersen et al., 2020 ) and imple-
entation ( Szczepankiewicz et al., 2019a ; Nilsson et al., 2020 , 2021 ).
hese so-called “tensor-valued ” approaches, however, assume that all
nderlying diffusion propagators within the voxel can be approximated
s multiple Gaussian components, with negligible μK and negligible
ime dependence ( Jespersen et al., 2019 ) and thus cannot be used to
ap kurtosis sources not considered by this picture, such as the kurto-

is related to the non-Gaussian diffusion effects of restricted diffusion,
ncomplete coarse-graining, and exchange, i.e. the microscopic kurto-
is sources referred above ( Jespersen et al., 2019 ; Henriques et al.,
020 , 2021c ; Paulsen et al., 2015 ; Olesen et al., 2022 ; Alves et al.,
022 ). 

Recently, a new DDE strategy has been proposed to provide a more
omplete separation of different kurtosis sources, namely the Correla-
ion Tensor Imaging, or CTI ( Henriques et al., 2020 ; Henriques et al.,
021c ). In particular, CTI enables the simultaneous estimation of K iso ,
 aniso , and 𝜇K , by relying on the acquisition of four different DDE sets
 i.e. combinations of gradient waveforms comprising four unique am-
litudes and direction combinations) and on the cumulant expansion of
DE signals at long mixing times. So far, the CTI methodology has been
pplied in both in vivo and ex vivo rodent brains ( Henriques et al., 2020 ;
enriques et al., 2021c ; Alves et al., 2022 ), revealing the expected con-

rasts for K aniso , the dominant kurtosis source in white matter, as well as
he expected contrasts for K iso , which highlights areas with large disper-
ion of microdomains’ mean diffusivities such as regions with partial vol-
me effects. However, crucially, these first CTI data, both ex vivo and in
ivo , unequivocally demonstrated evidence of a positive non-vanishing
K both in rodent white and grey matter, with 𝜇K being the dominant
urtosis source in grey matter ( Henriques et al., 2021c ). Further CTI ex-
eriments in a rodent stroke model strongly suggested a potential role
or 𝜇K as an important new biomarker and suggested that cytotoxic and
ther types of edema could potentially be resolved via CTI ( Alves et al.,
022 ). Together with the observation of biases in K aniso and K iso when
ot accounting for 𝜇K in mice ( Henriques et al., 2021c ), this body of
vidence prompts the translation of the CTI methodology to the clin-
cal setting, building also on previous successful applications of DDE
equences in the study of the living human brain (Lawrenz and Finster-
usch, 2013, 2015, 2019). 

In this work, we set out to develop CTI for humans for the first time.
sing a clinical 3T system, we investigate the kurtosis sources emerging

rom a cohort of healthy subjects. In particular, the goals of this study
re (i) to evaluate the feasibility of acquiring DDE data adhering to the
TI methodology proposed in Henriques et al. (2021c) , in a clinical 3T
ystem; (ii) to estimate the kurtosis sources in brain tissue derived by
he CTI framework from healthy adult volunteers, particularly with re-
pect to evaluating evidence for the 𝜇K component in humans; and (iii)
o investigate the possible implications of ignoring the 𝜇K component,
s currently established in alternative approaches aiming to resolve kur-
osis sources. 
y  

3 
. Materials and methods 

.1. Correlation tensor imaging theory 

In the long mixing time regime, when the Z tensor approaches the
orrelation tensor and Q and S tensors are decoupled from the signal
 Jespersen and Buhl, 2011 ; Jespersen, 2012 ; Jespersen et al., 2013 ),
he powder average of DDE signals is equivalent to ( Henriques et al.,
021c ): 

𝑜𝑔 
(
𝐸̄ 𝐷𝐷𝐸 

(
𝑏 1 , 𝑏 2 , 𝜃

))
= − 

(
𝑏 1 + 𝑏 2 

)
𝐷̄ + 

1 
6 
(
𝑏 2 1 + 𝑏 2 2 

)
𝐷̄ 

2 𝐾 𝑡 

+ 

1 
2 
𝑏 1 𝑏 2 𝑐𝑜 𝑠 

2 𝜃𝐷̄ 

2 𝐾 𝑎𝑛𝑖𝑠𝑜 

+ 

1 
6 
𝑏 1 𝑏 2 𝐷̄ 

2 (2 𝐾 𝑖𝑠𝑜 − 𝐾 𝑎𝑛𝑖𝑠𝑜 

)
+ 𝑂 

(
𝑏 3 
)

(1) 

here b 1 and b 2 are the b -values of the first and of the second pair
f diffusion gradients, respectively, 𝜃 is the angle between the direc-
ions of the first and the second pair of diffusion gradients, 𝐷̄ is the
ean diffusivity, K t is the total kurtosis of the powder averaged sig-

al, 𝐾 𝑎𝑛𝑖𝑠𝑜 ≡
6 
5 
⟨var ( 𝜆𝑖 ) ⟩

𝐷 2 
with ⟨var ( 𝜆𝑖 ) ⟩ representing the eigenvalue vari-

nce of microenvironments averaged across the multiple compartments
nd D is the mean diffusivity, and 𝐾 𝑖𝑠𝑜 ≡ 3 var ( ⟨𝜆𝑖 ⟩) D 2 with var ( ⟨𝜆𝑖 ⟩) rep-
esenting the variance across the ensemble of all microdomains’ ten-
or magnitudes ( Szczepankiewicz et al., 2016 ; Henriques et al., 2020 ).
ote that 𝐾 𝑎𝑛𝑖𝑠𝑜 can be directly related to previous DDE/MDE micro-

copic diffusion anisotropy measurements: defining the microscopic dif-
usion anisotropy as 𝜇𝐴 

2 ≡ 3 
5 ⟨var ( 𝜆𝑖 ) ⟩ ( Shemesh et al., 2016 ; Ianu ş et al.,

018 ; Henriques et al., 2021b ) and pore eccentricity as 𝜀 ≡ 3 Δ2 

5 ⟨var ( 𝜆𝑖 ) ⟩
 Cheng and Cory, 1999 ; Lawrenz et al., 2011 ; Jespersen et al., 2013 ),
 𝑎𝑛𝑖𝑠𝑜 can be directly related to these measures by the following ex-
ressions 𝐾 𝑎𝑛𝑖𝑠𝑜 = 2 𝜇𝐴 

2 ∕ 𝐷 

2 and 𝐾 𝑎𝑛𝑖𝑠𝑜 = 2 𝜀 ∕ Δ2 𝐷 

2 . 𝐾 𝑎𝑛𝑖𝑠𝑜 can also be
onverted to microstructural fractional anisotropy ( Lasi č et al., 2014 ;
zczepankiewicz et al., 2015 ) or fractional eccentricity ( Jespersen et al.,

013 ) using the following expressions 𝜇𝐹 𝐴 = 

√ 

3 
2 𝐾 𝑎𝑛𝑖𝑠𝑜 ∕( 𝐾 𝑎𝑛𝑖𝑠𝑜 + 

6 
5 ) 

nd 𝐹 𝐸 = 

√ 

𝐾 𝑎𝑛𝑖𝑠𝑜 ∕( 𝐾 𝑎𝑛𝑖𝑠𝑜 + 

6 
5 ) . 

By estimating K t , K aniso , and K iso , microscopic kurtosis 𝜇K can then
e extracted by a simple subtraction as follows ( Henriques et al., 2020 ,
021c ): 

𝐾 = 𝐾 𝑡 − 𝐾 𝑎𝑛𝑖𝑠𝑜 − 𝐾 𝑖𝑠𝑜 (2)

Thus, while information on K t can be accessed by conventional SDE
xperiments with at least two non-zero b -values, its decomposition in its
ources requires the use of DDE preparations. Importantly, as described
n Henriques et al. (2021c) , the difference between the logarithm of
owder averaged signals from an SDE-like set with b -value b a and a
arallel DDE set with the b -value of each pair of gradients being b a /2
an be used to directly access 𝜇K as follows: 

 𝑜𝑔 
(
𝐸̄ 𝐷𝐷𝐸 

(
𝑏 𝑎 , 0 , 0 ◦

))
− 𝑙𝑜𝑔 

( 

𝐸̄ 𝐷𝐷𝐸 

( 

𝑏 𝑎 

2 
, 
𝑏 𝑎 

2 
, 0 ◦

) ) 

= 

1 
12 

𝑏 2 
𝑎 
𝐷̄ 

2 𝜇𝐾 + 𝑂 

(
𝑏 3 
)

(3) 

nd, in addition, K aniso can be directly estimated from the difference be-
ween the logarithm of parallel and perpendicular sets ( Jespersen et al.,
013 ; Ianu ş et al., 2018 ): 

 𝑜𝑔 

( 

𝐸̄ 𝐷𝐷𝐸 

( 

𝑏 𝑎 

2 
, 
𝑏 𝑎 

2 
, 0 ◦

) ) 

− 𝑙𝑜𝑔 

( 

𝐸̄ 𝐷𝐷𝐸 

( 

𝑏 𝑎 

2 
, 
𝑏 𝑎 

2 
, 90 ◦

) ) 

= 

1 
2 
𝑏 2 
𝑎 
𝐷̄ 

2 𝐾 𝑎𝑛𝑖𝑠𝑜 + 𝑂 

(
𝑏 3 
)

(4) 

ith the higher order terms O(b 3 ) ignored in the current analysis. 

.2. Participants 

Ten participants (mean age ± one standard deviation (SD): 28.9 ± 6.0
ears, six males) gave informed consent to participate in this study
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pproved by the Research Ethics Committee of the University of Trento.
t the time of MRI scans, all participants were healthy and had no med-

cal history of neurological or psychiatric disorders. 

.3. MRI acquisition 

Data were acquired at the center for Mind/Brain Sciences of the
niversity of Trento, Italy, on a 3T clinical MR scanner (MAGNE-
OM Prisma, Siemens Healthcare, Erlangen, Germany), with a 64-
hannel head-neck RF receive coil. Head motion during the acquisition
as limited using foam paddings optimized for head coils. Anatom-

cal T1-weighted (T1w) Multi-Echo MPRAGE (ME-MPRAGE, van der
ouwe et al., 2008 ) images were acquired with the following param-
ters: TE 1 /TE 2 /TE 3 /TE 4 = 1.69/3.55/5.41/7.27 ms, TR = 2530 ms,
I = 1100 ms, flip angle: 7°, 1 mm-isotropic resolution, matrix size:
56 × 256. 

For the diffusion-weighted data acquisition, a prototype double-
pin-echo DDE sequence was used ( Fig. 1 A). A double-spin-echo se-
uence (rather than a single-spin-echo sequence with pairs of diffu-
ion gradients on either side of the refocusing pulse) was chosen to
itigate concomitant gradient effects ( Callaghan and Komlosh, 2002 ;

zczepankiewicz et al., 2019c ). The DDE sequence imaging parameters
ere: TR = 5600 ms, TE = 127 ms, matrix size: 84 × 84, slice thickness:
.5 mm, no slice gap, spatial resolution: 2.5 mm-isotropic, 60 axial slices
llowing full brain coverage, partial Fourier factor: 6/8, GRAPPA/SMS
actors: 2/4. Four sets of DDE images were acquired according to the
ptimization described in Henriques et al. (2021c) ( Fig. 1 B): 

• DDE set #1: b 1 = 1000 s/mm 

2 , b 2 = 0, with b t = 1000 s/mm 

2 . 
• DDE set #2: b 1 = 2000 s/mm 

2 , b 2 = 0, with b t = 2000 s/mm 

2 . 
• DDE set #3: b 1 = 1000 s/mm 

2 , b 2 = 1000 s/mm 

2 , with b t = 2000
s/mm 

2 and parallel directions for the first and the second pairs of
diffusion gradients ( 𝜃 = 0°). 

• DDE set #4: b 1 = 1000 s/mm 

2 , b 2 = 1000 s/mm 

2 , with b t = 2000
s/mm 

2 and perpendicular directions for the first and the second pairs
of diffusion gradients ( 𝜃 = 90°). 

In the above equations, b t is the total b -value considering both the
rst and the second pairs of diffusion gradients. The b -value for these
xperiments were selected according to Henriques et al. (2020) , which
how that a CTI protocol with a maximum b -value between 1500 s/mm 

2 

nd 2000 s/mm 

2 provides a good compromise between kurtosis estima-
ion accuracy (minimization of high order effects) and precision (enough
ontrast to noise for kurtosis estimation). Moreover, the total b -values
or DDE #2, #3, and #4 were set to be equal to minimize different
igh-order-effect of the different acquisition schemes Henriques et al.,
021c ). For all DDE sets, 𝛿/ Δ/ 𝜏M 

= 15.8/31.8/32.3 ms. Sixty diffusion-
eighted volumes were acquired per each DDE set: for sets #1, #2,
nd #3 directions from a 3-dimensional 60-point spherical 10-design
ere used ( Hardin and Sloane, 1996 ), while for set #4, perpendicular
irections from the 5-design in Jespersen et al. (2013) were used. For
he phantom and all participants, one volume without diffusion gra-
ients (hereafter referred to as “b = 0 ″ volume) was added every 12
iffusion-weighted volumes, and two additional b = 0 volumes were ac-
uired at the beginning of set #2 and #4 (except for sub-01 and sub-02
 Fig. 3 ), where two b = 0 volumes were included for each DDE set and
R = 5500 ms was used). Finally, two b = 0 volumes with reversed
hase encoding were acquired to correct for susceptibility-induced geo-
etric distortions (see Image processing section). DDE sets were acquired

n the following temporal order to guarantee the possibility of directly
stimating 𝜇K and K aniso in case of a participant-related acquisition in-
erruption (see Eqs. (3) and (4) : DDE set #2, DDE set #3, DDE set #4,
DE set #1. Two repetitions of the above listed sets were acquired, each
ith opposite polarity of all diffusion gradients (hereafter referred to as

positive ” and “negative ”, Fig. 1 B, bottom) to mitigate potential cross-
erm effects with imaging gradients ( Neeman et al., 1991 ; Lawrenz and
4 
insterbusch, 2011 ; Ianu ş et al., 2018 ). The total acquisition time for
he two repetitions was around 52 min. 

To check for the fulfillment of the long mixing time regime assump-
ion ( Shemesh et al., 2012b ; Henriques et al., 2020 ), twelve parallel
irections were selected from the gradient scheme for DDE set #3, and
he polarity of the direction of the second pair of diffusion gradients
as reversed to yield antiparallel gradients ( Shemesh et al., 2012b ;
enriques et al., 2020 ). Images corresponding to this subset of paral-

el and antiparallel gradient directions were acquired twice, each with
pposite polarity of the diffusion gradients, followed by ten additional
 = 0 volumes acquired for assessing the temporal Standard Deviation
tSD) of this series and relate it to the signal difference between par-
llel and antiparallel images for all participants (except for sub-01 and
ub-02). 

To verify the absence of systematic imaging artifacts, the above-
escribed protocol was additionally acquired on a brain-sized spherical
sotropic phantom at the room temperature of 22 °C, filled with water
oped with Nickel Sulphate (NiSO 4 (H 2 O) 6 ). 

.4. Image processing 

Diffusion-weighted images : dMRI data were denoised with the
archenko-Pastur (MP) PCA denoising in MRtrix v. 3.0.2 ( Veraart et al.,

016 ), and MP PCA-estimated noise variance maps were visually in-
pected along with denoising residuals. Data were then corrected for
ibbs ringing ( Kellner et al., 2016 ), and the susceptibility-induced field
as estimated using b = 0 volumes with opposite phase encoding in
SL’s topup ( Andersson et al., 2003 ). Data corresponding to each set
as then corrected for eddy currents and head motion in FSL’s eddy

 Andersson and Sotiropoulos, 2016 ), by using the first acquired b = 0
olumes as reference volume for all sets, to get all the images aligned to
he same reference volume. For DDE sets where the amplitude of the sec-
nd pair of diffusion gradients was not zero (DDE set #3, DDE set #4),
he direction of the second pair of diffusion gradients was used in eddy ,
otivated by the observation for a much smaller impact of the first pair

f diffusion gradients on eddy currents artifacts ( Mueller et al., 2017 ),
nd as reported in Yang et al. (2018) and Fan et al. (2020) . Summary
etrics of the quality of each participant’s images were then computed
ith the eddy qc framework ( Bastiani et al., 2019 ). Diffusion-weighted
olumes were then concatenated according to their temporal order and
orrected for signal drift ( Vos et al., 2017 ) and bias field ( Tustison et al.,
010 ). Phantom images underwent the same pre-processing pipeline
dopted for human data. Before computing each participant’s ( i.e. indi-
idual) CTI maps, data were smoothed with a 3D Gaussian filter (using a
aussian kernel with FWHM = 1.25, scipy v. 1.6.1); the FWHM adopted

n the smoothing process is in line with values adopted in early DKI stud-
es ( e.g. Lu et al., 2006 ; Falangola et al., 2008 ; Henriques et al., 2015 ).
his smoothing step was applied with the aim of mitigating the effects
f potential residual noise on kurtosis estimates manifesting as negative
urtosis values, a phenomenon often observed in DKI analyses which
as motivated the use of smoothing in the literature ( Henriques et al.,
021d ). Furthermore, pairs of images corresponding to opposite polar-
ties of the diffusion gradients were geometrically averaged to mitigate
ffects associated with potential imaging cross-terms ( Neeman et al.,
991 ; Lawrenz and Finsterbusch, 2011 , 2013 ; Ianu ş et al., 2018 ). Im-
ges were then directionally averaged in order to get four powder av-
rage (p.a.) images, one per each set, which were finally normalized
hereafter referred to as p.a. norm 

) by the mean of the b = 0 volumes in-
luded across all the acquired DDE sets ( Fig. 2 A). SNR maps of b = 0 vol-
mes (SNR b = 0 ) were computed by dividing the mean( b = 0) voxel-wise
ignal by an estimate of the noise represented by the voxel-wise stan-
ard deviation across the b = 0 acquisitions (tSD) ( Fig. 2 B). SNR maps
f diffusion-weighted volumes were computed by dividing p.a. images
y the tSD estimate, per each set (SNR PA -set# N , where N is the number
f the considered DDE set) (Table S1). All SNR maps were computed
or each subject individually and prior to the application of the smooth-
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Fig. 1. CTI methodology. (A) DDE sequence adopted in this study. Abbreviations: TE: Echo Time; EPI ACQ: Echo Planar Imaging acquisition module. (B) CTI 
acquisition scheme. DDE set #1 and DDE set #2 mimic conventional SDE sequences. The additional DDE set #3 and DDE set #4 are respectively parallel and 
perpendicular DDE preparations, and they allow to disentangle the total Kurtosis ( K t ) in its Kurtosis sources. (C) Kurtosis sources, adapted from Henriques et al., 
2020 . K t can be decomposed into: (i) the microscopic kurtosis ( 𝜇K ), arising from non-Gaussianity induced by restricted time-dependent diffusion, structural disorder 
such as variations in compartmental cross-sectional area, or exchange effects, which can also be directly accessed through the combination of DDE set #2 and DDE 
set #3 (see Eq. (3) ); (ii) the anisotropic Kurtosis ( K aniso ), arising from the variance in the eigenvalues describing the microdomain diffusion tensors, i.e. the diffusion 
tensor shape variance, which can also be directly estimated through the combination of DDE set #3 and DDE set #4 (see Eq. (4) ); and (iii) the isotropic Kurtosis 
( K iso ), arising from the variance of the microdomain diffusion tensors’ mean diffusivity; factoring out exchange, K t = K aniso + K iso + 𝜇K ( Henriques et al., 2020 , 
2021c ). The acquisition was repeated twice in the same session without repositioning, with opposite polarities of all the diffusion gradients, allowing to assess and 
mitigate low order effects of cross-terms with imaging gradients ( Neeman et al., 1991 ; Lawrenz and Finsterbusch, 2011 , 2013 ; Ianu ş et al., 2018 ). 
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ng (distributions of the SNR values across the different participants are
hown in Fig. S1). 

Anatomical images : T1w images resulting from the root mean squared
ombination of the four ME-MPRAGE echoes were parcellated with
reeSurfer’s v. 7.1 recon-all pipeline. The following Regions Of Interest
ROIs) were considered among the areas included in the FreeSurfer’s
arcellation for the quantitative analysis of each kurtosis source:
erebro-Spinal Fluid (CSF) in lateral ventricles, cerebral White Mat-
5 
er (WM), cerebellar WM (WM CBM 

), Grey Matter (GM), cerebellar Grey
atter (GM CBM 

), Amygdala (AMG), Caudate (Cd), Hippocampus (HPC),
lobus Pallidus (GP), Putamen (PU), and Thalamus (TH). Linear reg-

strations between individual skull-stripped T1w images and the first
re-processed non-smoothed b = 0 volume were then computed in
NTs ( Avants et al., 2008 , 2011 ) and registration matrices were ap-
lied to the above listed ROIs in order to get them aligned with the
TI maps. 
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Fig. 2. Data quality. All brain images are from the same slices of a representative subject. (A) b = 0 volumes with overlaid borders of Regions of Interest (ROIs) 
used in this study. Lateral view: yellow: white matter; blue: putamen; orange: hippocampus; red: amygdala; light violet: cerebellar cortex; violet: cerebellar white 
matter. Coronal view: pink: cerebral cortex; yellow: thalamus; green: pallidum. Axial view: yellow: white matter; green: caudate; light blue: lateral ventricles. (B) 
Lateral, coronal, and axial view of the Signal to Noise Ratio map computed on b = 0 volumes (SNR b = 0 ) interspersed throughout all the DDE sets for a representative 
subject (the reader is referred to Section 2.4 Image processing for a description of the SNR b = 0 calculation). (C) Powder ( i.e. directionally) averaged images per each 
set normalized by the mean b = 0 volumes (p.a. norm ). (D) Left: map of the difference between parallel and antiparallel p.a. images at b t = 2000 s/mm 

2 with the 
brain border marked in red for a representative subject. Right: distribution of signal differences between the parallel and antiparallel p.a. images (black), with the 
distribution of the temporal standard deviation values across b = 0 shown in light blue, from the same subject. (E) CTI maps derived from the phantom experiment, 
and distribution of 𝜇K values within the phantom. Human data underwent the preprocessing pipeline described in the Materials and Methods section, and are shown 
before the application of the Gaussian smoothing (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this 
article.). 
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Registration to MNI space and MNI-space CTI analysis : To obtain the
rst, high SNR group average templates of K aniso , K iso , and 𝜇K in the
ealthy human brain, CTI was fitted on across-subject averaged p.a. norm 

ignals warped to the MNI space. This approach was preferred rather
han computing the average of individual CTI maps to avoid the propa-
ation of noise in the individual maps to the final template. 

To normalize each participant’s p.a. norm 

images to the MNI space, a
ymmetric diffeomorphic (non-linear) registration between each partic-
pant’s skull-stripped T1w image and the MNI 2 mm-isotropic T1w brain
tlas was computed. Finally, the resulting warp fields were applied to
ach p.a. norm 

image in combination with the linear registration matri-
es previously computed to align the diffusion with the anatomical data
see Anatomical images Section), to get all the p.a. norm 

images warped
o the MNI space. All registration processes were carried out in ANTs
 Avants et al., 2008 , 2011 ) and were visually inspected for their accu-
acy. No Gaussian smoothing was applied on data that were normalized
o the MNI space. Once all participants’ p.a. norm 

images were warped to
he MNI space, the mean p.a. norm 

image across N = 8 participants for
ach of the four DDE sets was computed and used for the CTI fit (here-
fter referred to as MNI-space CTI analysis ). Two subjects were excluded
or the group MNI space analysis: i) one because of enlarged ventricles,
nd ii) because of unsuccessful alignment at the registration process. 

Registrations’ warp fields and matrices were also applied to the
bove listed FreeSurfer-derived ROIs (see Anatomical images Section),
o warp them to MNI space. For each ROI, the intersection voxels across
ll N = 8 included participants were defined as ROIs for the MNI-space
TI analysis (hereafter referred to as ROIs MNI ), except for GM where
oxels were included if common to at least six participants to get a
6 
ore inclusive mask. Values derived from the MNI-space CTI analysis
ere then extracted from each ROI MNI for the quantitative analysis of

he Kurtosis sources and outlier values were removed with the isoutlier
unction (method: Grubbs) in MatLab version R2017b (The Mathworks
nc., Natwick, MA, USA). Finally, to assess the extent of each Kurtosis
ource contribution to K t maps, the ratio between each Kurtosis source
nd K t was computed, and values were extracted from each ROI for fur-
her analysis. Voxels with K ≤ 0 (any kurtosis source) were excluded
rom this analysis (the ratio of excluded voxels on total voxels can be
ound in Fig. S2). 

.5. Correlation tensor imaging fit 

The CTI fit procedure (described in Henriques et al., 2021c ) was
erformed using the linear least square fit function in MatLab version
2017b. The CTI fit generates the following maps: D t , K t , K aniso , K iso ,
nd 𝜇K maps. For each of these maps, values were extracted from each
reeSurfer-derived ROI (see Anatomical images Section) aligned to the
iffusion space. Outlier values were removed with the isoutlier function
method: Grubbs) in MatLab R2017b, and mean and standard devia-
ion (SD) values were computed per each ROI. For the phantom, values
ithin an eroded phantom mask excluding voxels closer than 18 mm to

he phantom surface were extracted. 

.6. MNI-space multiple Gaussian component (MGC) assumption analysis 

To assess the effect of neglecting 𝜇K on the other Kurtosis sources
nd thus to explore the validity of the MGC assumption, similarly to
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Table 1 

CTI maps values for individual human and phantom data. Values correspond to mean ± one SD. For human data, the SD was computed across mean values of 
each participant’s data. For phantom data, the SD was computed spatially, i.e. across all included phantom voxels. Abbreviations: CSF: Cerebrospinal fluid in lateral 
ventricles; WM: White Matter; WM CBM : Cerebellar White Matter; GM: Grey Matter; GM CBM : Cerebellar Grey Matter; AMG: Amygdala; Cd: Caudate; HPC: Hippocampus; 
GP: Globus Pallidus; PU: Putamen; TH: Thalamus. 

Map Human data Regions of Interest (ROIs) Phantom 

CSF WM WM CBM GM GM CBM AMG Cd HPC GP PU TH 

D t 3.47 ± 0.24 0.94 ± 0.02 0.87 ± 0.03 1.37 ± 0.11 1.20 ± 0.05 1.15 ± 0.05 1.48 ± 0.21 1.37 ± 0.07 0.86 ± 0.04 0.86 ± 0.02 1.21 ± 0.07 2.16 ± 0.11 
K t 0.49 ± 0.04 1.04 ± 0.02 1.23 ± 0.06 0.78 ± 0.01 0.97 ± 0.04 0.82 ± 0.04 0.83 ± 0.06 0.86 ± 0.03 1.54 ± 0.08 1.08 ± 0.05 1.1 ± 0.07 0.09 ± 0.04 
K aniso 0.02 ± 0.01 0.40 ± 0.03 0.48 ± 0.03 0.08 ± 0.01 0.10 ± 0.02 0.07 ± 0.01 0.06 ± 0.02 0.06 ± 0.01 0.26 ± 0.08 0.15 ± 0.03 0.21 ± 0.02 0.00 ± 0.01 
K iso 0.46 ± 0.03 0.47 ± 0.04 0.60 ± 0.07 0.57 ± 0.02 0.70 ± 0.05 0.60 ± 0.04 0.65 ± 0.05 0.69 ± 0.02 1.13 ± 0.13 0.73 ± 0.08 0.80 ± 0.08 0.08 ± 0.04 
𝝁K 0.01 ± 0.01 0.16 ± 0.01 0.15 ± 0.03 0.13 ± 0.02 0.18 ± 0.02 0.16 ± 0.01 0.12 ± 0.02 0.10 ± 0.01 0.15 ± 0.04 0.20 ± 0.02 0.10 ± 0.02 0.01 ± 0.01 
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enriques et al. (2021c) , K aniso and K iso were derived under the MGC
ssumption according to the tensor-valued information of the diffusion
RI acquisitions ( Westin et al., 2014 ; Szczepankiewicz et al., 2019a ).

.a. norm 

images used for the MNI-space CTI analysis (thus only using axial
ensor-valued experiments), were fitted with Eq. (5) : 

𝑜𝑔 
(
𝐸̄ 𝑀𝐺𝐶 

(
𝑏, 𝑏 Δ

))
= − 𝑏 𝑡 𝐷̄ + 

1 
6 
𝑏 2 
𝑡 
𝐷̄ 

2 𝐾 

𝑀𝐺𝐶 
𝑖𝑠𝑜 

+ 

1 
6 
𝑏 2 
𝑡 
𝑏 2 Δ𝐷̄ 

2 𝐾 

𝑀𝐺𝐶 
𝑎𝑛𝑖𝑠𝑜 

+ 𝑂 

(
𝑏 3 
)

(5) 

ith b t representing the cumulative b -value ( i.e. considering both pairs
f diffusion gradients), and b Δ being 1 for DDE sets #1-3 and − 1/2 for
DE set #4. 

.7. MNI-space single-polarity CTI analysis 

To assess effects of imaging cross-terms, p.a. norm 

was computed sepa-
ately on data corresponding to each polarity of the diffusion gradients
 i.e. “positive ” and “negative ”, Fig. 1 B, bottom). p.a. norm 

images then
nderwent the same registration pipeline described in the Registration

o MNI space and MNI-space CTI analysis paragraph. 𝜇K values were ex-
racted from each ROI for their quantitative analysis. 

. . Results 

.1. Data quality 

Fig. 2 A shows an example b = 0 volume with overlaid FreeSurfer-
erived ROIs aligned to the diffusion space for a representative subject.
cross subjects, mean SNR b = 0 ± one SD within the brain was 20 ± 1.35.
ean and SD values across subjects for SNR b = 0 and SNR PA (for each set)

or all ROIs can be found in Table S1, with their respective distribution
hown in Fig. S1. The SNR b = 0 map and p.a. norm 

images of non-smoothed
ata for a representative subject are shown in Fig. 2 B and C, respectively.
he difference between parallel and antiparallel gradient pairs designed
o test for the long mixing time regime, is shown for a representative
ubject in Fig. 2 D: the signal differences did not reveal visible anatomical
tructures for all sampled directions and were on the order of the tSD
stimated on b = 0 volume in the same series. 

.2. Phantom study 

CTI maps from the phantom (designed to ensure no systematic effects
re observed) are shown in Fig. 2 E (before Gaussian smoothing). Mean
 one SD values per each CTI map were: D t : 2.16 ± 0.11; K t : 0.09 ± 0.04;
 aniso : 0.00 ± 0.01; K iso : 0.08 ± 0.04; 𝜇K : 0.01 ± 0.01; (see also Table 1 ).

.3. Individual CTI maps analysis 

Complete data from all participants were successfully acquired. In-
ividual CTI-derived maps are shown in Fig. 3 . Between subjects, maps
onsistently showed larger K aniso values for white matter areas, larger
7 
 iso values at the interface between tissues, and 𝜇K values that were cen-
red on zero for CSF and non-vanishing positive for both grey and white
atter. Across-subject mean ± one SD Diffusivity and Kurtosis values

f CTI-derived maps are listed per each ROI in Table 1 . Distributions of
iffusivity and Kurtosis values on individual maps per each ROI can be

ound on Fig. S3. Assessments of the relationship between all Kurtosis
stimates and both SNR calculations considered (SNR b = 0 and SNR PA )
id not highlight dependencies of D t , K t , K aniso and 𝜇K values on SNR,
hile a significant correlation was observed between K iso and SNR (Fig.
4). Individual CTI-derived maps computed prior to the application of
he smoothing are shown in Fig. S5. 

.4. MNI-space CTI analysis 

CTI maps computed on across-subjects averaged p.a. norm 

images
re shown in Fig. 4 A, along with distributions of values in each ROI
 Fig. 4 B). Consistently with individual-level maps, K aniso was larger in
M regions, and K iso was larger in regions that likely present higher

egree of partial volume with CSF (regions near ventricles and edge of
ortex); 𝜇K showed zero-centred values in CSF, but non-vanishing pos-
tive values both in grey and white matter ( Table 2 , voxels identified
s outliers and excluded from the plotted distributions and quantitative
nalyses were < 3% for all ROIs and maps except for GP K aniso , where
xcluded voxels represented 3.64% of total voxels; see Table S2 for num-
er of excluded voxels and percentages on total voxels for all ROIs and
aps). Fig. 5 A–C shows maps of the ratio between each Kurtosis source

nd K t , along with barplots showing the Kurtosis components per each
OI ( Fig. 5 D): K iso appears to be the largest Kurtosis source for all tis-
ues except white matter regions, with 𝜇K accounting for 8–20% of K t 
n all ROIs except for CSF. 

.5. MNI-space CTI vs. MGC analysis 

Fig. 6 shows the relationship between total, anisotropic and isotropic
urtosis estimates derived from CTI and the corresponding estimates un-
er the MGC assumption, which neglects 𝜇K . For any of these metrics,
 difference between the two approaches will be seen as a distribution
hat departs from the diagonal. Relative to CTI, the MGC approach leads
o lower K t in voxels with high 𝜇K . The opposite pattern was observed
or K aniso and K iso , where estimates derived under the MGC assumption
ere overestimated compared to CTI-derived values, with larger devia-

ions being associated to larger 𝜇K values. 

.6. MNI-space single-polarity CTI analysis 

Fig. 7 shows CTI-derived maps from the averaged data correspond-
ng to either both or single repetitions of the CTI acquisition. In com-
arison with maps estimated from two repetitions (corresponding to a
52 min-long acquisition), maps computed from single repetitions sug-
est that there is no systematic bias when considering only one polarity
f the diffusion gradients. Distributions of 𝜇K values derived from single
epetitions per each ROI can be found in Fig. S6. 
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Fig. 3. Individual CTI-derived maps in native space. (A) D t maps; (B) K t maps; (C) K aniso maps; (D) K iso maps. White voxels within the brain correspond to 
negative K iso values, possibly associated with noise effects; a discussion on negative kurtosis values can be found e.g. in Henriques et al. (2021d) ; (E) 𝜇K maps. Note 
the different ranges in the colorbars for different CTI metrics. All maps are shown in their native space, and no between-subject alignment was performed at this 
stage with the aim of displaying original values in the maps. 

Fig. 4. CTI maps derived from the average of data from N = 8 subjects in MNI space (MNI-space CTI analysis). (A) Axial, coronal, and lateral (adjacent to 
mid-sagittal plane) views of D t , K t , K aniso , K iso , and 𝜇K maps derived by fitting the averaged data of N = 8 subjects, previously normalized to the 2 mm MNI atlas. 
Note the different ranges in the colorbars for different CTI metrics. (B) Distributions of values per each CTI metric in each Region of Interest (ROI) considered in this 
study. CSF: Cerebrospinal fluid in lateral ventricles; WM: White Matter; WM CBM : Cerebellar White Matter; GM: Grey Matter; GM CBM : Cerebellar Grey Matter; AMG: 
Amygdala; Cd: Caudate; HPC: Hippocampus; GP: Globus Pallidus; PU: Putamen; TH: Thalamus. 
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Table 2 

Kurtosis sources values for CTI maps derived from the average of data from N = 8 subjects in MNI space (MNI-space CTI analysis). Values of K t and of Kurtosis 
sources ( K aniso , K iso , 𝜇K ) correspond to mean ± one SD. Values of percent ratio between each Kurtosis source and K t correspond to median (interquartile range, IQR). 
The SDs and the IQRs were computed spatially, i.e. across all included ROI voxels. Abbreviations: CSF: Cerebrospinal fluid in lateral ventricles; WM: White Matter; 
WM CBM : Cerebellar White Matter; GM: Grey Matter; GM CBM : Cerebellar Grey Matter; AMG: Amygdala; Cd: Caudate; HPC: Hippocampus; GP: Globus Pallidus; PU: 
Putamen; TH: Thalamus. 

Map Human group average template data: MNI-space CTI analysis Regions of Interest (ROIs) 

CSF WM WM CBM GM GM CBM AMG Cd HPC GP PU TH 

K t 0.54 ± 0.09 1.17 ± 0.13 1.31 ± 0.15 0.84 ± 0.09 1.04 ± 0.09 0.85 ± 0.07 0.91 ± 0.12 0.91 ± 0.09 1.61 ± 0.19 1.09 ± 0.10 1.20 ± 0.14 
K aniso 0.02 ± 0.02 0.52 ± 0.19 0.50 ± 0.21 0.09 ± 0.08 0.10 ± 0.09 0.08 ± 0.04 0.08 ± 0.09 0.07 ± 0.04 0.12 ± 0.09 0.11 ± 0.08 0.21 ± 0.13 
K aniso / K t % ratio 3.5 (3.9) 45.5 (17.2) 37.5 (18.6) 8.7 (9.6) 9.0 (8.7) 8.3 (6.9) 7.5 (9.9) 8.0 (5.8) 5.8 (6.5) 9.7 (11.6) 16.4 (11.3) 
K iso 0.50 ± 0.06 0.49 ± 0.15 0.67 ± 0.16 0.62 ± 0.11 0.75 ± 0.13 0.60 ± 0.12 0.63 ± 0.16 0.73 ± 0.10 1.34 ± 0.23 0.78 ± 0.14 0.86 ± 0.10 
K iso / K t % ratio 94.5 (4.9) 40.4 (17.5) 48.7 (20.1) 75.3 (15.5) 73.8 (18.1) 70.3 (18.0) 70.8 (23.1) 80.2 (10.7) 85.7 (6.5) 71.7 (12.8) 73.0 (11.6) 
𝜇K 0.01 ± 0.01 0.15 ± 0.05 0.15 ± 0.07 0.13 ± 0.05 0.18 ± 0.08 0.18 ± 0.08 0.19 ± 0.10 0.11 ± 0.05 0.14 ± 0.05 0.19 ± 0.05 0.13 ± 0.05 
𝜇K / K t % ratio 1.9 (1.6) 13.2 (5.1) 10.8 (7.5) 15.0 (7.5) 17.0 (10.1) 19.6 (15.9) 17.9 (16.5) 11.6 (7.5) 8.2 (4.0) 17.3 (6.4) 10.1 (5.1) 

Fig. 5. Mapping the individual contribution of each source on total kurtosis. CTI maps derived from the average of data from N = 8 subjects in MNI space. 
Axial, coronal, and lateral (adjacent to mid-sagittal plane) views of (A) K aniso / K t ratio, (B) K iso / K t ratio, and (C) 𝜇K / K t ratio. Note the different ranges in the colorbars 
for different ratios. (D) Barplot showing median percent ratio per each Kurtosis source per each Region of Interest (ROI) considered in this study. CSF: Cerebrospinal 
fluid in lateral ventricles; WM: White Matter; WM CBM : Cerebellar White Matter; GM: Grey Matter; GM CBM : Cerebellar Grey Matter; AMG: Amygdala; Cd: Caudate; 
HPC: Hippocampus; GP: Globus Pallidus; PU: Putamen; TH: Thalamus. 

4

 

c  

t  

t  

2  

C  

s  

i  

w  

i  

s  

r  

m  

k  

t  

3  

s  

r  

s  

t  

e  

c

4

 

C  

t  

t  

f  
. . Discussion 

Disentangling kurtosis sources in biological systems is attracting in-
reasing interest given the potential to improve specificity and poten-
ially provide novel non-invasive quantitative markers of microstruc-
ural properties in vivo ( e.g. Szczepankiewicz et al., 2016 ; Yang et al.,
018 ; Nilsson et al., 2020 ; Kamiya et al., 2020 ). The recently-proposed
TI framework is designed to resolve anisotropic, isotropic, and micro-
copic kurtosis sources, which indeed provided much insight in preclin-
cal imaging ( Henriques et al., 2020 , 2021c ; Alves et al., 2022 ). In this
ork, we have extended the CTI methodology towards human imag-

ng on a clinical 3T MRI system and aimed to investigate the kurtosis
ources in healthy volunteers. Our main findings not only more accu-
ately revealed the anisotropic and isotropic kurtosis sources in the hu-
an brain, but also clearly showed non-vanishing positive microscopic

urtosis contributions accounting for 8–20% of the total diffusional kur-
9 
osis in both white and grey matter, and vanishing in the ventricles ( Figs.
–5 ). Consistently with this finding, we also show differences in kurto-
is estimates derived by neglecting microscopic kurtosis ( Fig. 6 ). The
esults of the present study pave the way towards quantifying kurtosis
ources more precisely and accurately, investigating them in different
ypes of disease. Our findings motivate further developments to accel-
rate data acquisition to make human brain CTI more compatible with
linical scan times ( vide infra ). 

.1. Initial steps toward clinical translation 

The first goal of this study was to evaluate the feasibility of using
TI in a clinical 3T system. Therefore, before performing CTI acquisi-
ions in human volunteers, we tested our DDE sequence in water phan-
oms to confirm that the non-vanishing kurtosis sources do not arise
rom image artifacts or from noise Rician biases. The CTI experiments
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Fig. 6. Effect of neglecting 𝝁K on K t , K aniso , and K iso . CTI- and MGC-derived maps were estimated on the average of data from N = 8 subjects in MNI space. (A) 
CTI- vs . MGC-derived K t . (B) CTI- vs . MGC-derived K aniso . (C) CTI- vs . MGC-derived K iso . Points are colour-coded according to their 𝜇K value, inset plots are added 
for better visibility. 

Fig. 7. Effect of reducing the acquisition time by 50% on CTI-derived maps. CTI-derived maps were estimated on the average of data from N = 8 subjects in 
MNI space. Axial, coronal, and lateral views of (A) CTI-derived maps estimated from the geometrical average of two repetitions, each acquired with opposite polarity 
of the diffusion gradients (here referred to as “positive ” and “negative ”, Neeman et al., 1991 ; Ianu ş et al., 2018 ), yielding a 52 min long acquisition; (B) CTI-derived 
maps estimated from only one repetition corresponding to the “positive ” polarity of the diffusion gradients; (C) CTI-derived maps estimated from only one repetition 
corresponding to the “negative ” polarity of the diffusion gradients. Note the different ranges in the colorbars for different CTI metrics. Acquisition time corresponding 
to only one repetition (panels B and C) was 26 min. TA: Acquisition time. 
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n the phantom corroborated the expected vanishing anisotropic kurto-
is ( K aniso = 0) and vanishing microscopic kurtosis ( 𝜇K = 0) of the free
ater phantom ( Fig. 2 E). It is important to note that, while it is antici-
ated that the water phantom exhibits free water diffusion with diffusiv-
ty around 2 . 13 𝜇𝑚 

2 ∕ 𝑚𝑠 (assuming room temperature 22 °C; Mills 1973 ;
asteal et al., 1989 ) and zero non-Gaussian effects (all kurtosis sources
re zero), such water phantom data is also expected to be corrupted by
arge Rician noise floor biases due to the fast signal decays of free water.
rom previous DKI studies ( e.g. Jensen and Helpern, 2010 ; Glenn et al.,
015 ), it is known that Rician biases can lead to diffusion and kurto-
is overestimations in these phantoms. These biases explain the small
on-vanishing total kurtosis estimates observed in our water phantom
ata. Inspecting the different kurtosis sources, our results show that K iso 
s the source that captures these biases, suggesting that K aniso and 𝜇K

re much less sensitive to these biases. Therefore, these results support
hat any non-vanishing K and 𝜇K observed in our in vivo human
aniso 

10 
rain data has a microstructural origin. Analogously to the water phan-
om, these Rician biases also explain the overestimated diffusivities ( D t 

 3 𝜇𝑚 

2 ∕ 𝑚𝑠 ) and non-vanishing K t and K iso observed in CSF regions of
nterest ( Tables 1 and 2 , Figs. 4 B and 5 B). While large Rician biases
re expected for free water regions, this does not imply that D t , K t and
 iso are equally biased in brain tissues. Fig. S7 shows simulations rep-
esenting the typical diffusivities/kurtosis values of free water, white
atter and grey matter tissues. These simulations replicate the large bi-

ses in D t , K t and K iso for the scenario representing free water at 22 °C
Fig. S7, A.1, A.2, A.4) and reveal much lower biases for typical values
f white and grey matter (Fig. S7B,C) even for the lower SNR simu-
ated ( i.e. SNR = 10). Henriques et al., 2021c , further investigated the
recision in 𝜇K estimation, and observed that for acquisition parame-
ers in the same range as the ones adopted in the current study and
NR = 20, the expected error of 𝜇K for white and grey matter ranges
etween 0.1 and 0.2. While more advanced denoising techniques ( e.g.
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ichner et al., 2015 ; Fadnavis et al., 2020 ) might alleviate this uncer-
ainty range, both simulations in Henriques et al. (2021c) and the ones
hown in Fig. S7, together with the absence of a correlation between
NR and 𝜇K (Fig. S4), suggest that, on the one hand, noise does affect
he uncertainty range, but on the other hand, that it does not offset the
K distribution, thus lending further credibility to the observed positive
K values. Further research is needed to clarify the robustness of varia-
ions in 𝜇K – reconstructed from clinical scanners – possibly associated
ith different pathological processes. In preclinical settings in rat stroke
odels, Alves et al. (2022) , reliably observed in stroke areas large in-

reases in 𝜇K , larger in white matter, and corresponding decreases in
 t . While larger uncertainty in 𝜇K estimations is expected for systems
ith lower D t and 𝜇K ( Henriques et al., 2021c ), whether similar pat-

erns for increases in 𝜇K and decreases in D t have counterbalancing or
ositive/negative effects on the robustness of the 𝜇K to noise in clinical
ystems remains to be investigated by future research. 

In this first effort to translate CTI to a clinical scanner, we used the
TI acquisition scheme based on the minimal number of different gra-
ient waveforms (c.f. Fig. 1 B) proposed by Henriques et al. (2021c) .
owever, for each different gradient waveform, we decided to use a

elatively large number of gradient directions to ensure a high qual-
ty of powder averaged maps (c.f. Fig. 2 C) and consequently a high-
uality CTI reconstruction. This included 60 unique sets of SDE/DDE
irections for each gradient waveform, which were repeated twice with
pposite polarities to minimize cross-terms (using the geometrical aver-
ge; Neeman et al., 1991 ; Lawrenz and Finsterbusch, 2011 ; Ianu ş et al.,
018 ). This led to acquisition times of almost one hour per participant.
e noticed, however, that our CTI reconstructions for the subset of the

ata containing only the “positive ” polarity was qualitatively equal to
he reconstruction from the subset of the data containing only the “neg-
tive ” polarity (c.f. Fig. 7 ). This suggests that lower-order cross-terms
maging effects may be small in our data. Given this information, CTI
cquisition can be accelerated by only acquiring data for a single po-
arity, which will reduce acquisition time by half. Further acceleration
chemes reducing the number of parallel and perpendicular DDE direc-
ions are being developed and will be reported in due course. 

In addition to the main acquisitions for CTI we also acquired data for
2 sets of antiparallel DDE experiments for a total b -value = 2000 s/mm 

2 

o check the fulfillment of the long mixing time regime required for CTI
 Henriques et al., 2020 , 2021b ). As discussed in previous literature ( e.g.

zarslan, 2009 ; Jespersen, 2012 ), the long mixing time regime in theory
s only completely met at infinitely long mixing times ( 𝜏𝑚 → ∞); how-
ver, the CTI acquisitions in practice were performed for 𝜏𝑚 ≈ Δ ≈32
s) for SNR optimization. Given this, checking the fulfillment of the

ong mixing time regime is crucial for this first translation of CTI to a
linical scanner ( Shemesh and Cohen, 2011 ). This can be empirically
one, by checking if data acquired with parallel and antiparallel DDE
cquisitions is identical ( e.g. Jespersen and Buhl, 2011 ; Koch and Fin-
terbusch, 2008 ; Özarslan, 2009 ; Ianu ş et al., 2018; Henriques et al.,
020 ). Fig. 2 D shows that the difference between parallel and perpendic-
lar directions is negligible relative to the data Rician noise floor which
uggests that the long mixing time regime is in practice met, i.e. no ap-
arent time dependent effects as modelled by non-considered DDE cor-
elation tensors Q and S are observed on our data (c.f. Jespersen, 2012 ;
enriques et al., 2020 ). 

.2. Value of separating kurtosis sources using the CTI methodology 

The second objective of this study was to provide the first CTI kur-
osis sources in human brain tissues. The obtained CTI maps showed
onsistent results across subjects ( Fig. 3 ). Particularly, CTI total kurto-
is K t maps show the typical contrast observed by previous DKI stud-
es ( e.g. Jensen et al., 2005 ; Lu et al., 2006 ; Jensen and Helpern 2010 ;
eraart et al., 2013 , Henriques et al., 2015 , 2021a , 2021d ) in which
hite matter regions show higher values than grey matter regions. Both

esults from individual maps ( Fig. 3 A) and group averaged templates
11 
 Fig. 4 A) show that decomposing the total kurtosis into its underlying
ources revealed specific complementary contrasts. For instance, while
 t maps show elevated values in regions where partial volume effects
re expected, such as around the lateral ventricles, and in white matter
egions where diffusion anisotropy is known to be high, the separation
n sources allows to disentangle these different contributions – K iso cap-
ures the high values due to high partial volume effects, while K aniso 
hows the high values related to high microscopic anisotropy. Moreover,
he CTI method enables the evaluation of 𝜇K ( Jespersen et al., 2019 ;
enriques et al., 2020 , 2021c ; Alves et al., 2022 ) – a kurtosis source that

s typically ignored by common microstructural models ( e.g. Jespersen
t al., 2007 ; Kaden et al., 2016 ; Novikov et al., 2018 ) and previous
ulti-dimensional encoding techniques based on the tensor-valued ap-
roach ( e.g. Szczepankiewicz et al., 2015 , Szczepankiewicz et al., 2019a ,
opgaard, 2019 ). More specifically, with the diffusion times adopted in
he current study, positive 𝜇K values were observed both for grey and
hite matter for both individual maps and the group average templates,

uggesting that the kurtosis component arising from non-Gaussian ef-
ects might be ubiquitous in the cerebral tissue. 

Although the main aim of the CTI analysis performed here was to
rovide a general inspection of the different kurtosis sources of human
rains, in this study some regions of interest were arbitrary selected for
 brief assessment of the kurtosis source regional differences ( Figs. 2 A
nd 4 B). For instance, consistent with DKI studies, large K t values were
bserved for the globus pallidus, which are likely a consequence of
ower SNR due to the short T 2 characterizing this structure ( Jensen and
elpern, 2010 ; Glenn et al., 2015 ). The source separation provided by
TI revealed that these large kurtosis values are due to K iso - the metric
hat is expected to capture kurtosis noise biases (as explained above, c.f.
ig. S7). This motivates the use of advanced denoising techniques ( e.g.

ichner et al., 2015 ; Fadnavis et al., 2020 ) and/or different fitting rou-
ines to decouple possible tissue-related effects from noise biases. Higher
alues of K aniso were present in white matter, followed by the regions
f the thalamus and of the globus pallidus, regions that are known to
ontain axonal fibers ( Percheron et al., 1984 ; Byne et al., 2009 ); this
esult is consistent with the high shape variance expected in regions
f white matter, and with previous descriptions of large microscopic
nisotropy values in the human brain white matter ( Lawrenz and Fin-
terbusch, 2015 , 2019 ; Yang et al., 2018 ; Szczepankiewicz et al., 2019a ).
egarding 𝜇K , all of our regions of interest showed values in the range
etween 0 and 0.3. It is important to note, however, that this apparent
ack of 𝜇K variability may be a consequence of the coarse definition of
egions of interest. Indeed, directly inspecting the maps in Fig. 4 A, one
an notice higher 𝜇K values in the cerebellar cortex which is known to
ontain well organized and densely-packed granule cells and bodies of
arge Purkinje cells – interestingly, this result is in line with lower sig-
al decays observed on diffusion data acquired with high b -values and
sotropic encodings ( Tax et al., 2020 ). For a better qualitative inspection
f the 𝜇K regional differences, additional slices of the averaged kurto-
is source maps are presented in supplementary Fig. S8 with adjusted
K colormaps. This figure shows, for example, that 𝜇K values highlight
he higher kurtosis values in the pre-frontal cortex reported on total
urtosis maps from early DKI studies ( e.g. Jensen et al., 2005 ). On the
ther hand, low 𝜇K values can be qualitatively observed in the posi-
ion of well-known white matter tracts such as the lateral projections
f corpus callosum and the corticospinal tracts (note that these white
atter regions are also associated to high K aniso and low K iso , suggest-

ng that observed low 𝜇K values are unlikely explained by large CSF
artial volume effects or low SNR). Although this observation may be
seful to guide future explorations, the reproducibility of these exact re-
ional differences and its biological interpretation is beyond the scope
f this study. However, factors that may theoretically influence 𝜇K are
resented below (see Section 4.4 “𝜇K as a new source of contrast ”). 

In summary, this study shows that disentangling diffusional kurtosis
ources without a priori assumptions on the diffusion mode in the tis-
ue represents an opportunity to enhance specificity in microstructural
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2  
maging and to facilitate the detection of different biological processes
hat may not be visible in conventional DKI due to counterbalancing
ffects on its different sources. In future studies, we expect that sepa-
ating diffusion kurtosis sources may be useful not only on resolving
icrostructural differences across distinct structures of healthy tissue

ut also on the characterization of the biological features of underlying
athophysiology, as already observed for predicting tumour histology
 Szczepankiewicz et al., 2015 , 2016 ; Nilsson et al., 2020 ) and for in-
estigating the mechanisms of the early tissue responses to ischaemia
 Alves et al., 2022 ). Moreover, from the perspective of the biophysical
odelling of the dMRI signals, CTI could play a crucial role for the de-

elopment of dMRI microstructural models: by providing an unbiased
icture of signal features, this technique may help to set the ground
or establishing adequate priors to be adopted in the modelling pro-
ess and provide valid links between the detected signal features and
heir biological underpinnings ( Novikov et al., 2018 ). Moreover, the in-
reasingly available “orthogonal ” diffusion-based contrasts provided by
TI’s protocol may provide better fitting landscapes for microstructural
odelling. Indeed, these aspect have been already explored by previous
DE preparations ( e.g. De Santis et al., 2016 ; Lampinen et al., 2017 ;

espersen et al., 2018 ; Henriques et al., 2019 ; Lampinen et al., 2019 ,
021c , Alexander et al., 2017 ; Dyrby et al., 2018 ; Jespersen, 2018 ), and
hus we expect that CTI provides an important framework to propel ad-
ances on all these fronts. 

.3. Comparison of CTI and MGC-driven approaches 

The third objective of this study was to explore the implications
f ignoring the 𝜇K component in our analysis. One common way to
nalyse multidimensional encoding data (MDE), including DDE acqui-
itions, is to assume that tissues can be represented by multiple Gaus-
ian components, implicitly assuming 𝜇K = 0, and only use the b-tensor
alue encoded information provided by the diffusion preparation. Us-
ng the CTI methodology, our study provides clear evidence for resid-
al non-Gaussian diffusion in the healthy adult human brain (the 𝜇K

omponent, previously referred to as intra-compartmental kurtosis in
espersen et al. (2019) and Henriques et al. (2020) ) - particularly, our
uantitative analysis suggests that 𝜇K accounts for between 8 and 20%
f the total kurtosis ( Fig. 5 ). Consistent with a previous pre-clinical
TI study ( Henriques et al., 2021c ), this study shows that if our DDE
ata is processed using only the MGC approximation and using only the
-tensor value encoding, 𝜇K propagates to other MDE-based estimates
 Fig. 6 ). 

As pointed out in a previous CTI study ( Henriques et al., 2020 ),
DE approaches based on continuous q-trajectory waveforms may be

dvantageous on providing faster acquisitions than CTI. Therefore, in-
ormation provided by CTI may be useful to understand how 𝜇K bi-
ses previous MDE framework and in which conditions these biases can
e minimized. For instance, although in this study we only highlight
ow 𝜇K propagates on the MGC analysis if all data acquired for CTI
s used, it was previously mathematically proved that 𝜇K biases can
e suppressed on MGC K aniso estimates if DDE acquisition with similar
aveforms are used ( Henriques et al., 2021c ); however, with the ex-
ense of higher biases in MGC K iso estimates (corresponding to the sum
f two distinct kurtosis sources 𝐾 

𝑀𝐺𝐶 
𝑖𝑠𝑜 

= 𝐾 

𝑔𝑡 

𝑖𝑠𝑜 
+ 𝜇𝐾 

𝑔 𝑡 ∕2 ). Interestingly,
ur results revealed lower 𝜇K biases on MGC K aniso and K iso estimates
han the biases observed by the previous pre-clinical study reported by
enriques et al. (2021c) . These lower biases can be explained by the

ower 𝜇K measured here, which is likely related to the different diffusion
imes probed in clinical systems (more information about the possible
elationship between 𝜇K and diffusion time probed is discussed below
n Section 4.4 “𝜇K as a new source of contrast ”). The lower 𝜇K biases
bserved in a clinical scanner is also in line with the lower time depen-
ence biases observed by Szczepankiewicz et al. (2019b) , relative to the
re-clinical time dependence biases observed by Jespersen et al. (2019) .
n future studies, CTI experiments can be used to measure 𝜇K biases
12 
n other acquisitions settings (including faster continuous q-trajectory
aveforms) and on other tissue conditions (to note that 𝜇K biases can
e more predominant in pathological tissues, such as in acute lesions
c.f. Alves et al., 2022 )). 

.4. 𝜇K as a new source of contrast 

Importantly, mapping the 𝜇K component, in addition to informing
he frameworks neglecting non-Gaussian diffusion, represents a new
ource of contrast per se . By definition, indeed, the 𝜇K component rep-
esents the residual non-Gaussianity not captured by K aniso and K iso ,
hich our current results suggest being ubiquitous in the human cere-
ral tissue, and, importantly, independent of the SNR spatial distribu-
ion. While the cellular underpinnings of the 𝜇K component remain
o be elucidated by further research combined with histological as-
essments, several distinct phenomena might potentially underlie the
ositive 𝜇K values observed in our maps. For instance, simulations in
lves et al. (2022) , demonstrate that neurite beading leads to posi-

ive 𝜇K values; these findings corroborate and clarify previous exper-
mental observations in Budde and Frank (2010) , and simulations in
kinner et al. (2015) , who observed increases in kurtosis parallel to ax-
ns associated with beading in pathological axons. Variations in calibre
re a physiological feature of axons ( e.g. Dhital et al., 2018 ; Lee et al.,
019 ; Andersson et al., 2020 ), and future studies might investigate their
otential contribution to the observed positive 𝜇K values. Nonetheless,
ther contributors might play a role in the observed positive 𝜇K values,
uch as bi-dimensional disorder in fibre packing ( Burcaw et al., 2015 ),
nd potentially exchange ( Fieremans et al., 2010 ; Nilsson et al., 2013 ;
ing et al., 2018 ; Olesen et al., 2022 ). The interplay of these potential
ontributors in yielding positive 𝜇K values, further enriched in complex-
ty by the larger weights in ensemble 𝜇K of microdomains with larger
iffusivity (c.f. 𝜇𝐾 = 

∑
𝑖 

𝑓 𝑖 𝜇𝐾 𝑖 𝐷 𝑖 ∕ 𝐷 with 𝑓 𝑖 , 𝜇𝐾 𝑖 and 𝐷 𝑖 being the indi-

idual apparent volume fraction, microscopic kurtosis and diffusivities
f different microdomains, Henriques et al., 2020 ), gives rise to a rich
et intricate scenario. In white matter, increasing evidence points to
arger parallel diffusivity in the intra-axonal domain as compared to the
arallel diffusivity in the extra-axonal domain, but the intra- and extra-
xonal domains, however, present with similar diffusion tensor traces
ue to their different radial components ( Jelescu et al., 2020 ); never-
heless this picture is more complex in the grey matter, where exchange
ight be more prominent ( e.g. Olesen et al., 2022 ), and in tissues pre-

enting a mixture of grey matter and myelinated axons, such as several
asal ganglia regions. This scenario, moreover, is further complicated
y the potentially different relaxation times of different compartments,
dding further relative weights 𝑓 𝑖 on the contributions of individual
icrodomains, and thus potentially significantly influencing the overall

oxel-level 𝜇K . In this sense, future studies investigating possible asso-
iations of relaxation properties with microscopic diffusive dynamics or
ncorporating relaxation information in CTI might shed new light on the
urrent findings, and potentially provide valuable information in clin-
cal applications. In summary, in light of such a complex scenario, the
bserved relatively small variations in 𝜇K across histologically distinct
rain regions might arise from different weights of 𝜇K contributors. Nev-
rtheless, the ability to map the 𝜇K component in humans will prompt
ew investigations on the biological basis of 𝜇K , both in health and dis-
ase, where deviations from Gaussian diffusion could have a high value
s biomarker ( Lee et al., 2020b ; Alves et al., 2022 ) . 

So far, in addition to studies directly investigating 𝜇K , insights on
esidual non-Gaussian diffusion mainly come from the works investigat-
ng diffusion and in turn kurtosis time-dependence. However, differently
rom the CTI approach, these require multiple measurements at differ-
nt diffusion times, which can be onerous for clinical scanning. The ob-
ervation of time-dependent diffusion, and in turn of kurtosis, indeed
uggests that at least one tissue compartment exhibits non-Gaussian
iffusion ( Fieremans et al., 2016 ; Novikov et al., 2019 ; Lee et al.,
020a ). Such deviations from Gaussianity are believed to be associated
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ith structural disorder and cross-sectional variance characterizing the
ampled tissue ( Novikov et al., 2014 , see also below), and to be
odulated by exchange effects ( Ianu ş et al., 2021 ; Nilsson et al.,
013 ; Ning et al., 2018 ; Olesen et al., 2022 ). It is important to point
ut that since the length scale of the displacements sensed by the
iffusion encoding depends on the diffusion time ( Δ) adopted (in ad-
ition to the substrate diffusion coefficient), at very long diffusion
imes the 𝜇K component might vanish due to the substrate’s com-
lete coarse-graining. In this situation, diffusion in each non-exchanging
ompartment then averages out and may be described as a Gaussian,
nd thus by a uniform effective diffusion coefficient (for a descrip-
ion of the diffusion phenomenon as a coarse-graining process see
ovikov et al., 2019 ). Conversely, the 𝜇K component is expected to be

ncreasingly important at short diffusion times, a regime at which more
ronounced time-dependency has been observed ( e.g. Fieremans et al.,
016 ; Jespersen et al., 2018 ). This short diffusion time regime is more
asily achieved by high-performance gradients, such as those avail-
ble in preclinical and dedicated human MRI systems ( Aggarwal et al.,
012 ; Kunz et al., 2013 ; McNab et al., 2013b ; Portnoy et al., 2013 ;
ones et al., 2018 ; Fan et al., 2020 ; Lee et al., 2020b ; Henriques et al.,
021c ; Huang et al., 2021 ); moreover, the 𝜇K component might be in-
estigated at different length scales not only by varying the diffusion
ime of pulsed gradient pairs, but also alternatively by using oscillating
aveforms at different frequencies, as done in DODE experiments ( Ianu ş

t al., 2017 , 2018 ; Shemesh, 2018 ), which might shed new light on the
elative weight of 𝜇K at shorter time scales, and ultimately enrich our
nowledge on its variations across multiple length scales. 

Several pieces of evidence both from preclinical and clinical appli-
ations suggest the diagnostic potential of getting insights in such non-
aussian diffusion components. For instance, in the preclinical setting,
apping the 𝜇K component in the rat brain post-ischaemia revealed en-
anced sensitivity to stroke regions and allowed more specific insights
nto cellular mechanisms involved in response to stroke ( Alves et al.,
022 ). In clinical systems, insights into such non-Gaussian diffusion in
he human brain so far mainly come from studies investigating diffusion
nd kurtosis time-dependency. While several studies did not observe
ime-dependent diffusion effects in the in vivo human brain ( Clark et al.,
001 ; Nilsson et al., 2009 ), other studies reported diffusion time-
ependency both for white matter ( Horsfield et al., 1994 ; Baron and
eaulieu, 2014 ; Van et al., 2014 ; Fieremans et al., 2016 ; Lee et al.,
018 , 2020b ; Grussu et al., 2019 ; Arbabi et al., 2020 ) and grey mat-
er ( Baron and Beaulieu, 2014 ; Lee et al., 2020a ). Transverse to axonal
undles, time-dependent diffusion has been observed to report on two-
imensional structural disorder, in turn associated to the extra-axonal
pace packing geometry ( Burcaw et al., 2015 ; Fieremans et al., 2016 ;
ee et al., 2018 ) and to be influenced by variations in axonal calibre, also
eferred to as axonal beading or varicosities ( Ginsburger et al., 2018 ).
long axonal fibers, a stronger diffusion time-dependency has been ob-
erved to follow the power-law proposed in Novikov et al. (2014) for
hort-range disorder ( Fieremans et al., 2016 ; Jespersen et al., 2018 ;
rbabi et al., 2020 ; Lee et al., 2020b ). A link between the observed time-
ependent signal modulations and their biological underpinnings is mo-
ivated by simulations of diffusion in three-dimensional reconstructions
f histology-derived axonal segments, which clarified that the observed
ower-law time-dependency along axons arises in association with ax-
nal varicosities ( Lee et al., 2020b ). Observations for a one-dimensional
tructural disorder power-law time dependency in grey matter, further-
ore, suggest that this might be a universal property of the neural tissue

 Does et al., 2003 ; Novikov et al., 2014 ; Lee et al., 2020a , 2020b ). 

.5. Limitations 

As any study, our work also has several limitations. For our phan-
om validation, we adopted an isotropic homogeneous phantom char-
cterized by Gaussian diffusion. While our results confirm the expected
aussian-only diffusion both in the phantom and in the lateral ventricles
13 
n the brain, the development of realistic phantoms with different levels
f disordered structures mimicking the salient microstructural features
elieved to be associated with the 𝜇K component would be beneficial
nd support the current findings. The development of phantoms is an ac-
ive and crucial branch in the field of the study of microstructure with
MRI ( e.g. Shemesh et al., 2010b ; Shemesh et al., 2012a ; Nilsson et al.,
017 ; Fieremans and Lee, 2018 ; Giménez et al., 2018 ). Several studies
ave used numerical phantoms to investigate dMRI signal modulations
ssociated with non-Gaussianity arising from restrictions or structural
isorder ( Ginsburger et al., 2018 ; Palombo et al., 2018 ; Henriques et al.,
020 ; Lee et al., 2020b , 2020c ; Henriques et al., 2021c ; Alves et al.,
022 ). However, increasing evidence for the accessibility to these micro-
copic disorder features via dMRI should prompt new crucial advance-
ents in the manufacturing of physical phantoms allowing a further

alidation of the multiple kurtosis sources. 
In addition, when performing the demonstrative MNI-space single-

olarity CTI analysis, data were preprocessed considering both polar-
ties. Future studies should investigate further the impact of reducing
he number of directions on the CTI metrics estimation by considering
ccordingly the subset of data in the whole preprocessing stream. 

Furthermore, potential effects of cross-terms with imaging gradients
ave been mitigated by taking the geometrical average of images cor-
esponding to opposite polarities of the diffusion gradients, which how-
ver mitigates only low order effects of cross-terms. Nevertheless, the
nitial observation for qualitatively similar CTI-derived estimates when
omparing geometrically-averaged maps with maps corresponding to
ingle polarities ( Fig. 7 ), together with the observation for expected val-
es in maps derived on our water phantom experiment, suggest that pos-
ible residual uncorrected higher-order effects of cross-terms are likely
o not introduce evident biases in the estimated parameters. 

Another limitation is that the current framework assumes negligible
xchange between tissue microdomains. More specifically, it should be
oted that the microscopic kurtosis is currently estimated as the sub-
raction of the kurtosis arising from isotropic and anisotropic variances
rom the total kurtosis, leaving thus the possibility of exchange as a
otential contributor. In other words, when two components (even if
aussian) are exchanging in the time-scale of the diffusion experiment

diffusion time, mixing time in the case of CTI), then the total kurto-
is and the Z-tensor will exhibit different terms associated with the ex-
hange rates ( Ning et al., 2018 ). On subtraction, the difference between
hese terms can generate a finite exchange-driven microscopic kurtosis.
hus, in principle, the microscopic kurtosis contrast could reflect kurto-
is arising from microstructural geometry properties ( e.g. cross sectional
ariance), exchange, or a combination of both ( Olesen et al., 2022 ). Fu-
ure studies should thus be designed to further disentangle these two
ffects and investigate more deeply the biological underpinnings of 𝜇K

n the human brain. Nevertheless, separating the kurtosis arising from
icroscopic sources and variance in tensor magnitude and anisotropy is

xpected to be highly useful even before all the specific underpinnings
re fully resolved (c.f. the sensitivity of microscopic kurtosis contrast in
troke). 

. Conclusions 

This work demonstrates the translation of the CTI methodology from
he preclinical to the clinical MRI setting, prompted by the increasing
vidence suggesting the relevance of non-Gaussian diffusion in the char-
cterization of the human brain microstructure. While non-Gaussian ef-
ects have been typically investigated by varying diffusion times, making
uch acquisitions potentially long and impractical, the CTI methodol-
gy offers a more practical alternative which has the potential to be
urther optimized for clinical applications. Mapping the microscopic
urtosis in human brain tissue for the first time revealed that, while
ntil now commonly neglected, this component is non-vanishing. Con-
istent with this, we show that ignoring microscopic kurtosis affects the
stimation of the other kurtosis components. The possibility of mapping
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icroscopic kurtosis in humans opens an intriguing new window on mi-
roscopic tissue features of great clinical and neuroscientific interest. 
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