
UNIVERSITÀ DEGLI STUDI DI TRENTO

INTERNATIONAL DOCTORATE SCHOOL IN INFORMATION AND COMMUNICATION
TECHNOLOGIES

XXIII CYCLE – 2012

Parametric Real-Time System Feasibility Analysis Using
Parametric Timed Automata

Yusi Ramadian

UNIVERSITÀ DEGLI STUDI DI TRENTO

INTERNATIONAL DOCTORATE SCHOOL IN INFORMATION AND COMMUNICATION
TECHNOLOGIES

XXIII CICLO - 2012

Yusi Ramadian

Parametric Real-Time System Feasibility Analysis Using
Parametric Timed Automata

Luigi Palopoli (Advisor)
Alessandro Cimatti (Co-Advisor)

Thesis Committee
Marco Di Natale
Gianluca Dini

AUTHOR’S ADDRESS:
Yusi Ramadian
Dipartimento di Ingineeria e Scienza dell’Informazione
Università degli Studi di Trento
via Sommarive 14, I-38050 Povo di Trento, Italy
E-MAIL: yusi.ramadian@disi.unitn.it
WWW: http://disi.unitn.it/users/yusi.ramadian

Abstract

Real-time applications are playing an increasingly significant role in our life. The cost and risk involved
in their design leads to the need for a correct and robust modelling of the system before its deployment.
Many approaches have been proposed to verify the schedulability of real-time task system. A frequent
limitation is that they force the task activation to restrictive patterns (e.g. periodic). Furthermore, the
type of analysis carried out by the real-time scheduling theory relies on restrictive assumptions that
could make the designers miss important optimization opportunities. On the other hand, the application
of formal methods for verification of timed systems typically produces a yes/no answer that does not
suggest any correction action or robustness margins of a given design.

This work proposes an approach to combine the benefits of formal method in terms of flexibility with
the production of a clear feedback for the designers. The key idea is to use parametric timed automata
to enable the definition of flexible task activation patterns. The Parametric Verification of Temporal
Properties (PTVP) algorithm proposed in this work produces a region of feasible parameters for real-
time system. All the parameter valuation within this region is guaranteed to make the system respect
the desired temporal behaviour. In this way developers are provided with a richer information than the
simple feasibility of a given design choice.

This method uses symbolic model checking technique to produce the result that is a union of poly-
hedral regions in the parameter space associated with feasible parameters. It is implemented in the tool
Quinq that is based on NuSMV3. The tool also implemented an optimization to speed up the search,
such as using non-parametric model checker to find counterexamples (i.e. traces) related to the unfeasi-
ble choices of parameters.

Two applications of the tool and of the underlying method to several real-time system examples are
presented in this dissertation : periodic real-time system tasks with offset and heterogeneous distributed
real-time systems. A work that applies the tool in collaboration with another real-time system analy-
sis tool, Modular Performance Analysis Toolbox, is also presented to show one of the many possible
application of the method presented in this work.

In this work we also compare our approach to the state of the art in the field of sensitivity analysis
of real-time systems. However, compared to the other tools and approaches in this field, the method
offered in this work presents unique advantages in the generality of the system modelling approach and
the possibility to analyse the entire region of feasibility of any desired parameter in the system.

Keywords

Formal method, real-time system, temporal verification, scheduling verification.

i

Acknowledgments

Bismillah hir Rahman nir Rahim, Alhamdulillah hi Rabbil Alameen, Praise be to Allah Almighty who al-
ways provide me with everything more than I have ever asked to bring this PhD research and dissertation
into completion.

For this PhD research I am deeply indebted to my supervisors, Luigi Palopoli and Alessandro Cimatti,
who always have their faith in me and my thesis work and always been very supportive and helpful.
They always provided me with fresh ideas of new directions and knowledge I needed for every obstacles
I found throughout the research. I also appreciate all the moral supports they provided which play
important role for me to conclude this work.

During the implementation I got significant supports by everyone in NuSMV developer team of
Fondazione Bruno Kessler. Sergio Mover in particular has provided significant helps towards the hybrid
extension of the work in the end. MathSAT developer, Alberto Griggio, has contributed his help through
MathSAT tool since the beginning phase of this work up to the end with the additional existelim tool. I
would also like to thank Alena Simalatsar and Roberto Passerone for the collaboration work we had.

All my love and forever gratitude to my beloved parents, Dra. Psi. Nurdiah Tedjowati and Farid
Luthfi, M.M, who had given me never ending care, encouragement and support all the time that has
enabled me to reach this point in my life. For my siblings, Reza Rahardian, Faddy Ardian, Denia Farah-
dian. I would also like to thank very much my dearest husband, Tizar Rizano, for his support all along
this PhD program. I could not be anything I am now without them.

Last, I hope that the work in this thesis will be of value and be my contribution for the knowledge in
general.

Trento, April 24th 2012
Yusi Ramadian

ii

Contents

Abstract i

Acknowledgements ii

1 Introduction 1
1.1 Problem Description . 1
1.2 Solution Overview . 2
1.3 Research Contribution . 2
1.4 Structure of the Thesis . 3

2 Real–time Design Challenges 4
2.1 Real–Time System . 4

2.1.1 Terminologies and Definitions . 7
2.2 Schedulability area problem formulation . 12

2.2.1 General Problem Formalization . 13
2.3 Example Scenarios . 14
2.4 Challenges . 18

3 Background Knowledge 20
3.1 Satisfiability Modulo Theory . 20

3.1.1 Logic Terms . 20
3.1.2 Satisfiability Modulo Theory . 21
3.1.3 Bounded Model Checking . 22
3.1.4 Tools . 23

3.2 Timed Automata . 24
3.2.1 Timed Automata Formal Notation . 24
3.2.2 Timed Automata Verification in NuSMV . 27

3.3 Formal verification for task scheduling feasibility . 32
3.3.1 The Task Activation Automata . 33
3.3.2 The Scheduler Automata . 33
3.3.3 NuSMV implementation of timed automata verification 35
3.3.4 Sensitivity Analysis . 37

4 Real–Time System Sensitivity Analysis on Parametric Timed Automata 38
4.1 Parametric Timed Automata . 38
4.2 Modelling real–time system in PTA . 41

iii

CONTENTS iv

4.3 Sensitivity analysis using PTA . 42
4.3.1 Parametric Verification of Temporal Properties (PTVP) algorithm 42
4.3.2 Algorithm termination guarantee for periodic task sets 44

4.4 Symbolic implementation . 46

5 Quinq Tool 49
5.1 Design of the tool - an overview . 49

5.1.1 General Architecture . 49
5.1.2 Components . 51

5.2 Specification Language . 53
5.2.1 SMV Language . 54
5.2.2 UPPAAL language . 54
5.2.3 High level modelling of periodic system . 55
5.2.4 Input language discussion . 56

5.3 PTVP Algorithm Implementation . 57
5.3.1 Error trace search . 58
5.3.2 Sensitivity analysis . 63
5.3.3 Iterative schedulability analysis for periodic tasks 72

6 Application Examples 73
6.1 Standard Periodic Case . 73

6.1.1 Simple task set . 73
6.1.2 Large task set . 74

6.2 Arbitrary real–time system case . 75
6.2.1 System description . 75
6.2.2 System modelling . 77
6.2.3 Example result . 80
6.2.4 Example search optimization result . 83
6.2.5 Discussion . 83

7 MPA PTA 89
7.1 Motivation . 89
7.2 Real–Time Calculus . 90
7.3 System modelling . 91

7.3.1 From RTC-curves to event emitting PTA . 92
7.3.2 Generalized scheduler model . 94

7.4 Example case . 95
7.5 Discussion . 96

8 State of the Art 98
8.1 Schedulability analysis . 98
8.2 Sensitivity Analysis . 99

8.2.1 Analytical approach . 99
8.2.2 Sensitivity Analysis Tools . 100
8.2.3 Modeling and Analysis Suite for Real-Time Applications (MAST) 100
8.2.4 SMART . 101

CONTENTS v

8.2.5 Imitator . 102

9 Conclusion and Future Work 105
9.1 Conclusion . 105
9.2 Future Work . 106

A Quinq Usage 112
A.1 Sensitivity add-on . 112

A.1.1 Input . 112
A.1.2 Functions . 112

A.2 Periodic real–time system automatic schedulability analysis 115
A.2.1 Input model . 115
A.2.2 Schedulability analysis for periodic case . 116

A.3 UPPAAL - NuSMV plugin . 117
A.3.1 UPPAAL model for template for NuSMV . 117
A.3.2 Schedulability analysis with optimized search 118

A.4 Features . 119
A.4.1 Drawing plugin . 119

List of Tables

5.1 Mapping between components and functionalities in Quinq 54

6.1 The configuration of an example large periodic task system of 10 tasks with 5 parameters 76
6.2 Fixed parameter values in the two experiments . 80

vi

List of Figures

2.1 The design process of correct design . 5
2.2 Figurative description of real-time job characteristic [31] 8
2.3 The example of task with complex activation pattern 9
2.4 The different states of a task . 12
2.5 The example of the feasibility regionR . 13
2.6 Feasibility regions of Scenario 1, Use case 1,in the domain of C1 and C2 for different

values of O2 . 15
2.7 In the upper figure the system will fail using O1 = O2 = 0, while in lower figure the

system will succeed using O1 = 5 and O2 = 1 . 15
2.8 Regions of feasibility in the domain of O1 and O2 for Scenario 1, Use case 2. 16
2.9 Heterogeneous Communication System (HCS) . 17
2.10 Audio feasibility and error regions for ∆ = 0, 3, 5, 7. 18
2.11 Schedulability region of system . 19

3.1 A simple description on SMT solving schema . 22
3.2 TA1, an example of a task activation automata to be encoded in NuSMV. 24
3.3 A timed automata to be encoded in composition with TA1 26
3.4 An example of a periodic task activation automata . 33
3.5 The example of task activation and scheduler automata for 2 tasks 36

4.1 Example of parametric timed automata: tasks activation 39
4.2 Example of parametric timed automata: schedulability checker automata for task τ2

(SC2) (right) . 39
4.3 Task activation automata for periodic tasks . 44
4.4 Example run of the algorithm . 45
4.5 The feasibility region of the problem in 3D plot of C1, C2 and O2 46

5.1 General architecture of Quinq . 50
5.2 The flow of designing input model using UPPAAL model. 55
5.3 Component interactions in performing feasibility analysis implementation for one file

model. 58
5.4 A flow for the feasibility analysis implementation for one process in sensitivity add-on. . 59
5.5 A template of implementation using parametric and non-parametric model checker as

black box . 61
5.6 A flow for interaction between UPPAAL and NuSMV for the search optimization scheme. 62

vii

LIST OF FIGURES viii

5.7 A flow for parameter projection from the symbolic model and trace in sensitivity analysis
phase. 63

5.8 Phases in constrains processing and after processing. 68
5.9 A flow for the feasibility analysis implementation for n- processes. 72

6.1 Feasibility regions in the domain of C1 and C2 for different values of O2 74
6.2 Regions of feasibility in the domain of O1 and O2. 75
6.3 Feasibility regions in the domain of C1 and C2 for different values of C3 77
6.4 Heterogeneous Communication System (HCS) . 78
6.5 Time sequence diagram of message exchanged between master and slave to achieve clock

synchronization . 79
6.6 Logical model of HCS . 80
6.7 PTP and audio task activation automata . 81
6.8 Schedulability checker for PTP packets . 82
6.9 Schedulability checker for audio packets (hard deadline) 83
6.10 Schedulability checker for audio packets (firm deadline) 84
6.11 Audio feasibility and error regions for ∆ = 0, 3, 5, 7 in Experiment 1 85
6.12 Audio feasibility and error regions for ∆ = 0, 3, 5, 7 in Experiment 2 86
6.13 The PTP feasibility and error regions in two experiments 87
6.14 Comparison of regions found using Quinq with BMC search trace and search optimiza-

tion method using UPPAAL . 88

7.1 Upper and lower (staircase) arrival curves . 92
7.2 Overview of analysis approach . 93
7.3 Observer UTA . 94
7.4 TA-based implementation of RTC-based curves . 94
7.5 Generalized Scheduler Model . 95
7.6 Analysed System . 96
7.7 Schedulability region . 97

Chapter 1

Introduction

1.1 Problem Description

Real-time applications are increasingly popular especially in industrial control, and in the automotive
domain. A significant example is offered by Anti-Lock Brake System in a car (ABS). In this case, a
computation activity (henceforth called task) triggered by an event has to release the brake within a
certain time limit before the wheel is locked by the braking action. Therefore, the application has to
ensure that its function is carried out within its deadline. Applications like this are now commonplace
and play important roles in our everyday life.

Designing a real-time application is to be regarded as a challenging activity. Indeed, not only has the
programmer has to take care of the correctness of the project, but he/she has also to make sure that the
application will meet its timing requirements and generally speaking will comply with its non functional
requirements.

Traditional approaches to real-time applications design were based on extensive prototyping activi-
ties. An evident drawback is that the costs may be unaffordable, while the safety standard remain very
low (a sufficient coverage of all possible situations is very difficult to achieve). More importantly, if
a system malfunctioning is detected, the developer is provided with small or no feedback information
at all to change the design. Therefore, these approaches generate over-commitment of the application
producers with respect to a specific hardware vendor. Indeed, evaluating different hardware choices by
hand-crafting prototypes is far too expensive. After a very demanding tailoring has been done on a
specific hardware, the management develops a natural reluctance toward porting the whole package to a
different platform.

To overcome the limitations of these blind-folded approaches there is a widespread agreement on
facing problems at the highest possible level of abstraction. In the early phases of the development the
developer should be able to: 1)identify potential timing faults before prototyping the system, 2) evaluate
different hardware and software alternatives, 3) have a clear assessment of possible actions to be taken
in response to a problem (e.g., simplifying some computations to reduce their resource requirements). In
the recent years there have been different proposals for design methodologies that go along this direction.
It is worth citing the so-called platform based approaches [17, 48]. The core of these methodologies is
the adoption of Computer Aided Design (CAD) tools that aid the developer with such activities as code
generation, system level simulation and timing analysis.

In particular, the work presented in this dissertation deals with timing analysis based on verification
tools. In this field, there has been an extensive research work that produced both academic results and

1

1.2. SOLUTION OVERVIEW 2

industrial tools. Reference [54] gives a complete overview of the state of the art in this domain. However,
most of the available tools suffer two major limitations :

1. Strong assumptions on the activation patterns of the real-time activities: some of these tools con-
sider worst case activation patterns (e.g., periodically spaced out activations) that maximize the
system workload, but could be overly conservative for the specific problem at hand.

2. Provides no or limited feedback to the developer: most of the available verifiers decide whether
a set of real-time tasks meets its deadlines. The result only applies to a specific choice of the
design parameters. If the developer changes something in the design, a new verification process
is required. Conversely, if the result of the verification is negative, the developer does not receive
any feedback on the parameters to be changed.

On recent tools, given a specific choice of the design parameter as reference input values, some
sensitivity analysis feedback can be performed, resulting into the computation of the tolerance
(slacks) in which some parameter can change while preserving the validity of certain temporal
properties. However, these tools heavily relying on the initial input value provided by the user or
consider very specific conservative situations.

In contrast, the method proposed in this thesis is able to handle flexible activation patterns without making
restrictive assumptions. Moreover, it provides the information of the entire region in the parameter space
for which the verification yields negative or positive results without relying on any reference input value.
The possible uses of this information are very many. For instance, if a specific implementation belongs
to the region of feasible parameters, then it is possible to gauge the robustness of the solution (e.g., how
much can one vary the parameters without compromising the feasibility). On the contrary, if a design is
evaluated as infeasible the designer knows which parameters should be changed. Finally, we can explore
alternative solutions for the hardware implementation that achieve feasibility.

1.2 Solution Overview

In this dissertation, we advocate the use of Parametric Timed Automata (PTA) to model real–time sys-
tems. This approach allows us to represent a parametric real–time system retaining a large level of
freedom on the specification of the activation and of the interaction patterns of the different tasks in
the system. In this setting, the violation of temporal properties is encoded as a reachability problem of
one or more undesired locations. For this problem, we develop an algorithmic solution, the Parametric
Verification of Temporal Properties (PTVP) algorithm, that used a symbolic model checker to derive
linear constraints for the task parameters that solve the reachability problem. The obtained linear con-
straints are then used to construct the infeasible region of parameter space and subsequently provide us
with the feasibility region of the system. This idea is implemented in a tool, Quinq, that is based on
the NuSMV [22] model checker. The tool offers a variety of possible options for modelling the system,
which we display in their application to a set of meaningful case studies.

1.3 Research Contribution

The contributions we made during our PhD research are the following:

• Establishing parametric timed automata as a powerful and promising means to represent paramet-
ric real–time system

1.4. STRUCTURE OF THE THESIS 3

• Setting up a methodology, based on PTVP algorithm, which enables an effective computation of a
region of parameters that respect some required properties;

• Implementation of the complete method in the tool Quinq

• Application of the method and using the tool in several case problems : periodic task system [21],
heterogeneous system [39], and in collaboration with Modular Performance Analysis Toolbox
(MPA) [53].

The application of the methodology defined in this thesis to a set of case studies is a result of the
collaboration with different authors. In particular, the application to heterogeneous and distributed real–
time systems is a result of the collaboration with Hoa Le and Roberto Passerone. The connection between
PTA and MPA is the result of the collaboration with Alena Simalatsar and Roberto Passerone, and MPA
developers: Kai Lampka, Simon Perathoner, and Lothar Thiele.

1.4 Structure of the Thesis

This thesis is organised as follows:

Chapter 2 We introduce the basic definitions and terminology that we will use for real–time systems
and for their design cycle. We then formalise the problem that we will target during the rest of
the thesis. In the interest of clarity, we also introduce some application scenarios that will guide
as through the course of the thesis as running examples. Finally, we spell out the most relevant
research challenges addressed by the thesis.

Chapter 3 We offer an overview of the background knowledge that we used as the foundation of our
work in this PhD dissertation.

Chapter 4 The parametric timed automata (PTA) model that will be the cornerstone of our thesis is
introduced here. The analysis method that is used to check the parametric feasibility of a real–time
system presented using PTA, our PTVP algorithm, is outlined in its main conceptual components.

Chapter 5 We analyse in detail the general architecture, and the different components required by the
PTVP algorithm and by its implementation in the Quinq tool.

Chapter 6 We present two example applications of the tool: analysis of real–time periodic task sets
with offsets and analysis of a distributed real–time system with flexible real–time constraints.

Chapter 7: the interaction of the tool with MPA is presented here as a paradigm of possible synergies
with existing tools.

Chapter 8 Describes the related work on the verification of real–time systems with a particular focus
on the tools and methodologies that carry out some form of parametric analysis.

Chapter 9 We offer our conclusion hinting to possible future developments and extensions of the ap-
proach.

Chapter 2

Real–time Design Challenges

2.1 Real–Time System

In a real–time system, the correctness of the results heavily relies on its timing performance. A failure
in delivering the result within a specified temporal constraint (deadline) will make it useless in spite of
its correctness. The ability for a system to meet its temporal deadlines largely depends on how shared
resource are scheduled when more than one task compete for their access. For this reason, we will use
the term schedulability to refer to the ability for the system to comply with its timing constraints for a
given scheduling policy.

Real-time systems are pervasively present in our daily life. The range of their applications extends
from the menial system to such critical systems as the anti-lock braking system (ABS) of the automobiles.
Despite their pervasiveness, they often go unnoticed: as long as no violation of their required behaviour
occurs, we will always have seamless systems in our hands.

The importance of correct real–time system

1. Safety Consideration

Examples of safety critical real–time systems are the control system of cars (e.g., the fuel injection
control, the ABS, the ESP) and of aircrafts, where a control system supervises the landing and take
off process. For these systems, it is important that not even a single deadline is missed, as people
safety depends on the correctness of the timing behaviour.

2. Manufacturing consideration

The embedded systems are usually mass-manufactured to reduce the production cost to the min-
imum. A failure of a system that is only detected after the manufacture completes will cause a
massive recall of the product, which determines potentially relevant economic losses. For this
reason it has to be guaranteed that the system is correct by design before going into production.

Current real–time system are increasingly variable in their behaviour and have to meet changing
environmental constraints. Indeed, at run time, there can be many factors from the environment affecting
the system. For this reason, some assumptions that have been made at design time might be violated
during the system execution. In this case, the system is required to maintain its functional correctness
and the timely delivery of the result. In other words, modern applications are required to be robust across
a wide range of operating conditions. In this context, a correct real–time system design flow is one that
guarantees both the correctness and the robustness of its final outcome.

4

2.1. REAL–TIME SYSTEM 5

Figure 2.1: The design process of correct design

Designing Real-Time System

The methodology we envisage to achieve the goals discussed above is illustrated in Figure 2.1. The
development process could be divided to the following two parts:

1. Designing and modelling

In designing real–time systems we start from the functional specification of what the system will
do. This functional specification then will be implemented through functional design and archi-
tectural design. Functional design specifies subfunctions which, in their interaction, will deliver
the functionality. The architectural design specifies the hardware architecture and software infras-
tructure that will be used for the real–time system. Based on the two designs, the subfunctions will
be then mapped to real–time tasks making up the real–time system implementation. The mapped
real–time system model has to capture the following aspects:

(a) The activation pattern : How we generate the activation of jobs of the system subfunctions?

(b) The timing properties : When can we consider a system as correct?

2.1. REAL–TIME SYSTEM 6

(c) The scheduling algorithm : How we would schedule the execution of each subfunction when
they compete for the same resource?

2. Robustness evaluation and parameter tuning

After constructing a model of the real–time tasks system, the next step is to asses its schedulability
and robustness. In general, the designers need to do the following :

(a) Assign values for the quantities that fall within the designer control but that are not forced to
take a pre-assigned value.

(b) Evaluate the system robustness with respect to the quantities that are not under control.

Generally speaking, the model of the system comprises a set of design parameters. These variables
come from their activation pattern and timing properties of the tasks. For periodic tasks with
offsets, design parameters the task periods, the deadline, the computation time and the offset time.
Some of these parameters are under our control, some others are already fixed as they are dictated
by the choices in the architecture design (e.g., the computation time). From the environment
we will also have exogenous parameters, that is the external factors that will affect our system
during the runtime. For example in a case where an aperiodic task is triggered by an event in the
environment, the inter-arrival time between two adjacent events can be considered as an exogenous
parameter.

Generally speaking, the correctness of a real–time system is evaluated on the ground of its ability to
respect certain properties that derive from its functional and architectural design, first and foremost
its schedulability. Therefore, designers are confronted with the problem of assigning the free
parameters so that the desired properties are fulfilled and that the robustness of the system against
possible variations of the uncontrollable parameters is maximised.

This leads us to the problem of Parametric Feasibility Analysis, which is the main objective of this
work. In our view, the system is a multi–dimensional object, where each parameter is associated
with a different dimension. In this context, performing Parametric Feasibility Analysis amounts
to finding the region in in the multi dimensional space of the parameters such that every point in
the region corresponds to an instantiation of the system that respects the required properties. We
will refer to this region as the feasibility region. This region will support the designer in tuning the
parameter towards the desired level of robustness, leading him/her to the design of a correct and
robust real–time system.

What this thesis is about and what is not

To further clarify what we mean, it is useful to mention several possible queries a designers may raise in
the design process. Among the several possible queries one might want to address in this first phase of
the design are the following:

• Should single or multiple processors be used for the system?

• What priority should we assign to each tasks?

• Is it be possible to have the system distributed in several devices that then communicate?

• Is it possible to guarantee the integrity of data and bounded delays when tasks share resources?

2.1. REAL–TIME SYSTEM 7

This type of queries are important to map the functionalities correctly and as efficiently as possible
according to the available hardware and software infrastructure. However, they are out of the scope of
our thesis. Next, after the mapping of the system, we will need to assess the robustness of the system.
We will encounter queries on robustness of the system, such as:

• How much could the computation of a task (or multiple tasks) can be stretched without affecting
the system schedulability?

• With a distributed scheme is it possible to guarantee that the communication between the parts will
respect certain timing latency criteria?

• Would it be possible for us to add one or several new tasks without affecting the system schedula-
bility?

• How badly would such introduction of new tasks affect the robustness of the system?

• How could we tweak the offset to make the system schedulable?

Queries on robustness like these are the types of queries related to parametric analysis of the system.
To answer queries such as Could we tweak into the offset to make the system schedulable? for example,
we need to introduce the offset of the system tasks as parameters. That way in the parameter analysis of
the offset we would be able to see which offset valuation would make the system schedulable. This is
the kind of queries that we are interested in.

2.1.1 Terminologies and Definitions

In this section we introduce some basic terminologies and a set of definitions that we will use throughout
our discussion.

Task model

A real-time systems S is in our framework defined as a set of computing activities, henceforth referred
to as tasks. A task or process is an entity of computation executed by an operating system. A real–time
system consists of several tasks. For a generic task we will use the symbol τi, hence

S = {τ1, τ2, . . . , τn} .

Activation pattern

Each task τi is characterised by an activation pattern, a certain designed relative deadlineDi, and a worst
case execution time Ci. A task τi generates a possibly infinite stream of jobs Ji, 1, Ji, 2, Each job
Ji, 1 is characterised by [31]:

1. arrival time ai, j : the time when the job is activated or released so that it is ready for execution

2. start time si, j : the time when the job is actually started being executed

3. finishing time fi, j : the time when the job finishes its execution

4. absolute deadline di, j = ai, j + Di : the limit time before which the job must have finished its
execution.

2.1. REAL–TIME SYSTEM 8

Figure 2.2: Figurative description of real-time job characteristic [31]

There’s also the notion of slack time slacki = di−ai−Ci : the maximum time a task can be delayed
on its activation to complete within its deadline.

An activation pattern is a rule to generate the sequence of ai j . Possible examples of activation
patterns are:

Periodic the sequence is constructed as follows:

ai, j = φi if j = 0
ai, j = ai, j−1 + Ti if j > 0.

In this case Ti is said period and φi is said offset.

Sporadic the sequence is constructed as follows:

ai, j = φi if j = 0
ai, j ≥ ai, j−1 + Ti if j > 0.

In this case Ti is said minimum inter-arrival time and φi is said offset.

In this work we will more generally consider an activation pattern driven by a timed-automata that we
will specify in the next chapter. This is because in reality there are a lot more possibilities in activation
patterns than the few just introduced. An example of a complex activation pattern task is given in fig-
ure 2.3. We will enter into the details of the timed automata modelling later on. For the moment being,
it suffices to say that this figure describes a task which is first activated after an offset time O1 and then
after period Q2. Afterwards, non-deterministically, it could either wait for an event or for time Q1 to be
activated, before waiting for the period of Q2 again.

From this simple example, we can easily see that periodic and sporadic patterns are special cases of
timed automata driven activation.

Timing Properties

Real–time tasks can be further classified according to the criticality of their timing constraints. In partic-
ular, we can introduce the following taxonomy of timing constraints:

1. Hard deadlines

An hard deadline requires that all for all the jobs Ji, j activated by task τi we have fi, j ≤ di, j . A
violation to any of these constraints, will cause fatal consequences on the system.

2.1. REAL–TIME SYSTEM 9

Wait_for_
time_Q2
clock <= Q2

1
clock = O1
clock := 0

Wait_for_
offset

clock <= O1

1
clock = Q1
clock := 0

2
clock = Q2
clock := 0

Wait_for_
time_Q1
clock <= Q1

3
clock := 0

Wait_for_
event

2
clock = Q2
clock := 0

Figure 2.3: The example of task with complex activation pattern

2. Soft deadlines

For a soft deadline, some failures can be tolerated up to certain extent. The completion after a
deadline decreases the task performance, however it does not entail serious harm to the system.
System such as in-flight entertainment system have this characteristic. The overall performance
of the audio or video could get poorer on cases where some deadlines are missed, but this will
not bring serious effects to the safety of the passengers. The respect of a soft deadline can be
measured in probabilistic terms. This opens up the possibility of providing probabilistic real–time
guarantees. We can require that the probability of respecting the deadline be grater than a specified
value, Prob(fi, j ≤ di, j) > µ, meaning that the percentage of possible deadline failures in the task
execution will be bounded by µ. This marks a big difference between a soft real–time task and
a best effort task, for which no guarantee whatsoever is offered on the timing performance of the
system [16].

3. Firm deadlines

As in the case of soft deadlines, some failures are tolerated for a firm deadline. However, the re-
quired temporal guarantees are expressed in a deterministic fashion. Instead of using probability,
the failure measurement can be expressed as the maximum number of deadlines that can be vio-
lated consecutively until the system is deemed failed. For example, a system could tolerate up to
two consecutive missing deadline events, retaining its functionality in spite of a decreased perfor-
mance. However, if more than two consecutive deadlines are missed the system will no longer be
functioning properly. We categorise this type of constraints as firm deadlines [43].

Interaction between tasks

Two types of interactions are possible between the tasks of a real–time system:

1. Precedence constraints

2.1. REAL–TIME SYSTEM 10

Some systems require that a job of a task can be activated only after another job of another task
terminates. This could happen because a task needs the output of another task as its input. This
type of precedence relation is usually described through a directed acyclic graph (DAG).

2. Resource constraints

Some tasks require, for their execution, access to mutually exclusive shared resources. This type
of access is usually supported by appropriate primitives of the Operating System such as mutex
region, or semaphores. These shared resources could be a data structure, set of variables, memory
area, or set of registers. The access to mutually exclusive resource requires a blocked state for the
tasks. The presence of a blocked state is important for the real–time performance of the system
since it potentially introduces priority inversion [49]: a situation where a real–time task can be
delayed for an arbitrarily long time by tasks having a smaller priority.

We define a real–time system as composed of independent tasks if all of its tasks have neither prece-
dence constraints nor resource constraints. Most of the application that we will discuss in this thesis
cover systems with independent tasks. However, our methodology allows for modelling certain types of
precedence constraints between the tasks.

Schedulability of Real–Time System

Because tasks in a real–time systems are allowed to have overlapping execution requests that can exceed
the number of available processing units, a scheduling policy is required. A scheduling policy is a set of
rules whereby the operating system decides, for any point in time, which of the competing tasks should
be granted the access to the processing unit. A scheduling algorithm is the algorithmic translation of a
scheduling policy. A schedule is an assignment of tasks to the processor such that each task is executed
until completion.

As we are mostly focusing on the feasibility of hard real–time systems, the key property of interest
is the following:

Definition 2.1. A task τi is said to be hard real–time schedulable if for all activation patterns of the tasks
in the system and for all the jobs Ji, j , we have fi, j ≤ di, j . The system S is schedulable if all tasks are
hard real–time schedulable.

The problem in every real-time system is how to arrange all the real-time tasks involved in a schedule
so that the system is schedulable. In the rest of the thesis we will use the terms schedulable and feasible
interchangeably most of the times since schedulability will be the focal point of our interest. In some
limited cases we will consider the combination of schedulability with other property of interests. In
this case the term feasibility will take a broader meaning, but this will be clear in the context of the
discussion. Further, unless specified otherwise, when we are discussing about schedulability, we refer to
the schedulability in hard real–time sense.

In a real–time systems compounded of independent tasks, a task τi might be not schedulable for the
following reasons:

1. the task execution requirements exceed the power of the CPU, e.g., ∃j such that ai,j + Ci ≥ di, j .

2. the task undergoes scheduling a high scheduling interference from higher priority tasks (by schedul-
ing interference me mean the interval of time the task is delayed to accommodate the execution of
higher priority tasks).

2.1. REAL–TIME SYSTEM 11

When tasks interact, a task’s schedulability could be affected by the blocking time on shared resources.
In a firm real–time system, the schedulability property can be defined as follows :

Definition 2.2. A task τi is said to be firm real–time schedulable if, for all activation patterns of the tasks
in the system, given n adjacent activations Ji, j we have at most m times of fi, j > di, j . The system S is
schedulable if all tasks are firm real–time schedulable.

Scheduling algorithm

Central for the attainment of the schedulability properties is the selection of the most appropriate schedul-
ing algorithm. Different families of scheduling algorithms can be identified using the following classifi-
cation [31]:

1. non preemptive: the scheduling algorithm is not allowed to interrupt the execution of a task: once
it is assigned the CPU the task runs to the completion of the job;

2. preemptive : an executing task can be interrupted to yield the processor to another active task that,
in that specific moment, has gained a higher priority;

3. static: all parameters (including the scheduling priority) are assigned to tasks before their activa-
tion;

4. dynamic: the task parameters can be changed during its execution; therefore a task can have its
priority raised or decreased in different moments;

5. offline: the schedule is decided before the task activation;

6. online: scheduling decisions are taken at at run-time

The policy to decide changes in the task scheduling priority is deeply influenced by the scheduling
algorithm. For instance, if jobs have a long duration, the choice of a non-preemptive and on-line policy
virtually nullifies the assignment of priorities. For online algorithms with static parameters the rate
monotonic assignment (i.e.., priority growing with the activation rate) is known to be optimal if the tasks
are activated periodically and if deadlines are equal to the period [42].

Task states

The presence of a scheduler requires to associate a task with a state. The possible states are the following:

1. active: a task that can potentially be executed

2. ready : a task waiting for the processor availability

3. running: a task in execution

The possible transitions between these different states are shown in Figure 2.4. First from being inactive
a task will be activated when an appropriate event is triggered. After its activation, the task will be in
Ready state, awaiting to be scheduled by the scheduler. Upon being scheduled, the task will migrate
into the Running state. At this point, it could either execute until completion or, in case of preemption,
it could go back into the Ready state. In case the task needs for its execution a shared resource that is
locked by some other tasks, it moves to the Waiting state until the resource is available. Afterwards, its
state will shift to the Ready state again until it is scheduled to be executed.

2.2. SCHEDULABILITY AREA PROBLEM FORMULATION 12

Figure 2.4: The different states of a task

2.2 Schedulability area problem formulation

We are now in condition to formally state the problem addressed in this thesis. First, we need to define
design variables and parameters.

Design variables and parameters

As mentioned above, each task in an application can be associated with a set of parameters. Part of them
are ground to a fixed value by prior design choice (e.g., the activation time of a control task could be
imposed by considerations that have to do with control engineering). The typical real–time scheduling
problem are formulated in the case of ground parameters. For instance, considering the case of periodic
task sets the typically schedulability problem that can be formulated takes the following form:

Problem 1. Consider a task set S = {τ1, . . . , τn} scheduled with a given scheduling algorithm and
periodic activation pattern. Assume all the tasks have a given worst case execution time Ci. Decide
whether or not all tasks are schedulable.

In this scenario, we consider a scheduling algorithm that allows preemption and allocates the CPU
to the task using a fixed priority policy.

In the industrial practise, the designer could have a certain freedom of choice for some parameters.
We will refer to these as “design parameters”. An example, could be the activation offset of the task,
which can sometimes be tweaked to improve the system schedulability. In addition, other “exogenous
parameters” have an inherent variability (e.g., due to an insufficient knowledge or to environmental
conditions).

In the example reported in Problem 1, the computation time could be considered as a design pa-
rameter in many realistic scenarios. In principle, a designer can change this parameter in two ways: 1)
changing the implementation of a task, 2) changing the power of the hardware (which, roughly speaking,
operates as a scaling factor). In a different context, the computation time could be regarded as an “ex-
ogenous parameter”; for instance, the computation time could be related to a legacy application which
is known to a limited extent. Other design parameters could be hidden underneath the activation pattern.

2.2. SCHEDULABILITY AREA PROBLEM FORMULATION 13

Figure 2.5: The example of the feasibility regionR

For instance we could have variable offsets for a periodic task execution. Generally speaking we asso-
ciate to each task τi a vector ρi of design parameters (e.g., for a periodic task with offset this vector is
given by: ρi = [φi, Ci]).

If the role of parameters is considered a problem like Problem 1 takes a different and more general
form.

2.2.1 General Problem Formalization

First of all, it is possible to define the feasibility region as follows:

Definition 2.3. Consider a task set S = {τ1, τ2, . . . , τn}, scheduled by a given scheduling algorithm.
Let each task τi be associated to a vector of design parameters ρi taking values in the set Γi and let
ρ = [ρ1, ρ2, . . . , ρn] be a vector aggregating the parameters of all the different tasks. The feasibility
region R ⊆ Γ1 × Γ2 × . . .Γn is defined as: ρ ∈ R if and only if the system is schedulable with the
choice of parameters ρ for the different tasks.

The definition above leads us to the following formalisation.

Problem 2. Consider a task set S = {τ1, . . . , τn} scheduled with a given scheduling algorithm and
with activation pattern of each τi specified. Let ρ be the vector of design parameters defined in the set
Γ = Γ1 × . . .× Γn. Find the feasibility regionR.

The definition and the problem formulation above are easily generalised to systems using multiple
types of resources (processors, communication links) and to the verification of more general temporal
properties than the simple task schedulability.

Example 2.1. Consider the example of a task set S = {τ1, τ2} where τ1, τ2 are two periodic tasks
with T1 = 4 and T2 = 8. Their deadlines are equal with their periods and their offsets are zero, i.e.,
D1 = T1 = 4, D2 = T2 = 8, φ1 = φ2 = 0, and the design parameters are ρ1 = [C1], ρ2 = [C2]. In this
case the choice of parameters ρ = [ρ1, ρ2] is described in the equation C1

4 + C2
8 ≤ 1 [31]. Therefore

the regionR can be calculated and can be seen in figure 2.5.

2.3. EXAMPLE SCENARIOS 14

2.3 Example Scenarios

To illustrate the potential applications of the methodology in a design flow for embedded systems, we
propose a couple of simple possible real world design scenarios. Later on in the thesis, some of this
scenarios will be reprised and used as a running examples for our discussion. In this context, we simply
use them to outline the possible design issues that our methodology allows us to address and the type of
results that can be obtained.

Scenario 1
Given of a real-time system with a set of periodic tasks and offset to each tasks arrival rate such as a

control system in nuclear power plant. The timing deadlines are hard deadlines as this is a critical system.
The tasks are scheduled using a pre-emptive scheduler with static pre-assigned priorities. The designer
is required to maximise the system robustness, allowing the system to survive in case of unforeseen
environmental disturbance that could affect its computation time.

We use a periodic task system S1 = {τ1, τ2}. Periods are fixed and chosen equal to the relative
deadline: T1 = D1 = 20 and T2 = D2 = 30.
Use case 1: Consider a design scenario in which the computation times are not known with a sufficient
precision and the system is very close to the border of the schedulability region found with traditional
real-time scheduling theory (i.e., assuming null offset). The design problem is how to choose a pos-
itive offset O2 so as to maximize the schedulability region (and hence the robustness of the system).
Thereby, we aim to compute the schedulability region with respect to the following set of free parame-
ters: {C1, C2, O2} fixing O1 = 0.

The application of the methodologies shown below in the thesis allows us to construct the region
illustrated in Figure 2.6. We can see three different sections obtained by cutting the three-dimensional
region with the planes O2 = 0, O2 = 5, and O2 = 8. In accordance with the notion of critical
instant from the classical real–time scheduling theory, O2 = 0 corresponds to the smallest schedulability
region. The choice O2 = 8 is the one that ensures the maximum robustness for the choice of C1, while
O2 corresponds to the greatest schedulability region.
Use case 2: Assume that the worst computation time of the tasks are fixed, C1 = 11 and C2 = 12.
This task system is not schedulable with zero offsets as it is possible to see with a standard response time
analysis as can be seen in the upper illustration in Figure 2.7 Therefore, we would like to identify the
possible values for the offsets O1 and O2 that make the system schedulable.

The region resulting from the application of our methodology is shown in Figure 2.8. Using the
information from the figure we can then simply pick the values for O1, O2 and O3 inside the feasibility
region to make S2 schedulable. We can choose O1 = 5 and O2 = 1 for example. And the system
will now be schedulable, in spite of a system utility close to 95% and to a non–harmonic choice of the
periods.

Scenario 2
This example is inspired by the Heterogeneous Communication System (HCS) of a civil aircraft [27].

The problem is to stream the audio package and synchronize them. The architecture of the system is
shown in Figure 2.9.

The HCS system contains a common server, wired and wireless communication networks and a
number of devices. The components of the network communicate through Network Access Controllers
(NAC), which perform gateway function and routing, and are connected in a daisy chain topology. We
focus on audio devices which are required to distribute music and audio announcements to the main
cabin. The audio stream is transmitted by the server through the network. To avoid echo effects, the
devices must reproduce the audio at synchronized instants. For this reason, the network, server and

2.3. EXAMPLE SCENARIOS 15

1

3

5

7

9

11

13

15

17
19

21

23

25

27

29

1 3 5 7 9 11 13 15 17 19 21

Region with O2 = 8
Region with O2 = 5

Region with O2 = 0
Or O2= 10

Figure 2.6: Feasibility regions of Scenario 1, Use case 1,in the domain of C1 and C2 for different values
of O2

1 2 3 4 5 6 7 8 9 100

Task 1

Task 2

Task 3

Task 1

Task 2

1 5 10 15 20 25 30

Task 1

Task 2

1 5 10 15 20 25 30

Figure 2.7: In the upper figure the system will fail using O1 = O2 = 0, while in lower figure the system
will succeed using O1 = 5 and O2 = 1

2.3. EXAMPLE SCENARIOS 16

1

3

5

7

9

11

13

15

17

1 3 5 7 9 11 13 15 17

19

Figure 2.8: Regions of feasibility in the domain of O1 and O2 for Scenario 1, Use case 2.

devices implement also the Precision Time Protocol (PTP) [47] to synchronize their clocks.
The communication between the server and device is asynchronous. The server sends an audio

packet every audPeriod ms; audio packets are characterized by two parameters: a sequence number i
and a timestamp ti denoting the time the packet has to be played at the device. Due to varying network
conditions, packets arrive at the device (except if they are lost) with a minimal latency Lmin and a
maximal latency Lmax. The NACs simply forward the incoming packets to the devices. Packets passing
through the NACs experience delay of Lnac during which they are preprocessed by the NACs. The
device processing time for each audio packet is τ , after which the device is ready to receive the next
audio packet. The PTP protocol runs on the server, the devices and NACs, and is used to synchronize the
respective clocks. The audio packets have firm deadline requirements. A packet may miss its deadline
as long as the previous packet has not already missed the deadline.

Various timing delays are to be guaranteed, for example, in a scenario where two devices are con-
nected to the server, it should be guaranteed that both devices are synchronized within an error of 0.1 ms
(synchronization precision).

In this system the parameters that we can play with for example are the buffers used, the latency
Lmin and Lmax in the medium and also Lnac in NAC, the computation time of each processes, and
the clock drift c which is the offset time of the local clock compared to the server clock. The properties
that we can check are for example:

• Whether or not buffer overrun could happen.

• That the firm deadlines of the audio packets are not missed

• The maximum possible latency in the medium that still guarantees the system will not fail.

2.3. EXAMPLE SCENARIOS 17

Figure 2.9: Heterogeneous Communication System (HCS)

• Can we tweak the computation time of task to enable maximum robustness of system schedulabil-
ity?

The objective of this work is to answer the last query for example by something like is shown in
Figure 2.10, where we can see the possible values for the computation time that will ensure the schedu-
lability on different values of clock drift ∆.

Scenario 3
Consider a real–time system with CPUs whose speed changes with the size of the backlog buffer.

The scheduler of the example load-dependent frequency adaptation scheduler is adapted from [35]. The
scheduler can change its processing speed when the number of tasks in the buffer has exceeded certain
threshold. The tasks are activated periodically with jitter. However, unlike in the previous scenarios, the
task activation and the result in this case is represented through timed automata that produces stream.

A stream is characterized by a pair of so called arrival curves [52]. These arrival curves bound
the number of activation events for any interval ∆ ∈ [0,∞). Thus arrival curve is characterized by
the maximum number of tasks in burst and the widths ∆ of the stairs. We need to capture the system
behaviour given the input and output of the system in terms of the arrival curve.

The parameters that we could play with in this kind of systems are the maximum number of tasks
in burst on the input and or the output of the system, the widths of input/output curve stairs, maximum
latency that can be tolerated for each task activated, and its maximum buffer size.

The type of query that we could have is for example what is the schedulability region for the BMAX-
One, the maximum burst number of activated tasks, and DeltaOne, the widths of input curve stairs? The
result that we expected for this query is illustrated in Figure 2.11.

2.4. CHALLENGES 18

0

2

4

6

8

10

0 2 4 6 8 10

C
2

C1

 ∆=0
 ∆=3

 ∆=5

 ∆=7

Figure 2.10: Audio feasibility and error regions for ∆ = 0, 3, 5, 7.

2.4 Challenges

Concluding from the illustrations in the scenarios presented previously, here are the challenges that we
need to handle in designing real–time sytem.

1. Providing model that could represent general activation pattern of tasks and scheduling require-
ments and policies.

2. Performing the schedulability analysis for all possible design parameters

Our main challenge is to have a tool that is able to answer both challenges we presented above.
In our research we need to handle these outstanding issue on the model and the method that we will

use to analyse the feasibility of a system:

• Model

The model that we use need to fulfil the following criteria:

1. Expression power
The model should have strong expressive power to be able represent general real time system.

2. Usability
The model should be easy enough to use by designers that have no in-depth knowledge of
formal methods.

3. Tractability
The model should be tractable as in having other use other than just plain for modelling. For
example it could also be used as problem presentation.

• Verification Method

The verification method that we use needs to be general. It should be able to analyse all possible
parameters that exist in the model. The method should be able to output meaningful information
to the user regarding the possible parameter valuations of the system and the subsequent schedu-
lability of the system.

2.4. CHALLENGES 19

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10
DeltaOne

Unschedulable region

BMAXOne

Figure 2.11: Schedulability region of system

Chapter 3

Background Knowledge

3.1 Satisfiability Modulo Theory

3.1.1 Logic Terms

First, we enumerate several definitions that we will use in discussing the topic of Satisfiability Modulo
Theories (SMT) and logic in general.

Propositional Logic

We start from the most basic building block of logic formulas: propositional variable. A propositional
variable is a variable with value of either True or False. A propositional formula ϕ is built from propo-
sitional variables. It can consist of one propositional variable p, or a negation ¬ϕ0, conjunction ϕ0 ∧ϕ1,
disjunction ϕ0 ∨ ϕ1, implication ϕ0 → ϕ1 or bi-implication ϕ0 ↔ ϕ1 of other propositional formula
ϕ0 and ϕ1. A literal is a propositional variable p or its negation. Literals are connected by disjunction
to form a clause. We say that a formula is in conjunctive normal form (CNF) if it consists of clauses
connected by conjunction C1 ∧ . . . ∧ Cn. Any formula can be made into a CNF formula.

A truth assignment M for a formula ϕ assigns all the propositional variables in ϕ to either True or
False. A truth assignment M satisfies ϕ, with the notation M � ϕ, if the assignments of values in M
makes ϕ True. A formula ϕ is satisfiable if there is an M that could satisfy it, M � ϕ.

EXAMPLE Given a formula ϕ = (p ∧ ¬q) ∨ r, the truth assignment
M = {p 7→ True, q 7→ False, r 7→ False} satisfies ϕ.

Satisfiability Problem

Given a propositional formula, the satisfiability problem amounts to deciding if there is a model M that
satisfies it. We call this specific problem as propositional satisfiability SAT problem or shortly as SAT
problem. The solution of a SAT problem is NP-complete.

First-Order Logic

First-order logic extends the propositional logic with functions, predicates and quantification. The basic
entities in first-order logic are terms. A term t can be a constant c, a variable x over a certain domain, or
a function whose arguments are terms. The notation for an n-ary function f is f(t1, . . . , tn). Predicates

20

3.1. SATISFIABILITY MODULO THEORY 21

can be seen as functions that return either True or False. A predicate describes the relation between its
arguments. For example P (x, y) could mean x smaller than y and Q(y) could mean y is a female.

A formula is a predicate p(t1, . . . , tn) or negation ¬ϕ0, conjunction ϕ0 ∧ ϕ1, disjunction ϕ0 ∨ ϕ1,
implication ϕ0 ⇒ ϕ1, bi-implication ϕ0 ⇔ ϕ1, and quantification ∀xϕ0 or ∃xϕ0 of other formula ϕ0

and ϕ1. A Σ-formula ϕ is a formula with all the symbols defined in the domain Σ. A free variable x in ϕ
is a variable that is not bounded by any quantifier ∀ or ∃. A sentence is a formula without free variables.

A model M is a set of interpretation of all the variables, functions, and predicate symbol that makes
the formula ϕ True. A formula is satisfiable is there is a model M that could satisfy it, M � ϕ.

Theory

A Σ-theory is a set of sentences over Σ. The satisfiability of a theory T is decidable if there is a procedure
that determines the satisfiability of any quantifier-free formula in it. Linear Arithmetic theory for example
is the theory with functions + and− applied to either numerical constants or variables, and multiplication
between a constant and a variable. The predicates of this theory are =, <,≤. Given a linear arithmetic
formula, its satisfiability can be decided by using dual simplex algorithm for formula with = and ≤
predicate and by using the algorithm extension for formula with strict inequality < predicate. Since
there exists this algorithm to determine the satisfiability of formula in Linear Arithmetic theory, this
theory is decidable.

Example 3.1. We provide an example formula of first-order logic over linear arithmetic. The formula
ϕ = (x+ 2 ∗ y ≤ 0) ∧ (x < 0 ∨ (2 ∗ x+ 4 ∗ y + 2 < 0)) is made of Boolean combinations of linear
arithmetic constraints. The model M = {x = −1.0, y = 0.5} satisfies ϕ. Thus, formula ϕ is satisfiable.

3.1.2 Satisfiability Modulo Theory

Many of the industrial problems require the expressive power of first order logic. Aside from simple
declarative propositions, predicates and quantification are usually needed. And, instead of having all
boolean variables an industrially relevant problem could have a mix some real and or integer variables
and some arithmetic operations. For instance, in our problem specification in modelling real– time
system, we need to include the notion of continuous time in the environment as the rationals factor in the
formula.

Linear programming algorithms can check the satisfiability of conjunctions of linear arithmetic in-
equalities, but they can not be applied directly to Boolean combinations. For this kind of problems we
define the notion of Satisfiability Modulo Theory (SMT). A formula ϕ is satisfiable modulo T if T ∪ϕ is
satisfiable. Referring to the problem in Example 3.1 the formula is satisfiable modulo linear arithmetic
theory if the formula made of the union of solving the arithmetical constraints in the theory of linear
arithmetic and the boolean parts of ϕ is satisfiable.

Generally, SMT is a decision problem involving various theories which are expressed as simple first-
order logic. SMT solvers work by combining special purpose algorithms for each domain. Example of
these theories are, e.g., the theory of difference logic DL, the theory EUF of equality and uninterpreted
functions, and the quantifier-free fragment of Linear Arithmetic over the rationals LA(Q) and over the
integers LA(Z) [15]. This enables a richer representation than simple boolean SAT formulas.

First-order logic is however undecidable. Therefore, most procedures for SMT focus on efficiently
solving certain scope of problems that occur in practices. SMT solvers rely on the alternating work of

3.1. SATISFIABILITY MODULO THEORY 22

Figure 3.1: A simple description on SMT solving schema

a SAT solver to solve the Boolean parts of the formula, and of Theory solver(s) to solve the other logic
problems involved. The interaction between the two class of solvers is illustrated in Figure 3.1. 1.

An SMT-solver first will extract the Boolean skeleton on the input formula. This is obtained by
replacing the theory constraints in the formula with auxiliary Boolean variables. Given the Boolean
skeleton formula of ϕ, SAT solver performs systematic search in a tree of which each vertex represents
a propositional variables and the outgoing edges represent True and False. This systematic search is
performed to find a truth assignment M that will satisfy the Boolean skeleton of ϕ. Most search based
SAT solvers are currently using DPLL approach. While the SAT-solver tries to construct a satisfying
assignment for the Boolean skeleton of the SMT formula iteratively, the theory solver then verifies the
conjunction of the constraints which have to hold according to the so far constructed assignment.

Example 3.2. We refer to the example problem given in example 3.1. If we replace each of the arith-
metical constraints in ϕ = (x+ 2 ∗ y ≤ 0) ∧ (x < 0 ∨ (2 ∗ x+ 4 ∗ y + 2 < 0)) by a Boolean variable
we will obtain the formula A ∧ (B ∨ C) as the Boolean skeleton of ϕ. First the SAT Solver will try to
assign A 7→ True. This will send the constraint x + 2 ∗ y ≤ 0 to the theory solver. Theory solver
will check its consistency to the True assignment and will report that it is satisfiable. SAT solver then
continues to assign A 7→ True,B 7→ True, C 7→ True. The rest of the formula ϕ is now sent to the
theory solver. The theory solver will report unsatisfiability and give back the constraint A, x+ 2 ∗ y ≤ 0,
and C, 2 ∗ x + 4 ∗ y + 2 < 0, as reasons. The SAT solver uses this information to undo a part of the
current assignment (backtrack), learn that it should not assign both A and C to True, and continue the
search.

3.1.3 Bounded Model Checking

The approach we used in this work to carry out the verification process of SMT is symbolic and is
based on bounded model checking (BMC) method [9]. The verification of the timed system is done by
considering a finite and increasing time bound. In each iteration, the verification problem is transformed
into the satisfiability problem of a set of formulas defined over boolean variables and real variables. We
will provide an example of how a timed automata is unrolled step by step for BMC on the timed automata
section example 3.4.

1Adapted from http://www-i2.informatik.rwth-aachen.de/i2/simplex in smt/

3.1. SATISFIABILITY MODULO THEORY 23

The result of the BMC is a satisfiability response or a counterexample. Namely, for a finite transition
system M the property of interest is the satisfiability of a Linear Time Logic (LTL) formula ϕ. For a
given number of steps k, the model checker searches for counterexamples of length k as the bound, and
decide that M satisfies ϕ iff there is no counterexample exists in the path of length k or less than k.

The most important problem of BMC is to identify a number of steps CT such that if no counterex-
amples are found within the bound CT then M |= ϕ (the formula is satisfied). Such problem is defined
as the Completeness Threshold (CT) problem. In [24] a computation method to find an upper bound
of CT is described for the reachability problem on finite systems. The bound is sufficiently computed
by finding the initialized diameter dI (M) , which is the longest shortest path from an initial state to any
reachable state of M. Using Büchi Automata with Vardi-Wolper LTL model checking framework it is
found that such value of CT is computable with a formula of size O(k log k). An important open issue
is to verify whether a similar notion on the computability of CT can also be applied to timed automata.

A problem with the theoretical bound just mentioned is that it tends to be un-necessarily large. In
practical cases, the maximum length of a possible counter-example for the property of interest can be
much shorter. Very useful in this respect is to complement BMC methods with inductive reasoning.
Inductive reasoning is a reasoning method which work on verifying that the initial state satisfies property
ϕ, and from all the steps from 0 to k that verifies the property, we can only go to step k + 1 that also
verifies the property. Optimizing BMC with inductive reasoning we could verify if no counter example
is found at step k then we will not found it on k + 1 step, thus providing termination result to the BMC
search.

3.1.4 Tools

One of the tool developed to decide the satisfiability of theories problem belonging to the category of
SMT is MathSAT [13]. MathSAT solves this problem based on Davis-Putnam-Logemann-Loveland
algorithm (DPLL), which decides the satisfiability of propositional logic formulae in conjunctive normal
form(CNF) by using backtracking decision procedure, and it is able to solve SMT problem for various
theories. One of them, which is important for our purposes, is Linear Arithmetic over the Reals (LA
(R)). The ability to solve problems based on this LA (R) theory encouraged the use of MathSAT in this
work.

This MathSAT is a foundational tool for NuSMV3, the latest version of NuSMV [22], a verification
tool that combines the strengths of Binary Decision Diagrams (BDDs) of NuSMV and SMT solvers of
MathSAT. NuSMV itself is a reimplementation and extension of SMV symbolic model checker, the first
model checking tool based on Binary Decision Diagrams (BDDs). BDD is a data structure that is used
to represent a Boolean function. Abstractly, BDDs are as a compressed representation of sets of boolean
functions. However, unlike other compressed representations, operations are performed directly on this
compressed representation, thus minimizing the complexity.

The extension of NuSMV to NuSMV3 entailed the definition of a language involving new types
involving both Integer and Reals and hybrid automata. The full integration with MathSAT SMT solver
has also enabled the construction of other model checking algorithms which were not in the initial dis-
tribution of NuSMV. Most notably the model checking that we will use are Bounded Model Checking
via SMT and Interpolation based invariant checking for induction. An extended set of features such as
requirements analysis, dependability assesment, and safety analysis are also provided in this extension.

A comprehensive description of the tools exceeds the purposes of this thesis. The interested reader
is referred to the documentation present in the tool website (https://es.fbk.eu/tools/nusmv3/). In the rest
of the chapter, we will simply describe how the tool will be applied for our purposes: the modelling and

3.2. TIMED AUTOMATA 24

Wait_for_
period
x <= T1

y <= Timeout

Release1
x = T1
x := 0

Release1
x = O1
x := 0

Wait_for_
offset
x <= O1

Error

Abort
y > Timeout

Reset
y := 0
x := 0

Figure 3.2: TA1, an example of a task activation automata to be encoded in NuSMV.

analysis of timed automata.

3.2 Timed Automata

The notion of timed automata was first proposed by Alur et al. [1] to enable an explicit modelling of time,
and it was later recognized as an effective formal notation to model the behaviour of real-time systems.
A timed automata is a directed graph, in which nodes are called the locations and the arcs are called the
transitions. Time modelling is achieved by the use of clock variables. The constraints on the values of
the clock determine the temporal evolution on the timed automata.

3.2.1 Timed Automata Formal Notation

A timed automaton A [1] is defined as a tuple of 〈L,L0,Σ, X, I, E〉 and its components are defined as
follow:

• L defines the finite set of locations in the timed automata.

• L0 ⊆ L defines the set of initial locations

• Σ defines a finite set of labels of events affecting the evolution of the timed automata.

• X defines a finite set of clocks

• I , describes the invariant of a location. It defines a mapping between each location s ∈ L with
some clock constraint in the set of clock constraints Φ(X)

• E ⊆ L×Σ×2X ×Φ(X)×L defines the set of switches. A switch with the formal representation
〈s, a, ϕ, λ, s′〉 describes a transition from location s to s′, with s, s′ ∈ L on an event a ∈ Σ, with
clock constraint ϕ on X as the guard of the switch, and with a set of clock reset action taken upon
its switch as defined in λ.

3.2. TIMED AUTOMATA 25

Example 3.3. We present in Figure 3.2 an example of timed automata TA1. The components of TA1

are:

1. Li : L = {Wait for offset,Wait for period,Error}.

2. L0 : L0 = Wait for offset.

3. Σ : The labels are Σ = {Release1, Reset, Abort}.

4. X : The clocks in this example are X = {x, y}.

5. I : We have the invariant for locations Wait for offset and Wait for period. We write them
as I = {state = Wait for offset→ (x ≤ O1)} ∧
{state = Wait for period→ (x ≤ T1 ∧ y <= Timeout)}.

6. E : There are 4 transitions in our example, as we need to name each transition, we will name them
with the following format

<origin_state>_<destination_state>_<transition_number>}

The set of transitions that we have is

E = {wait for offset wait for period 1,
wait for period wait for period 2, wait for period wait for offset 3,
wait for period error 4, .

A system made of a set of automaton is defined as a product construction of the involved automata.
Given two timed automata A1 = 〈L1, L10,Σ1, X1, I1, E1〉 and A2 = 〈L2, L20,Σ2, X2, I2, E2〉. As-
suming clock sets X1 and X2 are disjoint, a product A of A1 and A2 is the timed automaton A =
〈L1 × Ł2, L10 × L20,Σ1 ∪ Σ2, X1 ∪X2, I, E〉 with I(s1, s2) = I(s1) ∧ I(s2). The switches are :

1. 〈(s1, s2), a, ϕ1 ∧ ϕ2, λ1 ∪ λ2, (s1
′, s2

′)〉, for a ∈ Σ1 ∩ Σ2 and for every 〈s1, a, ϕ1, λ1, s1
′〉 in E1

and 〈s2, a, ϕ2, λ2, s2
′〉 in E2.

2. 〈(s1, t), a, ϕ1, λ1, (s1
′, t)〉, for a ∈ Σ1\Σ2 and for every 〈s1, a, ϕ1, λ1, s1

′〉 in E1 and every t in
L2

3. 〈(t, s2), a, ϕ2, λ2, (t, s2
′)〉, for a ∈ Σ2\Σ1 and for every 〈s2, a, ϕ2, λ2, s2

′〉 in E2 and every t in
L1

Thus, a transition of A is obtained by coupling the transitions of the individual automata labelled with
consistent event sets. A special type of transition that preserves clocks and locations is defined as stutter
transition. An automata takes the stutter transition when a transition takes place in another automata that
is not synchronized with any of its label.

A run of timed automata consists of states and transitions between them. A state is (s, ν), with s ∈ L
and ν assignment to the clocks such that ν |= I(l). A state is an initial iff s ∈ L0 and ν (x) = 0 for all
clock x ∈ X .

The timed automata transitions can be differentiated into two classes of transitions :

3.2. TIMED AUTOMATA 26

Wait_for_
period
x <= T1

y <= Timeout

Release1
x = T1
x := 0

Release1
x = O1
x := 0

Wait_for_
offset
x <= O1

Error

Abort
y > Timeout

Reset
y := 0
x := 0

Wait_for_
reset

x1 <= Treshold

Release1
x1 := 0

Idle

Reset
x1 <= Treshold

Release1

Figure 3.3: A timed automata to be encoded in composition with TA1

1. Discrete transitions

It is a transition that happens when in the state (s, ν) a switch 〈s, a, ϕ, λ, s′〉 such that ν |= ϕ is
taken. We write this (s, ν)

a−→ (s′, ν [λ := 0]). Stutter transition is also categorized in this class.

2. Continuous transitions

Defined as δ-transitions, they represent the time elapse in the timed automata system. For a state
(s, ν) experiencing time elapse δt ≥ 0, we write (s, ν)

δt−→ (s′, ν + δt) if for all 0 ≤ δt
′ ≤ δt,

ν + δt
′ |= I(s). The time elapse transitions are synchronized on all timed automata in a system.

A run of length k is a sequence of states (l0, ν0), (l1, ν1), . . . , (lk, νk) iff the first state is initial,
and for i = 0, . . . , k − 1 it holds that (li, νi)

σ−→ (li+1, νi+1) for some switch σ, or li = li+1 and

(li, νi)
δt−→ (li+1, νi+1).

Example 3.4. To describe the composition of automata and the run of automata, we present the second
example TA2 in Figure 3.3 which will be synchronized with TA1, our previous example in figure 3.2.
This timed automata TA2 synchronizes with TA1 on the event of Release1. After the first event of
Release1, within time Threshold, TA2 could non-deterministically fire the Reset event.

Using the following assignment {T1 = 4, O1 = 2, T imeout = 9, Threshold = 5}, then one of the
possible run for the automata TA which is the product of timed automaton TA1 in Figure 3.2 and timed
automaton TA2 in Figure 3.3 is:

((WFO,Idle), {x = 0, y = 0, x1 = 0}) δ2−→ ((WFO,Idle), {x = 2, y = 2, x1 = 2}) Release1−−−−−→
((WFP,WFR), {x = 0, y = 2, x1 = 0}) δ4−→ ((WFP,WFR), {x = 4, y = 6, x1 = 4}) Release1−−−−−→
((WFP,WFR), {x = 0, y = 6, x1 = 4})

with WFO = Wait For Offset state and WFP = Wait For Period in TA1 while WFR =
Wait For Reset in TA2. The run above depicts how it starts in the initial location (WFO,IDLE)
which is made of the initial location of TA1 and TA2. All the clocks, {x, y, x1}, which are the union of
clocks from TA1 and TA2, have zero values in this initial state. The first transition is a δ-transition of 2
times unit which takes the system to the second state where it has the same location (WFO,IDLE) but all
the clocks are incremented by 2 time units. The synchronized switch with label Release1 composed of

3.2. TIMED AUTOMATA 27

wait for offset wait for period 1 in TA1 and idle wait for reset 1 in TA2 is enabled and taken.
This discrete transitions changes the location of the automata to (WFP,WFR) and reset the clocks x in
TA1 and x1 in TA2 while the clock y in TA1 retains its value. Next, we have another δ-transition with 4
time units that increment all the clocks value. And now as the guard of transition with labelRelease1 that
is composed of wait for period wait for period 1 for TA1 and stutter transition in TA2 is enabled.
Taking this transition moves us to the next state where we stay in the same location (WFP,WFR) but the
clock x of TA1 has been reset while clock y and x1 retain their values.

3.2.2 Timed Automata Verification in NuSMV

A first possibility for verifying timed systems is the application of such model checkers as UPPAAL 2.
This approach is taken in the TIMES tool [28, 29, 45], which is a derivation of UPPAAL specifically
targeted to the verification of real-time scheduling properties. The approach can be classified as an
explicit state model checking and it uses the mathematical properties of Difference Bound Matrices
(DBM).

We do not proceed with further details on this since we will take a different approach based on
symbolic model checking using NuSMV. This approach performs the analysis of system on the encoding
of the system by a set of symbolic formulas and enables the representation of a large state space with
moderate memory requirement.

The following aspects are captured in NuSMV symbolic encoding:

1. The structure of the automata

2. The evolution of the automata

3. The composition of automata

4. The required properties

The structure of the automata

A timed automaton A associated with the tuple 〈L,L0,Σ, X, I, E〉 is modelled in NuSMV as a module.
The definition of the automata structure is as follows:

1. Timed automata declaration

We declare the timed automata by declaring a MODULE with the name of timed automata and
input variables of the timed automata. The input variables are variables that will be used globally.
One of them is the global variable deltat which represents the amount of time units that elapsed
at each transition. This variable will be declared in the main module and then as input variable to
each of the automata.

2. Location declaration

L is represented by a local variable state which takes value in the enumeration of all possible states
si ∈ L. L0 is represented by the INIT statement, assigning the variable state to one of the location
in L that determines the initial location.

2(http://www.uppaal.com/)

3.2. TIMED AUTOMATA 28

3. Clock declaration

For each clockXi ∈ X a variableXi with real type is declared. The real type in NuSMV represents
the rational values. Operation on time is specified through assignment commands which will be
executed each time a transition is taken. This assignment command involves the clock reset when
some transition is taken and clock value addition of delta t on the transition of time elapse. We
will discuss the operation on each clocks on the timed automata evolution encoding.

We need to specify the initial condition for every variables we declared, i.e. for all the states and
clocks. As in the initializing of the location, we use the INIT statement to initialize all the clock
values.

4. Location invariant declaration Each location si will have an INVAR statement to express its invari-
ant I(si) in the form

∧
si∈L(state = si →

∧
ψ∈I(si) ψ), where I(ψ) are the constraints that must

be fulfilled in location si.

Example 3.5. On the example in Figure 3.2 we have a timed automata TA1 with tuple 〈L,L0,Σ, X, I, E〉
we define the following :

1. Timed automata declaration

We declare the timed automata TA1 with input variable deltat as follows :

MODULE TA_1(delta_t)

2. Location declaration We encode the set of locations L in NuSMV as :

VAR state : { Wait_for_offset, Wait_for_period, Error};

And we initialize the location Wait for offset as our initial state with the following command:

INIT state = Wait_for_offset;

3. Clock declaration The clock x for example is declared and initialized in the following encoding:

VAR x : real;
INIT x = ZERO;

4. Location invariant declaration

Declaring the invariant of location I through INVAR is done in the following format:

INVAR (state = wait_for_period) -> (x <= O1)

We will present the example of the other encodings inline the explanations of the following sections.

3.2. TIMED AUTOMATA 29

The evolution of each automata

After declaring the components, we need to specify the evolution of the automata.

1. Transitions

Each switch Ei is encoded as a local variable transition whose value is the enumeration of all
possible transition labels with the addition of time elapse and stutter transitions. The detail of each
switch is specified in a TRANS statement that expresses implication constraint in the form∧

T=〈si,a,ϕ,λ,sj〉;T∈Ei

T → (si ∧ a ∧ ϕ ∧ s′j ∧
∧
x∈λ

(x′ = z′) ∧
∧

!(x∈λ)

(x′ = x))

, where the ’ superscript denotes the value of the variable at the next step and z’ describes the value
with which x will be reset into based on the specification in λ.

To represent all possible transitions in NuSMV we declare a variable called transition that takes
value in the enumeration of all possible transition. The same declaration method is also used
to declare all the possible location in the model. The labels are not necessarily encoded in the
NuSMV for synchronization purpose: we will explain the synchronization mechanism in the next
section. However, a label a ∈ Σ can be added to the encoding by declaring it as boolean variable a
which is associated with the appropriate transition using the DEFINE statement. For example we
can declare the label Release1 in TA1 as follows :

DEFINE Release_1 := process_1.transition = release_offset;

Then we need to define the details of the transition : its origin state, destination state, and guard.
We can define its reset actions on the clock as specified by λ here too, but for the sake of the
readability we will encode them later on the evolution of the variable. We encode the two classes
of transitions as follows:

• Discrete transition
We provide here an example definition of the transitionwait for offset wait for period 1:

TRANS (transition = wait_for_offset_wait_for_period_1) ->
(state = wait_for_offset & (x = offset))
TRANS (transition = wait_for_offset_wait_for_period_1) ->
(next(state) = wait_for_period)

Both TRANS definition are conjuncted. The first statement defines the initial state, and the
guard while the second statement defines the destination state. For stutter transition we only
need to define that the location stays the same, as follows:

TRANS (transition = stutter) -> (next(state) = state)

• Time elapse We specify time elapse transition as one of the possible transitions for all the
automata.

3.2. TIMED AUTOMATA 30

TRANS (transition = time_elapse) -> (next(state) = state)

2. Values changes on each transition

Value changes cover the reset statements on clocks as specified by λ in the timed automata def-
inition. As an example we show the specification for value changes on one of the clock. The
evolution of the clock is expressed with ASSIGN statement, and we specify them for x as follows:

ASSIGN
next(x):=
case
(transition = time_elapse) : (x + delta_t);
(transition = wait_for_offset_wait_for_period_1) |
(transition = wait_for_period_wait_for_period_2) |
(transition = wait_for_period_wait_for_offset_3) : 0.0;
TRUE : x;

esac;

This assignment expressed in the form of case conditions describe how during the time elapse
transition the clock x will be incremented with the value of deltat, then it will be reset on
the transitions wait for offset wait for period 1, wait for period wait for period 2, and
wait for period wait for offset 3. On other transitions, the clock x will retain its value.

The composition

The variables required to encode the composition are positioned in the main module. In particular, we
need the additional global variable deltat which represents the amount of time units that elapsed at each
transition. This variable is declared in the main module and then as input variable to each of the automata.

In the following we offer an example of the syntax used in main module declaration. For simplicity
here we show a model consisting of two automata.

MODULE main

VAR delta_t : real;

It is necessary to encode deltat as a global variable since time elapse transition is synchronized on all
timed automata.

Next, we need to instantiate both timed automata:

VAR process_1 : TA_1(delta_t);
VAR process_2 : TA_2(delta_t);

here we instantiate TA1 as process1 and TA2 as process2. In the main module we will refer to the
transitions, clocks, and other variable of the other module by referring to its instantiated name then the
object, e.g. process1.x to refer to the clock x of the module TA1 which is instantiated to processs1. To
encode the composition of both automata in particular we need to encode:

3.2. TIMED AUTOMATA 31

1. Time elapse transitions To synchronize the time elapse for all of the automata we create the label
all time elapse for all the time elapse transitions in each automata.

DEFINE all_time_elapse := process_1.transition = time_elapse;
INVAR all_time_elapse <-> process_2.transition = time_elapse;

We specify the possible deltat values as follows:

INVAR all_time_elapse -> (delta_t > ZERO)
INVAR !all_time_elapse -> (delta_t = ZERO)

With this, the deltat value is always zero at other transitions except time elapse. And on time
elapse, it could take any arbitrarily positive value.

2. The fact that each step at least one of the transitions must happen and the prohibition of all timed
automata doing null transitions at one time is encoded as:

INVAR !((process_1.transition = stutter) &
(process_2.transition = stutter))

3. Synchronization between transitions

Synchronization between transitions can be defined in two ways: using the definition of same
label, or through the INVAR statement. Example of defining the synchronization using a label can
be seen in the example we have shown on synchronizing all time elapse event. The example of
synchronizing via INVAR statement can be seen below :

INVAR (process_1.transition = wait_for_offset_wait_for_period_1 |
process_1.transition = wait_for_period_wait_for_period_2)
<-> (process_2.transition = idle_wait_for_reset_5)

With the above encoding we specify that the transition wait for offset wait for period 1 is
always synchronized with idle wait for reset 5.

We need to also specify when one transition does not synchronize with any other transition. In this
case we need to specify that other automata will be stuttering during this particular transition.

INVAR (process_1.transition = wait_for_period_error_4)
<-> (process_2.transition = stutter)

In here we specify that the transition wait for period error of process1 will be synchronized
with stutter transition on process2. We take this measurement because for the sake of correctness,
we only allow one transition or one synchronized transitions to happen at one step in the run of the
automata.

3.3. FORMAL VERIFICATION FOR TASK SCHEDULING FEASIBILITY 32

4. The clocks always have positive values

As the clock variables are encoded as rational variables, we need to specifically define that these
variables will only have value greater than or equal to zero.

INVAR process_1.x >= ZERO
& process_1.y >= ZERO

5. The prohibition of two consequent time elapse transitions.

TRANS (process_1.transition = time_elapse) ->
(next(process_1.transition) != time_elapse)

The required property

The formula and property to be checked is expressed in LTL format. In the case of verification of
schedulability the property that is going to be checked is reachability of an error state. The LTL formula
of which is F(state = error). This is expressed in NuSMV as follows :

INVARSPEC (process_1.state != error);

With this formula included the formulation of the problem is complete and it can be used as input for
NuSMV. When the problem resulted in SAT, which means an error location is reached, a counterexample
will be provided. This counterexample will be a path which show steps leading to error location.

Example 3.6. Using the following assignment {T1 = 4, O1 = 2, T imeout = 6, Threshold = 7} on the
automata TA, the product of timed automaton TA1 in Figure 3.2 and timed automaton TA2 in Figure
3.3, we could run into the error state that falsifies our property as in the following run:

((WFO,Idle), {x = 0, y = 0, x1 = 0}) δ2−→ ((WFO,Idle), {x = 2, y = 2, x1 = 2}) Release1−−−−−→
((WFP,WFR), {x = 0, y = 2, x1 = 0}) δ4−→ ((WFP,WFR), {x = 4, y = 6, x1 = 4}) Abort−−−→
((Error,WFR), {x = 4, y = 6, x1 = 4})

3.3 Formal verification for task scheduling feasibility

Wang Yi [28, 29, 45]proposed the use of an extension of timed automata to represent the activation
pattern of the tasks with more flexibility compared to the classical approaches.

A timed automata is connected with tasks to represent their activation and execution time. The
schedulability problem requires an extended model where subtraction of clock values is allowed. The
timed automata with subtraction that is used in this work is an extension of the classical timed automata
that we have presented before. This timed automata allows subtraction operation to the clocks to ex-
tend the reset operation in classical timed automata that only allows reset operation to zero value. The
reachability problem on the timed automata with subtraction has been proven decidable [29].

Timing parameters and the hard time constraints for each task i are specified through the properties
of tasks which are the maximum computation time Ci and the deadline Di of each task. The encoding
requires:

3.3. FORMAL VERIFICATION FOR TASK SCHEDULING FEASIBILITY 33

A1
x < 4

A1_A1_2 =
(A1, Release1 , {x >= 4}, {x}, A1)

A10

A10_A1_1 =
(A10, Release1 , {x = 0}, {x}, A1)

Figure 3.4: An example of a periodic task activation automata

1. The task activation automata

2. The scheduler automata

Both are in the form of timed automata with subtraction and will be described using the notation of
the timed automata given earlier.

3.3.1 The Task Activation Automata

This first component of problem modelling in Wang Yi works models the activation pattern of tasks
associated with it. Each timed automaton can represent the activation pattern of more than one task.
Therefore for a task set S there can be one or more timed automaton describing the activation pattern of
all of the task in S.

As described in [28] the formalism of this extended timed automata consists of the formalization of
a timed automaton Ai and a mapping function M : L ↪→ S , M associating locations with tasks. Not
all locations in the timed automaton are necessarily associated with one task. On the contrary, it can be
also the case that one location is associated with the activation of more than one tasks. For each task τi
related to the timed automata, an eventReleasei will be defined inAi to mark its release. This event will
synchronize every task activation automata with the scheduler of all tasks which will be defined later.

To describe the modelling of this task activation automata refer to Figure 3.4. It describes a simple
periodic task activation where only one location is needed. In this case, we have only one location which
obviously coincides with the initial location L0. A self transition switch will be taken once every period.
The automaton generates an environment event which triggers the task activation which is associated
with the switch, denoted as Release1. A clock x1 is used to generate the event when a period expires.
Therefore the invariant of the location associated with τi will only consist of the comparison of the clock
with the task period, i.e. the constraint x <= Ti where the period in this example is four. The guard
of the switch is in the form of the condition that the clock value of the task is equal to its period, i.e the
condition xi = Ti. While the clock reset action of it is xi = 0.

3.3.2 The Scheduler Automata

This second component of problem modelling is used to control the scheduling of the generated tasks.
The desired scheduling policy for tasks scheduling is encoded in this automata.

3.3. FORMAL VERIFICATION FOR TASK SCHEDULING FEASIBILITY 34

Wang Yi and his coworkers have proposed alternative schemes to encode a non-preemptive sched-
uler [45] and a preemptive scheme [29]. In particular we will use the one proposed in [28] which applies
to fixed priority preemptive scheduling. The process of verification is done in sequence for each task τi
based on their priority order. The task system S is schedulable when all tasks τ1, τ2, . . . , τn are verified
to be schedulable. This encoding is very efficient for our problem since we do not need to represent
queue as in the other schedulers, and it only requires two clock to model the scheduler automata.

The following variables are what needed by the scheduler to verify a task:

1. c: a clock keeping track of the time since first task to be considered (either with higher priority or
equal to the task) is released.

2. d: a clock measuring the time since the particular checked task job is released

3. r: a variable which counting the time needed to finish executions of all task considered.

The locations needed in the scheduler Ei to verify the schedulability of each task τi are:

1. Idle

The location where the processor is idle. It is the initial location of the scheduler and will be entered
again when the job of the checked task τi has finished its executions or when the processor is back
to idle after other jobs with higher priority for this particular task have finished their executions.

2. Busy

The location where the processor is considered busy for the checked task job Ji,j . In this location
the execution of task jobs with higher priority or other jobs Ji,1, Ji,2, . . . which is not the one being
checked Ji,j is considered.

3. Check

This is where one particular job Ji,j of the task τi is being actually checked to verify whether
it can be executed within its deadline or not. The selection of which job to be checked is done
non-deterministically. In a case of the task having two active jobs, the scheduler path can either go
to the busy location and then to the check location, or go to the check location then the next job is
being ignored

When a job of a higher priority task is released the preemption is considered by updating the r
variable. This way we need not represent the queue of the job.

4. Error

The scheduler will reach this location in the case of the task job Ji,j being checked can not finish
its execution within the deadline. The reachability problem to this location is the key to verify the
tasks schedulability.

To summarise, the scheduler automaton Ei is the tuple 〈L,L0,Σ, X, I, E〉 (Refer to the figure 3.5
for a complete scheduler depiction):

1. Li = {Idlei, Busyi, Checki, Errori}

2. L0 = {Idlei}

3. Σ= {Releasei, ..., Releasej |i..j ∈ P}

3.3. FORMAL VERIFICATION FOR TASK SCHEDULING FEASIBILITY 35

4. Xi = {ci, di}

5. Ii = {ci ≤ ri, di ≤ Di}

6. Ei = {T(Idlei,Busyi), T(Idlei,Checki), . . .}

After encoding the problem into the scheduler and the task activation timed automaton as above then
a reachability problem will be solved on the product of both automata. This has to be done iteratively
from task τ1 to τn on priority order to decide whether the task system S are schedulable or not.

Using timed automata with subtraction, the decidability is guaranteed if the clock values are bounded
with certain maximal constant. Indeed, such a bound results in a finite number of states equivalence
classes. The state space then can be partitioned into a finite number of equivalence classes. The use of
Difference Bound Matrices (DBM) technique allows solving the problem, thus proving that it is decid-
able [29]. Hence, the scheduler uses some maximum value bound variables, namely CMax and RMax

for the clocks. When the bound CMax is reached, the clock value is reset. The optimum values of CMax

and RMax is obtained through iteration.
In NuSMV this kind of timed automata extension can be straightforwardly encoded the same way

we encode the classical timed automata. This is because the clocks are represented as real variables in
NuSMV. Thus, we can perform any linear arithmetical operation to the clocks, including the subtraction
operation and the reset to zero value. In addition, the limitation of the clocks to a maximum value is not
required.

Figure 3.5 shows the example of the modelling of two task scheduling. The switches are written
in the switch notation of timed automata, 〈si, a, ϕ, λ, sj〉 (Refer to section 3.2.1). Task 1 has a higher
priority than task 2 and both are periodic tasks with the period of 4 and 16 and deadlines equal with their
periods. The variable C1 and C2 represent the maximum computation time for task 1 and 2.

The variable Cmax gives the maximum clock (c) value limit. As clock (c) retains the amount of
computation time that has been done, Cmax ensures that its value will not exceed Cmax. When c has
reached the value Cmax, it will be reduced by Cmax to zero, thus ensuring the finite state space of the
system. Related to variable r value is the bound variable R2max. Variable r remembers the remaining
computation time that must be done. R2max gives the maximum limit where r value is still allowed for
the schedulability of the scheduler. Upon exceeding its value, the system then will immediately move to
an error state. Since it is already known before the subsequent deadline is reached that there will be a
violation.

3.3.3 NuSMV implementation of timed automata verification

As in NuSMV the limitation on r and c are not necessary, the scheduler automata can be simplified,
i.e. the transitions for the purpose of enforcing the value limit can be omitted. The resulting NuSMV
encoding of scheduler automata in the figure 3.5 the transition Check Check 10, Check Error 11,
Busy Busy 16, and Busy Error 17 are omitted.

Example 3.7. We present an example run of the two activation automata and scheduler of the second
task depicted in Figure 3.5 encoded in NuSMV. Using the following assignment {C1 = 3.5, C2 =
1, T1 = D1 = 4, T2 = D2 = 6}, then one of the possible run is

((A10,A20,Idle), {x = 0, y = 0, c = 0, d = 0}, r = 0)
Release1−−−−−−→ ((A1,A20,Busy), {x = 0, y = 0, c = 0, d = 0}, r = 3.2)

Release2−−−−−−→
((A1,A2,Check), {x = 0, y = 0, c = 0, d = 0}, r = 4.2)

δ4−−→ ((A1,A2,Check), {x = 4, y = 4, c = 4, d = 4}, r = 4.2)
Release1−−−−−−→

((A1,A2,Check), {x = 0, y = 4, c = 4, d = 4}, r = 7.4)
δ2−−→ ((A1,A2,Check), {x = 2, y = 6, c = 6, d = 6}, r = 7.4) −→

((A1,A2,Error), {x = 2, y = 6, c = 6, d = 6}, r = 7.4)

3.3. FORMAL VERIFICATION FOR TASK SCHEDULING FEASIBILITY 36

Idle Check Error

Busy

Idle_Check_5 =
(Idle,Release2,{}, {c,d},Check)

r := C2

Check_Check_7 =
(Check,Release2,{},{},Check)

Check_Check_10 =
(Check, -, {c = CMax}, {c}, Check)

r := r - CMax

Check_Check_8 =
(Check, Release1, {c < r, d < D2,

r <= R2Max}, {}, Check)
r := r + C1

Check_Idle_9 = (Check, -, {c = r, d = D2}, {}, Idle)

Busy_Check_14 =
(Busy, Release2, {r <= R2Max},{d}, Check)

r := r + C2

Idle_Busy_6 =
(Idle, Release1 , {}, {c}, Busy)

r := C1

Busy_Idle_13 =
(Busy,-,{c = r1}, {}, Idle)

Busy_Busy_16=
(Busy, -,{c = CMax}, {c}, Busy)

r := r - CMax

Busy_Busy_15 =
(Busy, Release1, {r <= R2Max},

{}, Busy)
r := r + C1

Check_Error_12 =
(Check, -, {c < r. d = D2}, {}, Error)

Check_Error_11 =
(Check, -, {r > R2Max}, {}, Error)

Busy_Error_17 =
(Busy, -, {r > R2Max}, {}, Error)

A2
y < 6

A1
x < 4

A1_A1_2 =
(A1, Release1 , {x >= 4}, {x}, A1)

A2_A2_4 =
(A2, Release2 , {y >= 6}, {y}, A2)

A10 A20

A10_A1_1 =
(A10, Release1 , {x = 0}, {x}, A1)

A20_A2_3 =
(A20, Release2 , {y = 0}, {y}, A2)

Figure 3.5: The example of task activation and scheduler automata for 2 tasks

3.3. FORMAL VERIFICATION FOR TASK SCHEDULING FEASIBILITY 37

At initial state all automata are in their initial locations (A10,A20,Idle) all clocks {x, y, c, d} are
zero and the variable r counting the time needed to finish executions of all task is zero. Both tasks τ1 and
τ2 are immediately released. First, transition A10 A1 1 synchronizing with transition Idle Busy 6 on
label Release1 takes the timed automata to state (A1, A20, Busy), reset the clock c and x and assign C1
value to r. Then, transition A20 A2 3 synchronizing with transition Busy Check 14 on label Release2

moves the timed automata to state (A1, A2, Check), reset the clock d and increment the value of r with
C2. At this point the job of task τ2 that we are checking is about to be executed, pending the execution
of job τ1. A δ-transition of 4 time unit then taken, increasing all clocks value by 4. The switch A1 A1 2

is then enabled and taken in synchronization with transition Check Check 8 on Release1 label. This
increases the value of r with C1. With the next time elapse, δ-transition of 2 time unit we then encounter
the deadlineD2 of task τ2, d = D2. At this point the value of clock c is less than the remaining execution
time r, which means the job of task τ2 has not finished being executed even though the deadline time is
reached. As all the guards c < r ∧ d = D2 of the switch Check Error 12 are satisfied, the switch is
taken and we reached error state. Thus, the task τ2 is not schedulable.

3.3.4 Sensitivity Analysis

The approach describerd above allows us to solve the Problem 1 in the ground sub-case, meaning that all
parameters have a fixed value. However, it is not evident how to tackle Problem 2, where parameters are
allowed to vary. In the next chapters, we will show how the model used Wang Yi and co-workers [28],
which is particularly efficient for it uses only two clocks, can be adapted to the study of parametric
systems.

Chapter 4

Real–Time System Sensitivity Analysis on
Parametric Timed Automata

4.1 Parametric Timed Automata

Parametric Timed Automata is an extension to the classical Timed Automata that we proposed to model
parametric real–timesystem. Let V be a set of symbols, with valuations over the rationals. A term over
symbols in V is defined as a1 · v1 + . . . + an · vn, with vi ∈ V and ai ∈ Q. A constraint over V is
defined as t ◦ k, where t is a term over V , k ∈ Q, and ◦ ∈ {<,≤, >,≥,=, 6=}. We denote the set of
terms and constraints over V as T (V) and C(V), respectively. B(V) is the set of boolean combinations
of constraints over V , with the standard connectives ∧ (conjunction), ∨ (disjunction), and ¬ (negation).
We denote with U(V) the set of update statements of the form v := t, with v ∈ V , and t ∈ T (V). An
assignment over a set of variables V is a function from V to Q. We use µV to denote assignments to
variables in V . The evaluation of a constraint c on an assignment µV returns the boolean value true when
constraint satisfied, and false when violated. We do not distinguish between a formula ϕ ∈ B(V), the
set of satisfying assignments over V , and the corresponding region of the space Q|V |. We write µV |= ϕ
to state that µV belongs to the region ϕ. We notice that the conjunction of two formulas amounts to the
intersection of the corresponding regions, negation to complementation, and union to disjunction.

A parametric timed automaton is a tuple 〈L,L0,Σ, X, P,Γ, I, E〉, where

• L is a finite set of locations
• L0 ⊆ L is the set of initial locations
• Σ a finite set of labels
• X is a finite set of variables
• P is a finite set of parameters
• Γ ⊆ B(P) is the parameter space
• I : L→ 2C(X∪P) is the invariant map
• E ⊆ L× Σ× C(X ∪ P)× 2U(X) × L is the set of switches.

As in the classiscal notion of timed automata we presented in previous chapter, a switch 〈l, a, ϕ, λ, l′〉
represents a transition from location l to location l′, in response to a ∈ Σ, when guard ϕ holds; the value
of the variables in X is updated according to the function λ : X × P → X . The set X is the disjoint
union of Xc (clocks) and Xs (state variables). The value of clocks can either be reset on each transitions,

38

4.1. PARAMETRIC TIMED AUTOMATA 39

Wait_for_
time_Q2
clock <= Q2

1
clock = O1
clock := 0

Wait_for_
offset

clock <= O1

1
clock = Q1
clock := 0

2
clock = Q2
clock := 0

Wait_for_
time_Q1
clock <= Q1

3
clock := 0

Wait_for_
event

2
clock = Q2
clock := 0

Figure 4.1: Example of parametric timed automata: tasks activation

Idling2 Check2 Error2

Busy2

2
SC2.x := 0
SC2.r := C2

2

1
SC2.x < SC2.r and SC2.x < D2

SC2.r := SC2.r + C1

Check_idle
SC2.x = SC2.r and SC2.x <= D2

2
SC2.x := 0

SC2.r := SC2.r + C2 - SC2.x

1
SC2.x := 0
SC2.r := C1

Busy_idle
SC2.x = SC2.r

2
SC2.r := SC2.r + C2

Check_error
SC2.x < SC2.r and SC2.x = D2

1
SC2.r := SC2.r + C1

2
SC2.x:= 0

SC2.r := C2

Figure 4.2: Example of parametric timed automata: schedulability checker automata for task τ2 (SC2)
(right)

4.1. PARAMETRIC TIMED AUTOMATA 40

or it can grow linearly in time in each location. The value of state variables can be changed only as a
result of a reset action when a transition is taken.

Example 4.1. Examples of parametric timed automata are given in Figure 4.1 and Figure 4.2. In the
timed automaton in Figure 4.1, L contains four locations, Wait for offset, Wait for time Q1,
Wait for time Q2, and Wait for event, referred to as WFO, WFQ1, WFQ2, and WFE in the rest of
the text. The initial locationL0 is WFO. The labels are Release1, Release2, and Release3onEvent.
There is one clock variable (clock), three parameters (Q1, Q2, O1). An example of invariant condition
is the constraint clock ≤ O1 associated with location WFO; an example of switch is 〈WFO,Release1,
clock = O1, clock := 0,WFQ2〉, which represents a transition from WFO to WFQ2. The transition can
be taken when clock = O1, and it resets clock to 0. The automaton in Figure 4.2 has a state variable
SC2.r that is reset, for instance, on the transition from Busy2 to Check2.

In PTA, a state is (l, µP , µX), with l ∈ L, µP assignment to the parameters such that µP |= Γ, and
µX assignment to the variables such that µX ∪ µP |= I(l); it is initial iff l ∈ L0. Let σ be a switch
〈l, a, ϕ, λ, l′〉 ∈ E. Then we say that a state s reaches s′ through σ, written s σ−→ s′, iff µP = µ′P ,
µX |= ϕ, and µ′X := λ(µX) where λ is a reset function to the selected clocks. We say that a state s
reaches a state s′ through δt iff l = l′, µP = µ′P , and µ′Xc := µXc + t.

A run of length k of a PTA is a sequence of states (l0, µP , µ
0
X), (l1, µP , µ

1
X), . . . , (lk, µP , µ

k
X) iff

the first state is initial, and for i = 0, . . . , k − 1 it holds that (li, µP , µ
i
X)

σ−→ (li+1, µP , µ
i+1
X) for some

switch σ, or li = li+1 and (li, µP , µ
i
X)

δt−→ (li+1, µP , µ
i+1
X). The presence of the parameter valuation µP

marks a difference w.r.t. the timed automata run presented in the previous chapter. It is worth to observe
that parameters are assigned a value in their space that is retained throughout the run.

Example 4.2. If µ is {O1 = 4, Q2 = 20}, then a run for the automaton in Figure 4.1 is

(WFO, µ, {clock = 0}) δ4−→ (WFO, µ, {clock = 4}) Release1−−−−−→
(WFQ2, µ, {clock = 0}) δ20−−→ (WFQ2, µ, {clock = 20}) Release2−−−−−→
(WFE, µ, {clock = 0})

We rely on the same notion of composition [1], that we presented in previous chapter, between au-
tomata having disjoint sets of variables. The locations of the composite automaton are given by the
cartesian product of the locations of the two automata; the same applies to the initial locations. Parame-
ters and variables of the composite are the union of the parameters and variables of the components. The
switches of the composite are given by the combination of the switches of the components.

Example 4.3. Consider, as an example, the composition of the two automata in Figure 4.1 and 4.2. A
possible run associated to the assignment of parameters {O1 = 4, Q1 = 15, Q2 = 10, C1 = 20, C2 =
5, D2 = 12} is reported below.

Step Location (A.clock, SC2.x, SC2.r) Transition

1 (WFO, Idling) (0, 0, 0) (δ4)

2 (WFO, Idling) (4, 4, 0) (Release1)

3 (WFQ2, Busy) (0, 0, 20) (δ10)

4 (WFQ2, Busy) (10, 10, 20) (Release2)

5 (WFQ1, Check) (0, 0, 15) (δ12)

6 (WFQ1, Check) (12, 12, 15) (A.Stut, SC2.Check error)

7 (WFQ1, Error) (12, 12, 15) −

4.2. MODELLING REAL–TIME SYSTEM IN PTA 41

During the first step, the composite automata evolves with a δ transition of duration 4, and the clocks
A.clock and SC2.x are incremented of the same amount. The second step corresponds to a switch
associated with the label Release1. This switch is the result of the composition of two switches in each
component automaton: from Idling to Busy2 for the automaton on the right, and from WFO to WFQ2
for the automaton on the left. The guards of both switches have to evaluate to true simultaneously and
their reset actions are combined. Similarly for the other transitions. At step 6, automaton A stutters,
while SC2 carries out a transition labelled by Check error.

The framework described above is very general, and captures several special cases of interest. With
respect to the traditional model of timed automata [1], our system differs in the following main points :

1. The presence of parameter

This will allow us to analyse the timed automata parametrically as we will describe in the next
chapter.

2. The presence of auxiliary variables

Instead of having only clocks in each timed automata, we allow the existence of state variables in
Xs. This allow other variables that might be needed for the system, e.g. buffer system variables,
counter, to be represented in PTA.

3. Generality of the update statements.

We allow arbitrary linear expression operations to be performed on the clocks. While for the
“classic” timed automata clocks can only be reset (x := 0), in our setting an update may have a
linear polynomial in the right hand side of the assignment. We can obtain standard timed automata
if the set of parameters and of state variables are empty, and the update constraints have the form
x := 0. If update constraints have the form x := x − c, with c ∈ Q, we obtain the TA with
subtraction [28].

4.2 Modelling real–time system in PTA

In order to represent parametric real-time systems, we can combine the ideas introduced in the previous
chapters with the notion of PTA. Indeed, the activation of jobs can be modelled by a parametric timed
automaton, where activation events are associated with transition labels. As an example, consider Figure
4.1.A. The timed automaton activates tasks τ1, τ2, and τ3 in correspondence of the labels Release1,
Release2 and Release3onEvent. Jobs of task τ1 are activated after a certain fixed time Q1 has
elapsed (and similarly for τ2); a job of task τ3 is nondeterministically activated. The example shows that
very complex activation patterns can be captured by using timers, parameters, and external events.

The traditional scenarios of the real-time literature are contained in our framework. For instance, if S
is a periodic task system, the activation automaton simply consists of a network of n independent timed
automata, each representing the activation of periodic task τi, as shown in Figure 4.3.1; each task τi has
a period Ti, a fixed duration of time between two activation events, and it may have an offset Oi for its
first activation time. Its activation automaton contains a clock, which is reset every time the period is
reached and Releasei is fired.

The parameters in a real-time task system as defined in Definition 2.3 made up the set of parameters P
in PTA. On periodic task set for example we can have our parameters P = {(C1, D1), . . . , (Cn, Dn), }
associated with each task.

4.3. SENSITIVITY ANALYSIS USING PTA 42

Each design parameter in P can have a fixed value or be a free parameter. As we discussed in
Chapter 2 very often, the free parameters are a subset of the ones listed above. For instance, the period
Ti is typically imposed by external constraints (e.g., on the sampling rate of the sensors). Computation
times can be considered as free parameters in as much as the designer can refine the implementation
to comply with the constraints dictated by the platform. Other parameters, such as the offsets, can be
selected with a certain freedom. As a notational convention we will use bold fonts for quantities that are
not allowed to change. For instance, if in a task set we fix the period, we will denote it by Ti.

As a subcase of our parametrized task systems, we can define the ground sub-case.

Definition 4.1. A ground sub-case for parametrized task systems is a task system S = {τ1, τ2, . . . , τn}
associated with a vector of design parameters P where each design parameter in P is assigned a fixed
value, i.e., there is no free parameter in the task system.

The objective of our work is to obtain schedulability region as presented in Problem 2 we defined in
Chapter 2 and we present our approach based on PTA.

4.3 Sensitivity analysis using PTA

The objective of this paper is to find the largest region in the parameter space for which a task set respects
some temporal properties as we defined in Problem 2In contrast to the ground sub-case, identifying the
feasibility region is a relatively new problem. As reported in Section ??, one of the few papers that
handles parametric task set producing the schedulability region is [11], in which the attention is restricted
to periodic tasks with zero offsets. We describe here an approach for producing the feasibility regions,
constructed as a union of convex polyhedra, for general task sets. The method applies to all properties
whose violation can be modelled as reachability of an error state. In the last chapter, we showed how
this applies to the schedulability problem, and, in the following, we will still restrict our attention to this
problem. The generalisation to different properties simply amounts to the introduction of different error
states.

4.3.1 Parametric Verification of Temporal Properties (PTVP) algorithm

Our approach to computing the feasibility region of a parametrized task system relies on the general-
ization of the approach presented in [28] to the parametrized case. Within this framework, we propose
a novel algorithm, Parametric Verification of Temporal Properties (PTVP) algorithm, for the symbolic
computation of the feasibility region. The pseudo-code is shown in Figure 4.1. As in [28], we iterate
over the tasks in the system S , starting from the task with highest priority (i = 1). For each of these we
compute the schedulability sub-regionRi (i.e., the region of parameters such that task τi is schedulable).

The computation of the schedulability sub-region for each task is done in the inner loop by enu-
merating each trace to the error state (the trace hunting step can be made in different ways), and then
generalizing by extracting the region of parameters that preserve the validity of the trace. The “numeric”
timed automata (used as schedulability checkers and to generate the activation events) are replaced with
parametric timed automata. For instance, in the activation automata shown in Figure 4.1.(A) the param-
eters O1, Q1 and Q2 can be free parameters instead of numeric values. The identifier PTA denotes the
parametric automata used to construct the schedulability sub-region for each task. Every time we enter
into the inner loop, PTA is initialized with the Schedulability Automata Network (SAN) SANi utilized
for task τi, given by the composition of the activation automaton and of the schedulability checkers SCi.
We construct the regionRi by a sequence of iterations of the inner loop, as detailed below.

4.3. SENSITIVITY ANALYSIS USING PTA 43

Require: PTA describing activations and scheduling of n tasks
Ensure: Schedulability Region

1: for i = 1 to n do
2: PTA.init(ParamSchedProblemForTask(i))
3: j = 0
4: while PTA.reachable(Error) do
5: trace = PTA.get trace()
6: Unfeasible[j] = PTA.get parameter(trace)
7: PTA.add constraints(negate(Unfeasible[j]))
8: j++
9: Feasible[i] = not(big or(0, j, Unfeasible))

10: Return big and(0, n, Feasible)

Algorithm 4.1: Parametric Verification of Temporal Properties (PTVP) algorithm: Iterative algorithm
for PTA schedulability region analysis

Each iteration starts by calling the function PTA.reachable. This is a call to the model checker
to see whether the error state is reachable. Three things can happen: reachable, not reachable, or failure
to compute an answer in the given resource bounds. The algorithm is not guaranteed to terminate, and
it is possible that a trace to the error state (henceforth referred to as error trace) does not exist, but the
algorithm cannot find out this result in finite time. In the next subsection, we will show decidability at
least for a very important special case (periodic tasks with free offsets), while further investigations on
the convergence in more general cases are reserved for future work.

Suppose that the j iteration of the inner loop for task τi PTA.reachable produces reachable, i.e.,
the model checking problem SAN j

i |= EFscheduler.error. The call to the function PTA.getTrace()
will then supply us with a trace πji . The next step, carried out by the PTA.get parameter function,
is to identify the region of parameters ψji that make the trace valid (in the spirit of [26]). As shown
in the next section, the operation requires a symbolic manipulation of the trace and a projection oper-
ation. The region ψji is a convex polyhedron, identified by a disjunction of linear constraints over the
parameters P , and is a subset of the complement of Ri. We use the information collected in this way
as as an additional constraint for the next iteration. Namely, we limit the search space of SAN (j+1)

i

by PTA.add constraints, by inserting, as an additional constraint to the reachability problem, the
conjunction of ¬(ψji) with the constraints ¬(ψ1

i) ∧ ¬(ψ2
i) ∧ . . . ∧ ¬(ψj−2

i) ∧ ¬(ψj−1
i) obtained in the

previous iterations.
When the function PTA.reachable produces unreachable, we can compute the feasibility region

Ri asRi = ¬(ψ1
i ∨ ψ2

i . . . ∨ ψJi) where J is the maximum j, after which the Error state is unreachable.
The total schedulability regions is the intersections of the schedulability regions found for each task:

R = ∩ni=1Ri, where n is the number of tasks.

Example 4.4. Consider a system of two periodic tasks S = {τ1, τ2} with deadlines and periods given
by D1 = 7, T1 = 10 and D2 = 6, T2 = 10.

The activation automata for this case is a network of two independent automata. The activation
automata of task τ1 is shown in Figure 4.3.1. The schedulability checker for task τ2, SC2, is exactly the
one shown in Figure 4.2. As shown in the figure, for task τ2 the only relevant transitions that affect the
counter r are determined by the only task with a higher priority τ1. The schedulability checker SC1 for
task τ1 is simpler since τ1 does not suffer any interference from higher priority tasks. We do not report it

4.3. SENSITIVITY ANALYSIS USING PTA 44

Wait_for_
period

clock <= T1

1
clock = T1
clock := 0

clock = O1
clock := 0

Wait_for_
offset

clock <= O1

Figure 4.3: Task activation automata for periodic tasks

here for the sake of brevity.
We now illustrate the algorithm by adapting the example in C1, C2 and O2 are free parameters while

we set O1 = 0. The computation of the feasibility region proceeds as shown in 4.4. For task τ1, the
schedulability region is found in one iteration of the inner loop and is simply given byC1 < 7. The region
R2 is the complement of the union of the polyhedra produced in six iterations. In the second column of
the table, we show the restricted search space for the reachability problem. The schedulability regionR,
given by the conjunction ofR1 andR2, is expressed as follows:

C1 + C2 < 6 +O2 ∧ C1 + C2 < 10∧
C1 + C2 < 6 ∧ C2 < 10−O2 ∧ C1 < 7 ∧ C2 < 6

The 3D plot ofR is depicted in Figure 4.5. As shown above, some of the constraints found are redundant;
this problem can be solved using classical methods for the elimination of redundant constraints. A second
remark, since we consider a periodic task set, the function PTA.reachable produces a negative result
(Error unreachable) in finite time.

4.3.2 Algorithm termination guarantee for periodic task sets

While the PTVP algorithm presented above can be applied to models represented as general task activa-
tion patterns, in this section we will present strong convergence results for the special case of periodic
task sets.

In particular, we will make the following assumptions: 1) the period of the task Ti and the relative
deadline Di of the tasks are fixed, 2) for notational convenience we will assume that tasks are ordered
by decreasing priority. Therefore, the parameter space for each task is defined as Pi = {Ci} and Ps =
O1 ×O2 . . .×On.

For this type of task set, it is possible to state the following result (see [41]):

Theorem 4.1. Consider a periodic task set and letH = lcm {T1, . . . ,Tn} andO = max {O1, . . . ,On}.
Then the following two statements are equivalent: I) The task set is unschedulable, II) A deadline miss
occurs in the time interval [0, 2H +O].

As a consequence of the above we can write the following:

Lemma 1. Consider Problem 2 and assume that S = {τ1, . . . , τn} is the periodic task set described
above and that there is an upper bound O for the maximum offset. Then the number of error traces for
the PTA described above that could terminate with an error condition is finite.

4.3. SENSITIVITY ANALYSIS USING PTA 45

Step Constraint ResultConstraint
Task 1

1 − C1 > 7
Task 2

1 − C1 + C2 > 6 + O2

2 ¬(C1 + C2 > 6 + O2)
C1 + C2 > 10∧

O2 = 10∧
2C1 + C2 > 6 + O2

3

¬((C1 + C2 > 6 + O2)∨
(C1 + C2 > 10∧

O2 = 10∧
2C1 + C2 > 6 + O2))

C2 > 6

4

¬((C1 + C2 > 6 + O2)∨
(C1 + C2 > 10∧

O2 = 10∧
2C1 + C2 > 6 + O2)∨

(C2 > 6))

C1 + C2 > 10∧
2C1 + C2 > 6 + O2

5

¬((C1 + C2 > 6 + O2)∨
(C1 + C2 > 10∧

O2 = 10∧
2C1 + C2 > 6 + O2)∨

(C2 > 6)∨
(C1 + C2 > 10∧

2C1 + C2 > 6 + O2))

C1 + C2 > 6∧
O2 = 10

6

¬((C1 + C2 > 6 + O2)∨
(C1 + C2 > 10∧

O2 = 10∧
2C1 + C2 > 6 + O2)∨

(C2 > 6)∨
(C1 + C2 > 10∧

2C1 + C2 > 6 + O2)∨
(C1 + C2 > 6∧

O2 = 10))

C2 > 10 + O2∧
C1 + O2 > 6

Figure 4.4: Example run of the algorithm

Proof. Consider the problem of verifying the schedulability of task τi. We can denote a trace by the
sequence of labels associated to the transitions. Clearly, error traces are given by:

πj = (Release1, . . . , Releasei, Check idle)+

Releasei, Check error

where we used the standard notation for regular expressions. Denote by λ(πj , x) the number of occur-
rences of symbol x inside the trace πj . Based on Lemma 4.1, we can reduce the analysis to the events
that occur in the time horizon [0, 2H + O]. Therefore, it is easy to see that for any error trace πi, we
have: 1) λ(πj , Releaseh) ≤

⌈
2H+O
Ti

⌉
for any h ≤ i, 2) λ(πj , Check idle) ≤ λ(πi, Releasei).

The number of strings composed using a finite number of symbols is clearly finite, which leads to the
claim.

As an immediate consequence of the above, we can write the following:

Lemma 2. Consider Problem 2 and assume that S = {τ1, . . . , τn} is the periodic task set described
above. Assume that we solve the problem by using the PTVP algorithm in Figure 4.1. If 1) function
PTA.get trace() enumerates all witness traces, 2) function PTA get parameter(.) identifies
all parameters that validate a given error trace, then the PTVP algorithm computes the feasibility region
in finite time.

This result can be used to ensure that the proposed PTVP algorithm is guaranteed to terminate in this
important special case. However, the bound computed for the number of possible events in the proof of
Lemma 1 is very conservative.

4.4. SYMBOLIC IMPLEMENTATION 46

6

10

6 7

Figure 4.5: The feasibility region of the problem in 3D plot of C1, C2 and O2

4.4 Symbolic implementation

In this section we discuss how to algorithmically manipulate PTA’s. In fact, standard techniques for the
manipulation of timed automata are typically based on numerical techniques, where suitable degrees of
parameterization are not provided.

Our approach relies on a symbolic approach to model checking (timed) automata [9]. The state space
of the system is represented by means of a vector of current state variables V : an assignment of values to
the variables in V represents a state of the system. As standard in symbolic model checking, the discrete
part of the automaton is encoded (e.g., transitions, labels, and locations) by means of boolean variables.
Continuous (clock and state) variables and parameters are represented by means of real-valued variables.
A formula such as Loci → x− y ≤ O1 can be used to represent the fact that in location i (corresponding
to the boolean variable Loci being true), the specified condition over x, y and O1 must hold.

In order to express the dynamics of the system, another set of variables V ′, called the next state
variables, is introduced. Intuitively, a transition is represented as an assignment to the V and V ′ vari-
ables. For instance, Transi,j → (x − y ≥ 5) ∧ (x′ = 0) ∧ (y′ = y) states that for a transition from
location i to location j to take place (corresponding to Transi,j being true), (x − y ≥ 5) must hold
(as a precondition), the value of x after the transition will be 0, while the value of y will be unchanged.
In [9], a procedure for compositional symbolic representation of timed automata is described. It can be
generalized to the case of PTA’s by considering that each parameter p has to be constrained by p′ = p.
In the following, we denote with I(V) the formula describing the initial configurations, R(V, V ′) the
transition relation, and with Ui(X) the fact that the PTA is in an error state, thus showing unschedula-
bility; we also separate V into the discrete variables D, the continuous clock Xc and Xs state variables,
and the parameters P . The PTA.init primitive, given a system of tasks, constructs the I , R, and U
formulae. The above formulae are in a fragment of first-order logic, and are interpreted with respect to

4.4. SYMBOLIC IMPLEMENTATION 47

the background theory of linear constraints over the rationals, with numerical constants and operators
having the standard meaning.

Our approach is made practical by the availability of symbolic model checking techniques for infinite
state systems. In particular, we rely on NuSMV3, a system for the verification of symbolically described
infinite state systems. NuSMV3 is the latest version of NuSMV, build on top of the NuSMV model
checker [22] (that is able to deal with finite-state systems using BDD-based and SAT-based verification
engines), and the MathSAT [14] solver for Satisfiability Modulo Theories (SMT). For the sake of this
work, the capabilities of NuSMV are used “off the shelf”.

The reachability problem for a symbolically represented system (including PTA) is undecidable.
Thus, in general, the PTA.reachable primitive can not be implemented exactly. We thus rely on
two kinds of incomplete but complementary sets of engines. The first one is an SMT-generalization of
bounded model checking, that is aimed at detecting witness traces of a violation to a given property for
a given (bounded) number of steps k. Intuitively, the vector of state variables is replicated k times, thus
obtaining V 0, V 1, . . . , V k, where an assignment to V i represents the state of the PTA after i transitions.
In order to find a trace witnessing unschedulability for process i, the transition relation is “unrolled” to
obtain the formula

I(V 0) ∧R(V 0, V 1) . . . ∧R(V k−1, V k) ∧ U(V k)

This formula is satisfiable if and only if such a trace exists, and can be fed to MathSAT, that can provide
a simulation trace by assigning suitable values to the state variables over time. This is the way the
PTA.reachable can return a true value (for a given k), and, based on the model found by MathSAT,
how PTA.get_trace constructs the corresponding trace.

Obviously, the bounded model checking approach can not prove the absence of violations in the gen-
eral case, and a dual algorithms to conclude the absence of a violation is needed. To this end, NuSMT
implements two engines. The first one generalizes k-induction [50]. The other one is an implementation
of a CounterExample Guided Abstraction-Refinement (CEGAR) loop, with predicate abstraction com-
puted as in [19], and refinement provided in weakest precondition and SMT interpolation [23]. Both
engines are correct (i.e., if they return true, then the property holds), but not complete (i.e., they may
return unknown in cases where the property holds).

In the following, we now concentrate on the novel parts, i.e., the PTA.get_parameter primitive,
that extracts the constraints associated to a trace of length k. Let µ be the assignment to the variables
P,D0, X0, D1, X1, . . . , Dk, Xk (every parameter retains its value over time). We then simplify the
above formula by replacing each discrete variable in D0, D1, . . . , Dk with the corresponding truth value
assigned by µ. The result is a formula in the P, V 0, . . . , V k variables, that can be seen as symbolic
representation of a set of assignments to these variables, each of which represents a different trace, with
the same discrete part. In order to find the infeasibility region for the parameters, it is now sufficient to
project away the continuous variables by computing the following quantification:

∃X0, . . . , Xk.Φ(P,X0, . . . , Xk)

In the general case, a general quantifier elimination procedure (such as Fourier-Motzskin elimination) can
be required. Several optimizations are possible. First, there exists a functional dependency of continuous
variable xi and the values of the P,D0, D1, δ0, . . . , δi−1, Di: thus all variables except the δi can be
eliminated by inlining. The resulting Φ can be decomposed into a conjunction of Φi, each depending on
P, δ1, . . . , δi, so that the computation of the quantification can be reduced to the more structured

Φ0(P) ∧ ∃δ1.(Φ1(P, δ1) ∧ ∃δ2.(. . . ∧ ∃δk.Φk(P, δ1, . . . δk)))

4.4. SYMBOLIC IMPLEMENTATION 48

In the specific case of periodic activation, we notice that each discrete path is associated with a unique
assignment to the δi variables, since guards are all in the form of equalities. Thus, the concrete assign-
ment found by MathSAT turns out to be the only possible instantiation for the quantifiers in the above
formula, and the constraints over the parameters are simply obtained by value propagation.

Chapter 5

Quinq Tool

We implemented the Parametric Verification of Temporal Properties (PTVP) algorithm for parametric
timed automata presented in the previous chapter in the tool named Quinq. In this chapter we first
discuss the overview of the tool architecture of Quinq. We then offer the detailed discussion on each
of its components: from the specification languages used for the input of Quinq, to the search trace
implementation to the parametric analysis algorithm implementation details. We will also offer with
some examples on the execution of the algorithm that could help understanding of its details. In the next
chapter, we will report on the application of Quinq in different scenarios.

5.1 Design of the tool - an overview

5.1.1 General Architecture

The architecture of the tool Quinq is depicted in Figure 5.1. The main functionalities carried out by our
tool are the following:

Input handling In the topmost part of the figure, we show the three possible input possibilities we
provide for Quinq. The first one, is by an ordinary NuSMV file that describes the network of
PTA as discussed in the previous chapters. For real–time systems consisting of periodic, we have
devised a simplified input format, which is translated into NuSMV by an appropriate component
(the Automatic periodic Analysis tool). Finally, it is possible to use as an input a UPPAL xml file,
which is decorated with additional information (i.e., parameters) and translated into NuSMV by a
tool called JUNT.

PTVP algorithm implementation Referring to the PTVP algorithm in Figure 4.1, we have two main
parts that need to be implemented:

1. Trace search (the PTA.get trace() function)

2. Sensitivity analysis (the PTA.get parameter() function)

Completion check An inductive reasoning function is provided in NuSMV3. For the purposes of as-
sessing the completion of the algorithm, NuSMV driver can directly interact with NuSMV3 to test
whether the currently acquired unschedulability region are maximum.

49

5.1. DESIGN OF THE TOOL - AN OVERVIEW 50

NuSMV model file

NuSMV driver

Sensitivity
Analysis

UPPAAL
driver

Trace
translator

Search Point
Generation

New datapoint

Periodic generator input UPPAAL xml file

Automatic
Periodic
Analysis

JUNT

NuSMV3
Sensitivity

add-on
UPPAAL

Graph Maker

Result Constraints

Schedulability Region

New datapoint

Figure 5.1: General architecture of Quinq

5.1. DESIGN OF THE TOOL - AN OVERVIEW 51

Output handling In the end, after obtaining the result constraints, the schedulability region will be
presented in the form of set of constraints in the parameter space directly to the user. Or graph
maker component can be called to illustrate the s̈licesöf feasibility region in two of the parameters
space.

5.1.2 Components

In this section we offer an overview of each component in the architecture of Quinq. The mapping of
each component to the functionalities we described above will be given in Table 5.1.2 in the end of this
section.

The components can be differentiated in two categories: 1) components used as blackbox, and 2)
components we developed. In the following we discuss each components in Quinq architecture that we
developed for this work:

Sensitivity Add-on This is the component in which we implemented the main schedulability analysis
procedures. As it works in close collaboration with NuSMV3 and their symbolic model checking
method, this component is developed as an add-on for NuSMV3. This component provides the
following main functions:

1. Sensitivity analysis: Given a model of parametric real-time system and parameters, sensi-
tivity analysis process according to the PTVP algorithm is carried out iteratively to find the
schedulability region. BMC search is performed to find the traces, and the sensitivity analysis
is carried out on the resulting symbolic trace.

2. Sensitivity analysis from a trace: Provided a model of parametric real-time system, a set of
parameters, and a trace from the initial state to one of location representing the temporal vio-
lation, this function performs sensitivity analysis to the model based on the trace given. The
trace will be replicated in the symbolic model, then the sensitivity analysis will be performed
to obtain one unschedulability region that is projected from the trace.

High Level Periodic System Analysis (HLPSA) In this component, the handling for the schedulability
analysis is handled completely. This component provides the following functions :

1. Automated input system
This component handles the automated input system, rather than having the user design their
periodic system, he/she only needs to specify the number of tasks involved, the values speci-
fication, and the parameters that they desired.

2. Input file generation: parametric and non-parametric
Based on the input from the user, this component automatically generates the NuSMV input
model as well as the corresponding non-parametric model to optimize the search process.

3. Schedulability analysis complete with the search scheme.
This component then perform the schedulability analysis, in collaboration with the sensitivity
addons, as well as the search optimization, in collaboration with the search optimization
component.

Search Optimization This component implement the search optimization procedure for obtaining an
error trace. Trace finding can be carried out by parametrically using symbolic model checker, or
non-parametrically using non-parametric model checkers. Using non-parametric model checker

5.1. DESIGN OF THE TOOL - AN OVERVIEW 52

entailed the need to supply fixed points as the parameter instantiation to be checked for a coun-
terexample, i.e. a trace.

This component performs search finding using non-parametric model checker to optimize the trace
finding process. It performs the following functions :

1. Point generation
For the purpose of the search optimization we develop the component to perform the search
for instantiation points in the parameter space that potentially lead us to an error trace. We
provide three approaches in finding the potential instantiation point :

• Randomized point
Provided a limited search area, we can start a random point generator which will return
us with points inside the search area with uniform distribution. The intuition is that if
no prior information is available on the points that could lead to an error trace, trying
random points that are uniformly distributed improves the chance of hitting the area
where the error happens.
• Datagrid

Provided a limited search area, we can start a search for all the points in the data grid with
the granularity that we decide. The maximum granularity of the data search depends on
the non-parametric model checker that we use. On the numeric model checker that
allows rational number search with the granularity as small as possible is possible. The
search can be started from the point with higher values first, or point with lower values
first.

After each point generation a test is carried out to check whether the generated point is
already covered in the currently found unfeasibility region.

2. Non-parametric model generation
Next, this component generates the input file with the parameter variables assigned to the
chosen point instantiation. The non-parametric model input file is then provided to the nu-
meric model checker that we choose. As the model generation procedure is closely related
to which model checker that we use, this function is directly connected to the numeric model
checker driver.

3. Trace translation
Upon receiving the output from the non-parametric model checker driver then we observe
the result. On the case that no error trace is found, the component is then search for the next
instantiation point. When an error trace is provided, then a trace translation from the trace
into an XML trace readable by NuSMV trace reader.
During the translation some abstraction process is also performed to the trace as to provide
enough information to the NuSMV to replicate the trace, but not too much as to make the
trace is highly suited for one and only the instantiation point. Some of the information that
must be abstracted are for example the exact time values for the clocks.

Model checker driver This is the component where the direct interaction with the model checkers as
blackbox are performed. The function calls to each of the model checker are performed here, as
well as the input model generation for the instantiation point we chose. The interpreter of the
model checker result is also performed.

5.2. SPECIFICATION LANGUAGE 53

Graph generator We provide a component to visualize the result constraints in 2D. Given a set of
constraints as the result of Quinq, two of the parameters that we would like to analyse, p1 and p2,
and the resolution of the graphical result, the tool will provide us with the graph in the space of p1

and p2.

In the Figure 5.1 of Quinq architecture several components are shaded to signify the components that
have not been developed for this dissertation. The components that we have been using as black box in
collaboration with our tool are the following:

NuSMV3 This is the symbolic model checker tool that we employ. It serves several main functions:

• Bounded Model Checking : Perform bounded model checking to symbolic model up to the
bound k. Return a counterexample as a witness if the checked property can be falsified in
any of the bound from 0 to k.

• Trace replication: Given a trace guide, this function will run the same trace on the symbolic
model given.

• Existential elimination : Perform existential elimination of all the variables other than the
parameters to a set of constraints, resulting in constraints only in the space of parameters.
This function is enabled trough existelim module developed by Mathsat5 developer.

• Inductive Reasoning : This function performs inductive reasoning to the model and the ac-
quired constraints. This function enables us to confirm whether or not we have obtained the
complete feasibility region of the system on step-k.

UPPAAL UPPAAL is used mainly to help with the trace finding process. This is done by checking an
instantiation of the parametric timed automata (i.e. grounding the parameters to specific values)
for a counterexample.

UPPAAL to NuSMV translator (JUNT) This component is developed by Alena Simalatsar for the
purpose of COMBEST project 1. It is a translation path from the Uppaal explicit state model
into its symbolic representation in NuSMV, called Java Uppaal to NuSMV Translator (JUNT).

The mapping between each different components to Quinq functionalities are given in the following
table:

5.2 Specification Language

We decide to use SMV as our main language,however, we also provide two alternative input possibilities:

1. High level model input: For modelling standard periodic tasks with preemptive, fixed priority
scheduler.

2. UPPAAL XML model: We provide a translator for model constructed in UPPAAL to be translated
to SMV model up to some extent.

1(http://www.combest.eu/home/)

5.2. SPECIFICATION LANGUAGE 54

Component Input Main Completion Output
handling algorithm check handling

Sensitivity
add-on − X − X
HLPSA X X X −
Search
optimization − X − −
Model checker
driver − X X −
Graph generator − − − X
NuSMV3 X X X −
UPPAAL − X − −
JUNT X − − −

Table 5.1: Mapping between components and functionalities in Quinq

5.2.1 SMV Language

We use SMV as our main specification language for the parametric timed automata input model. As
shown in the previous chapter:

1. A parametric real–time system can conveniently be modelled as parametric timed automata, and

2. The SMV language can be used to express this model.

Examples of this modelling technique have been shown in section 3.2.2: Timed Automata Verification
in NuSMV.

Clocks and all the continuous variables are represented through real variables. Variables with discrete
behaviour can be represented using enumeration. While the rest of the timed automata are represented
through boolean variables. Parameters are also represented as variables with the following constraints :

• the variables that we intend to analyse must not be assigned with any values.

• the upper and lower limit to the possible values of the parameter must be given

Further details on the use of the NuSMV input language can be found on its website 2.

5.2.2 UPPAAL language

UPPAAl language can not be directly used in our schedulability analysis framework of parametric timed
automata because UPPAAl does not have parameters. However, UPPAAL is a well known modelling
language, and it is supported by various tools, including one GUI for modelling. Therefore, we provide
the possibility of the flow depicted in Figure 5.2 to use UPPAAL model as an input.

Provided a representation of real–time system expressed as timed automata in UPPAAL, the UP-
PAAL model can be used as the input to the system. The translator we provide will translate the arbitrary

2(http://nusmv.fbk.eu/)

5.2. SPECIFICATION LANGUAGE 55

Figure 5.2: The flow of designing input model using UPPAAL model.

UPPAAL model to non-parametric timed automata presented in NuSMV model. With the addition of pa-
rameter data by the user, the non-parametric timed automata model is then transformed into subsequent
parametric timed automata model in NuSMV that will be the input for our tool.

Enabling the UPPAAL XML file as input provides benefits in twofold: it makes the modelling easier
with visual on the model and the resulting UPPAAL model can be used later for the optimization that we
will discuss in section ??. However, some care has to be taken in using this approach as there are several
discrepancies between UPPAAL and NuSMV. We discuss the UPPAAL - SMV language discrepancies
in the following discussion section. It has to be understood that the main intention of the modelling is to
model parametric timed automata in NuSMV and that the UPPAAL model should be used as a guide to
at least emulate the behaviour of the desired NuSMV model.

5.2.3 High level modelling of periodic system

Instead of going through the modelling step for the periodic system, we provide a high level view of the
periodic system for the user to model . Using periodic plugin, our tool accepts the details such as :

• The number of tasks

• The values for tasks variables : periods, deadline, computation time, offset.

• The variables that are going to be analysed : parameters.

• The upper and lower value limit for the parameters.

This input will then be translated into a template XML file with tags specifying the edges, locations,
parameters and non-parameter variable values of the parametric timed automata describing the periodic
system and scheduler. This XML file is almost the same as UPPAAL XML file input to describe the
timed automata excepts that it has -1 values for variables which are parameters and that there are entries
for the lower and upper bound of the parameter values. Thus, later this XML file can also be opened
in UPPAAL application. Quinq will then further translate this XML file into NuSMV and perform the
requested schedulability analysis on parameters.

5.2. SPECIFICATION LANGUAGE 56

5.2.4 Input language discussion

We choose our specification languages by considering the challenges that we presented in section 2.4:
the expression power, usability, and tractability of the model. We consider that the expression power
of NuSMV language are sufficient to represent parametric timed automata in general, and subsequently
real–time system expressed through timed automata. It enables us to represent all possible desired prop-
erties, as well as unlimited possibilities in synchronization mechanism between timed automata.

Modelling parametric timed automata for the first times in NuSMV requires a basic background
knowledge on modelling formal system. For that purpose, we enable the high level modelling for stan-
dard periodic cases. Aside from increasing its usability it also increases the tractability of the model.
Using automatic model generation we provided reducing the modelling effort into just specifying the
number of tasks and their design variables values. This applies for all systems from small number of
tasks and applicable too for system with significant number tasks.

On arbitrary model of timed automata, where more complex activation pattern and scheduler model
is needed, we also provide a simple input alternative by enabling UPPAAL XML model as an input guide
for the NuSMV model.Starting the design in the UPPAAL will enable the user to have a flavour of the
system correctness on non-parametric timed automata domain. Translating the UPPAAL XML model to
NuSMV will then provide user with the NuSMV model with the same behaviour that can be used as the
basic to further improvise according to the desired parametric behaviour. This alternative increases the
usability for Quinq users that are the first time user of NuSMV.

However there are some discrepancies on SMV and UPPAAL semantics that are relevant for our
modelling domain :

1. Integer vs Real domain

In NuSMV language we work using the rational domain. This is particularly suitable for the do-
main of parametric real–time system as we could express the continuous notion of time seamlessly.
In contrary, all the modelling in UPPAAL is done in the integer domain. Values for every vari-
ables are thus expressed in integer. This makes the modelled system to have discrete behaviour as
all the possible variables valuation are in integer. Thus, some abstraction is needed in modelling
parametric real time system in UPPAAL as to fit the integer behaviour.

2. Array data structure

Arrays in UPPAAL are provided, this then will be translated to variables in NuSMV, however
the operation to the array as a whole needs to be ensured that it has been properly translated.
Arrays are particularly challenging to translate, because array support in NuSMV is very limited.
Some work around might be needed to ensure the correct behaviour has been implemented. For
example, when arrays are used to represent the transition guards or assignments in Uppaal, we
need to introduce a number of transitions equal to the array size in the NuSMV module. There
might be a case when array size is defined by a template parameter that can vary from one template
instantiation to another. This causes the translation of one Uppaal transition into an unfixed number
of NuSMV transitions. Therefore, different instantiations of the same template should be translated
into different NuSMV modules which cause the NuSMV code to expand.

This lack of data structure entails some work around into implementing routines involving buffer
and array of similar items. With this the queue behaviour for example must be implemented by
providing certain macros to emulate the behaviour of push and pop in a queue / stack.

3. Clocks

5.3. PTVP ALGORITHM IMPLEMENTATION 57

As we have explained in chapter 4, the clocks that represent time are modelled using real variables.
Thus the expected behaviour of a clock that only get increased by values unless reset or assigned
new values, and never takes value below zero has to be ensured by constraints to the variables.
Incomplete constraints specification for the clock variable might cause the assignment of the clocks
at each steps to vary arbitrarily.

The clocks are modelled automatically in UPPAAL as a type clock. These clocks will increase
its value on its own as time elapses, and could be reset as per guard instruction. However, as it is
strictly formulated for clock purposes, the only operations that are allowed are comparison with
another variable / value and reset operation. The clock values can not be obtained to be further
operated in a linear operation with other variables for example. As such on timed automata where
we need the clock values to be operated on, some counters must be established to keep the clock
values.

4. Transition synchronization

Since the transitions are essentially presented as a variable that could take values within certain
possible transitions, we need to properly specify which value can be taken at what time. Synchro-
nization between transitions that may or may not be asynchronized would need some if-else case
to model.

The synchronization in UPPAAL happens through channels. The automata synchronize via the
channel by sending and receiving information in the channel. The channel in some ways can
be seen as label representation in classical timed automata. It needs to be ensured that the syn-
chronization has been represented correctly both in UPPAAL and NuSMV version. The channel
encoding in UPPPAAL in several ways limit the synchronization possibility as opposite to the all
possible synchronization in NuSMV.

All the aspects above have to be taken care of when the flow depicted in Figure 5.2 for input using
UPPAAL model is used. In the long run, the modelling using NuSMV is more advisable for our para-
metric schedulability analysis framework. It would provide the most freedom in modelling the system
and represent the authentic continuous behaviour of the real–time system.

5.3 PTVP Algorithm Implementation

We built the tool Quinq based on the iterative PTVP algorithm presented in Figure 4.1. The tool Quinq
will need the parametric timed automata model of the system in SMV file as an input. This input file
describes the real–time system through a parametric timed automata network, describing the activation
of tasks in the system and the scheduler for the tasks. At least one error location should be included to
indicate whether the system has violated its deadline or any of its desired temporal behaviour.

Quinq also requires a parameter file input. It is a text file with a list of variables in the smv model
input that we would like to treat as parameters. Several different options to run the main functions are
also provided in the tool. Such as the option to only run one iteration of the algorithm, or to only perform
sensitivity analysis given a specific trace. We offer an overview of the tool functions in Appendix A.

Performing feasibility analysis of one task can be focused on working on one smv input file as we
can see in Figure 5.3. The additional input to the model file that we need are:

1. BMC length : up to what length would we like to perform the BMC for error traces.

5.3. PTVP ALGORITHM IMPLEMENTATION 58

single process schedulability region analysis

Initial
constraint

NuSMV3

Sensitivity
Add-onTrace

New invarspec
with added constraint stringQUINQsmv input file,

bmc length
smv input file

smv input file

new constraint

Collected constraints at the end
the formula for feasibility

region

smv input file,
bmc length.

invarspec index

Figure 5.3: Component interactions in performing feasibility analysis implementation for one file model.

2. Initial constraints : these are the constraints on the search space of the parameters. On the first
iteration this is the initial upper and lower bound of the parameter. On the next iterations this is the
conjunction between the initial upper and lower boundary and the constraints found in the previous
iteration.

3. Property to be checked : this is included in the model. For our case of schedulability this is the
reachability property of the bad or error states where the system will violate the tasks deadline or
any of the system requirements.

For one sensitivity analysis process of each smv file, Quinq evokes the sensitivity addons in NuSMV3
that is the driver for NuSMV3 in performing the implementation for the algorithm. The processes per-
formed by the sensitivity add-on is the following:

• Error trace search

• Sensitivity analysis

The illustration of the two main phases above can be seen in Figure 5.4.

5.3.1 Error trace search

In the error trace search, we provide two alternatives of performing the search :

Parametric search In here Quinq invokes NuSMV functions to read the model file input and perform
the BMC search. Specifically we invoke NuSMV incremental BMC function to find a trace on the
parametric automata unrolled incrementally from length 0 (initial state) up to k-length, where k
is the BMC length given in the input. We perform verification on satisfiability of the reachability

5.3. PTVP ALGORITHM IMPLEMENTATION 59

PVTP algorithm implementation

Input file, BMC length, Initial constraints

Sensitivity
Analysis

Error trace
search

Schedulability
region

Counter example

Figure 5.4: A flow for the feasibility analysis implementation for one process in sensitivity add-on.

property on the unrolled model, i.e. a set of value assignment to all the variables which describes
a path where a deadline will be violated and the task system is not schedulable. In every iteration
the model is built observing the initial constraints given. Each time this initial constraints are
conjuncted with the new constraints result from the previous iteration.

On the case of finding a counter example for the SAT, an error path, the result trace, is dumped in a
NuSMV trace file in XML format as well as transferred through internal data structure to the next
process. On the case that the problem is SAT then we obtain the result declaring that the model
will not reach any error state up to k-step. Using BMC for our verification we need to do this
verification for each increasing bound until we reach SAT for step k.

Example 5.1. We use the system illustrated in Figure 3.5 encoded in NuSMV as parametric
timed automata. Using the following assignment {T1 = D1 = 4, T2 = D2 = 6, offset1 =
offset2 = 0}, and the computation time C1 and C2 as the parameters. For the simplicity of the
result we run here the check for the schedulability of task τ1. Given a model consisting of task τ1

and scheduler for τ1. We provide no initial constraint, i.e. True is the initial constraint. A counter
example is then found. A trace from the NuSMV BMC function is the following :

Trace D e s c r i p t i o n : MSAT BMC Counterexample
Trace Type : Coun terexample
−> S t a t e : −1.1 <−

a c t i v e 1 = TRUE
D1 = 4
T1 = 4
C1 = 7
o f f s e t 1 = 0
s c h e d u l e r . C1 = 7
s c h e d u l e r .D = 4
p r o c e s s 1 . p e r i o d = 4
p r o c e s s 1 . o f f s e t = 0
s c h e d u l e r . s t a t e = i d l e

5.3. PTVP ALGORITHM IMPLEMENTATION 60

s c h e d u l e r . t r a n s i t i o n = i d l e c h e c k
s c h e d u l e r . c l k = 0
s c h e d u l e r . r = 0
p r o c e s s 1 . s t a t e = w a i t f o r o f f s e t
p r o c e s s 1 . c l k = 0
p r o c e s s 1 . t r a n s i t i o n = o f f s e t r e l e a s e
t h e t i m e = 0
d e l t a t = 0

−> S t a t e : −1.2 <−
s c h e d u l e r . s t a t e = check
s c h e d u l e r . t r a n s i t i o n = t i m e e l a p s e
s c h e d u l e r . r = 7
p r o c e s s 1 . s t a t e = w a i t f o r p e r i o d
p r o c e s s 1 . t r a n s i t i o n = t i m e e l a p s e
d e l t a t = 4

−> S t a t e : −1.3 <−
s c h e d u l e r . t r a n s i t i o n = c h e c k e r r o r
s c h e d u l e r . c l k = 4
p r o c e s s 1 . c l k = 4
p r o c e s s 1 . t r a n s i t i o n = s t u t t e r
t h e t i m e = 4
d e l t a t = 0

−> S t a t e : −1.4 <−
s c h e d u l e r . s t a t e = e r r o r
s c h e d u l e r . t r a n s i t i o n = t i m e e l a p s e
p r o c e s s 1 . t r a n s i t i o n = t i m e e l a p s e
d e l t a t = 1

The trace in the state 0 shows the initial state of the timed automata. The trace assigned C1 with
the value 7. The transition that is taken first is offset release: a job τ1 is activated. In the next state
a time elapse transition with delta t = 4 is taken, increasing the clocks values to 4. At state 3, a
transition taking the system to error state is launched because the deadline is reached clk = D1
yet the job τ1 with computation time C1 = 7 has not finished its execution. Thus, in the last state,
we see that the system is now in the error location. This is the counter example for our problem,
that with the initial constraint True for C1 the system will be able to reach the error state in 4
states, or 3 steps.

Non-parametric model search The PTVP algorithm implementation that relies on the symbolic model
checker through BMC to enumerate all the unschedulable cases works effectively to find each
possible error trace in each BMC step. However, using only symbolic model checker to solve the
problem take some considerable time as it needs to prove UNSAT for every step of the bounded
model checking it performs. The checking of a single numeric point in the search space of the
system in the other hands is very fast and simple. And later the trace still can be generalized by our
tool, using symbolic model checker, to result in a part of the schedulability region. Theoretically,
we could get the whole schedulability region of the system if we could enumerate all the points in
the search space, feed each of these points to a checker and analyse the error trace for each point
that is unschedulable.

The idea of encompassing non-parametric timed automata model checker can be seen in Figure
5.5. We have two flows going in the tool :

5.3. PTVP ALGORITHM IMPLEMENTATION 61

Figure 5.5: A template of implementation using parametric and non-parametric model checker as black
box

1. Search optimization flow
In the search optimization flow we substitute the previous approach of using BMC on the
phase of error trace search with non-parametric model checker. Instead of BMC search we
added a procedure to find an instantiation point which go to the error state and return us with
an error trace.

2. Parameter analysis flow
In the parameter analysis flow we employ the symbolic model checker to first replicate the
trace given by the search optimization flow in the symbolic model, then continue the remain-
ing phases of parameter analysis on the trace.

However, this, too, is an inefficient way of solving the problem. First, there are too many points in
the search space to enumerate, and second, as a trace would result in a region of unschedulability
which covers a substantial number of point, it would be the case that checking and analysing a
point already covers the region of other points in its proximity.

We devise instead several approaches to bridge these two approaches. We divide the search space
into data grids with certain granularity that we can set. We then enumerate points within these
grids and then feed any of these to the non-parametric timed automata model checker only if it is
not yet contained in the obtained schedulability region so far. Doing this in iteration provides some
initial constraints that limit the search space into lesser search space for schedulability region. We
can then further continue our analysis using symbolic model checker in the remaining area.

The complete flow with details on the exchanged data between UPPAAL and NuSMV when we
use UPPAAL as non-parametric model checker to perform the search is illustrated in figure 5.6.

5.3. PTVP ALGORITHM IMPLEMENTATION 62

UPPAAL

NuSMV
Sensitivity Analysis

NuSMV region
checker
Pi U G

SAT/UNSAT,
trace

Collected regions
U G

New datapoint,
time treshold

Region constraints Gi+1

Parameterspace
Datagrids

Point Pi

Trace specification
πi

SAT/timeout

Region constraints Gi

NuSMV
Symbolic search

within ¬UG

Trace specification
πi

Inductive
Reasoning

Bound k reached /
timeout

Parametric Real-
Time System

definition
Parameter space

Schedulability
Area of

Parametric Real-
Time System

Figure 5.6: A flow for interaction between UPPAAL and NuSMV for the search optimization scheme.

5.3. PTVP ALGORITHM IMPLEMENTATION 63

Sensitivity Analysis in
Sensitivity Add-on

Model + Counter example trace

Trace
extraction

Constraint
Processing

After
Processing

Polyhedral region
in clocks and real
variables space

Polyhedral region
in parameters

space

Readable
parameter
constrains

Single Schedulability Analysis in
Sensitivity Add-on

Figure 5.7: A flow for parameter projection from the symbolic model and trace in sensitivity analysis
phase.

5.3.2 Sensitivity analysis

From the obtained symbolic trace and model, we need to project out the clocks, other variables, and the
boolean values so that we are left with a kernel of constraints on the specified parameters. This amounts
to an existential quantifier elimination for all variables other than the parameters in the symbolic trace.

The obtained trace is a sequence of assignments and constraints on boolean variables and other
variables (clocks, variables and parameters). Forcing the assignment of boolean variables in every steps
to a specified value according to the trace amounts to a dictate a set of discrete transitions to be taken in
the model. Using the propagation of the boolean variables assignments in the trace we extract a set of
constraints in real variables and parameters on our model that correspondences to the trace.

Generally speaking we get a polyhedron Polyhedron defined in a space consisting of the parameters
(which we succinctly denote as P) and of the variables X containing all the clocks in the system, i.e.
Polyhedron {P,X}.

The purpose of this step is to eliminate the dependence off X variables, i.e. projecting a Polyhedron
Polyhedron′, where

Polyhedron′(P) ≤ 0⇐⇒ ∃X|Polyhedron(P,X) ≤ 0

Thus, our problem is a quantifier elimination or (from a geometric point of view) a projection of P
into a subspace.

We implement this sensitivity analysis in our tool with the following flow of phases, depicted in
Figure 5.7. These process can be done with any quantifier elimination method such as Fourier Motzkin
method, as well as the approach that we use and describe below:

Trace extraction From the previous step we obtain a trace from the BMC function, which is the SAT
counterexample path from the verification. This contains the values for each boolean and real

5.3. PTVP ALGORITHM IMPLEMENTATION 64

variables in the task system formulation which leads to a path which is not schedulable. In this
step our purpose is to find from these assignments a polyhedron in the space of clocks and real
variables involved in the model. This phase is shaded in Figure 5.7 as this component is developed
by NuSMV developers. We need to do the following :

1. Unrolling the symbolic model to the k-step
This is done to provide us with the whole initial view of the system, where all possible
valuations for all the booleans and real variables are available.

Example 5.2. To provide a flavour of the size of an unrolled model, we present here an
example of the unrolling on the step 0, which is the initial state, of the model we worked on
in example 5.1. The unrolled model for step 0 is as follows :

(@0{ (((d e l t a t = 0 . 0 | d e l t a t > 0 . 0) & (t h e t i m e >= 0 . 0 & (p r o c e s s 1 . c l k
>= 0 . 0 & ((p r o c e s s 1 . o f f s e t >= 0 . 0 & (p r o c e s s 1 . s t a t e =
w a i t f o r o f f s e t −> p r o c e s s 1 . c l k <= p r o c e s s 1 . o f f s e t)) &
((p r o c e s s 1 . s t a t e = w a i t f o r p e r i o d −> p r o c e s s 1 . c l k <=
p r o c e s s 1 . p e r i o d) & (s c h e d u l e r . c l k >= 0 . 0 & ((! (s c h e d u l e r . t r a n s i t i o n =
s t u t t e r & p r o c e s s 1 . t r a n s i t i o n = s t u t t e r) & ((((s c h e d u l e r . t r a n s i t i o n =
b u s y i d l e | s c h e d u l e r . t r a n s i t i o n = c h e c k i d l e) | s c h e d u l e r . t r a n s i t i o n
= c h e c k e r r o r) <−> p r o c e s s 1 . t r a n s i t i o n = s t u t t e r) &
((((((s c h e d u l e r . t r a n s i t i o n = i d l e b u s y e q | s c h e d u l e r . t r a n s i t i o n =
i d l e c h e c k) | s c h e d u l e r . t r a n s i t i o n = b u s y b u s y e q) |
s c h e d u l e r . t r a n s i t i o n = b u s y c h e c k) | s c h e d u l e r . t r a n s i t i o n =
c h e c k c h e c k e q) <−> (p r o c e s s 1 . t r a n s i t i o n = p e r i o d r e l e a s e |
p r o c e s s 1 . t r a n s i t i o n = o f f s e t r e l e a s e)) & ((! a l l t i m e e l a p s e −>
d e l t a t = 0 . 0) & ((a l l t i m e e l a p s e <−> p r o c e s s 1 . t r a n s i t i o n =
t i m e e l a p s e) & (a l l t i m e e l a p s e −> d e l t a t > 0 . 0)))))) &
((s c h e d u l e r . s t a t e = e r r o r −> (a l l t i m e e l a p s e & d e l t a t = 1)) &
((p r o c e s s 1 . o f f s e t = o f f s e t 1 & o f f s e t 1 = 0 . 0) & ((s c h e d u l e r . C1 = C1 &
C1 > 0 . 0) & ((p r o c e s s 1 . p e r i o d = T1 & T1 = 4 . 0 0) & ((! a c t i v e 1 −>
(p r o c e s s 1 . s t a t e = i n a c t i v e & (p r o c e s s 1 . t r a n s i t i o n = s t u t t e r |
p r o c e s s 1 . t r a n s i t i o n = t i m e e l a p s e))) & (s c h e d u l e r .D = D1 & D1 =
4 . 0 0))))))))))))) & (((n e x t (t h e t i m e) := t h e t i m e + d e l t a t) &
(((p r o c e s s 1 . t r a n s i t i o n = s t u t t e r −> n e x t (p r o c e s s 1 . c l k) =
p r o c e s s 1 . c l k) & ((p r o c e s s 1 . t r a n s i t i o n = p e r i o d r e l e a s e −>
n e x t (p r o c e s s 1 . c l k) = 0 . 0) & ((p r o c e s s 1 . t r a n s i t i o n = t i m e e l a p s e −>
n e x t (p r o c e s s 1 . c l k) = p r o c e s s 1 . c l k + d e l t a t) & (p r o c e s s 1 . t r a n s i t i o n
= o f f s e t r e l e a s e −> n e x t (p r o c e s s 1 . c l k) = 0 . 0)))) &
(((p r o c e s s 1 . t r a n s i t i o n = p e r i o d r e l e a s e −> n e x t (p r o c e s s 1 . s t a t e) =
w a i t f o r p e r i o d) & ((p r o c e s s 1 . t r a n s i t i o n = o f f s e t r e l e a s e −>
n e x t (p r o c e s s 1 . s t a t e) = w a i t f o r p e r i o d) & ((p r o c e s s 1 . t r a n s i t i o n =
s t u t t e r −> n e x t (p r o c e s s 1 . s t a t e) = p r o c e s s 1 . s t a t e) &
(p r o c e s s 1 . t r a n s i t i o n = t i m e e l a p s e −> n e x t (p r o c e s s 1 . s t a t e) =
p r o c e s s 1 . s t a t e)))) & ((p r o c e s s 1 . t r a n s i t i o n = o f f s e t r e l e a s e −>
(p r o c e s s 1 . s t a t e = w a i t f o r o f f s e t & p r o c e s s 1 . c l k =
p r o c e s s 1 . o f f s e t)) & ((p r o c e s s 1 . t r a n s i t i o n = p e r i o d r e l e a s e −>
(p r o c e s s 1 . s t a t e = w a i t f o r p e r i o d & p r o c e s s 1 . c l k =
p r o c e s s 1 . p e r i o d)) &

((n e x t (s c h e d u l e r . r) := case
(s c h e d u l e r . t r a n s i t i o n = i d l e b u s y e q | s c h e d u l e r . t r a n s i t i o n = i d l e c h e c k)

: s c h e d u l e r . C1 ;
s c h e d u l e r . t r a n s i t i o n = b u s y b u s y e q : s c h e d u l e r . r + s c h e d u l e r . C1 ;
s c h e d u l e r . t r a n s i t i o n = b u s y c h e c k : (s c h e d u l e r . r + s c h e d u l e r . C1) −

s c h e d u l e r . c l k ;
TRUE : s c h e d u l e r . r ;

5.3. PTVP ALGORITHM IMPLEMENTATION 65

e sac) &
((n e x t (s c h e d u l e r . c l k) := case
((s c h e d u l e r . t r a n s i t i o n = i d l e b u s y e q | s c h e d u l e r . t r a n s i t i o n =

i d l e c h e c k) | s c h e d u l e r . t r a n s i t i o n = b u s y c h e c k) : 0 . 0 ;
s c h e d u l e r . t r a n s i t i o n = t i m e e l a p s e : s c h e d u l e r . c l k + d e l t a t ;
s c h e d u l e r . t r a n s i t i o n = i d l e b u s y h i 1 : 0 . 0 ;
TRUE : s c h e d u l e r . c l k ;
e sac) & ((s c h e d u l e r . t r a n s i t i o n = t i m e e l a p s e −>

n e x t (s c h e d u l e r . t r a n s i t i o n) != t i m e e l a p s e) & (((s c h e d u l e r . t r a n s i t i o n =
c h e c k i d l e −> (s c h e d u l e r . s t a t e = check

& (s c h e d u l e r . c l k = s c h e d u l e r . r & s c h e d u l e r . c l k <= s c h e d u l e r .D))) &
(s c h e d u l e r . t r a n s i t i o n = c h e c k e r r o r −> (s c h e d u l e r . s t a t e = check &
(s c h e d u l e r . c l k < s c h e d u l e r . r & s c h e d u l e r . c l k = s c h e d u l e r .D)))) &
((s c h e d u l e r . t r a n s i t i o n = c h e c k e r r o r −> n e x t (s c h e d u l e r . s t a t e) = e r r o r)

& ((s c h e d u l e r . t r a n s i t i o n = c h e c k c h e c k e q −> n e x t (s c h e d u l e r . s t a t e) =
check) & ((s c h e d u l e r . t r a n s i t i o n = c h e c k i d l e −> n e x t (s c h e d u l e r . s t a t e)
= i d l e) & ((s c h e d u l e r . t r a n s i t i o n = b u s y c h e c k −> n e x t (s c h e d u l e r . s t a t e)
= check) & ((s c h e d u l e r . t r a n s i t i o n = b u s y b u s y e q −>
n e x t (s c h e d u l e r . s t a t e) = busy) & ((s c h e d u l e r . t r a n s i t i o n = b u s y i d l e −>
n e x t (s c h e d u l e r . s t a t e) = i d l e) & ((s c h e d u l e r . t r a n s i t i o n = i d l e c h e c k −>
n e x t (s c h e d u l e r . s t a t e) = check) & ((s c h e d u l e r . t r a n s i t i o n = i d l e b u s y e q
−> n e x t (s c h e d u l e r . s t a t e) = busy) & ((s c h e d u l e r . t r a n s i t i o n =
t i m e e l a p s e −> n e x t (s c h e d u l e r . s t a t e) = s c h e d u l e r . s t a t e) &
((s c h e d u l e r . t r a n s i t i o n = s t u t t e r −> n e x t (s c h e d u l e r . s t a t e) =
s c h e d u l e r . s t a t e) & ((s c h e d u l e r . t r a n s i t i o n = b u s y i d l e −>
(s c h e d u l e r . s t a t e = busy & s c h e d u l e r . c l k = s c h e d u l e r . r)) &
((s c h e d u l e r . t r a n s i t i o n = c h e c k c h e c k e q −> s c h e d u l e r . s t a t e = check) &
((s c h e d u l e r . t r a n s i t i o n = b u s y c h e c k −> s c h e d u l e r . s t a t e = busy) &
((s c h e d u l e r . t r a n s i t i o n = b u s y b u s y e q −> s c h e d u l e r . s t a t e = busy) &
((s c h e d u l e r . t r a n s i t i o n = i d l e b u s y e q −> s c h e d u l e r . s t a t e = i d l e) &
(s c h e d u l e r . t r a n s i t i o n = i d l e c h e c k −> s c h e d u l e r . s t a t e =
i d l e) & n e x t (((d e l t a t = 0 . 0 | d e l t a t > 0 . 0)

& (t h e t i m e >= 0 . 0 & (p r o c e s s 1 . c l k >= 0 . 0 & ((p r o c e s s 1 . o f f s e t >= 0 . 0
& (p r o c e s s 1 . s t a t e = w a i t f o r o f f s e t −> p r o c e s s 1 . c l k <=
p r o c e s s 1 . o f f s e t)) & ((p r o c e s s 1 . s t a t e = w a i t f o r p e r i o d −>
p r o c e s s 1 . c l k <= p r o c e s s 1 . p e r i o d) & (s c h e d u l e r . c l k >= 0 . 0 &
((! (s c h e d u l e r . t r a n s i t i o n = s t u t t e r & p r o c e s s 1 . t r a n s i t i o n = s t u t t e r) &
((((s c h e d u l e r . t r a n s i t i o n = b u s y i d l e | s c h e d u l e r . t r a n s i t i o n =
c h e c k i d l e) | s c h e d u l e r . t r a n s i t i o n = c h e c k e r r o r) <−>
p r o c e s s 1 . t r a n s i t i o n = s t u t t e r) & ((((((s c h e d u l e r . t r a n s i t i o n =
i d l e b u s y e q | s c h e d u l e r . t r a n s i t i o n = i d l e c h e c k) |
s c h e d u l e r . t r a n s i t i o n = b u s y b u s y e q) | s c h e d u l e r . t r a n s i t i o n =
b u s y c h e c k) | s c h e d u l e r . t r a n s i t i o n = c h e c k c h e c k e q) <−>
(p r o c e s s 1 . t r a n s i t i o n = p e r i o d r e l e a s e | p r o c e s s 1 . t r a n s i t i o n =
o f f s e t r e l e a s e)) & ((! a l l t i m e e l a p s e −> d e l t a t = 0 . 0) &
((a l l t i m e e l a p s e <−> p r o c e s s 1 . t r a n s i t i o n = t i m e e l a p s e) &
(a l l t i m e e l a p s e −> d e l t a t > 0 . 0)))))) & ((s c h e d u l e r . s t a t e = e r r o r −>
(a l l t i m e e l a p s e & d e l t a t = 1)) & ((p r o c e s s 1 . o f f s e t = o f f s e t 1 &
o f f s e t 1 = 0 . 0) & ((s c h e d u l e r . C1 = C1 & C1 > 0 . 0) & ((p r o c e s s 1 . p e r i o d
= T1 & T1 = 4 . 0 0) & ((! a c t i v e 1 −> (p r o c e s s 1 . s t a t e = i n a c t i v e &
(p r o c e s s 1 . t r a n s i t i o n = s t u t t e r | p r o c e s s 1 . t r a n s i t i o n =
t i m e e l a p s e))) & (s c h e d u l e r .D = D1 & D1 = 4 . 0 0)))))))))))))))) } &
@0{ ((i n i t (t h e t i m e) := 0 . 0) & (p r o c e s s 1 . c l k = 0 . 0 & (p r o c e s s 1 . o f f s e t
>= 0 & (p r o c e s s 1 . p e r i o d > 0 & ((i n i t (s c h e d u l e r . r) := 0 . 0) &
((i n i t (s c h e d u l e r . c l k) := 0 . 0) & (s c h e d u l e r . s t a t e = i d l e &
(s c h e d u l e r . C1 >= 0 . 0 & (a c t i v e 1 & (a c t i v e 1 −> p r o c e s s 1 . s t a t e =

5.3. PTVP ALGORITHM IMPLEMENTATION 66

w a i t f o r o f f s e t)))))))))) })

All the formula making up the above ”blob” dictate the constraints for every variables,
boolean and real, value assignment at time zero. As this is just the unrolling of step 0, at
the unrolling of step 4 we will have set of constraints with the size 4 times as much as the
size of this unrolling. This is because we have four copies of all the constraints on every
variables, one for each time step.

2. Substituting values according to the trace
The unrolled model is then s̈licedb̈y the trace that we obtained. We do it by assigning all the
boolean and real variables based on the traces. Thus from all possible unrolled model we
have ourselves a

Example 5.3. Continuing working on example model of Figure 3.5 with counter example
presented in example 5.1, some of the assignments by the trace for variables at time 0 are the
following :

time 0 : delta_t = 0
time 0 : the_time = 0
time 0 : process_1.clk = 0
time 0 : process_1.state = wait_for_offset
time 0 : scheduler.clk = 0
time 0 : scheduler.transition = idle_check
time 0 : process_1.transition = offset_release
time 0 : scheduler.state = idle
time 0 : scheduler.r = 0

3. Propagating boolean values
Next we propagate the assignments on boolean variables to simplify the model that we have.

Example 5.4. Propagating the boolean assignments given in the trace, such as the assign-
ment for variables at time 0 given in example 5.3, we have for example the following set of
constraints as the result:

((((@2{ d e l t a t } = 0 . 0 | @2{ d e l t a t } > 0 . 0) & (@2{ t h e t i m e } >= 0 . 0
& (@2{ p r o c e s s 1 . c l k } >= 0 . 0 & (@0{ p r o c e s s 1 . o f f s e t } >= 0 . 0 &
(@2{ p r o c e s s 1 . c l k } <= @0{ p r o c e s s 1 . p e r i o d } &
(@2{ s c h e d u l e r . c l k } >= 0 . 0 & (@2{ d e l t a t } = 0 . 0 &
((@0{ p r o c e s s 1 . o f f s e t } = @0{ o f f s e t 1 } & @0{ o f f s e t 1 } = 0 . 0) &
((@0{ s c h e d u l e r . C1} = @0{C1} & @0{C1} > 0 . 0) &
((@0{ p r o c e s s 1 . p e r i o d } = @0{T1} & @0{T1} = 4 . 0 0) &
(@0{ a c t i v e 1 } & (@0{ s c h e d u l e r .D} = @0{D1} & @0{D1} =
4 . 0 0)))))))))))) & ((@3{ t h e t i m e } = @2{ t h e t i m e } + @2{ d e l t a t }
& (@3{ p r o c e s s 1 . c l k } = @2{ p r o c e s s 1 . c l k } & (@3{ s c h e d u l e r . r} =
@2{ s c h e d u l e r . r} & ((@2{ s c h e d u l e r . c l k } < @2{ s c h e d u l e r . r} &
@2{ s c h e d u l e r . c l k } = @0{ s c h e d u l e r .D}) &

@3{ s c h e d u l e r . c l k } = @2{ s c h e d u l e r . c l k })))) & ((@3{ d e l t a t } = 0 . 0 |
@3{ d e l t a t } > 0 . 0) & (@3{ t h e t i m e } >= 0 . 0 & (@3{ p r o c e s s 1 . c l k } >= 0 . 0
& (@0{ p r o c e s s 1 . o f f s e t } >= 0 . 0 & (@3{ p r o c e s s 1 . c l k } <=

5.3. PTVP ALGORITHM IMPLEMENTATION 67

@0{ p r o c e s s 1 . p e r i o d } & (@3{ s c h e d u l e r . c l k } >= 0 . 0 & (@3{ d e l t a t } > 0 . 0
& (@3{ d e l t a t } = 1 & ((@0{ p r o c e s s 1 . o f f s e t } = @0{ o f f s e t 1 } &
@0{ o f f s e t 1 } = 0 . 0) & ((@0{ s c h e d u l e r . C1} = @0{C1} & @0{C1} > 0 . 0) &
((@0{ p r o c e s s 1 . p e r i o d } = @0{T1} & @0{T1} = 4 . 0 0) & (@0{ a c t i v e 1 } &
(@0{ s c h e d u l e r .D} = @0{D1} & @0{D1} = 4 . 0 0))))))))))))))) &
((((@1{ d e l t a t } = 0 . 0 | @1{ d e l t a t } > 0 . 0) & (@1{ t h e t i m e } >= 0 . 0 &
(@1{ p r o c e s s 1 . c l k } >= 0 . 0 & (@0{ p r o c e s s 1 . o f f s e t } >= 0 . 0 &
(@1{ p r o c e s s 1 . c l k } <= @0{ p r o c e s s 1 . p e r i o d } &

(@1{ s c h e d u l e r . c l k } >= 0 . 0 & (@1{ d e l t a t } > 0 . 0 & ((@0{ p r o c e s s 1 . o f f s e t } =
@0{ o f f s e t 1 } & @0{ o f f s e t 1 } = 0 . 0) & ((@0{ s c h e d u l e r . C1} = @0{C1} &
@0{C1} > 0 . 0) & ((@0{ p r o c e s s 1 . p e r i o d } = @0{T1} & @0{T1} = 4 . 0 0) &
(@0{ a c t i v e 1 } & (@0{ s c h e d u l e r .D} = @0{D1} & @0{D1} = 4 . 0 0))))))))))))
& (((@2{ d e l t a t } = 0 . 0 | @2{ d e l t a t } > 0 . 0) & (@2{ t h e t i m e } >= 0 . 0 &
(@2{ p r o c e s s 1 . c l k } >= 0 . 0 & (@0{ p r o c e s s 1 . o f f s e t } >= 0 . 0 &
(@2{ p r o c e s s 1 . c l k } <= @0{ p r o c e s s 1 . p e r i o d } & (@2{ s c h e d u l e r . c l k } >= 0 . 0
& (@2{ d e l t a t } = 0 . 0 & ((@0{ p r o c e s s 1 . o f f s e t } = @0{ o f f s e t 1 } &
@0{ o f f s e t 1 } = 0 . 0) & ((@0{ s c h e d u l e r . C1} = @0{C1} & @0{C1} > 0 . 0) &
((@0{ p r o c e s s 1 . p e r i o d } = @0{T1} & @0{T1} = 4 . 0 0) & (@0{ a c t i v e 1 } &
(@0{ s c h e d u l e r .D} = @0{D1} & @0{D1} = 4 . 0 0)))))))))))) & (@2{ t h e t i m e }
= @1{ t h e t i m e } + @1{ d e l t a t } & (@2{ p r o c e s s 1 . c l k } = @1{ p r o c e s s 1 . c l k }
+ @1{ d e l t a t } & (@2{ s c h e d u l e r . r} = @1{ s c h e d u l e r . r} & @2{ s c h e d u l e r . c l k }
= @1{ s c h e d u l e r . c l k } + @1{ d e l t a t }))))) & ((((@0{ d e l t a t } = 0 . 0 |
@0{ d e l t a t } > 0 . 0) & (@0{ t h e t i m e } >= 0 . 0 & (@0{ p r o c e s s 1 . c l k } >= 0 . 0
& ((@0{ p r o c e s s 1 . o f f s e t } >= 0 . 0 & @0{ p r o c e s s 1 . c l k } <=
@0{ p r o c e s s 1 . o f f s e t }) & (@0{ s c h e d u l e r . c l k } >= 0 . 0 & (@0{ d e l t a t } = 0 . 0
& ((@0{ p r o c e s s 1 . o f f s e t } = @0{ o f f s e t 1 } & @0{ o f f s e t 1 } = 0 . 0) &
((@0{ s c h e d u l e r . C1} = @0{C1} & @0{C1} > 0 . 0) & ((@0{ p r o c e s s 1 . p e r i o d } =

@0{T1} & @0{T1} = 4 . 0 0) & (@0{ a c t i v e 1 } & (@0{ s c h e d u l e r .D} = @0{D1} &
@0{D1} = 4 . 0 0))))))))))) & (((@1{ d e l t a t } = 0 . 0 | @1{ d e l t a t } > 0 . 0) &
(@1{ t h e t i m e } >= 0 . 0 & (@1{ p r o c e s s 1 . c l k } >= 0 . 0 &
(@0{ p r o c e s s 1 . o f f s e t } >= 0 . 0 & (@1{ p r o c e s s 1 . c l k } <=
@0{ p r o c e s s 1 . p e r i o d } & (@1{ s c h e d u l e r . c l k } >= 0 . 0 & (@1{ d e l t a t } > 0 . 0
& ((@0{ p r o c e s s 1 . o f f s e t } = @0{ o f f s e t 1 } & @0{ o f f s e t 1 } = 0 . 0) &
((@0{ s c h e d u l e r . C1} = @0{C1} & @0{C1} > 0 . 0) & ((@0{ p r o c e s s 1 . p e r i o d } =

@0{T1} & @0{T1} = 4 . 0 0) & (@0{ a c t i v e 1 } & (@0{ s c h e d u l e r .D} = @0{D1} &
@0{D1} = 4 . 0 0)))))))))))) & (@1{ t h e t i m e } = @0{ t h e t i m e } + @0{ d e l t a t }
& (@1{ p r o c e s s 1 . c l k } = 0 . 0 & (@0{ p r o c e s s 1 . c l k } = @0{ p r o c e s s 1 . o f f s e t }
& (@1{ s c h e d u l e r . r} = @0{ s c h e d u l e r . C1} & @1{ s c h e d u l e r . c l k } = 0 . 0))))))
& (@0{ t h e t i m e } = 0 . 0 & (@0{ p r o c e s s 1 . c l k } = 0 . 0 &
(@0{ p r o c e s s 1 . o f f s e t } >= 0 & (@0{ p r o c e s s 1 . p e r i o d } > 0 &
(@0{ s c h e d u l e r . r} = 0 . 0 & (@0{ s c h e d u l e r . c l k } = 0 . 0 & (@0{ a c t i v e 1 } &
@0{ s c h e d u l e r . C1} >= 0 . 0))))))))))

As we can see, the size of this set of constraints has been greatly reduced, and we no longer
see the constraints for the locations for example, as the location has been assigned according
to the trace. However, we still have rather large set of constraints at hand, and the set still
contains several variables that are not parameters.

The end result of this phase is a model of the trace in the system model expressed with clocks and
real variables.

The processing of the symbolic constraints are explained in Figure 5.8. In this phase from the
model we obtained previous step that intersects the system model and the counterexample we

5.3. PTVP ALGORITHM IMPLEMENTATION 68

Constraint processing

Constraint Processing

After Processing

Default Approach

reorder
expression

based on time

A set of constraints

readable constraint

constant
parameter

propagation

unnecessary
constraints
elimination

arithmetic
propagation

swap
propagation

While still possible

string
constraint
processing

If-then-else
Constraint
handling

Constraint
filtering

constraints

Existelim

Figure 5.8: Phases in constrains processing and after processing.

5.3. PTVP ALGORITHM IMPLEMENTATION 69

extract a smaller model containing only relevant real variables: the parameters that we would like
to analyse, and some constants.

It started with reordering the constraints clauses based on time order. This is necessary to be done
so the inference between constraints can be started top-down ordered by their timestamp. The
second step is to handle the if-then-else clauses (ITE clauses) to simplify all the constraints into
conjunction of inequality or equality clauses. This is done by evaluating all the ITE clauses. First
we collect all of the guards containing the ITE clauses with Gi as the condition of the ITE clause.
We then plug thisGi to the model and perform the satisifiability test withGi as the property. Next,
we perform the same satisfiability test to the property ¬Gi. Evaluating the condition clause Gi is
then done by assigning True to Gi if the Gi property is satisfiable and ¬Gi is not satisfiable and
vice versa. If it is found that bothGi and¬Gi are both satisfiable or both not satisfiable, then Quinq
will report that the guard Gi is inconclusive or that there is an error in the model respectively. The
result of this function will leave us with a set of clauses connected with conjunctions.

For the next constraint processing we have two approaches :

• Default approach
The default approach employs the encoding of the following processes as expressed in Figure
5.8. This process consists of:

1. Constant parameter propagation
Collecting all the clauses with equality signs, we propagate the assignment of variables
to constant or parameter or a set of operation to constant and parameters that we would
like to analyse. Iteratively this will omit all variables in the set of clauses other than the
parameters and constants.
Example 5.5. Some of the variables assignment that we obtained in the first step of
constant parameter propagation for the model in example 5.1 are the following:

@0{ s c h e d u l e r .D} , @3{ s c h e d u l e r . c l k } , @1{ s c h e d u l e r . r } ,
@0{ p r o c e s s 1 . p e r i o d } , @1{ p r o c e s s 1 . c l k } , @0{T1 } , @0{ s c h e d u l e r . C1} ,
@2{ d e l t a t } , @1{ s c h e d u l e r . c l k } , @0{ s c h e d u l e r . r } , @3{ d e l t a t } ,
@2{ s c h e d u l e r . r } , @0{ d e l t a t } , @0{D1} , @0{ o f f s e t 1 } ,
@3{ s c h e d u l e r . r } , @3{ p r o c e s s 1 . c l k } , @0{ s c h e d u l e r . c l k } ,
@2{ s c h e d u l e r . c l k } , @0{ p r o c e s s 1 . o f f s e t } , @0{ t h e t i m e } ,
@0{ p r o c e s s 1 . c l k }

Such propagation will changes most of constraints, changing the set of constraints into
the following :

(0 . 0 >= 0 . 0 & (0 . 0 = 0 . 0 & (0 . 0 = 0 . 0 & (@0{C1} = @0{C1} &
(@0{C1} > 0 . 0 & (4 . 0 0 = 4 . 0 0 & (4 . 0 0 = 4 . 0 0 & (4 . 0 0 = 4 . 0 0
& (4 . 0 0 = 4 . 0 0 & (0 . 0 >= 0 . 0 & (0 . 0 >= 0 . 0 & (0 . 0 <= 0 . 0 &
(0 . 0 >= 0 . 0 & (0 . 0 = 0 . 0 & (0 . 0 = 0 . 0 & (0 . 0 = 0 . 0 & (0 . 0
= 0 . 0 & (0 . 0 >= 0 & (4 . 0 0 > 0 & (0 . 0 = 0 . 0 & (0 . 0 = 0 . 0 &
(@0{C1} >= 0 . 0 & (@1{ t h e t i m e } >= 0 . 0 & (0 . 0 >= 0 . 0 & (0 . 0
<= 4 . 0 0 & (0 . 0 >= 0 . 0 & (@1{ d e l t a t } > 0 . 0 & (@1{ t h e t i m e }
= 0 . 0 + 0 . 0 & (0 . 0 = 0 . 0 & (@0{C1} = @0{C1} & (0 . 0 = 0 . 0 &
(@2{ t h e t i m e } >= 0 . 0 & (@2{ p r o c e s s 1 . c l k } >= 0 . 0 &
(@2{ p r o c e s s 1 . c l k } <= 4 . 0 0 & (4 . 0 0 >= 0 . 0 & (0 . 0 = 0 . 0 &
(4 . 0 0 < @0{C1} & (4 . 0 0 = 4 . 0 0 & (@2{ t h e t i m e } =

5.3. PTVP ALGORITHM IMPLEMENTATION 70

@1{ t h e t i m e } + @1{ d e l t a t } & (@2{ p r o c e s s 1 . c l k } = 0 . 0 +
@1{ d e l t a t } & (@0{C1} = @0{C1} & (4 . 0 0 = 0 . 0 + @1{ d e l t a t }
& (@3{ t h e t i m e } = @2{ t h e t i m e } + 0 . 0 & (@2{ p r o c e s s 1 . c l k }
= @2{ p r o c e s s 1 . c l k } & (@0{C1} = @0{C1} & (4 . 0 0 = 4 . 0 0 &
(@3{ t h e t i m e } >= 0 . 0 & (@2{ p r o c e s s 1 . c l k } >= 0 . 0 &
(@2{ p r o c e s s 1 . c l k } <= 4 . 0 0 & (4 . 0 0 >= 0 . 0 & (1 . 0 > 0 . 0 &
(1 . 0 = 1 &
TRUE))

2. Unnecessary constraints elimination
In this phase we simplify the remaining clauses by performing boolean evaluation to
clauses and omitting clauses that can directly be evaluated to True.
Example 5.6. Performing unnecessary constraints elimination on the result of the pre-
vious constant parameter propagation before provide us with the result below:

(@0{C1} > 0 . 0 & (@0{C1} >= 0 . 0 & (@1{ t h e t i m e } >= 0 . 0 &
(@1{ d e l t a t } > 0 . 0 & (@1{ t h e t i m e } = 0 . 0 + 0 . 0 &
(@2{ t h e t i m e } >= 0 . 0 & (@2{ p r o c e s s 1 . c l k } >= 0 . 0 &
(@2{ p r o c e s s 1 . c l k } <= 4 . 0 0 & (4 . 0 0 < @0{C1} &
(@2{ t h e t i m e } = @1{ t h e t i m e } + @1{ d e l t a t } &
(@2{ p r o c e s s 1 . c l k } = 0 . 0 + @1{ d e l t a t } & (4 . 0 0 = 0 . 0 +
@1{ d e l t a t } & (@3{ t h e t i m e } = @2{ t h e t i m e } + 0 . 0 &
(@3{ t h e t i m e } >= 0 . 0 & (@2{ p r o c e s s 1 . c l k } >= 0 . 0 &
(@2{ p r o c e s s 1 . c l k } <= 4 . 0 0)))))))))))))))

3. Arithmetic propagation
Next, we further simplify the clauses by performing arithmetic evaluation to all the
clauses.

4. Swap propagation
Last, we order the clauses with the following policy :

– If the clause only has constant values and parameters, then it should be in the format
of a {< | ≤ | = | ≥ | > P} where a is a constant value and P is a parameter or a
set of parameters.

– If the clause only has constant values, parameters and other variables, then it should
be in the format of a {+|−}P {< | ≤ | = | ≥ | > P} v where a is a constant value,
P is a parameter or a set of parameters, and v is a variable or a set of variables.

The ordering policy allow us to efficiently propagate the equality of variables in the
terms of constant and parameters in the next steps.

Example 5.7. One run of the all the processes in the constraint processing phase will result
in the following constraints :

(@0{C1} > 0 . 0 & (@0{C1} >= 0 . 0 & (@1{ t h e t i m e } >= 0 . 0 & (@1{ d e l t a t } >
0 . 0 & (@1{ t h e t i m e } = 0.000000 & (@2{ t h e t i m e } >= 0 . 0 &
(@2{ p r o c e s s 1 . c l k } >= 0 . 0 & (@2{ p r o c e s s 1 . c l k } <= 4 . 0 0 & (4 . 0 0 <
@0{C1} & (@2{ t h e t i m e } = @1{ t h e t i m e } + @1{ d e l t a t } &
(@2{ p r o c e s s 1 . c l k } = @1{ d e l t a t } & (4 . 0 0 = @1{ d e l t a t } & (@3{ t h e t i m e }

5.3. PTVP ALGORITHM IMPLEMENTATION 71

= @2{ t h e t i m e } & (@3{ t h e t i m e } >= 0 . 0 & (@2{ p r o c e s s 1 . c l k } >= 0 . 0 &
(@2{ p r o c e s s 1 . c l k } <= 4 . 0 0))))))))))))))))

We then iterate the clauses through the above four processes until there is no possible value
/ parameter propagation that can be done and no more boolean and arithmetical evaluation
that can be done to simplify the clauses.

Example 5.8. After several iterations we obtain the following as the final result of our pro-
cess constraint to the problem in example 5.1:

(@0{C1} > 0 . 0 & (@0{C1} >= 0 . 0 & (4 . 0 0 < @0{C1})))

• Existelim approach
Mathsat5 developer provides the function existelim to do quantifier elimination on the con-
straints, both can be used interchangeably. This approach offers the power of Fourier-
Motzkin elimination on cases where there is no assignment to a certain variables, i.e. on
variable x there are only constraints involving < and≤ inequalities. In this case the previous
approach does not work as it only works for existential elimination through equality propaga-
tion. For problems involving states where guards can be taken anytime within certain range,
i.e the guard is not in the form x = a, the existelim approach is advised.

After processing The above constraint processing is then followed through by the constraint filtering
phase. In this phase we perform redundant elimination process to eliminate :

1. Occurrence of the same constraint more than once This can happen from inference from
different parts of constraints that end up to the exact same constraint, or same constraint with
different formulation

2. Constraints that are already implied by other constraints For example several constraints
might lead to a region smaller than the region implied by constraint A. In this case we only
need to retain the constraint with bigger region that includes others, and omit the already
implied constraints.

3. Constraints that evaluates to true.

Last we perform the string constraint processing to present the final constraints in readable format.

Example 5.9. In the end of all the schedulability analysis process this is the result that we obtain
for example 5.1:

s e n s i t i v i t y c o n s t r a i n t s t r i n g = ! ((! (C1 <= 4) & ! (C1 <= 0)))

5.3. PTVP ALGORITHM IMPLEMENTATION 72

smv input file
for P1

smv input file
for P2

smv input file
for Pn

QUINQ
single process

schedulability region
analysis

input file,
k,

initial constraint

New invarspec
with added constraint string

schedulability region
formula

(final constraint)

Input file

Figure 5.9: A flow for the feasibility analysis implementation for n- processes.

5.3.3 Iterative schedulability analysis for periodic tasks

For periodic task system with hierarchical priority, to simplify the problem each time we only perform
schedulability check to the scheduler for each task. Thus we need to do the previous feasibility analysis
process iteratively n-times for all tasks τ1 . . . τn. The outermost loop is the iteration of schedulability
region analysis to all the tasks τ1, . . . , τn in the system. We illustrate this in Figure 5.9. On the other
cases where we model everything in one file then this iteration over tasks is not necessary.

Chapter 6

Application Examples

6.1 Standard Periodic Case

In this section we report some examples of the tool Quinq and of the underlying method application on
periodic task systems.

6.1.1 Simple task set

To illustrate the potential applications of the methodology in a design flow for embedded systems, we
propose a couple of simple but explanatory use cases. These examples problem were presented in Chap-
ter 2 as motivational example scenarios. The complete results shown below have been obtained automat-
ically with Quinq.

In both examples we use a periodic task system S1 = {τ1, τ2}. Periods are fixed and chosen equal to
the relative deadline: T1 = D1 = 20 and T2 = D2 = 30.
Use case 1: For this example, we consider a design scenario in which the computation times are not
known with a sufficient precision and the system is very close to the border of the schedulability region
found with traditional real-time scheduling theory (i.e., assuming null offset). The design problem is
how to choose a positive offset O2 so as to maximize the schedulability region (and hence the robustness
of the system). To this end we can compute the schedulability region with respect to the following set
of free parameters: {C1, C2, O2} fixing O1 = 0. The tool, after some iteration, produces the following
symbolic expression for the feasibility region:

(C1 < 20) ∧
(C1 + C2 < 30) ∧
(C1 + C2 < 20 ∨ 2C1 + C2 < 30 +O2) ∧
(2C1 + C2 < 40 ∨ 3C1 + C2 < 50) ∧
(C2 < 20−O2 ∨ C1 + C2 < 40−O2 ∨ 2C1 + C2 < 30) ∧
(C1 + C2 < 20 ∨ 3C1 + 2C2 < 60 ∨ 4C1 + 2C2 < 60 +O2) ∧
(C1 + C2 < 20 ∨ 2C1 + C2 < 30)

In Figure 6.1, we can see three different sections obtained cutting the three-dimensional schedula-
bility regions with the planes O2 = 0, O2 = 5, and O2 = 8. In accordance with the findings of real-time
scheduling theory, O2 = 0 corresponds to the smallest schedulability region. The choice O2 = 8 is
the one that ensures the maximum robustness for the choice of C1, while O2 corresponds to the greatest
schedulability region.

73

6.1. STANDARD PERIODIC CASE 74

1

3

5

7

9

11

13

15

17
19

21

23

25

27

29

1 3 5 7 9 11 13 15 17 19 21

Region with O2 = 8
Region with O2 = 5

Region with O2 = 0
Or O2= 10

Figure 6.1: Feasibility regions in the domain of C1 and C2 for different values of O2

Use case 2: In the next example, we consider that the worst computation time of the tasks are fixed,
C1 = 11 and C2 = 12. This task system is not schedulable with zero offsets as it is possible to see with
a standard response time analysis. Therefore, our purpose is to identify the possible values for the offsets
O1 and O2 that make the system schedulable.

Using the tool, we computed the feasibility region, in the domain O1 × O2, expressed in the con-
straints below:

(O2 < O1 + 7 ∨O2 > O1 + 4)∧
(O2 < O1 − 3 ∨O2 > O1 − 6)∧

(O2 < O1 + 17 ∨O2 > O1 + 14)∧
(O2 < O1 − 13 ∨O2 > O1 − 16)∧

. . .

The feasibility region for this case is not even connected, as it consists of parallel stripes as shown
in Figure 6.2. This is a perfectly natural result since by increasing the offsets, we periodically get the
same system (except for an initial transient). Therefore, the procedure can converge only because we
pose bounds for the search in the parameter space (0 ≤ O1 ≤ 17, 0 ≤ O2 ≤ 20).

Using those constraints we can simply pick the values for O1, O2 and O3 inside the feasibility region
to make S2 schedulable. We can choose O1 = 5 and O2 = 1 for example. And the system will now be
schedulable with the system utility 95%.

6.1.2 Large task set

For an example of a large task set that the tool could handle we present a system with 10 periodic tasks.
The configuration values for all the fixed variables in the system is given in Table 6.1.2. The parameters
are C1, C2, C3, offset1, and offset2.

In this example case we are working in 5 dimensional parameter space. The result that we obtain for

6.2. ARBITRARY REAL–TIME SYSTEM CASE 75

1

3

5

7

9

11

13

15

17

1 3 5 7 9 11 13 15 17

19

Figure 6.2: Regions of feasibility in the domain of O1 and O2.

the schedulability region of the system consists of 719 constraints. Due to the dimension of the parameter
space and the large number of constraints we obtained as the result, here we will only show one example
of cut of the final region in chosen 2 dimensions.

Given that offset1 = 6, offset2 = 5, we draw the region for C3 = 3, C3 = 4, and C3 = 5 in
C1 and C2 dimension in the Figure 6.3. The result shows increasingly small region of feasibility with
increasing value of C3.

6.2 Arbitrary real–time system case

To show the usage of Quinq in a real–time system with arbitrary activation pattern and scheduling policy
we present an example case on a distributed heterogeneous system [39]. This example has also been
presented as motivational scenario in Chapter 2.

6.2.1 System description

We have taken as a case study a simplified version of a Heterogeneous Communication System (HCS),
such as one that could be found on board of aircrafts [27]. The architecture of the system is shown in
Figure 6.4. The HCS system contains a common server, wired and wireless communication networks and
a number of devices. The components of the network communicate through Network Access Controllers
(NAC), which perform gateway function and routing, and are connected in a daisy chain topology. In this
case study we focus on audio devices, which are required to distribute music and audio announcements
to the main cabin. The audio stream is transmitted by the server through the network. To avoid echo
effects, the devices must reproduce the audio at synchronized instants. For this reason, the network,
server and devices implement also the Precision Time Protocol (PTP) [47] to synchronize their clocks.

6.2. ARBITRARY REAL–TIME SYSTEM CASE 76

Task Period Deadline Computation time Offset
1 15 15 C1 offset1

2 20 20 C2 offset2

3 25 25 C3 8

4 30 30 2 8

5 40 40 2 2

6 50 50 2 4

7 60 60 2 7

8 75 75 2 7

9 80 80 2 10

10 100 100 2 8

Table 6.1: The configuration of an example large periodic task system of 10 tasks with 5 parameters

The communication between the server and device is asynchronous. The server sends an audio
packet every audPeriod ms. Audio packets are characterized by two parameters: a sequence number i
and a timestamp ti denoting the time the packet has to be played at the device. Due to varying network
conditions, packets arrive at the device (except if they are lost) with a minimal latency Lmin and a
maximal latency Lmax. The NACs simply forward the incoming packets to the devices. Packets passing
through the NACs experience delay of Lnac during which they are preprocessed by the NACs. The
device processing time for each audio packet is τ , after which the device is ready to receive the next
audio packet. The PTP protocol runs on the server, the devices and NACs, and is used to synchronize the
respective clocks. Figure 6.5 depicts the message sequence of clock synchronization between a device
(slave) and the master clock. Various timing delays are to be guaranteed. For example, in a scenario
where two devices are connected to the server, it should be guaranteed that both devices are synchronized
within an error of 0.1 ms (synchronization precision).

Our objective is to identify the largest region of the parameter space in which the the correct func-
tioning of audio streaming and clock synchronization can be guaranteed. To do so, we employ feasi-
bility analysis through parametric timed automata offered in Quinq. However, HCS is too complex to
be parametrically-modelled completely. Therefore, some of the above requirements have to be relaxed
before we attempt to parametrically model the system.

The simplified system contains only one server and many NACs and devices where one NAC may
be associated to at most one device and one other NAC. Also, only the PTP parts on the server and
devices are modelled. Additionally, every packet will have to experience the maximal delay Lmax when
traversing the medium. Furthermore, we only partially model the unreliability of the network. The
system high-level description can be viewed logically as in Figure 6.6. Last, the transmission priority of
PTP messages are assumed to be higher than that of audio packets, however, an ongoing transmission of
an audio packet will not be preempted by a PTP message.

A complete set of models for this simplified system was developed in UPPAAL [37] as a network
of 13 timed automata [38]. In UPPAAL, HCS is modelled as a network of extended timed automata
with global real-valued clocks and integer variables. Clock value retrieval which is essential to the PTP
protocol is not supported by UPPAAL, hence the introduction of integer clocks. There are four error
states in the automata network, corresponding to error conditions. One is reached when an audio packet
arrives after its time-to-play. Three others are reached when buffer overruns occur in the audio buffer,

6.2. ARBITRARY REAL–TIME SYSTEM CASE 77

Unschedulability region
for C3 = 3

Unschedulability region
for C3 = 4

Unschedulability region
for C3 = 5

Figure 6.3: Feasibility regions in the domain of C1 and C2 for different values of C3

the NAC input buffer and the NAC output buffer. To verify that the system is schedulable, we must show
that these four error states are never reachable.

6.2.2 System modelling

Because of its considerable complexity, we have worked out an abstraction of the system to limit the
state space and to concentrate in isolation on each outstanding issue (the non preemptive scheduler,
the different criticality of the timing constraints and so on). Our strategy is to first analyse the timing
constraints of the audio stream and PTP, under certain assumptions on the PTP synchronization accuracy,
and determine the acceptable clock drift relative to other parameters. In a second step, we will analyse
the PTP operation to ensure that the synchronization accuracy meets the constraints defined in the first
phase.

Abstract Models

We divide the abstract model of the system into two parts. The first corresponds the release of the packets
on the network according to a periodic pattern. The second models the network and device, including
the scheduling policy and the real-time constraints. For the latter, we have considered both the classic
hard real-time constraints and firm real-time constraints.

We model the release of packets as activation automata, shown in Figure 6.7. Each stream of packets
is characterized by the offset for the first release (transition from initial state to the second state), and
is then periodic afterwards (self transition on the second state). A release signal is emitted every time a
transition is taken, and is used to synchronize the automaton with the rest of the system. In the following
we will refer to these automata also as “tasks”.

The remaining part of the system is modelled as a set of schedulability checkers [21]. Unlike in
standard periodic task system work we presented before, the checkers for the two tasks are modified to
model a non-preemptive scheduling algorithm, i.e., a transmission will not be interrupted if it has already

6.2. ARBITRARY REAL–TIME SYSTEM CASE 78

Figure 6.4: Heterogeneous Communication System (HCS)

started. The scheduler is also prioritized, so that when there is no ongoing transmission and many packets
are ready, the PTP packets go first and the audio packets back off.

The scheduler checker for PTP packets is shown in Figure 6.8. D1 is the deadline of PTP packets,
which is less than or equal to the PTP period, whileC1 andC2 are the transmission time of PTP and audio
packets, respectively. The PTP task has a higher priority than the Audio task as specified in Section 6.2.1.
In addition, the execution time of the former accounts for the total PTP load that the devices could bear
and that of the latter accounts for the total delay of traversing through the medium and the NACs of audio
packets. Furthermore, we have five additional variables in our system:

• task denotes the currently-executed task (i.e., the current on-going transmission)

• n1 and n2 record the number of PTP and audio packets released during the current execution

• c is a clock accumulating the time since the task queues were last idle and

• r is a data variable used to sum up the time needed to complete all tasks released since the checker
was last idle.

The transitions of the checker are intuitively interpreted as follows:

• The transitions to Idle are taken when the task instance being checked in Check or a sequence of
tasks arrived in Busy, has finished execution.

• The transitions to Busy are taken when an instance of task PTP or Audio is released. Self-loops
are taken to queue the newly-released instances and to retrieve them when the current execution
has finished.

6.2. ARBITRARY REAL–TIME SYSTEM CASE 79

Figure 6.5: Time sequence diagram of message exchanged between master and slave to achieve clock
synchronization

• The transitions to Check are taken when a PTP instance is (non-deterministically) chosen for
checking. Before verifying the deadline, the execution time of all other PTP instances in the
queue must be taken into account as they would be scheduled before the current instance, that is
r should be updated to r + C1 + C1 ∗ n1 − c, or r + C1 + C1 ∗ n1 − C2. New PTP and Audio
instances in Check are ignored as they are already considered in location Busy.

• The transition to Error is taken when the currently-executed instance misses its deadline.

The scheduler checker for audio packets is shown in Figure 6.9. The Audio checker is similar to but
simpler than the PTP checker because task audio has a lower priority. D2 is the relative deadline of audio
packets and ∆ is introduced to account for the offset time of the local clock compared to the server clock.
The worst case happens when the local clock is substantially slower than the server clock and thus when
an audio packet is received, the actual deadline to be verified would be D2 −∆ instead of D2.

In fact, the requirement of no deadline miss (hard deadline) is difficult to obtain in real-time environ-
ments. Therefore, in order to make the analysis more practical, the requirement is relaxed by allowing
an audio packet to sometimes miss its deadline (firm real-time constraint). A firm real-time constraint is
given by a deadline and by a couple (m, n) meaning that m deadlines can be missed every n jobs. [43].
In our case study, a packet may miss its deadline as long as the previous packet has not already missed

6.2. ARBITRARY REAL–TIME SYSTEM CASE 80

Figure 6.6: Logical model of HCS

Experiment 1 Experiment 2
ptpOff 0 5
ptpPeriod 40 40
D1 10 10
audOff 0 0
audPeriod 10 10
D2 10 10

Table 6.2: Fixed parameter values in the two experiments

the deadline (m = 1, n = 2). The checker adapted for this new requirement is shown in Figure 6.10. We
introduce four new variables: dm is a boolean variable used to capture the fact that one deadline miss
has already happened (dm = true), r1 is a real variable used to record the total execution time of all
PTP instances released after the currently-checked instance and before a deadline miss or the next audio
arrival, r2 marks the next audio arrival whose time is marked in t.

Transitions entering Check1 from Idle or Busy are taken when an audio instance is (non-deterministically)
chosen for checking. If another PTP instance is already released, the PTP will be executed first (r =
r + C1). The self-loops in Check1 are taken to accumulate the execution time of all PTP instances
released afterwards until another audio instance is released or the current Audio instance misses its dead-
line. If one deadline miss had happened before (dm = true), the location Error is reached because
of two successive deadline misses. Else, if another audio instance has already been released (r2 > 0),
the transition from Check1 to Check2 is taken in order to verify if the next deadline is missed again.
Otherwise, the variable dm is updated to true and the transition from Check1 to Busy is taken to tolerate
the first deadline miss.

6.2.3 Example result

We have performed several experiments to compute the feasibility region of the system under a diverse
set of parameters. We present here the results of two such experiments, which differ in the amount of
offset by which packets are issued to the network. We have chosen as free parameters the transmission
times C1 and C2 and the desired accuracy ∆ (or drift) of the clocks (∆ = 0 corresponds to infinite
accuracy), given by the application of the PTP protocol. The values of the fixed parameters for each of
the experiments are shown in Table 6.2. The free parameters, on the other hand, are constrained to vary
in the following intervals:

0 < C1 ≤ D1, 0 < C2 ≤ D2

0 ≤ ∆

6.2. ARBITRARY REAL–TIME SYSTEM CASE 81

Wait_for_period
c<=ptpPeriod

Wait_for_offset
c<=ptpOff

c==ptpPeriod
Release_PTP!
c=0

c==ptpOff
Release_PTP!
c=0

(a)

Wait_for_period
c<=audPeriod

Wait_for_offset
c<=audOff

c==audPeriod
Release_Audio!
c=0

c==audOff
Release_Audio!
c=0

(b)

Figure 6.7: PTP and audio task activation automata

The PTP checker generally runs much slower than the Audio checker which may be because the path
leading to the error state of the former is generally longer than that of the latter.

Audio feasibility and error regions

We perform experiments on both Audio hard-deadline and firm-deadline checkers. Figure 6.11 and 6.12
graphically show the Audio feasibility (not shaded) and error (shaded) regions for ∆ = 0, 3, 5, 7 in two
experiments. The feasibility regions are expressed by set of constraints, for example, with ∆ = 5 the
feasibility region for the Audio firm-deadline checker in Experiment 1 is expressed by a conjunction of
three constraints as shown below. A first evident result is that the relaxation of timing constraints pro-

1: ¬[(20 < C1 + 2C2) ∧ (0 < C1 ≤ 10) ∧ (0 < C2 ≤ 10)]∧
2: ¬[(15 < C1 + 2C2) ∧ (10 < C1 + C2) ∧ (0 < C1 ≤ 10) ∧ (0 < C2 ≤ 10)]∧
3: ¬[(C1 + C2 ≤ 10) ∧ (0 < C1 ≤ 10) ∧ (5 < C2 ≤ 10)]

duces a larger feasibility region. This rather intuitive fact can be exactly quantified and even pictorially
represented thanks to our methodology. The second insight offered by this analysis is to quantify the
impact of the synchronization accuracy on the correctness of the system. Indeed, the feasibility region

6.2. ARBITRARY REAL–TIME SYSTEM CASE 82

Error

Busy

Check

Idle

Release_Audio?

c==0 && task==2
Release_PTP?
r=r+C1+C1*n1-C2

c==r &&
n1==0 && n2>0
r=C2, task=2,
c=0, n2=n2-1

c==r && n1>0
r=C1, task=1,
c=0, n1=n1-1

c==0 & task==2
Release_PTP?
task=1, r=C1,
n2=n2+1

c<r && c==D1

Release_PTP?

(c<r) &&
(c>0 || task==1)
Release_PTP?
r=r+C1+C1*n1-c,
c=0

c<r
Release_Audio?
n2=n2+1

(c<r) && (c>0 || task==1)
Release_PTP?
n1=n1+1

c==r &&
n1==0 &&
n2==0

Release_PTP?
task=1,
c=0, r=C1,
n1=0, n2=0

Release_Audio?
task=2, c=0,
r=C2, n1=0, n2=0

c==r && c<=D1

Release_PTP?
c=0, r=C1

Figure 6.8: Schedulability checker for PTP packets

shrinks as ∆ increases and the temporal behaviour of the system can easily be jeopardized. This re-
sult can be used as a specification for the PTP. Finally, our analysis can be used to guide the choice of
activation offsets, an important degree of freedom to simplify schedulability of highly loaded systems.

PTP feasibility and error regions

The PTP feasibility region in the two experiments is also expressed in terms of sets of constraints.
Figure 6.13 graphically shows the PTP feasibility (not shaded) and error regions (shaded) in the two
experiments. By joining the PTP and Audio feasibility regions together, we can obtain the final region
in which the whole system is guaranteed to work properly. For example, the feasibility region for the
whole system in Experiment 1 is actually that for task Audio. If the device clock does not drift (∆ = 0),
point (C1 = 10, C2 = 5) is a schedulable point because the first PTP released at time 0 does not miss its
deadline (C1 = D1 = 10), then the first Audio deadline miss happens (C1 + C2 > D2) but the second
Audio deadline is respected (C1 + 2 ∗ C2 = 2 ∗ D2). Other Audio instances released at time 20 and
30 are not preempted, thus able to meet their deadlines. At time 40, the task arrival pattern is repeated
exactly the same as time 0. However, point (C1 = 10, C2 = 5) is no longer a feasible point when ∆ = 5.
Because the first Audio instance misses its deadline as it does when ∆ = 0 and so does the second Audio
instance. So, point (C1 = 10, C2 = 5) should be in the error region which is verified easily by looking
at Figure 6.11(b).

6.2. ARBITRARY REAL–TIME SYSTEM CASE 83

Error

Busy

CheckIdle

Release_Audio?

c<r &&
c==D2-driftDelta

c>0 && c<r &&
c<D2-driftDelta
Release_PTP?

c==0
Release_PTP?
r=r+C1

c<r
Release_Audio?
r=r+C2-c,
c=0

c<r
Release_Audio?
r=r+C2

c<r
Release_PTP?
r=r+C1

c==r

Release_PTP?
c=0, r=C1

Release_Audio?
c=0, r=C2

c==r &&
c<=D2-driftDelta

Release_Audio?
c=0, r=C2

Figure 6.9: Schedulability checker for audio packets (hard deadline)

6.2.4 Example search optimization result

On the case where there are many possible traces on the system, and they consist of long traces, the search
optimization approach of using numeric model checker such as UPPAAL is very beneficial. Compared
to the time it takes to perform BMC by itself to iterate several times over long bounded steps, the time
UPPAAL needs to grid the area is very less. UPPAAL performance in finding a trace is also affected by
the length of the trace. However, it is still in the order of seconds for UPPAAL as it only consider ground
parameter model. The PTP experiment is a perfect example for such case.

As an illustration, Figure 6.14 shows the different result region of PTP experiment within different
time frame. Using symbolic search, it took us 30 minutes to find a region in the shape of a line. However,
using search optimization with UPPAAL non-parametric search we obtain ourselves 7 regions that cover
almost all of the final region just within 5 minutes.

While this result benefits from UPPAAL, we still suffer from UPPAAL’s problem with granularity.
We can only obtain trace guide from discrete points in UPPAAL. To be able to get more traces we need
to increase the granularity of the UPPAAL model as to cover the traces resulting from points in the in
between regions.

6.2.5 Discussion

Through this example we have shown how to apply our method to a distributed Heterogeneous Com-
munication System (HCS). We show that our method could also account for non-preemptive scheduling
and soft real-time constraints. In addition, we have shown how to use this technique in the context of a

6.2. ARBITRARY REAL–TIME SYSTEM CASE 84

Check2

Error

Busy

Check1

Idle

c==r && c<=D2-driftDelta c<r && c==D2-driftDelta

r2>0 && !dm &&
c<r && c==D2-driftDelta
r=r+r1+r2-c, c=0

r2>0
Release_Audio?

r2>0 && c>t &&
c<r && c<D2-driftDelta
Release_PTP?

r2>0 && c==t
Release_PTP?
r1=r1+C1

r2==0 && !dm &&
c<r && c==D2-driftDelta
dm=true, r=r+r1

r2==0 && c<r &&
c<D2-driftDelta
Release_Audio?
r2=C2, t=c

dm && c<r &&
c==D2-driftDelta

r2==0 &&
c>0 && c<r &&
c<D2-driftDelta
Release_PTP?
r1=r1+C1

c==0
Release_PTP?
r=r+C1

c<r
Release_Audio?
r=r+C2-c,
c=0, r1=0, r2=0

c<r
Release_Audio?
r=r+C2,
dm=false

c<r
Release_PTP?
r=r+C1

c==r

Release_PTP?
c=0, r=C1

Release_Audio?
c=0, r=C2,
dm=false

c==r && c<=D2-driftDelta
dm=false

Release_Audio?
c=0, r=C2, r1=0, r2=0

Figure 6.10: Schedulability checker for audio packets (firm deadline)

network, rather than the more traditional processor scheduling problem. Starting from the full specifica-
tion, we have derived a simplified model which still exhibits the required characteristics. The analysis
identifies non-trivial feasible regions for various values of the desired synchronization accuracy.

6.2. ARBITRARY REAL–TIME SYSTEM CASE 85

0

2

4

6

8

10

0 2 4 6 8 10

C
2

C1

 ∆=0

 ∆=3

 ∆=5

 ∆=7

(a) Hard deadline

0

2

4

6

8

10

0 2 4 6 8 10

C
2

C1

 ∆=0
 ∆=3

 ∆=5

 ∆=7

(b) Firm deadline

Figure 6.11: Audio feasibility and error regions for ∆ = 0, 3, 5, 7 in Experiment 1

6.2. ARBITRARY REAL–TIME SYSTEM CASE 86

0

2

4

6

8

10

0 2 4 6 8 10

C
2

C1

 ∆=0
 ∆=3

 ∆=5

 ∆=7

(a) Hard deadline

0

2

4

6

8

10

0 2 4 6 8 10

C
2

C1

 ∆=0
 ∆=3

 ∆=5

 ∆=7

(b) Firm deadline

Figure 6.12: Audio feasibility and error regions for ∆ = 0, 3, 5, 7 in Experiment 2

6.2. ARBITRARY REAL–TIME SYSTEM CASE 87

0

2

4

6

8

10

0 2 4 6 8 10

C
2

C1

(a) Experiment 1

0

2

4

6

8

10

0 2 4 6 8 10

C
2

C1

(b) Experiment 2

Figure 6.13: The PTP feasibility and error regions in two experiments

6.2. ARBITRARY REAL–TIME SYSTEM CASE 88

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10

Final unschedulable
region
Unschedulable region
found using UPPAAL
search flow in 5 min

Unschedulable region
found by using BMC
search in 30 min

Figure 6.14: Comparison of regions found using Quinq with BMC search trace and search optimization
method using UPPAAL

Chapter 7

MPA PTA

In this chapter we present the other possible application for parametric timed automata feasibility analysis
in general. In particular, here we show how our method can be used to complement other approach in
real–time system perfomance analysis[51].

7.1 Motivation

System level analysis plays an essential role in the design of hard real-time embedded systems at early
stage. Several different methodologies that address the problem of performance analysis of different
embedded systems have been presented recently. These methodologies are often based on different
forms of abstraction, however they can be applied to a specific or limited set of system architectures
or parameter space. For example the Modular Performance Analysis Toolbox [53], based on the Real-
Time Calculus (MPA-RTC) [52], makes use of functions on the time-interval domain to represent both
system workload and availability of computation and communication resources. Component interaction
is modelled by sets of functions, instead of streams of signals, tokens or other activity triggers. As
this features compositionality also on the level of the formal analysis, MPA-RTC-based supports a wide
and efficient performance evaluation of key metrics of component-based real-time systems. Pessimism
as contained in the obtained guarantees w. r. t. worst- and best-case system behaviours, e. g. burst-sizes,
backlog-sizes and delays, can be avoided as long as the system under analysis matches the model of
computation inherent to RTC. However, it may be difficult to adequately model components exhibiting
state-dependent behaviours, e. g. CPUs whose speed changes with the size of the backlog buffer. For less
pessimistic results in such situations, [35, 36] developed a methodology for embedding Timed Automata
(TA) [2] based component models into a MPA-RTC-based system model. However, with this approach
it is possible to do schedulability analysis only for a fixed set of parameters, e. g. a fixed CPU speed and
fixed buffer sizes, while a big space of parameters remains unstudied. In this work, we approach this issue
by coupling parametric TA and MPA-RTC-based component models and thereby making the Parametric
Schedulability Analysis tool [21] accessible for an MPA-RTC-driven system analysis (cf. Figure 7.2).

In this example we present an embedding of Parametric Schedulability Analysis into a MPA-RTC-
driven performance evaluation. Our goal is to enlarge the design space that can be explored by joining
the capabilities of design methodologies based on different concepts of abstraction: On one hand the
proposed methodology limits state space explosion as intrinsic to formal verification, including the Para-
metric Feasibility Analysis in Quinq, to the level of isolated (sub)-components, rather than experiencing
it when analysing the complete overall system model. Because we emphasize the use of the MPA-RTC-

89

7.2. REAL–TIME CALCULUS 90

driven performance analysis methodology for analysing complete systems, state-based analysis is limited
to individual components only. On the other hand, the obtained performance metrics for overall system
designs may not be (destructively) pessimistic, since one applies pure RTC-based analysis only for those
system components which can be tightly abstracted using analytic RTC models. Contrary to existing
couplings of methodologies, the proposed framework features the finding of regions of parameter values
for which a system maintains its worst-case guarantees w. r. t. backlog-sizes and delays.

7.2 Real–Time Calculus

Real-time Calculus (RTC) [12, 52] yields an analytic methodology for compositionally obtaining key
performance measures of systems with real-time constraints. In this work we exploit the pattern pre-
sented in [35, 36] for embedding TA-based model descriptions [2] into RTC-driven performance analy-
sis. However, contrary to the existing work, the usage of PTA proposed here allows one to obtain regions
of RTC-curve parameters rather than individual values. This of course holds also for the features of the
embedded component model, as regions on bounds on execution speeds, buffer sizes etc. can be obtained,
rather than point-estimates.

In this section we present a hybrid methodology that unifies two different approaches to complex
real-time system analysis. These two approaches share the view of the system as a composition of
computational and communication components (resources). Tasks are executed on the computational el-
ements and data packets are sent through the communication element. The order of task execution or data
transmission is defined by a chosen scheduling policy. Further, we will not distinguish the computational
and communicational element as well as tasks and data packets.

Each resource acts as a Greedy Processing Component (GPC) which means that it is never idle unless
there are no more tasks to be scheduled. The task activation, whether it is processed directly or added
to the scheduling buffer for further processing, is marked with a start event, while the end of the task
execution is marked with an end event. Timed event traces (see Section 7.2) are used to represent both the
input task activation pattern of a component and the output pattern, which in multi-component systems
may become an input pattern to the following component. The timed traces abstract characterization by
a pair (αlowin , αupin) of arrival curves is used in the analytic approach while Timed Automata (TA) forms
the foundation of the state-based model description.

In the following we summarize some aspects of the theory that is decisive for this work:

Streams A timed event is a pair (t, τ) where τ is some event label or type and t ∈ R≥0 some non-
negative time stamp. A timed trace tr := (t1, τ); (t2, τ); . . . is a sequence of timed τ -events
ordered by increasing time stamps, s. t. ti ≤ ti+1 for i ∈ N and τ ∈ Act with Act as a set of event
labels or event types.

RTC-curves for representing streams Let tr be a stream, which is a trace filtered w. r. t. to some event
type. A stream can be abstractly characterized by a pair (αlowin , αupin), which is a pair of so called
arrival curves [52]. These arrival curves bound the number of events of the respective type, seen
on tr for any interval ∆ ∈ [0,∞). Let R(t) denote the number of events that arrived on the stream
tr in the time interval [0, t), upper and lower arrival curve satisfy the following equation

αlowin (t− s) ≤ R(t)−R(s) ≤ αupin (t− s) with 0 ≤ s ≤ t. (7.1)

7.3. SYSTEM MODELLING 91

As each event from a stream may trigger behaviour within a component, arrival curves provide ab-
stract lower and upper bounding functions αlowin and αupin w. r. t. the resource demand experienced
within time interval ∆ := t − s. Furthermore, one may note that for a given pair αlowin and αupin
there might be a (possibly infinite) set of streams of computation stimuli, namely all streams whose
counting functionR satisfies (7.1). For simplicity, we denote the pair (αlowin , αupin) as αin. A stream
whose cumulative counting function satisfies (7.1) is said to be bound by αin.
Arrival curves are a generic way for characterizing standard real-time traffic models ranging from
strictly periodic event arrivals over PJD-streams, i. e. traces where event arrivals are periodic with
jitter and a minimum distance, up to sporadic event arrivals.

RTC-based approximations This work deals with complete amounts of events only, i. e. the number
of events to be processed are integer values. In RTC such scenarios are modelled by staircase
curves. We can model staircase curves as set of staircase curves composed via nested minimum and
maximum operations. However, for the sake of clearness the nesting of minimum and maximum
operations is restricted, s. t. it is assumed that upper arrival curves are obtained as minimum and
lower arrival curves as maximum on a set of staircase curves:

αup(∆) := min
I

(αi(∆)) and αlow(∆) := max
J

(0, αj(∆)) with

α{i,j}(∆) := N{i,j} +
⌊

∆
δ{i,j}

⌋ (7.2)

The fact that upper (and lower) RTC curve(s) are constructed by a single minimum (and maximum)
operation (not nested min/max computations) reduces the complexity of embedding TA into RTC-
driven performance analysis considerably.
An example of this setting is given in Figure 7.1: the upper arrival curve αup is constituted by
the minimum of two staircase curves. The lower curve consist of the maximum of the constant
0-function and some staircase function αlow1 . Parameter Nup

1 of the upper curve αupin models the
(burst) capacity which is the number of events which can arrive at the same instant of time in any
stream bounded from above by αupin . Hence δup1 of the upper curve defines the minimum distance
of two events once a burst had occurred. In this realm the step width δlow of curve αlowin models
the maximum distance between two events in any stream bounded from below by αlowin .

7.3 System modelling

The tools coupling flow is presented on Figure 7.2. Here we see three processing components connected
in a data flow manner. Two of which, the first and the last one, are RTC-based components while the one
in the middle is a TA-based component. The output curves of the first component acts as the input curves
for the second one therefore they are translated to the TA-based event generator (see Section 7.3.1) for
the second component. The tasks are then processed by the second components represented by a TA-
based scheduler generalized for Quinq (see Section 7.3.2). The end of each task processing is marked
with an output event that is then captured by the two observer automata. With observers we address a TA
which guarantees the invulnerability of a fixed parameter value describing burst sizes, widths of stairs or
minimum/maximum distance of events. An example of an upper observer automaton as implemented in
UPPAAL is given in Figure 7.3.

In this flow we make use of the UPPAAL toolbox as a part of the MPA-RTC/Quinq coupling flow that
is used as one of the MPA-RTC to Quinq translation chain links. Three TA-based models, the input event

7.3. SYSTEM MODELLING 92

R(t)

minUp

}1}
lowδ1

α := α 1
lowlow

events

∆

up
N1

low
N1

α :=up

}

α

}1

δup
1

N2

up

up
1 1} }

2αup

δ2
up

Figure 7.1: Upper and lower (staircase) arrival curves

generator, the scheduler and the two observer automata, are initially represented in UPPAAL toolbox.
However, the Quinq tool requires a symbolic representation of the TA using the NuSMV language. We
use the Java UPPAAL to NuSMV Translator (JUNT) developed in this work to translate the UPPAAL
model of the system into NuSMV.The .XML file of UPPAAL is taken as the input to the JUNT translator.
The JUNT output file (.SMV) is the executable NuSMV file that is accepted by the Quinq tool. This file
is then processed by the Quinq tool and the found schedulability region of required parameters (e.g.,
N1..k, δ1..k, NObs, δObs) is then given back to the MPA-RTC toolbox.

While performing the simulation using the Quinq tool we can fix either parameters of the input curves
(N1..k, δ1..k) and find the region of the output curves parameters (NObs, δObs) or vice versa. The analysis
type performed while fixing the input curves parameters we call Forward Analysis. Respectively, the type
of analysis performed when fixing the output parameters while searching the region for the input param-
eters we denote as Backward Analysis. It is also possible to fix both input and output characterization
values in order to find an area for such parameters as the buffer size, maximum execution latency and/or
max execution time which we would call as Processing Element Analysis. The schedulability region of
the searched parameters are then used in the MPA-RTC toolbox to produce the RTC-conformant either
input or output curves, depending on the analysis flow.

7.3.1 From RTC-curves to event emitting PTA

Upper and lower RTC-based staircase curves can be implemented by sets of cooperating PTA, where the
emitted event signals serve as input stimuli to the down-stream PTA-based scheduler model; the latter is

7.3. SYSTEM MODELLING 93

violation
x <= Delta

b == 0 && x < Delta

event?

x == Delta

x = 0,
b = min(b+1,BMAX)

b > 0

event?

if (b==BMAX) x = 0,

b--

α1

α'1
α2 α'2

UTA1

UTAK

LTA 1

LTA L

x <= Delta

x == Delta

x = 0,
b = min(b+1, BMAX)

b > 0

event?

Sync++,

b--

if (b==BMAX)

 x = 0,
x <= Delta

x == Delta

x = 0,
b = min(b+1, BMAX)

b > 0

event?

Sync++,

b--

if (b==BMAX)

 x = 0,

x <= Delta

x == Delta

x = 0,
b = min(b+1, BMAX)

b > 0

event?

Sync++,

b--

if (b==BMAX)

 x = 0,

x <= Delta & &
b <= BMAX

event?

x == Delta

x = 0,
b++

if (b==0)

 x = 0,

b = max(b-1, 0)
x <= Delta & &
b <= BMAX

event?

x == Delta

x = 0,
b++

if (b==0)

 x = 0,

b = max(b-1, 0)

x <= Delta & &
b <= BMAX

event?

x == Delta

x = 0,
b++

if (b==0)

 x = 0,

b = max(b-1, 0)

Input Generator

PTA

violation
x <= Delta

b == 0 && x < Delta

event?

x == Delta

x = 0,
b = min(b+1,BMAX)

b > 0

event?

if (b==BMAX) x = 0,

b--

Observers

Urgent

u <= 0

errorcheck

clk <= acc_r &&
c <= r &&
d <= MaxLatency &&
e >= 0

busy

c <= r &&
e >= 0

idle

e > MaxBu!erSize

e > MaxBu!erSize

clk < acc_r &&
d < MaxLatency &&
e > 0 &&
e < (EE - 1)

e +=1

clk < acc_r &&
d < MaxLatency &&
e >= EE &&
e <= MaxBu!erSize
e+=1

clk < acc_r &&
d < MaxLatency &&
e == EE - 1

acc_r = acc_r - acc_r1 + acc_r2,
e += 1

inEvent?
u = 0

e == EE &&
c == r &&
acc_e == 0

outEvent!

r= C1[id],
c = 0,
e -= 1,
acc_e -= 1,
acc_r1 -= C1[id],
acc_r2 -= C2[id]

inEvent?
c = 0,
r = C1[id],
e = 1,
clk = 0,
acc_r1 = C1[id],
acc_r2 = C2[id]

c == r &&
e > EE &&
e <= MaxBu!erSize

outEvent!

r = C2[id],
e -= 1,
c = 0,
clk = 0,
acc_r1 -= C1[id],
acc_r2 -= C2[id]

c == r &&
e > 0 &&
e <=EE

outEvent!

r= C1[id],
e -= 1,
c = 0,
clk = 0,
acc_r1 -= C1[id],
acc_r2 -= C2[id]

e <= MaxBu!erSize
inEvent?

e += 1,
acc_r1 += C1[id],
acc_r2 += C2[id]

e >= EE - 1 &&
e <= MaxBu!erSize

inEvent?
d = 0,
acc_r = r + acc_r2,
acc_e = e,
e += 1

e > EE &&
c == r &&
e <= MaxBu!erSize

outEvent!

e -=1,
acc_e -=1,
c = 0,
r = C2[id],
acc_r1 -= C1[id],
acc_r2 -= C2[id]

e == EE &&
c == r &&
acc_e > 0

outEvent!

r= C1[id],
c = 0,
e -= 1,
acc_e -= 1,
acc_r = acc_r - (acc_r2 - C2[id]) + (acc_r1 - C1[id]),
acc_r1 -= C1[id],
acc_r2 -= C2[id]

e < EE -1
inEvent?
d = 0,
acc_r = r + acc_r1,
acc_e = e,
e += 1

clk == r &&
e == 0

clk < acc_r &&
d == MaxLatency

e > 0 &&
e <= EE &&
c == r

outEvent!

e -=1,
acc_e -=1,
c = 0,
r = C1[id],
acc_r1 -= C1[id],
acc_r2 -= C2[id]

clk == acc_r &&
d <= MaxLatency

inEvent?
clk = 0,
d = 0,
c = 0,
r = C1[id],
e = 1,
acc_e= 0,
acc_r = r,
clk = 0,
acc_r1 = 0,
acc_r2 = 0

Scheduler model

Uppaal GUI
fix XML

translate

J
U
N
T

Toolchain
Feasible parameter
region for scheduler
component

P1

P2

trace

Figure 7.2: Overview of analysis approach

described in the next section. The different PTA are coordinated by making use of broadcast channels as
implemented in the timed model checker UPPAAL [10].
With our approach we translate RTC staircase curves into an event-emitting PTA as follows:

1. Curve parameters δ{i,j} and N{i,j} (see Eq. 7.2) are either chosen fixed or are in the parameter set
of the PTA. Each staircase curve α{i,j} (Eq. 7.2) is implemented by its own event emitting PTA,
where in case of an upper curve αi we speak of a timed automaton UTA i and in case of a lower
curve αj of a timed automaton LTA j. The generic implementation of an UTA and LTA within the
timed model checker UPPAAL is shown in Figure 7.4 (a) and (b).

2. Full synchronization on the UTA which implements minimum computation on the set of upper
event arrival curves (cf. Eq. 7.2) is enforced by the event emitting PTA as depicted in part (d) of
Figure 7.4.1 Full synchronization means that all UTA have to execute their event-labelled edge
in order to allow the event-emitter (PTA of Figure 7.4 (d)) to release an event inEvent!. If not
all UTA can participate in the synchronization event emission is blocked.

3. Maximum building on lower staircase curves (cf. Eq. 7.2) is realized by enforcing event emission
whenever one of the involved LTA has reached its local thresholdNj , which is achieved by defining
the respective invariant for each LTA. A set of LTA and UTA cooperating via the event emitting
PTA implements an input generator G which produces streams w. r. t. a dedicated event type, e. g. of
type inEvent. Generator G(α) allows to produce all streams the cumulative bounding functions
of which are bounded in the sense of Eq. 7.1 (the proof is provided in [35]). The events emitted by
generator G(α) can now be employed for triggering subsequent behaviour in any downstream TA,
e. g. the scheduler model.

Example 7.1. One may refer to Figure 7.1 in combination with Figure 7.4: for translating upper curve
αup one need 2 UTA instantiated with BMAX := Nup

{1,2} and Delta := δup{1,2}. For the event generator

1The location marked with c is a committed location, i. e. time is not allow to pass while the PTA resides in this location. A
committed location has to be left with the next transition.

7.3. SYSTEM MODELLING 94

errortemp

u <= 0

start

x <= Delta

x == Delta

x < Deltabucket == 0

outEvent?
u = 0

bucket == BMAX
outEvent?

NumSync++,
bucket--,
x = 0

x == Delta
x = 0,
bucket = ((bucket+1)<BMAX)? bucket+1:BMAX

bucket > 0 && bucket < BMAX
outEvent?

NumSync++,
bucket--

Figure 7.3: Observer UTA

x <= Delta

&&

b <= BMAX

event!

x == Delta

x = 0, b++

if (b==0) x = 0,

b = max(b-1, 0)

(a) LTA, implements
lower curve αj

x <= Delta

x == Delta

x = 0,
b = min(b+1, BMAX)

b > 0

event?

Sync++
b--,

if (b==BMAX) x = 0,

(b) UTA, implements
upper curve αi

System Declarations

broadcast channel event;
int BufferSz = 0;

Local Declarations for LTA, UTA

const int BMAX = |N{i,j}|;
clock x;
int b = 0;
const int Delta = δ{i,j}

(c) Declarations

Sync == K

event!

inEvent!

Sync = 0

(d) TA for enforcing full
synchronization

Figure 7.4: TA-based implementation of RTC-based curves

(Figure 7.4 (d)) constant K is set to 2. For implementing the lower curve only a single LTA is needed.

7.3.2 Generalized scheduler model

A simplified generalized scheduler model required by the Quinq tool is presented in Figure 7.5. Let us
first discuss only a part (idle and busy locations) of the generalized scheduler model. The main idea
behind this model is that we may represent any resource as a two locations TA. In one of its location this
TA is idle, i.e., available for the tasks, and in another state it is busy, locked for all tasks or tasks with
lower priority for non-preemptive or preemptive priority-based scheduling policies respectively. Thus
this TA is idle in its initial location until a first event (inEvent?) from the event generator described above
arrives. Then it switches to the busy location resetting on the transition the clock used to account for the
time passed in the busy location. Since other events may arrive while the resource is busy executing the
current task, the total remaining execution time will be recalculated and/or events counter incremented.
The end of each task execution is marked with an output event broadcast to the system through the

7.4. EXAMPLE CASE 95

ErrorCheck

Busy

Idle

No violation &&
clock == ExecTime &&
Counter == 0

inEvent?
Counter++,
ExecTime += Ci

if (taskEnded) {
 Counter--;
 outEvent!
}

Switches among tasks

...

inEvent?
clock = 0 && Counter = 1

Critical
conditions
violation

Non deterministic
transitions
to "check" location

inEvent?...

if (taskEnded) {
 Counter--;
 outEvent!
}

Switches among tasks

...

inEvent?
Counter++,
ExecTime += Ci

clock == ExecTime &&
Counter == 0

inEvent?
clock = 0 &&
Counter = 1

Figure 7.5: Generalized Scheduler Model

outEvent channel. These events are then observed by observers TA (see Section ??). The scheduler can
not go back to the idle location unless no more events are stored in the buffer and the system clock is
equal to the total execution time. The self-transitions of the busy location (task switching conditions) are
specific for a chosen scheduling policy. However, for the schedulability analysis the two-location idle-
busy model should be extended with two more locations: check and error. Several non-deterministic
transitions from the idle and busy locations to the check location should be defined. In the check state,
the model functions similarly to when it is in the busy location (i.e., reacting to the arrival of new events,
accounting for the remaining execution time and switching among tasks) plus it checks the violation of
critical conditions (e.g., task deadline violation). When the condition of the critical cases is satisfied, the
transition to the error location will be taken. The example of an extended model of the scheduler with
the load-dependent frequency adaptation is presented in Figure 7.5.

7.4 Example case

The TA elements of the case study are presented in Figure 7.6. Given a system with 1 task where the
input pattern is a periodic with jitter curves having the UTA linear pattern presented in Figure 7.4 The
scheduler of the example load-dependent frequency adaptation scheduler is adapted from [35]. We then
extended it with an error state. As for the observer we use only the UTA observer presented in Figure 7.3.
The parameters for the simulation are as follows. The scheduler can change its processing speed when
the number of tasks in the buffer has exceeded threshold N = 4. Upon the change in the server speed, the
computation time of task changes from C1 = 4 to C2 = 2. The maximum latency that can be tolerated
for each task activated is MaxLatency = 20, and the maximum buffer size for the tasks being queued is
MaxBufferSize = 10. We also fix the values of BMAXOutUTA = 5, and DeltaOutUTA = 2, respectively

7.5. DISCUSSION 96

Load-dependent frequency adaptation scheduler

RTC-conformant input curve RTC-conformant output curve

UTA

Observer

UTA Linear

Pattern

Figure 7.6: Analysed System

the maximum number of tasks coming in burst and the widths of output curve stairs. We would like
to find a schedulability region for the BMAXOne, the maximum burst number of activated tasks, and
DeltaOne, the widths of input curve stairs, as parameters within the range [0...10]. The result that we
obtained is depicted in Figure 7.7.

7.5 Discussion

The work we presented in this chapter conveys the idea of a hybrid design and analysis methodology for
distributed real-time systems. The proposed approach couples the Modular Performance Analysis (MPA-
RTC) with sensitivity analysis offered in Quinq. It uses a simplified representation of arrival curves to
interface heterogeneous modelling components. More specifically, the method automatically converts
arrival curves as used by MPA-RTC to Timed Automata models, and uses these models to trigger a state-
based and parameterized model of a processing or communication component. In a similar fashion, the
output of the component is characterized by appropriate observer automata and automatically converted
to arrival curves. The novelty of this work consists in deriving feasible regions for various component
parameters such as tolerable data rates or bursts for the input or the output of the component, and tolerable
fill levels for its activation buffer. Our results extend previous analysis methods which permitted the
evaluation of single design points only. For automatically deriving the region of feasible parameters
for a component, we implemented a dedicated tool-chain which employs UPPAAL and NuSMV. The
resulting tool permits us to efficiently explore large design spaces and hence directly supports the design
of complex distributed systems.

7.5. DISCUSSION 97

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10
DeltaOne

Unschedulable region

BMAXOne

Figure 7.7: Schedulability region

Chapter 8

State of the Art

This chapter reviews the state-of-art related to schedulability analysis using PTA. We started with the
overview of previous works on schedulability analysis, continued by works on sensitivity analysis for
system schedulability. Last, we offer some comparison to some tools available that are related to sensi-
tivity analysis work.

8.1 Schedulability analysis

A good part of the research on real-time systems has focused on mathematical conditions, whereby a
periodic task set scheduled with a fixed priority is schedulable. In their seminal work [42], Liu and
Layland identified Rate Monotonic (RM) as the optimal priority assignment to achieve schedulability,
and for this assignment they discovered a notorious sufficient schedulability condition on the total CPU
utilization of the tasks. Albeit very important, this test fails to provide a conclusive response on the
system schedulability in many cases of practical and theoretical interest.

Pandya and Joseph [34] proposed an alternative approach. Their methodology allows one to compute
the response time of each task, and hence conclude schedulability by comparing it with the deadline. The
authors still assume periodic activations for the tasks, but they do not pose restrictions on the priority
assignment and on the position of the deadlines. The methodology produces the exact response time if
the tasks do not have an initial offset and an overapproximation if the tasks have offsets. Extensions exist
for periodic tasks with offsets [46] but they are either intractable or produce conservative results. This
analysis techniques have been generalised in different directions. For instance, using the results in [49],
it is possible to consider tasks sharing resources.

Our approach differs from the ones in the papers cited above since the proposed SATA technique
performs an exhaustive analysis for much more general activation patterns without making conservative
approximations. This technique lies in the track opened by Wang Yi and his co-workers, who reformulate
the problem of schedulability analysis as one of reachability for a network of timed automata. The first
attempt in this direction can be found in [45], where the authors use the technology in the UPPAL
tool [4] to analyse the schedulability of a set of tasks assuming a non-preemptive policy. This approach
of solving the schedulability analysis through reachability problem is also used in [30].

The transition from non-preemptive to preemptive scheduling was not obvious, since many authors
used a class of automata for modelling the system (the stop watch automata) [18, 25, 44], for which the
reachability problem is known to be undecidable. In [29], the authors proposed a different model for the
system based on an extension of timed automata, for which the reachability problem is decidable. In [28],

98

8.2. SENSITIVITY ANALYSIS 99

the authors identify an efficient encoding for the schedulability problem in the special but important case
of a fixed priority scheduler. In our paper, we generalised this model allowing for parametric constraints
associated to the guards and to the invariant conditions of the timed automata.

Parametric timed automata can be found in some previous works. In [55], the authors present a
method to model check a real–time system using parametric timed automata when a constraint over the
parameter is given. This problem is referred to as the “emptiness” problem for PTA and has been prove
undecidable, in the general case, in [3]. Interestingly, in [33] a subclass of PTA called L/U PTA is iden-
tified for which the problem is decidable, and a solution strategy based on Parametric Difference Bound
Matrices is proposed. The solution to the emptiness problem is actually used in this paper as a step to
solve a more general problem: producing the region of parameters for which the system is unschedulable
(namely, the subroutine named PTA.reachable(Error) in Figure 4.1). We have provided theoret-
ical evidence that for periodic task sets the algorithm terminates (and hence the problem is decidable).
Further investigation on more general examples, along the lines shown in [33], is reserved for future
work. This work is extended in [20] by proposing Extended Difference Bound Matrices (EBDM). We
will discuss their work in the following section.

In another line of work [6], André shows how given a certain known parameter valuation, one can
compute the relaxed constraint on the parameter space that will have the same trace. This approach
depends on the input, is not maximal and not guaranteed to terminate. We discuss their tool IMITATOR
in the following section.

8.2 Sensitivity Analysis

8.2.1 Analytical approach

The problem of finding the feasibility region was attacked in analytic terms in [11]. The authors consid-
ered periodic task sets and improve a methodology, first introduced by Lehoczky and Sha [40], to identify
the minimal representation for the region of feasible computation times. This approach is applicable to
strictly periodic task sets with zero offsets. As recalled above, we consider much more general activation
patterns, although, as a first step, we offer strong convergence results only for the case of periodic task
sets with free offsets.

The problem modelling used in the paper is a translation of one explained in Section 2, which consid-
ers a task set S = {τ1, τ2, . . . , τn}. Each task τi = (Ci, Ti, Di) is characterized by an activation period
Ti, a relative deadlineDi, and a worst case execution time Ci. The activation pattern is assumed periodic
with period Ti and offset equal to 0.

The technique is based on the following observation: the worst case situation for the job scheduling
is the one in which all tasks start at the same time (which happens at time 0). In other word if the job
starting at zero is schedulable so are the other jobs. The idea of time demand approach is the following:
a task is schedulable if in the time interval [0, Di] there exists a time t in which the computation demand
Li(0, t) of task τi and of higher priority tasks and of task τi is lower than the computing time offered by
the CPU (e.g., t):

∃t such thatLi(0, t) ≤ T → τi schedulable

Luckily it can be shown that the verification can be done only on a limited set of points:
Gi =

{
rTj : j = 1, . . . , i, r = 1, . . . ,

⌊
Ti
Tj

⌋}
.

8.2. SENSITIVITY ANALYSIS 100

Therefore the task is schedulable if:

Li = min
t∈Gi

Li(0, t)

t
≤ 1 = min

t∈Gi

∑i
j=1

⌈
t
Tj

⌉
Cj

t
≤ 1

.
The main contribution of the paper is the computation of a small set of points instead of Sj that

preserve schedulability leading to the following:

Theorem 8.1. When deadlines are equal to periods, the region of the schedulable task sets R defined as

R(T1, . . . , Tn, D1, . . . , Dn)|Di=Ti = {(C1, . . . , Cn) ∈ Rn+ : S is schedulable

is given by :
R(T1, . . . , Tn, D1, . . . , Dn)|Di=Ti = {(C1, . . . , Cn) ∈ Rn+ :

∧
i=1...n

∨
t∈Gi

i∑
j=1

d t
Tj
eCj ≤ t},

whereGi = {rTj : j = 1 . . . i, r = 1 . . . bTi
Tj
c}

Not only does the theorem above allow us to decide the schedulability of a task set but it also allows
us to compute the entire feasibility region. As we have shown in our work, our approach allows us to
find the same result for a much larger class of task sets.

8.2.2 Sensitivity Analysis Tools

In this section we discuss several other sensitivity analysis tool that are directly related to our work. We
discuss an overview of their approach then provide some discussion on the comparison of their approach
and ours.

8.2.3 Modeling and Analysis Suite for Real-Time Applications (MAST)

MAST1 is an open source tool developed to model real–time system that facilitates some scheduling
analysis on the model: worst-case response time schedulability analysis, blocking time analysis, opti-
mum priority assignment analysis, and most relevant to out subject, sensitivity analysis [32]. A real-time
situation is modelled as a set of concurrent transactions that compete for the resources offered by the
platform. Tasks can be periodic or aperiodic. Periodic tasks have the variables of period, deadline, and
computation time, while the aperiodic tasks have the variables of minimum inter-arrival time, computa-
tion time, and deadline after each arrival. Unlike in our case, they do not have offset as possible variables
in their periodic tasks. However they employ the other notion of offset in their analysis of WCRT. The
authors use this notion of offset to account for the dependency and precedence relation between jobs in
their analysis. While in our case an offset is a delay with which we offset the first activation of our jobs
in a task, in MAST, an offset is a delay with which we offset all the activation of our jobs in a task.

On the real–time system modelled in their tool, they provide sensitivity analysis through the calcu-
lation of slacks in their system and transaction. Slacks are the percentages by which the execution times

1http://mast.unican.es/

8.2. SENSITIVITY ANALYSIS 101

of the operations of a transaction (or of the system) can be increased while keeping the system schedu-
lable (or decreased to make it schedulable if it was not schedulable.). There are different kinds of slacks
provided:

• System slack: affects all the operations in the system

• Processing resource slack: affects only the operations executed in a given processing resource

• Transaction slack: affects only the operations used in a given transaction

• Operation slack; affects only one single operation

The slacks are calculated by modifying the worst-case execution times and repeating the analysis using a
binary search to find the point in which the system becomes unschedulable or schedulable. The slack is
calculated with a 1% precision to limit the amount of times the analysis is repeated to around 20 times.

In term of real–time system modelling, compared to our tool, MAST already is already matured as
it provides support for several scheduling policies in system with single as well as multiprocessor. This
tool also supports the shared resources in between the tasks and arranges the subsequent blocking and
mutual exclusion use of the shared resources. However, while the sensitivity analysis information of the
system slack is valuable, the fact that the tool only calculate the slack in the term of percentage does not
provide the exact value information to the user. Each of the feedback is highly related to the reference
valuation given as input. Also, the slacks are end-to-end slack: Transaction Slacks, System Slacks,
Processing Resource Slacks, and Operation Slacks. While these provide information to some level, they
do not directly relate to specific variables.

8.2.4 SMART

SMART is the tool built as a proof of concept for a work on parametric timed automata analysis using ex-
tended difference bounded matrix (EBDM) presented in [20]. This tool is not available online, therefore
we will discuss it only based on the PhD thesis of the author. EDBM approach is developed to improve
the Parametric difference bounded matrix approach presented in [8] that is then implemented in the tool
TReX [7]. PDBM extends the classical BDM in allowing parameters in the arithmetical constraints
defined as the parametric bound for difference among two clocks. In this work, symbolic reachability
analysis of the parametric system is performed through the operation on PDBM the same way we per-
form operations on DBM: through intersection, time elapse, and clock reset. However, parameters are
involved as the bounds could contain parameters.

EDBM differs to PDBM by having parameters represented in the matrix the same way the clocks are
represented. Thus the entries of the EDBM, i.e. all the bounds stored in the structure, are all numerical.
Using this approach the operations that requires comparing two elements of the matrix are straightfor-
ward. All expressions that are difference of two sums of clocks may be handled be EDBM. As result, the
size of the matrix is constant during entire analysis. This is its edge over PDBM in which parameters are
constrained separately from the main data structure which only constraints allowed values on clocks.

The symbolic reachability analysis of the system represented in SMART is done by performing sym-
bolic forward and analysis that performs intersection, reset, backward and forward time elapse operation
on the EBDM. These operations will result in a polyhedra in the space of clocks and parameters. In the
perspective of the result, the poyhedra result obtained by performing those operations on EBDM can be
compared with the polyhedra obtained by our tool. Provided SMART could find all the possible traces to
the error location, then given a system that could be accepted in SMART, theoretically the result provided

8.2. SENSITIVITY ANALYSIS 102

by Quinq on the system would be the same with the polyhedra represented through EBDM. However that
is not the case in the other way around, as Quinq could work on system with more general constraints
that might not be acceptable for EDBM requirement.

The difference of the modelling provided in SMART to ours are the following :

1. The clock and variable updates

SMART tool only allows the clocks to be reset to zero. Variables, in the other hand, can only be
updated with another value resulting from any algebraic expression. It may not contain any pa-
rameter nor clocks. In our case, any linear constraints involving parameters, clock, other variables,
and constant are allowed to be used as arbitrary clock and variables updates.

2. Constraints on invariants and guards

SMART allows two possible forms of expressions : 1) Difference of two clocks, parameters, and
real numbers. 2) Any algebraic expression defined with variables and reals. These constraints in
expression forms do not apply to our modelling approach. As in our update statements, we allow
any linear expression made from parameters, clocks, other variables, and reals as the invariants
and guards on our model.

In term of the analysis method, our tool differs to SMART in the generality of our method towards
any possible expressions. In SMART, it is required that the form of all expressions that are used in
transition guards or invariants of the analysed automata must be known a priori to the analysis. As it is
needed to formulate the matrix columns and rows. Before the analysis may start, all the model must be
scanned in order to find out what expressions are used in it.

And last, as other approaches based on DBM, it is necessary to calculate the closure of the EDBM
used for the system analysis. The cost of calculating closure depends exponentially on the number of
clocks and parameters and also on the complexity of used expressions. This complexity is expressed in
a size of sets labelling rows and columns of EDBM, corresponding to number of clocks and parameters
in expression guarding transitions of the automata. This is not the case for our method approach. We do
not need to calculate the closure for each clocks and parameters involved in our system to converge in
our method.

8.2.5 Imitator

Given Linear Hybrid Automata problem with parameters, certain intended behaviour, and a rectangular
parameter space IMITATOR tool employs an algorithm called inverse method [6] to define the largest
set of parameters where the sytem will behave as intended.

The inverse method is done as follows: given one set of parameters valuation, from the initial state,
using quantifier elimination on the clocks, invariant and guard of states to obtain each reachable states
constraint, collect all the negated constraints of states that do not comply with the input parameter valu-
ation. Then we recompute from initial states all the updated reachable states with each collected negated
constraints until we have all states that are reachable by the input points and the collected constraints. At
the end, the intersection of the remaining state constraints projected into parameters space is returned.
The result of each inverse method given a valuation of parameter set is a convex set of instantiations
of the parameters such that all instantiations will cause the same traces as the traces of the instantiation
given in the input.

The authors then extend this inverse method to achieve the mapping of the parametric space into
behavioural tiles. They use the term behavioural cartography [5] for this process. The mapping is

8.2. SENSITIVITY ANALYSIS 103

acquired by enumerating random integer points or a specific step size of points in the space of parameter
(thus the number of iteration is finite) then constructing a region / tile around the point where all points
have the same behaviour, named behavioural tile, using inverse method. This process is repeated until
the whole parameter space targeted is covered by the tiles, Then they categorize the tiles into good and
bad zones according to the set of traces that can be achieved by points in each tiles. A tile is ”good” if all
of its traces is ”good” , and a tile is ”bad” if at least one of the trace is ”bad”. This bad/good property is
decided on the reachability of bad states on the trace. With that, the state space is then divided into good
tiles zone and bad tiles zone, and the good tiles zone is returned as the solution for the problem.

The inverse method that they are using relies on having a certain parameter instantiation of the system
to further produce the constraints on the parameters that will guarantee the system to have the same
behaviour.

This method then can be used in 2 scenarios :

1. Having ”good” parameter instantiation as input to then generalize it, producing an area in param-
eter space that corresponds with the same good behaviour properties.

2. In the case no property verification is possible, having points in the parameter space as input to
then generalize each of them, producing areas corresponding to different possible behaviours of
the system.

As it relies on having known a ”good” parameter instantiation as input to be able to come up with
constraint for parameters that satisfies the same good property. The method technically is only able to
verify that the input instantiation of the parameter and the output constraints of the parameters have the
same behaviour. It relies on other system to provide with the input having the knowledge of at least
an instance of the parameters that is verified to satisfy certain property. Or in the other case, where
cartography feature is used, it then needs other system to then verify whether each block satisfy certain
property or not.

The difference of their approach to ours lies in the generality of the problem tackled. It can be
said the main problem that they are working on is a sub-unit of our problem. In this light, their notion
of parameter in our system is different compared to the parameter notion in IMITATOR. In Imitator,
parameters are all involved variables in a system. Given a valuation reference for all the parameters,
they will try to find all valuation for those which will result in the same behaviour, i.e. traversing the
same locations and transitions. In our case parameters are a portion of all the variables in a system, which
all valuation we will try to find to decide whether the system will be schedulable or not schedulable. The
problem that they are working on is, given a reference valuation, they will provide the constraints that
will describe the region with the same behaviour in the parameter area. While the problem at our hand is:
given a system, we would provide all the constraints describing the schedulability region in the parameter
area.

This comparison can be seen clearly in their case studies 2 in which two of the case they are working
on are from our previous work in [21] and [39]. The result constraint that they are obtained describes the
area that is strictly less and included in our final constraints, because it is the area in which their reference
valuation input is valid.

In the case of performing cartographical mapping on the parameter area, where they would iteratively
perform the algorithm for all points, they could theoretically end up with our result. However, the integer
domain in which they work on would prevent them from capturing areas with non monotonic behaviour
in between the integer points. And performance-wise, their algorithm is not suitable as . Replicating

2http://www.lsv.ens-cachan.fr/Software/imitator/case-studies.php

8.2. SENSITIVITY ANALYSIS 104

our case study in [21] for one valuation point, which result in a sub region in our result, took their
time the longest compared to other studies due to the large number of possible states that they ended up
numerating for this area.

Chapter 9

Conclusion and Future Work

9.1 Conclusion

In this dissertation, we are working on the field of real–time system design in the strive for achieving
correct and robust system. We acknowledge the importance of proper modelling and design platform to
enable correct design of the system. For the robustness of the system, we stress the importance of system
robustness evaluation and parameter tuning. We then provide our solution for this goal : Modelling via
parametric timed automata (PTA), Parametric Verification of Temporal Properties (PTVP) algorithm, and
Quinq tool.

PTA representation is proposed as this approach will enable the modelling of real system with arbi-
trary activation pattern and scheduling policy. The timing property of the real–time system will be en-
forced through the constraints in the guard and invariant of the PTA. Our definition of PTA enabled any
linear operation on the clocks and system variables as the guard and invariant constraints. The schedu-
lability problem of the system is then transformed into the reachability problem of locations associated
with violation to timing properties.

Working on the model in PTA, we presented a general methodology for the symbolic computation of
the schedulability region, our PTVP algorithm. The resulting schedulability region will provide the user
with the robustness evaluation of the system as well as the information on the possible parameter tuning.
The methodology applies to very general activation patterns and it does not make any conservative ap-
proximations, and is implemented by integrating traditional symbolic model checking and SMT solvers.
We proved convergence in the important case of fixed priority scheduling for periodic task systems. We
have also provided a way to complete the method by performing inductive reasoning to the final result.

We have also presented our tool Quinq with which we facilitate the modelling of real–time system
through parametric real timed automata. The PTVP algorithm has been implemented using NuSMV3 as
blackbox components. The method has been automated from end to end: from the input format where
we enable three kinds of possible input format, up to the drawing of the result region. Optimization
possibilities for the search method using non-parametric model checker is also offered.

While there has been many development in the area of sensitivity analysis on parametric system in
recent years, our tool still has its edge in the field of the goal that we would like to work on: defining
schedulability region in parameter space of a real system. Compared to the other tool for sensitivity
analysis, the method and tool that we used offer more freedom in parametric definition in the system:
any design variables can be a parameter. Unlike the other tools we described, we do not rely on having
a reference input first to start the schedulability region analysis. Thus, in term of the result, we provide

105

9.2. FUTURE WORK 106

the largest possible view of the schedulability in the parameter space. Working in rational domain, we
provide the exact area for each parameter in which the designer could later decide their optimum choice
for parameter value towards the maximum system robustness.

9.2 Future Work

There are several aspects that will still need to be further researched. On the theoretical side, our most
important goal is to extend the study of convergence to the general case. Thorough performance analysis
of the tool as well as benchmarking study will also help us to better evaluate the tool performance. In
term of the real–time system domain, working on case studies involving dependencies between tasks,
multi-processor, as well as other scheduling policies will add the portfolio for this method. Another
interesting possibility is to use the schedulability region as a design tool by introducing appropriate cost
functions.

Bibliography

[1] Rajeev Alur and David L. Dill. A theory of timed automata. Theor. Comput. Sci., 126(2):183–235,
1994. ISSN 0304-3975.

[2] Rajeev Alur and David L. Dill. Automata For Modeling Real-Time Systems. In Mike Paterson,
editor, Proc. of the 17th International Colloquium on Automata, Languages and Programming
(ICALP’90), volume 443 of LNCS, pages 322–335. Springer, 1990.

[3] Rajeev Alur, Thomas A. Henzinger, and Moshe Y. Vardi. Parametric real-time reasoning. In
STOC’93, pages 592–601, New York, NY, USA, 1993. ACM. ISBN 0-89791-591-7.

[4] Tobias Amnell, Elena Fersman, Leonid Mokrushin, Paul Pettersson, and Wang Yi. Times - a tool
for modelling and implementation of embedded systems. In TACAS’02, pages 460–464, London,
UK, 2002. Springer-Verlag. ISBN 3-540-43419-4.

[5] Étienne André and Laurent Fribourg. Behavioral cartography of timed automata. In Antonı́n Kučera
and Igor Potapov, editors, Proceedings of the 4th Workshop on Reachability Problems in Compu-
tational Models (RP’10), volume 6227 of Lecture Notes in Computer Science, pages 76–90, Brno,
Czech Republic, August 2010. Springer.

[6] Étienne André, Thomas Chatain, Emmanuelle Encrenaz, and Laurent Fribourg. An inverse method
for parametric timed automata. International Journal of Foundations of Computer Science, 20(5):
819–836, October 2009.

[7] A. Annichini, A. Bouajjani, and M. Sighireanu. Trex: A tool for reachability analysis of complex
systems, 2001.

[8] Aurore Annichini, Eugene Asarin, and Ahmed Bouajjani. Symbolic techniques for parametric
reasoning about counter and clock systems. In Proceedings of the 12th International Conference on
Computer Aided Verification, CAV ’00, pages 419–434, London, UK, UK, 2000. Springer-Verlag.
ISBN 3-540-67770-4.

[9] Gilles Audemard, Alessandro Cimatti, Artur Kornilowicz, and Roberto Sebastiani. Bounded model
checking for timed systems. In FORTE’02, pages 243–259, London, UK, 2002. Springer-Verlag.
ISBN 3-540-00141-7.

[10] Gerd Behrmann, Re David, and Kim G. Larsen. A tutorial on uppaal. In Formal Methods for
the Design of Real-Time Systems: 4th International School on Formal Methods for the Design of
Computer, Communication, and Software Systems, SFM-RT 2004, pages 200–236. Springer, 2004.

107

BIBLIOGRAPHY 108

[11] Enrico Bini and Giorgio C. Buttazzo. Schedulability analysis of periodic fixed priority systems.
IEEE Trans. Comput., 53(11):1462–1473, 2004. ISSN 0018-9340.

[12] J.-Y. Le Boudec and P. Thiran. Network Calculus: A Theory of Deterministic Queuing Systems for
the Internet, volume 2050 of LNCS. Springer, 2001.

[13] Marco Bozzano, Roberto Bruttomesso, Alessandro Cimatti, Tommi Junttila, Peter van Rossum,
Stephan Schulz, and Roberto Sebastiani. The MathSAT 3 system. In Robert Nieuwenhuis, editor,
Automated Deduction – CADE-20, volume 3632 of Lecture Notes in Artificial Intelligence, pages
315–321. Springer, 2005.

[14] R. Bruttomesso, A. Cimatti, A. Franzén, A. Griggio, and R. Sebastiani. The MathSAT 4 SMT
Solver. In CAV’08, LNCS, Princeton, USA, 2008. Springer.

[15] Roberto Bruttomesso, Alessandro Cimatti, Anders Franzén, Alberto Griggio, and Roberto Sebas-
tiani. Delayed theory combination vs. nelson-oppen for satisfiability modulo theories: A compara-
tive analysis. In LPAR, pages 527–541, 2006.

[16] G. Buttazzo, G. Lipari, L. Abeni, and M. Caccamo. Soft Real-Time Systems: Predictability vs.
Efficiency. Series: Series in Computer Science. Springer, 2005.

[17] Luca P. Carloni, Fernando De Bernardinis, Alberto L. Sangiovanni-Vincentelli, and Marco Sgroi.
Platform-based and derivative design. In The Industrial Information Technology Handbook, pages
1–15. 2005.

[18] Franck Cassez and François Laroussinie. Model-checking for hybrid systems by quotienting and
constraints solving. In CAV’00, pages 373–388, London, UK, 2000. Springer-Verlag. ISBN 3-540-
67770-4.

[19] Roberto Cavada, Alessandro Cimatti, Anders Franzén, Krishnamani Kalyanasundaram, Marco
Roveri, and R. K. Shyamasundar. Computing Predicate Abstractions by Integrating BDDs and
SMT Solvers. In FMCAD’07, pages 69–76, Washington, DC, USA, 2007. IEEE Computer Society.
ISBN 0-7695-3023-0.

[20] Patryk Chamuczyński. Algorithms and data structures for parametric analysis of real time systems.
Doctorate thesis, University of Göttingen, Germany, 2009.

[21] A. Cimatti, L. Palopoli, and Y. Ramadian. Symbolic computation of schedulability regions using
parametric timed automata. In Real-Time Systems Symposium, 2008, pages 80–89, Dec. 3 2008.

[22] Alessandro Cimatti, Edmund M. Clarke, Fausto Giunchiglia, and Marco Roveri. Nusmv: A new
symbolic model verifier. In CAV’99, pages 495–499, London, UK, 1999. Springer-Verlag. ISBN
3-540-66202-2.

[23] Alessandro Cimatti, Alberto Griggio, and Roberto Sebastiani. Efficient interpolant generation in
satisfiability modulo theories. In TACAS’08, volume 4963 of LNCS, pages 397–412. Springer,
2008. ISBN 978-3-540-78799-0.

[24] Edmund Clarke, Daniel Kroening, Joel Ouaknine, and Ofer Strichman. Computational challenges
in bounded model checking. Software Tools for Technology Transfer (STTT), 7(2):174–183, April
2005.

BIBLIOGRAPHY 109

[25] James C. Corbett. Modeling and analysis of real-time ada tasking programs. In RTSS’94, pages
132–141, 1994.

[26] M. W. Dawande and J. N. Hooker. Inference-based sensitivity analysis for mixed integer/linear
programming. Oper. Res., 48(4):623–634, 2000. ISSN 0030-364X.

[27] EADS Innovation Works. Case study on distributed heterogeneous communication systems (HCS),
2009, http://www.combest.eu/home/?link=Application1.

[28] E. Fersman, L. Mokrushin, P. Pettersson, and W. Yi. Schedulability analysis using two clocks. In
TACAS’03, volume 2619 of LNCS, pages 224–239. Springer, 2003.

[29] Elena Fersman, Paul Pettersson, and Wang Yi. Timed automata with asynchronous processes:
Schedulability and decidability. In TACAS’02, pages 67–82, London, UK, 2002. Springer-Verlag.
ISBN 3-540-43419-4.

[30] A.N. Fredette and Rance Cleaveland. Rtsl: a language for real-time schedulability analysis. In
RTSS’93, pages 274–283, Washington, DC, USA, 1993. IEEE Computer Society. ISBN 0-8186-
4480-X.

[31] Giorgio C. Butazzo. Hard Real-Time Computing Systems. Springer, 2005. ISBN 0-387-23137-4.

[32] M. Gonzlez Harbour, J. J. Gutirrez Garca, J. C. Palencia Gutirrez, and J. M. Drake Moyano. Mast:
Modeling and analysis suite for real time applications. In In 13th Euromicro Conference on Real-
Time Systems, page 125, 2001.

[33] Thomas Hune, Judi Romijn, Mariëlle Stoelinga, and Frits W. Vaandrager. Linear parametric model
checking of timed automata. In TACAS’01, pages 189–203, London, UK, 2001. Springer-Verlag.
ISBN 3-540-41865-2.

[34] Mathai Joseph and Paritosh K. Pandya. Finding response times in a real-time system. The Computer
Journal, 29(5):390–395, 1986.

[35] Kai Lampka, Simon Perathoner, and Lothar Thiele. Analytic real-time analysis and timed automata:
A hybrid method for analyzing embedded real-time systems. In EMSOFT ’09: Proceedings of the
7th ACM international conference on Embedded software, pages 107–116, New York, NY, USA,
2009. ACM. ISBN 978-1-60558-627-4.

[36] Kai Lampka, Simon Perathoner, and Lothar Thiele. Analytic real-time analysis and timed automata:
A hybrid methodology for the performance analysis of embedded real-time systems. Design Au-
tomation for Embedded Systems, 14(3):193–227, 2010.

[37] K.G. Larsen, P. Pettersson, and W. Yi. UPPAAL in a nutshell. International Journal on Software
Tools for Technology Transfer (STTT), 1(1):134–152, 1997.

[38] Hoa Thi Thieu Le, Luigi Palopoli, Roberto Passerone, and Yusi Ramadian. Modeling a distributed
heterogeneous communication system using parametric timed automata. Technical Report DISI-
10-031, Dipartimento di Ingegneria e Scienza dell’Informazione, University of Trento, April 2010.

[39] Thi Thieu Hoa Le, Luigi Palopoli, Roberto Passerone, Yusi Ramadian, and Alessandro Cimatti.
Parametric analysis of distributed firm real-time systems: A case study. In ETFA, pages 1–8, 2010.

http://www.combest.eu/home/?link=Application1

BIBLIOGRAPHY 110

[40] J. P. Lehoczky, L. Sha, and Y. Ding. The rate-monotonic scheduling algorithm: Exact characteriza-
tion and average case behavior. In RTSS’89, pages 166–172, 1989.

[41] Joseph Y.-T. Leung and M. L. Merrill. A note on preemptive scheduling of periodic, real-time tasks.
Inf. Process. Lett., 11(3):115–118, 1980.

[42] C. L. Liu and James W. Layland. Scheduling algorithms for multiprogramming in a hard-real-time
environment. J. ACM, 20(1):46–61, 1973. ISSN 0004-5411.

[43] A. Marchand and M. Silly-Chetto. Qos scheduling components based on firm real-time require-
ments. In Computer Systems and Applications, 2005. The 3rd ACS/IEEE International Conference
on, page 141, 2005.

[44] Jennifer McManis and Pravin Varaiya. Suspension automata: A decidable class of hybrid automata.
In CAV’94, pages 105–117, London, UK, 1994. Springer-Verlag. ISBN 3-540-58179-0.

[45] Christer Norström, Anders Wall, and Wang Yi. Timed automata as task models for event-driven
systems. In RTCSA’99, page 182, Washington, DC, USA, 1999. IEEE Computer Society. ISBN
0-7695-0306-3.

[46] J. C. Palencia and M. González Harbour. Schedulability analysis for tasks with static and dynamic
offsets. In RTSS’98, page 26, Washington, DC, USA, 1998. IEEE Computer Society. ISBN 0-
8186-9212-X.

[47] PTP. A precision clock synchronization protocol for networked measurement and control systems.
Ieee standard 1588-2002, November 2002.

[48] A. Sangiovanni-Vincentelli. Defining platform-based design. 2002.

[49] L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority inheritance protocols: An approach to real-time
synchronization. IEEE Trans. Comput., 39:1175–1185, September 1990. ISSN 0018-9340.

[50] Mary Sheeran, Satnam Singh, and Gunnar Stålmarck. Checking safety properties using induction
and a sat-solver. In FMCAD’00, pages 108–125, London, UK, 2000. Springer-Verlag. ISBN 3-
540-41219-0.

[51] Alena Simalatsar, Yusi Ramadian, Kai Lampka, Simon Perathoner, Roberto Passerone, and Lothar
Thiele. Enabling parametric feasibility analysis in real-time calculus driven performance evalua-
tion. In Proceedings of the 14th international conference on Compilers, architectures and synthesis
for embedded systems, CASES ’11, pages 155–164, New York, NY, USA, 2011. ACM. ISBN
978-1-4503-0713-0.

[52] Lothar Thiele, Samarjit Chakraborty, and Martin Naedele. Real-time calculus for scheduling hard
real-time systems. In Proc. Intl. Symposium on Circuits and Systems, volume 4, pages 101–104,
2000.

[53] E. Wandeler, L. Thiele, M. Verhoef, and P. Lieverse. System Architecture Evaluation Using Modu-
lar Performance Analysis: A Case Study. International Journal on Software Tools for Technology
Transfer (STTT), 8(6):649–667, 2006.

BIBLIOGRAPHY 111

[54] Farn Wang. Formal verification of timed systems: A survey and perspective. IEEE, 92, August
2004.

[55] Dezhuang Zhang and Rance Cleaveland. Fast on-the-fly parametric real-time model checking. In
RTSS’05, pages 157–166, Washington, DC, USA, 2005. IEEE Computer Society. ISBN 0-7695-
2490-7.

Appendix A

Quinq Usage

A.1 Sensitivity add-on

A.1.1 Input

As an add-on in NuSMV3 the functions in sensitivity add-ons are available via NuSMV3. The input file
is read by the following command :

esmc > read_model -i input.smv

esmc is the NuSMV3 executable.
Or we can input them as we call the NuSMV itself:

./esmc -int -cpp input.smv

The option -int is to enter the interactive mode of NuSMV3, and the option -cpp is to perform c
pre-processing to the input file.

A.1.2 Functions

We provide the following functionalities in sensitivity add-on :

Schedulability analysis

This main function is implemented in the function sensitivity analysis. We call this function as follows:

esmc > sensitivity_analysis

followed by the desired options. Some features that are enabled in the options are:

• The recursion depth

This setting will allow us to set more recursion depth on cases with a lot of tasks involved.

-depth max_depth

Maximum recursion depth.

112

A.1. SENSITIVITY ADD-ON 113

• The BMC bound

-bound max_k

With this option, Quinq will continuously do the iteration up to length max k is reached. The
default is checking up to length 30.

• Verbose possibility

This option will enable print out of the system phases that have been performed.

-v <verbose_level>

On verbose level ≥ 1 Quinq will dump every traces found in XML format.

• Quantifier method As we provide two different methods in performing quantifier elimination in
the constraint processing, user may choose between the two methods using this option:

-quant quantifier

Using projection method we input the value 0 while using Fourier Motzkin quantifier we specify
the value 1.

• printing trace options Aside from using the verbose, we can also specify to request the example
trace of the model to be printed with the following option:

-print_trace

• performing inductive reasoning Using this option Quinq will perform inductive reasoning with
interpolants at the last known length in the end of the iteration. The option is :

-inductive

• performing single iteration or all possible iteration up to the bound

For testing purposes we might want to perform only one iteration in searching for the constraint.
We use the following option for this :

-single

• parameter file

By using this option we can provide an input file enlisting all the parameters in the model.

-param parameter_file

Input file parameter file has the format of:

A.1. SENSITIVITY ADD-ON 114

<param1 name>
...
<param_n name>

• Continuous variables Using this option we can specify a text input file enlisting all the continuous
variables in the model.

-cont continuous_vars_file

• Index of checked property Checks the INVAR property specified with index idx. The default is
checking property 0. This option is used when we have more than one property to be checked in
our model.

-propnbr idx

Schedulability analysis by trace

This function is titled trace sensitivity analysis. To call a schedulability analysis on the model based on
trace given in trace.xml, which is a NuSMV trace in the XML format, we call the following command:

esmc > trace_sensitivity_analysis trace.xml

followed by the appropriate options :

• parameter file

By using this option we can provide an input file enlisting all the parameters in the model.

-param parameter_file

• Continuous variables Using this option we can specify a text input file enlisting all the continuous
variables in the model.

-cont continuous_vars_file

• Verbose possibility

This option will enable print out of the system phases that have been performed.

-v <verbose_level>

On verbose level ≥ 1 Quinq will dump every traces found in XML format.

• Quantifier method As we provide two different methods in performing quantifier elimination in
the constraint processing, user may choose between the two methods using this option:

-quant quantifier

Using projection method we input the value 0 while using Fourier Motzkin quantifier we specify
the value 1.

A.2. PERIODIC REAL–TIME SYSTEM AUTOMATIC SCHEDULABILITY ANALYSIS 115

• printing trace options Aside from using the verbose, we can also specify to request the example
trace of the model to be printed with the following option:

-print_trace

• The recursion depth

This setting will allow us to set more recursion depth on cases with a lot of tasks involved.

-depth max_depth

Maximum recursion depth.

Point checking

This is the function to check whether a point is already covered in the already found schedulability
region. The input file for this function is an smv file with the parameter variables assigned to the value
of the point that we want to check and the current unschedulable region constraints. After registering the
input file, we then call the following command:

esmc > sensitivity_check_param -i index

where index is the index of the INVARSPEC where we define the inclusion specification in the model.

A.2 Periodic real–time system automatic schedulability analysis

A.2.1 Input model

We provide an automatic way to generate a NuSMV model of periodic case with periodic task activation
pattern and scheduling policy of preemptive, fixed priority scheduler. We also produce as a by-product an
XML model for this standard periodic case. The XML file is viewable in UPPAAL as UPPAAL input file
for graphical purpose. The user only needs to specify the following for the automatic model generator:

1. Number of tasks involved

We specify the number of tasks involved with the variable N . For example, on a system with 5
tasks we declare them as follows :

const int N = 5;

2. Fixed task parameter specification

For each of the N tasks specified, we need to specify the period T, computationtimec,deadline
D, and offset offset in an array ordered by their priority number. The first entries in each of the
array describes the parameters for the task with the first priority in the system. For example we
may describe the system with 5 tasks as follows:

int D[N] := {20, 30, 45, 55, 60};
int C[N]:= {1, 1, 2, 2, 3};
int T[N]:= {20, 30, 45, 55, 60};
int offset[N]:= {2, 2, 2, 2, 2};

A.2. PERIODIC REAL–TIME SYSTEM AUTOMATIC SCHEDULABILITY ANALYSIS 116

The above notation means we have S = {τ1, τ2, . . . , τ5} where, the deadlines and periods of each
tasks are D1 = T1 = 20, D2 = T2 = 30, D3 = T3 = 45, D4 = T4 = 55, and D5 = T5 = 60, and
their computation times C1 = 1, C2 = 1, C3 = 2, C4 = 2, and C5 = 3. The offsets for each of
the tasks are O1 = 2, O2 = 1, O3 = 2, O4 = 2, and O5 = 2.

3. Parameter and their value range

The parameter that needed to be analysed is encoded with -1 value in the array. For example if
we want to define the computation time of the second task as the parameter, we will write the
following:

int C[N]:= {1, -1, 2, 2, 3};

For each of the parameter we decide, we need to define their value ranges for the search to con-
verge. The value ranges are defined in additional parameter with name in the format variable lower
for the lower boundary of the value range and variable upper for the upper boundary on the value
range. For example, defining that the lower boundary for the parameter computation time above is
encoded as follows :

int C_lower[N]:= {0, 0, 0, 0, 0};

The encoding describes that the lower boundary for all of the tasks computation time are zero.
However, as we only declared C2 as parameter by assigning value -1 to it, only the second entry
in the lower boundary will be considered.

4. Instantiation of the processes

We need to instantiate all the N processes that we declared

process_1 = generic_process(0);
process_2 = generic_process(1);
process_3 = generic_process(2);
process_4 = generic_process(3);
process_5 = generic_process(4);
scheduler = generic_scheduler(4);

And enlist one or more processes to be composed into a system.

system process_1, process_2, process_3, process_4, process_5, scheduler;

It is sufficient using the templates and the above encoding as input for Quinq.

A.2.2 Schedulability analysis for periodic case

We use the option :

-periodic

A.3. UPPAAL - NUSMV PLUGIN 117

To perform sensitivity analysis on periodic cases with preemptive, fixed priority scheduling policy With
periodic cases using the we need to specify the following input :

1. How many tasks we would like to analyse their schedulability? This is done by specifiying the
minimum and maximum id of task that we would like to check

-maxtask max_t

Executing sensitivity analysis up to the max t-th task.

-mintask min_t

Executing sensitivity analysis from the min t-th task.

2. The granularity of the search space

3. The xml file name

A.3 UPPAAL - NuSMV plugin

A.3.1 UPPAAL model for template for NuSMV

we enable a plugin to automatically translate UPPAAL model into NuSMV. The path to convert is the
following :

• Translate XML to SMV using JUNT

• Check the correctness of the translation:

– Parameter naming (from array to non -array)
– check the specification
– check the temporary last step additional invar
– check the parameters are in frozenvar state (and no assignment to it)
– add the initial constraints for the parameters :

INVAR param1 >= ZERO
INVAR param1 <= upper_bound
...
INVAR param_n >= ZERO
INVAR param_n <= upper_bound

• Create the uppaal query in accordace, modify verifyta.sh

• prepare the parameter specification file

<nbr of parameter>
<param1 name> <lower bound> <upper bound>
...
<param_n name> <lower bound> <upper bound>

• Modify the script with cleaning up purposes

A.3. UPPAAL - NUSMV PLUGIN 118

A.3.2 Schedulability analysis with optimized search

With periodic cases using the we need to specify the following input :

1. Which mode we would like to use :

We provide several possibilities to do the analyzation

• Only in UPPAAL Executing sensitivity analysis from UPPAAL traces The keyword :

-withoutNuSMV

• Only in NuSMV
Only executing sensitivity analysis using purely NuSMV.
The keyword :

-withoutUPPAAL

• With both UPPAAL and NuSMV This is the default approach

2. The search optimization possibility

First, as we presented above that there are several ways to generate the points for search optimiza-
tion, we can choose from the following:

• Datagrid search
This is the default option.

• Random search
Executing sensitivity analysis from UPPAAL traces on randomly generated points.

-randomSearch

• Model-checker generated points
Executing sensitivity analysis from UPPAAL traces on points generated by NuSMV.

-automaticPtGen

This approach does not work very well with NuSMV and UPPAAL so far though as we could
not really ask them to enumerate all the possible points / error traces.

Aside from that we need to specify the granularity of the search space :

-datapoint datapt_nbr

This will provide us with preliminary search on datapt nbr number of data in each parameter
area. The default number is 3. And if we choose to do the search from points with big values first
up to points with smaller values, we can enable this option:

-inverseSearch

To perform search on gridspace using NuSMV from the biggest points up to the smallest.

After obtaining the points from the desired generation methods we have the following possibility
of performing the search:

A.4. FEATURES 119

• Using UPPAAL to do the search This is the default option in performing the search. This is
chosen as it is faster, relying on numerical, explicit timed automata representation approach.
However the granularity in this approach is limited by the fact that UPPAAL works on integer.
Thus the smallest granularity that we can check are values of 1.0.
• Using NuSMV to do the search

To perform search on gridspace using NuSMV.

-nusmvSearch

This approach provides the possibility to search up to the smallest granularity possible. How-
ever using symbolic model checking, the approach could not be as fast as UPPAAL.

3. The xml file name The input is an xml file that will be a guide

-withoutUPPAAL

4. The parameter file

-pspec spec_file

Specification file for general case of sensitivity analysis.

5. BMC bound

-boundTrace

Maximum bound for search on gridspace using NuSMV.

6. Optimization of bound

-k_addition k_add

Search up to k add steps after the last k acquired from the last trace.

7. Performing trace verification on an instant point

-verifytrace xml_file

XML file with instantiation on parameters on which the trace will be verified.

8. Verbose option

-v verbose_level

Printing out program debugging messages at level verbose level.

A.4 Features

A.4.1 Drawing plugin

Example command :

./drawme result.exp1 300

This command will draw the result constraints provided in the file result.exp1 using the resolution
of 300.

	Abstract
	Acknowledgements
	Introduction
	Problem Description
	Solution Overview
	Research Contribution
	Structure of the Thesis

	Real–time Design Challenges
	Real–Time System
	Terminologies and Definitions

	Schedulability area problem formulation
	General Problem Formalization

	Example Scenarios
	Challenges

	Background Knowledge
	Satisfiability Modulo Theory
	Logic Terms
	Satisfiability Modulo Theory
	Bounded Model Checking
	Tools

	Timed Automata
	Timed Automata Formal Notation
	Timed Automata Verification in NuSMV

	Formal verification for task scheduling feasibility
	The Task Activation Automata
	The Scheduler Automata
	NuSMV implementation of timed automata verification
	Sensitivity Analysis

	Real–Time System Sensitivity Analysis on Parametric Timed Automata
	Parametric Timed Automata
	Modelling real–time system in PTA
	Sensitivity analysis using PTA
	Parametric Verification of Temporal Properties (PTVP) algorithm
	Algorithm termination guarantee for periodic task sets

	Symbolic implementation

	Quinq Tool
	Design of the tool - an overview
	General Architecture
	Components

	Specification Language
	SMV Language
	UPPAAL language
	High level modelling of periodic system
	Input language discussion

	PTVP Algorithm Implementation
	Error trace search
	Sensitivity analysis
	Iterative schedulability analysis for periodic tasks

	Application Examples
	Standard Periodic Case
	Simple task set
	Large task set

	Arbitrary real–time system case
	System description
	System modelling
	Example result
	Example search optimization result
	Discussion

	MPA PTA
	Motivation
	Real–Time Calculus
	System modelling
	From RTC-curves to event emitting PTA
	Generalized scheduler model

	Example case
	Discussion

	State of the Art
	Schedulability analysis
	Sensitivity Analysis
	Analytical approach
	Sensitivity Analysis Tools
	Modeling and Analysis Suite for Real-Time Applications (MAST)
	SMART
	Imitator

	Conclusion and Future Work
	Conclusion
	Future Work

	Quinq Usage
	Sensitivity add-on
	Input
	Functions

	Periodic real–time system automatic schedulability analysis
	Input model
	Schedulability analysis for periodic case

	UPPAAL - NuSMV plugin
	UPPAAL model for template for NuSMV
	Schedulability analysis with optimized search

	Features
	Drawing plugin

