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Abstract—Software updates reduce the opportunity for exploitation. However, since updates can also introduce breaking changes,
enterprises face the problem of balancing the need to secure software with updates with the need to support operations. We propose a
methodology to quantitatively investigate the effectiveness of software updates strategies against attacks of Advanced Persistent
Threats (APTs). We consider strategies where the vendor updates are the only limiting factors to cases in which enterprises delay
updates from 1 to 7 months based on SANS data.
Our manually curated dataset of APT attacks covers 86 APTs and 350 campaigns from 2008 to 2020. It includes information about
attack vectors, exploited vulnerabilities (e.g. 0-days vs public vulnerabilities), and affected software and versions. Contrary to common
belief, most APT campaigns employed publicly known vulnerabilities.
If an enterprise could theoretically update as soon as an update is released, it would face lower odds of being compromised than those
waiting one (4.9x) or three (9.1x) months. However, if attacked, it could still be compromised from 14% to 33% of the times.
As in practice enterprises must do regression testing before applying an update, our major finding is that one could perform 12% of all
possible updates restricting oneself only to versions fixing publicly known vulnerabilities without significant changes to the odds of
being compromised compared to a company that updates for all versions.

Index Terms—Advanced Persistent Threats, software vulnerabilities, software updates
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1 INTRODUCTION

A RECENT study [1] shows that it takes more than 200
days for an enterprise to align 90% of their machines

with the latest (not known to be vulnerable) software ver-
sion given the need to perform regression testing [2].

Such behavior is rational because not all vulnerabilities
are always exploited in the wild [3], and several authors
have determined that the actual risk of slow updates against
‘mass attackers’ is limited [4], [5] and often due to spe-
cific types of vulnerabilities such as those traded in Black
Markets [6] or with other predictable characteristics [7],
[8]. Hence, risk analysis might be an effective approach
when considering ‘mass attackers’ which might well be
‘work averse’ and stick to old exploits until they are no
longer profitable [9]. However, many companies also face
Advanced Persistent Threats (APTs). APTs are highly spe-
cialized professionals [10] that use a variety of customized
strategies [11], often leveraging on spearphishing [12] and
0-days [13], [14] to maintain a stealthy profile [13]. In this
scenario, slow updates do not seem appropriate.

Yet, not all the APTs are really sophisticated [15]. Some
reports challenged some of these ‘allegations’ and observed
that APTs often reuse tools, malware, and vulnerabili-
ties [12], [16], [17]. These reports are based on threat in-
telligence data with few overlaps [18] thus capturing only
partial information of the APT attacks [19], [15].

These conflicting claims may be due to the lack of a sys-
tematic study. Indeed, previous works on APTs analysis [20],
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[13], [10], [21] mostly reported a qualitative analysis of a
handful of APTs. However, relying on qualitative estima-
tions is known to produce risk miscategorization and wrong
prioritization [22], [23] due to several factors like judgmental
biases [23], agenda-setting, and framing [24]. Framing of
individual reports can produce a distorted perception of
the risk. We lack a broad view of the APT landscape that
allows companies to correctly assess the advantages and
disadvantages of current approaches to software updates.
Data acquisition of APT campaigns, i.e. specific attacks con-
ducted by APT groups, is currently a challenging task. Semi-
automated approaches based on report parsing [25] proved
to be too riddled with false positives because the associa-
tions between APTs and software vulnerabilities (identified
by a CVE) are based on the presence of keywords and not on
the semantics of the document. Here our research questions
are as follows:

RQ1. What are the APTs characteristics that quantitatively de-
scribe the landscape of APT campaigns as observable from
public reports?

RQ2. Given a quantitative description of both APT campaigns and
software updates, how effective are different update strategies
to protect against APT campaigns?

We thus make the following contributions:

• We build a structured, manually verified database in
Neo4j of 86 APTs and more than 350 campaigns based
on an exhaustive search of over 500 technical reports
and blogs and up to 22 different resources for each APT.
The database [26] is available on Zenodo.

• We present a methodology to quantify and compare the
effectiveness and cost of software update strategies on
historical data about campaigns.
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• We quantitatively evaluated the effectiveness and cost
of different software updates strategies, in terms of the
conditional probability of being compromised and the
number of updates required for 5 widely used software
products (Office, Acrobat Reader, Air, JRE, and Flash
Player) for the Windows O.S.

Scope of the work: We provide a quantitative anal-
ysis of the risk against APT to allow companies to make
rational decisions on software updates. We do not propose
new mechanisms to detect and mitigate APTs attacks.

2 THE SOFTWARE UPDATE PROBLEM

If a company could only update for new functionalities, the
choice would be obvious: why fixing what is not broken?
Yet, companies must update for security reasons too. How-
ever, it is not uncommon that vulnerability fixes are merged
with features changes in a single update. Every time a new
version of a software is published, one can

• update immediately;
• wait some time (e.g. for regression testing) and update;
• skip the update.

This choice may be influenced by asynchronous events re-
lated to the reservation, disclosure, and exploitation of software
vulnerabilities in the current release.

Unfortunately, a company cannot fully decide in advance
the configuration they will have when hit (or most fre-
quently not hit) by an attacker as it depends on the at-
tacker’s choice. A company can only decide on the software
updates strategy. To capture what can happen we introduce
some terminology.

2.1 Terminology
For each vulnerability we identified five instants of time:

• Vulnerability Reserved time (tVr
): when the CVE entry for

the vulnerability is reserved by MITRE;
• Vulnerability Published time (tVp

): when the CVE for the
vulnerability is published in NVD;

• Vulnerability Exploited time (tVe
): when the vulnerability

is observed to be exploited in the wild;
• Update release time (tUr

): when an update that addresses
the vulnerability is released.

• Update deployed time (tUd
): when an update that ad-

dresses the vulnerability is deployed.
Tab. 1 shows how we can classify attack scenarios based

on the instant of time tVe
and its relative position with the

other events: tVr
, tVp

, and tUr
Fig. 1 summarizes the possible

combinations of the different events.

2.2 The Software Update Strategies
To answer RQ2, we describe the update strategies, sum-
marized in Tab. 2, for an enterprise based on what was
discussed previously: update, wait and then update, or skip. It
is important to underline that disabling automated updates
is not uncommon in enterprise networks [27], [28]. This is
mainly due to compatibility issues between the updated
software and internal projects [2], [29] that can produce
disruption of the enterprise work. In this case delays are
introduced to perform regression testing.

TABLE 1: Classification of Attack Scenarios

Scenario Description
Unknown-
Unknown/
Unpreventable
(UU/U)

The vulnerability is exploited before a CVE
was reserved, before its public disclosure, and
before an update for the vulnerability was
released.

Unknown-
Unknown/
Preventable
(UU/P)

The vulnerability is exploited before a CVE
was reserved, before its public disclosure, but
after an update for the vulnerability was re-
leased.

Known-Unknown/
Unpreventable
(KU/U)

The vulnerability is exploited after a CVE
was reserved, before its public disclosure, and
before an update for the vulnerability was
released.

Known-Unknown/
Preventable
(KU/P)

The vulnerability is exploited after a CVE was
reserved, before its public disclosure, and after
an update for the vulnerability was released.

Known-Known/
Unpreventable
(KK/U)

The vulnerability is exploited after a CVE was
reserved, after its public disclosure, and before
an update for the vulnerability was released.

Known-Known/
Preventable (KK/P)

The vulnerability is exploited after a CVE was
reserved, after its public disclosure, and after
an update for the vulnerability was released.

TABLE 2: Update strategies

Each strategy represents an approach for updating the software. The Im-
mediate strategy represents the upper bound achievable by an enterprise.
The Planned, Reactive, and Informed Reactive are evaluated with different
update intervals that represent different level of responsiveness.

Strategy Update
Interval

Description

Immediate / Update to each newest version as soon
as it is available without any delay

Planned 1, 3, 7
months

Update to each newest version but wait
a delay before the deployment

Reactive 1, 3, 7
months

Update to the first new (non vulnera-
ble) version only after the publication
in NVD of a CVE, wait a delay before
the deployment

Informed
Reactive

1, 3, 7
months

Update to the first new (non vulnera-
ble) version only after the reservation
by MITRE of a CVE entry, wait a delay
before the deployment

We considered the application of a software update with
a certain delay, starting from the date on which the strategy
bases its decision. We considered different update intervals
to determine how the probabilities change if a more respon-
sive approach is employed. We leverage update intervals
data from SANS [30] based on a variety of enterprises (Gov-
ernment, Financial Services, Healthcare, and Consulting)
and from Kotzias et al. [1] based on 28k enterprises. Tab. 3
shows the update intervals from SANS and maps them to
our update strategies.
Immediate strategy: The enterprise updates its software as
soon as a new version is available (tUr

) and without delay.
If multiple updates are released in the same time interval,
the update takes the most recent one. The update is applied
even if a vulnerability for the previous version is not present
yet. This is the theoretical limit for the enterprise because it
is bounded only by the release speed of the vendor. How-
ever, this approach is likely impractical because updates
require some time to be deployed in an enterprise to not
break other functionalities.

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on February 16,2023 at 12:54:06 UTC from IEEE Xplore.  Restrictions apply. 



0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2022.3176674, IEEE
Transactions on Software Engineering

3

updat e 
r el ease (    )

updat e 
r el ease (    )

VULN 
RESERVED 

(    )

VULN 
PUBLI SHED   

(    )

updat e 
r el ease (    )

VULN RESERVED 
(    )

VULN PUBLI SHED   
(    )

VULN 
RESERVED  

(    )

VULN 
PUBLI SHED 

(    )

updat e 
r el ease (    )

Case 1)

Case 2)

Case 3)

Case 4)

UU/ U UU/ P KU/ P KK/ P

UU/ U KU/ U KU/ P KK/ P

UU/ U KU/ U KK/ U KK/ P

At the time when a software update is available, we have 4 cases: Case 1) there is no reservation and publication of vulnerabilities before and after
the release of an update for the current version. In this case, there is no exploitation of the vulnerability. Case 2) after a software update is released,
a vulnerability is reserved and disclosed for the current version. Case 3) before the release of a software update a vulnerability is reserved for the
current version, but the disclosure happens after the update release. Case 4) the reservation and disclosure of a vulnerability for the current version
happen before the release of an update. Different update strategies can be applied but are all constrained by the presence of a new release. The
exploitation events (vertical lines) can happen at any instant of time asynchronously from the reservation-disclosure process and the release of
updates. They are classified following Tab. 1

Fig. 1: Combinations of vulnerability reservation, disclosure, and exploitation events with the presence of new updates.

TABLE 3: Update Intervals from SANS [30]

Percentage of enterprises that update weekly, monthly, quarterly, or
with other delays. We evaluated the strategies with these update
intervals. Enterprises that update weekly are comparable to the
Immediate strategy. We associated 7 months for the update interval
of ’Other’ from [1].

Update
interval

% Enterprises Update Strategy Correspondence

Weekly 24.9 Immediate
Monthly 57.5 Planned/Reactive/Informed Reactive

within 1 month delay
Quarterly 7.7 Planned/Reactive/Informed Reactive

within 3 months delay
Other 10.0 Planned/Reactive/Informed Reactive

within 7 months delay

Planned strategy: The company updates its software to each
new version with a delay from the release date (tUr ). If
multiple updates are released in the same time interval,
the company takes the most recent one. This delay factors
the time for regression testing and update deployment. The
delays are taken from Tab. 3. As in the Immediate strategy, the
update is not triggered by the knowledge of vulnerabilities
but only on the availability of a new update.
Reactive strategy The enterprise updates the software only
after the publication of a vulnerability by NVD (tVp

) with
a delay taken from Tab. 3. The new version installed is the
first non-vulnerable update available at that time.
Informed Reactive strategy The enterprise updates the soft-
ware only after the reservation of a vulnerability by MITRE
(tVr

). The new version installed is the first non-vulnerable
update available at that time. This strategy describes an
enterprise that pays an annual subscription fee to get in-
formation about the non publicly disclosed vulnerabilities
from companies that provide 0-days data information (e.g.
Exodus Intelligence, Zerodium). The strategy presents an
update interval as the Reactive and Planned strategies.

3 RELATED WORKS

Tab. 4 shows the research categories addressed by the state-
of-the-art on APTs. The majority of the research activity

TABLE 4: State of the Art on APTs - Main Research Topics

Research Category State of the Art This paper
APTs data sources [11] X
Metrics for TI sources [19], [18]
Attackers characteristics [13]*, [20]*,[12] X
Detection of attacks [31], [32], [33], [34], [35],

[36], [14], [37], [38], [39], [40],
[41],[42], [43], [44], [45],[46]

Game Theory [47], [48], [40]
Exploitation likelihood [36], [48] X
Analysis of update releases - X

* Performed high level analysis on few APTs campaigns.

focused on the detection of APTs campaigns while few
papers tried to characterize their behavior, estimate the risk,
and evaluate update strategies from real data.

3.1 APT and Metrics for Threat Intelligence sources
Lemay et al. [11] presented a description of different re-
sources about the activities of more than 40 APTs. Li et
al. [19] utilized a set of metrics (Volume, Differential con-
tribution, Exclusive contribution, Latency, Accuracy, and
Coverage) to compare different public and private Threat
Intelligence (TI) data feeds. They observed that in the ma-
jority of the data feeds there is no overlapping of Indicator
of Compromise (IOC) and a high number of false positives.
Similarly, Bouwman et al. [18] analyzed two paid TI and
observed very few overlaps in the indicators for 22 APTs.
The distinction is confirmed with a comparison with open
TI data. Furthermore, they observed that TI data is em-
ployed in the decision process of companies, but there is
a lack of metrics to determine the quality of these data.
Several works [49], [25], [50] proposed a (semi-)automated
approach based on report parsing to generate a database of
IOC. However, merely relying on the results of the auto-
mated approach generates many false positives. For exam-
ple in [25], we observed that CVEs are wrongly associated
to the admin@338 group in a report about the Poison Ivy
malware, where several campaigns from different actors are
described. We provide a manually curated database from
which we can quantitatively evaluate the impact and cost of
software update strategies.

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on February 16,2023 at 12:54:06 UTC from IEEE Xplore.  Restrictions apply. 



0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2022.3176674, IEEE
Transactions on Software Engineering

4

Several studies evaluated the overlap among threat data feeds,
showing poor accuracy. Mechanisms to semi-automatically ex-
tract information from reports are prone to false-positive.

3.2 Analysis of attackers characteristics
Ussath et al. [20] analyzed 22 reports about APT campaigns
and mapped them into the three phases of an attack (initial
compromise, lateral movements, and Command&Control).
They found that most of them employ social engineering
techniques and living-off-the-land techniques. Furthermore,
they noted that 0-day vulnerabilities are not exploited fre-
quently by APTs. Chen et al. [13] studied 4 APT campaigns
to analyze the phases of these attacks and determine pos-
sible countermeasures. Urban et al. [12] analyzed 93 APT
reports (66 different APTs) and determined that spearphish-
ing is the main attack vector. They then collected OSINT
data like domain names and social media information of 30
companies to determine how much information is available
to the adversaries. Additional works on APTs analysis fo-
cused on describing the phases of the attacks and possible
countermeasures [10], the analysis of the malware employed
in a few well-known campaigns [21], or the prevalence of
living-off-the-land techniques in certain samples [51].

To the best of our knowledge, we are the first to analyze
more than 350 campaigns exploiting 118 different CVEs
from the inspection of more than 500 reports. This massive
analysis makes it possible to draw significant conclusions
on the efficacy of update strategies.
Although several works provided insights into the APT ecosys-
tem, the analysis focused on a handful of campaigns that make
it hard to draw significant conclusions on the characteristics of
APTs.

3.3 Detection of attacks
An orthogonal problem is to detect live APTs attacks once
they get into the network. Different research proposed to
employ machine learning [39], [34], [46], information flow
tracking [37], [42], [44], [45], statistical correlation [52], and
big data analysis [36], [14], [33], [35].

Shu et al. [41] employed a temporal computational graph
to perform threat hunting activities via graph patterns
matching and analyzed a case study on a DARPA threat
detection competition. Pei et al. [38] developed a framework
to generate a multi-dimensional weighted graph based on
log entries and identify attacks by the presence of dense
connections among logs using unsupervised learning tech-
niques. They evaluated it over 15 APTs campaigns.
The state-of-the-art focused mainly on the detection and response
against APT attacks, while there is a lack of investigation on the
orthogonal problem of prevention.

3.4 Game Theory
Hu et al. [47] presented a two-layer attack/defense game
to study APT attackers that make use of insiders and
compute the best strategies for the attacker and defender.
Sahabandu et al. [40] formulated a game-theoretic model
to determine the optimal defender strategy in terms of
tracking of information flow (Dynamic Information Flow
Tracking). Yang et al. [48] proposed a Nash game to model

the response strategy and minimize the loss of an enterprise
against lateral movements in the network of APTs in the
network. We instead focus on the initial access phase of
APTs campaigns and we evaluated the efficacy of software
update strategies based on real data of attacks.
Game theory is extensively applied to find an optimal strategy
against targeted attacks. However, these studies employ artificial
data and networks.

3.5 Analysis of exploitation likelihood

Many works employed ML and statistical methods to ana-
lyze vulnerabilities and predict the exploitation likelihood
by joining data from resources like NVD, Exploit DB [3],
historical data on attacks [4], [7], Dark Web forums [53], and
Twitter [54], [8]. An extensive discussion of the academic
literature on empirical cyber risk can be found in [55].

Other works investigated actual compromises using
logs. Marchetti et al. proposed a framework to prioritize
the internal clients of an organization that are most likely
to be compromised by an APT using internal (network logs
and flow records) and external (social media) data [36] and
to detect data exfiltration using a set of host-based features
and flow records analysis [14]. Similarly, Bilge et al. [5] and
Liu et al. [56] employed supervised learning algorithms to
determine machines at risk of infection from internal logs
on binary file appearance, external data of misconfigured
services (e.g. DNS or BGP), and malicious behaviors (e.g.
spam or phishing).

We extend this line of research by proposing a method-
ology to evaluate the probability of being compromised by
APTs and the cost associated with the update strategy.
Analysis of historical data about vulnerability and attacks as well
as live information provided by logs and social platforms allows
one to evaluate the exploitation likelihood.

3.6 Analysis of update releases

From the client-side, Nappa et al. [27] proposed a systematic
analysis of the update process and update delay on client
applications, and performed a survival analysis of vulnera-
bilities based on data from Symantec. Similarly, Kotzias et
al. [1] presented a longitudinal study of the update behavior
for 12 client software and 112 server applications based
on data from 28k enterprises. Sarabi et al. [57] employed
Symantec dataset to model users’ update delay as a geo-
metric distribution and study 4 different products (Chrome,
Firefox, Thunderbird, and Flash Player).

From the vendor-side, Arora et al. [58] analyzed vendors’
patch behavior as a function of several factors like disclosure
time, characteristics of the vendor, and severity of the vul-
nerability. Clark et al. [59] studied if agile methods produce
a higher number of vulnerabilities in Firefox. They observed
that rapid software releases do not increase the number
of vulnerabilities in the code. Ozment and Schechter [60]
analyzed the impact of legacy code on the number of
vulnerabilities observed OpenBSD versions.

Similar to our work, Beres et al. [61] employed a discrete-
event simulator to determine the exposure reduction pro-
duced by different security policies by varying update speed
and mitigations. However, they modeled events like exploits
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and updates availability assuming fixed exponential func-
tions looking at global trends observed by a security firm.

We present a quantitative evaluation of the effectiveness
and cost of realistic update strategies by using historical
data about APT campaigns.
Several works analyzed the update behavior of clients and ven-
dors. However, there are only theoretical works on the efficacy of
updates against targeted attacks for an enterprise.

4 METHODOLOGY

In this section, we present a methodology to evaluate the
effectiveness and cost of update strategies.

The definition of probabilistic risk assessment [62] is:

Risk = Pr(Compr |Attack) · P(Attack) · Impact (1)

How to determine P(Attack) is still an unsolved problem
in cyber-security [63] while the Impact of cyber-attacks has
received extensive discussion [64], [65]. In this paper, we
focus on P(Compr |Attack) i.e. the conditional probability
of being compromised given an attack (or campaign as
used in this paper). We propose a methodology to com-
pute the conditional probability of being compromised in
Eq. 1 by employing historical data about releases available,
vulnerabilities, and their exploitation in campaigns. Tab. 5
overviews our methodology.

Step 1: Extract APT and software data
To collect data we analyzed both unstructured (technical
reports, blogs about APT campaigns, and vendor’s reposito-
ries) and structured (MITRE Att&ck and NVD repositories)
public sources.
Unstructured sources: Similar to Urban et al. [12], we man-
ually collected data about APT campaigns from more than
500 technical reports and blogs. We started from the MITRE
Att&ck APT groups list and one researcher:

• collected the reports associated with each APT group
from the Threat Actor Encyclopedia [66], that relies on
sources like Malpedia, MISP, AlienVault, and MITRE;

• extended this set of resources by searching on the
Internet for reports using as keywords the APT name
as stated in MITRE (e.g. Stealth Falcon) and the term
”CVE” until data saturation was reached, i.e. new re-
ports do not add new information to the APT cam-
paigns. The reports are obtained from cyber-security
companies like Kaspersky, FireEye, Palo Alto Net-
works, Google Project Zero as well as from technical
forums and blogs.

Extracted Information
Two researchers independently analyzed the content of each
report manually to identify the following information for a
campaign:

• the date when the campaign is first observed;
• the CVE(s) exploited;
• the attack vector(s) employed.

We uniquely identify a campaign using the date in which
it is first observed. If a campaign employs different at-
tack vectors and/or different CVEs, we create multi-
ple entries in the form <APT name,attack vector,date> or

<APT name,CVE,date>. Each entry is linked to one or more
reports containing this information.

We do not perform open coding because the information
in the reports is deterministic and already based on the
MITRE industry standards on CVEs 1 and Initial Access
Tactic2. The association of CVEs and attack vectors to a
certain APT is based on the explicit attribution in the con-
sulted resources. Let us consider the following snippet from
a Mandiant report referring to APT123:

In June 2014, the [Arbor Networks] blog highlighted that
the backdoor was utilized in campaigns from March 2011
till May 2014. Following the release of the article, Fire-
Eye observed a distinct change in RIPTIDE’s protocols
and strings. . . . FireEye dubbed this new malware family
HIGHTIDE.
On Sunday August 24, 2014 we observed a spear phish
email sent to a Taiwanese government ministry. Attached
to this email was a malicious Microsoft Word document
(MD5: f6fafb7c30b1114befc93f39d0698560) that exploited
CVE-2012-0158. It is worth noting. . .

we extracted the following information: date=08/2014;
CVE=CVE-2012-0158; attack vector=spearphishing attach-
ment.

The entries were then reviewed by a third researcher, not
involved in the initial manual analysis, to resolve inconsis-
tencies. Cohen’s kappa values are 1, 0.976, and 0.863 for the
CVE, date, and attack vector respectively (42 disagreements
over 652 entries) which show a good agreement among the
raters. Total agreement on CVEs is unsurprising as CVEs
are unique strings and reported by copying and pasting
the string into the data collection form. Such agreement
would not happen between a manual rater and an automatic
procedure as we already noted for DAPTSET [25] which is
so riddled with false positives to be unusable. Simply, an au-
tomatic procedure will collect all CVEs including those that
a human rater will see as clearly irrelevant (past campaign,
related examples, etc.). Most disagreements are on the attack
vector as the mapping of the natural description into the cor-
responding MITRE Att&ck category is sometimes amenable
to interpretation (27 out of the 42 disagreements).

To resolve uncertainty among resources, we made the
following conservative assumptions:

• if report A says CVE-1 is exploited by an APT campaign
and report B says CVE-2 is exploited we mark both
CVE-1 and CVE-2 as exploited by the APT in question.

• if report A says an APT campaign started on month X
and report B says an APT campaign started on month
Y we mark them as two distinct campaigns.

It is not uncommon that different security companies have
non-overlapping information about APT campaigns [19],
[18]. We discuss the implications of this choice in §7. Fig. 2
in §5 summarizes the number of reports per APT.

For the software, we retrieved versions for a subset of the
targeted products (discussed in §5.4) with their release date.

1. https://www.cve.org/About/History
2. https://attack.mitre.org/tactics/TA0001/
3. https://www.mandiant.com/resources/

darwins-favorite-apt-group-2
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TABLE 5: Methodology overview

Step 1: Extract APT and software data
INPUT APT groups from MITRE Att&ck

OUTPUT A set of campaigns in the form <APT name,CVE,date>, <APT name,attack vector,date> and a set of software updates in the
form <sw,update,release date>

PROCEDURE Identify campaigns information and software releases:
• Collect resources describing campaigns for each APT based on Threat Actor Encyclopedia [66] and Internet searches

using the MITRE APT name and ”CVE” as keywords;
• Manually extract from resources the key information: date when campaign is observed, CVE(s) exploited, attack vector

employed;
• For each CVE, automatically extract software and versions affected from NVD;
• Manually extract from software vendors website the update number and date of release.

Step 2: Instantiate update strategy
INPUT A set of software updates (<sw,update,release date>), update strategy (Immediate, Planned, Reactive, Informed Reactive), CVEs

exploited in APT campaigns
OUTPUT A matrix that describes the application of updates for the software in the period [2008-2020]

PROCEDURE Create a matrix with rows identifying software versions and columns identifying months in [2008-2020] that determines the
installed software version at a given time:

• Select the entry corresponding to the first vulnerable version available on 01/2008 (same for all strategies);
• Select another entry corresponding to a new version depending on the update strategy: on the release date of an update

for the software (Immediate) or with a delay (Planned), on the publication (Reactive) or reservation date (Informed Reactive)
of a CVE for the software with a delay;

• Consider availability of non-vulnerable updates at the time of publication of a CVE when computing delay for Reactive
and Informed Reactive.

Step 3: Instantiate APT campaigns events
INPUT Set of events for different campaigns (<APT name,CVE,date>)

OUTPUT A set of matrices of campaigns. Each matrix describes the software versions targeted by a certain campaign in the period
[2008-2020]

PROCEDURE For each campaign, create a matrix with rows identifying software versions and columns identifying months in the [2008-2020]
that determines targeted software version at a given time:

• Extract the affected software versions from the CVEs;
• Select the entry of the affected software versions from the date of the campaign up to 2020.

Step 4: Generate pessimistic scenarios
INPUT A matrix that describes the application of updates for the software in the period [2008-2020]

OUTPUT A matrix that describes the application of updates for the software in the period [2008-2020] and maintains both versions
during the transition month

PROCEDURE Update matrix to maintain the previous version in the month in which a new update is installed:
• For each month in which the software version is updated to a new version, keep the entry corresponding to the previous

version installed for that month only.

Step 5: Compute conditional probability of being compromised
INPUT A set of matrices of update strategies and a set of matrices of campaigns events

OUTPUT The conditional probability of being compromised given a set of campaigns are targeting you (P(Compr |Attack)) based on
the update strategy, # of updates performed

PROCEDURE Compute successful campaigns targeting installed software in the period [2008-2020]. For each matrix of update strategy:
• Select a matrix of campaign events and compute the element-wise product of the matrix with the update strategy matrix

to identify the intersection of installed and targeted software versions;
• Sum rows of the resulting matrix to determine the months when a campaign is successful, save the campaign if successful;
• Continue with another matrix of campaign events until no more campaigns.
• Compute conditional probability as the number of successful campaigns divided by the number of matrix campaigns

considered;
• Compute the number of updates counting non-empty rows in the matrix of update strategy.

Step 6: Compare strategies effectiveness
INPUT The successful campaigns for the different update strategies

OUTPUT Confidence Intervals (CI) for update strategies
PROCEDURE Compare the CI intervals of different update strategies:

• Compute the Agresti-Coull 95% CI for the proportion of successful campaigns by update strategy;
• Compare intervals, if they overlap update strategies are similar;
• Compute pair-wise agreement of successful campaigns for pair of update strategies and Agresti-Coull 95% CI for the

resulting proportion of agreement. The interval identifies the expected range of proportion of campaigns that succeed
against both update strategies.
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This procedure was manual as it is not trivial to obtain past
versions release date [27] because vendors’ repositories are
unstructured and not intended for past versions indexing.
Structured sources: For each CVE obtained from the un-
structured sources, we automatically extracted the list of
products and versions affected from NVD. This informa-
tion is integrated with the Common Platform Enumeration
(CPE) Dictionary. From the CPE, we extracted the list of
vulnerable versions based on the CPE Match Strings.4

Step 2: Instantiate update strategies
We employed a matrix representation to compare update
strategies and APT campaigns.

Each strategy is represented as a matrix in which the
rows represent the versions of the different products (e.g.
Acrobat Reader 9.2, Flash Player 11.0.1.152) and the column a
specific date with a month-base granularity (e.g. 12/2009).
A matrix cell is 1 if, on that date, that version of the product
is installed and otherwise 0. For a first approximation,
we avoid considering the presence of multiple versions
installed for the same product5.

All strategies start from the same version, that is the
oldest vulnerable version of a campaign that is available at
the beginning of 2008. A strategy updates its version based
on the release date of a new version, the publication date,
and the reservation date of a CVE for the Immediate and
Planned, Reactive, and Informed Reactive strategy respectively.

The first two strategies (Planned and Immediate) update
when a new release for the software is available (w/ and
w/o an update interval respectively). If multiple software
versions are released on the same date, they will update to
the newest consistent version.6

For the latter two strategies (Reactive and Informed Re-
active) the next version installed, if available, is the first
most recent version that is not affected by the CVE. We also
considered the availability of updates based on the attack
scenario in Step 4.

Identification of the outcome of attack scenarios
Depending on the availability of an update at the time of the
publication of the CVE we have to discern two scenarios:

• The release of an update is available before the pub-
lication of the CVE (tUr

≤ tVp
). The time when a

company may decide to update because it is aware of
the vulnerability is correctly computed from the time
when a new vulnerability is published. This is the
(implicit) assumption in [1], [27].

• The release of an update is available after the publica-
tion of the CVE (tVp

< tUr
). In this case, computing the

time when a company may decide to update from the
time of publication of the vulnerability will include an

4. For example, CVE-2016-4113 affects all the versions of Flash Player
up to 21.0.0.213. The associated JSON NVD file does not provide the en-
tire list of affected versions (including the updates) in the CVE descrip-
tion but a CPE URI of the form cpe:2.3:a:adobe:flash player:*:*:*:*:*:*:*:*”,
”versionEndIncluding”:”21.0.0.213”, we thus matched the CPE in the
CPE dictionary to get the list of all prior versions affected.

5. We assume an update is applied on enterprise’s machines at once.
6. For example, if the current JRE version installed is 6u6 and a new

update for JRE 5u13 is released after that, the update is ignored because
it represents a downgrade of a major update.

interval of time where a vulnerability for the version of
a product is known but a non-vulnerable version has
not been released yet (tUr

− tVp
). The time available to

the company must be computed from the time when
the release is available.

Step 3: Instantiate APT campaigns events
We created a matrix for each APT campaign with the same
rows and columns of the update strategy matrix in Step
2. An entry is set to 1 if the version is affected by a
CVE exploited by the campaign from the date when the
campaign starts until 2020.

Step 4: Generate pessimistic scenarios
The updates and attacks have a month-based granularity
because most of the resources do not contain information
about the exact day in the month in which an update is
published or a campaign is performed. We further discuss
the limitation of these data in §7.

To balance possible interleaves between updates and
campaigns within the same month, we performed two
analyses: a pessimistic APT-first scenario and an optimistic
Update-first scenario, that assume the campaign is executed
before or after the update respectively.

To simulate the APT-first scenario, we create a new ma-
trix from the update strategy matrix where we maintained
the previous version also in the month in which the new
update is installed. In other words, the two versions coexist
in the month. Thus, we simulate the application of the
update later in the month while allowing the APT to exploit
the vulnerability. This is done by keeping selected the entry
corresponding to the previous version also in the column in
which we move to another version for each update strategy
matrix generated in the Step 2.

Step 5: Compute conditional probability of being com-
promised
We evaluate at each instant of time, with a month-base granu-
larity, the sequence of versions installed on a set of software
products for each strategy and compare them with the
software exploited by the APTs to determine the potentially
successful campaigns.7 We use the term potentially successful
because the success of exploiting a vulnerability depends on
the characteristics of the execution environment [67]. A cam-
paign is considered successful if it exploits at least one of the
software products considered. From the matrix of updates
obtained from Step 2,5 and the matrix of campaigns obtained
from Step 3, we compute the conditional probability of being
compromised given one is targeted by the campaigns at a
given instant of time ti. The probability is computed as the
number of potentially successful campaigns at time ti over
the total number of campaigns active at that instant of time.

P (Compr|C, t = ti) =
|potentially successful campaignsti |

|active campaignsti |
(2)

7. For example, in 12/2009 the CVE-2009-4324, affecting Acrobat
Reader up to version 9.2, is exploited in the wild. If at any time from
12/2009 an update strategy updates to one of these versions, then the
campaign is potentially successful.
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where:
• |potentially successful campaignsti | is the number of

active campaigns at time ti that exploit at least one
version of a product currently installed at that time.

• |active campaignsti | is the total number of active cam-
paigns at time ti.

We computed the |potentially successful campaignsti | by
performing an element-wise product of the matrix of update
strategy with each matrix describing an APT campaign.
The resulting matrix identifies the versions that were in-
stalled and exploited by the campaign in a given month.
With the sum of the rows of the resulting matrix, one
obtains a vector of values ≥ 0 for each ti .8 If an en-
try at time ti is > 0, then the campaign is included in
|potentially successful campaignsti |.

The overall percentage of potentially successful cam-
paigns over the total number of campaigns in the entire
interval of time is computed as:

P (Compr|C) =
|potentially successful campaigns|

|campaigns|

=
|{C |∃ti : C ∈ potentially successful campaignsti}|

|campaigns|
(3)

In other words, the total number of potentially successful
campaigns is obtained from the set of campaigns that could
be successful in at least one instant of time ti. If a campaign
can succeed in several instants of time, it is counted only
once in the period of interest.

The number of software updates is obtained from the
matrix representing the strategy, by counting the number of
rows that contain at least one non-zero entry in the columns.

Step 6: Compare strategies effectiveness

For each update strategy, we obtain from Eq. 3 a probability
of being compromised based on the sample of campaigns
considered. To predict the range in which the probability of
being compromised for the entire population of campaigns
resides we compute a confidence interval (CI). In case of
binary outcomes (success, failure), we compute the Agresti-
Coull confidence interval [68] that is recommended when
the sample size is≥ 40 [69]. From the CIs of different update
strategies, we can then compare their performance. Two
strategies are similar if their CIs significantly overlap.

We then determine the percentage of campaigns for
which the two strategies behave in the same way by com-
puting the proportion of campaigns that either succeeded
or failed against both strategies. By computing the Agresti-
Coull interval for the resulting proportion we obtain the
range of similarity of the two strategies in terms of the
percentage of campaigns that both succeed or failed against
two update strategies.

5 DATASET

We considered only APT groups that launched at least one
campaign from 2008 to 01/2020 and for which a precise date
for the campaign is present in at least one report.

8. Values can be > 1 if campaigns can exploit different products.

Only for 11 APTs ( 13%) we were not able to find more than one resource
for their campaigns. This is typically due APTs that are not particularly
active or that are tracked by a single cyber-security company.

Fig. 2: Number of collected reports per APT.

TABLE 6: Attack vector campaigns and software vulns

# of Campaigns
Attack vector w/o vuln w/ at least one vuln
Spear phishing 130* 122*
Drive-by Compromise 15* 34*
Supply Chain Compromise 5* 0
Valid Accounts 3* 1
External Remote Services 3 0
Exploit Public-Facing Appl. 3* 7
Replic. via Remov. Media 0 1
Undetermined 38* 9*
Total 197 (190 unique) 174 (162 unique)

* Contains duplicates due to multiple attack vectors.

The final database contains information about 86 APT
groups. For the excluded APTs, we either did not find infor-
mation for their campaigns, or the date of their campaign
was not known. For example, the Kaspersky article [70]
provides a list of CVEs but does not provide information
about the campaign when they were exploited. Fig. 2 shows
the distribution of reports per APT.
For more than half of the APT campaigns saturation is reached
with at most 5 distinct resources, while for some APTs we
collected more than 15 and up to 22 different resources. Only
for 11 APTs, we collected a single resource, which typically is
a white paper containing detailed information about the APT’s
activity over an extended period of time.

We now answer RQ1 with a quantitative analysis of the
attack vectors employed, the vulnerabilities exploited, and
the software products targeted.

5.1 Attack Vectors

We analyzed the attack vectors exploited in the different
campaigns with the presence and absence of software vul-
nerability. Tab. 6 shows the different attack vectors and the
number of campaigns in which are observed. We underline
that a campaign can employ one or more attack vectors.9

We can observe that spear phishing is the main attack
vector [12], present in 130 campaigns that do not exploit
any vulnerability and 122 campaigns that exploit at least

9. For example, it is not uncommon to have campaigns that exploit
both spearphishing and drive-by compromise.
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TABLE 7: Top 10 client-side and Top 10 server-side/O.S.
products exploited

The products are obtained from the CVEs exploited in a campaign. If a
CVE affects multiple products, all the software are considered. Products
are distinguished in client-side, server-side application, and O.S.

Vendor Product Software # Campaigns (%)
Microsoft Office Client 68 (41.9%)
Microsoft Windows 2008 Server O.S. 49 (30.2%)
Microsoft Windows 7 O.S. 43 (26.5%)
Microsoft Windows Vista O.S. 41 (25.3%)
Microsoft Windows 2012 Server O.S. 39 (24.0%)
Adobe Flash Player (EOL) Client 35 (21.6%)
Microsoft Windows 8.1 O.S. 29 (17.9%)
Microsoft Commerce Server Server 19 (11.7%)
Microsoft SQL server Server 19 (11.7%)
Microsoft Visual Basic Client 19 (11.7%)
Microsoft Visual FoxPro Client 19 (11.7%)
Microsoft BizTalk Server Server 18 (11.1%)
Microsoft Windows 10 O.S. 18 (11.1%)
Microsoft Windows 8 O.S. 14 (8.6%)
Microsoft IE (EOL) Client 13 (8.0%)
Adobe Acrobat Reader Client 11 (6.8%)
Microsoft .NET framework Client 5 (3.1%)
Adobe Air Client 5 (3.1%)
Oracle JRE Client 4 (2.5%)
Oracle JDK Client 4 (2.5%)

one vulnerability. Interestingly drive-by compromise is not
only employed when a vulnerability is present but also used
to facilitate campaigns that employ social engineering to
trigger users to download malware.

We have 47 campaigns for which we do not know
the attack vector. For 9 of them, the report identified the
vulnerability exploited but not the attack vector.10 If this
information is not present in the report, we avoided making
assumptions. For the remaining campaigns, the information
about the attack vector was vague or missing.11

5.2 Popular Products and CVEs
We observed 118 unique vulnerabilities exploited by the
APTs in at least one campaign between 2008 and 2020. Some
CVEs are exploited in several campaigns by different APTs.

Tab. 7 shows the ten most targeted client-side applica-
tions and the ten most targeted server/O.S. products based
on the exploited CVEs. A campaign is counted over different
products if the CVE employed is applicable to different soft-
ware products. For example, CVE-2012-0158 affects Office,
SQL server, Visual Fox Pro, and Commerce Server.12 Office
is by far the major target of campaigns followed by Windows
O.S. and Flash Player. This is coherent with the attack vectors
previously observed as they are commonly exploited via
spearphishing with malicious attachments.

APTs tend to ”share” vulnerabilities during their
campaigns. Only 8 APTs (Stealth Falcon, APT17,
Equation, Dragonfly, Elderwood, FIN8, DarkHydrus,
and Rancor) exploit CVEs that are not used by anyone
else.13 We are aware of vulnerabilities (e.g CVE-2017-0144)

10. For example, some vulnerabilities (e.g. CVE-2012-0158) can be
exploited via spearphishing techniques and drive-by compromise.

11. For example, the Sony hack campaign in 2014 [71].
12. We do not have information about the exact software targeted.

For example, they could all have exploited Office.
13. Only three APTs have exploited more than one vulnerability

during all their campaigns.

The number of unique vulnerabilities employed in Unknown-Unknown
(UU) and Known-Unknown (KU) attack scenarios grows significantly in
recent years, compared to the first years of observation. On average
around 5 distinct vulnerabilities per year are exploited by APTs.

Fig. 3: Number of distinct vulnerabilities exploited over the
years by different attack scenarios.

that are associated with Equation and used by other APTs,
but we did not find enough information about the date
when the vulnerabilities were employed. Roughly 35% of
the APTs exploit CVEs observed in campaigns of other
groups. 17 APTs share 4 or more vulnerabilities, while many
APTs sharing a single vulnerability have only exploited that
vulnerability during their campaigns (14 out of 20).

5.3 Evolution in exploiting vulnerabilities
Fig. 3 shows the evolution of the number of unique vulner-
abilities exploited in the *-unknown attack scenarios14 in our
database. It represents a lower bound of the vulnerability
exploited in the wild. Project Zero [72] collects information
about 0-days in the wild by including also unattributed at-
tacks. The mean number of distinct vulnerabilities exploited
per year is roughly 5. We can observe how the numbers
grew significantly in recent years. However, it can be influ-
enced by the limited number of reports for campaigns in the
early period (2008-2011), where it was less likely to report
information about cyber-attacks. The drop for 2019/2020 is
due to the natural delay of publicly reporting campaigns
caused by the proximity of the period of data collection
with the date of the campaigns themself. Thus, we expect
the values to be higher if recomputed in the future.

Looking at the occurrence of a CVE in an APT campaign,
the majority of the APTs prefer to exploit CVE already
published, with few APTs as exceptions.15

5.4 Software for Analysis of Update Strategies
As discussed in §4, the collection of update releases from
vendors’ websites is a manual procedure. Here, for a first
approximations, we focus on collecting updates for a subset
of all software targeted by APTs.

Tab. 7 shows the most targeted products by vendor. We
decided to cover the most exploited client-side product for
each vendor because (1) from Tab. 6 most of the campaigns

14. Either already reserved (KU) or not reserved (UU).
15. Stealth Falcon, PLATINUM, APT17
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exploit attack vectors directed to client-side software and (2)
it is not uncommon to have products from these vendors in
an enterprise computer. For Adobe, the Flash Player product
is end of life (EOL) thus we decided to include the other two
software products Reader and Air. Even if Flash Player is EOL
in 2020 we still think it is interesting to see how different
update strategies would affect the security of enterprises
because it has been frequently exploited in the last years.
Also, vendors’ EOL of products, unfortunately, does not
coincide with the disappearance from the field and end of
exploitation as we are observing with Internet Explorer [73].

For a first approximation, we limited the analysis to
the Office 2016 release only, as different releases (Office
2013, Office 365) can be seen as different products as they
require buying a different license each. We considered the
Knowledge Base (KB) updates from the Microsoft Update
Catalog as the versions of the software. We assumed that KB
updates for Office are cumulative, i.e. the package contains
all previously released fixes.

In summary, we collected releases of updates for 5 different
software products from 3 different vendors: Office, Flash Player,
Acrobat Reader, Air, and JRE. We considered only releases for
Microsoft Windows O.S. as it covers at least half of the enterprise
computers [74]. With this set of software products, we cover 44%
of the campaigns (that exploit software vulnerabilities), 62% of
the APT groups, and 33% of the CVEs.

6 QUANTITATIVE ANALYSIS OF UPDATES

We now present an analysis of the speed of exploitation of
individual vulnerabilities and the prevalence of *-Unknown
and Known-Known attacks in APT campaigns. We then quan-
titatively evaluate the effectiveness and cost of the different
update strategies against the APT campaigns.

6.1 Survival Analysis
We performed preliminary survival analysis on the vul-
nerabilities to compute the interval in months that passed
from the publication of the CVE and the first campaign that
exploited the CVE (exploit age). Fig. 4 shows the Kaplan-
Meier plot for all the products in our database and for
the set of products discussed in §5 (Office, Flash Player,
Reader, Air, and JRE). We can see that roughly 40% of
the vulnerabilities are exploited for the first time before the
publication. This is coherent with what was observed by
Chen et al. [8], where 49% of the CVEs are exploited before
the NVD score is published. Furthermore, roughly 27%
of the vulnerabilities are exploited the first time16 within a
month from the publication from NVD showing that APTs
are fast to exploit new CVE [75]. Another interesting fact is
that a significant number of vulnerabilities are exploited a
few months before the NVD publication. This phenomenon
can be partially explained because the observation of attacks
in the wild brings software vendors to know about the vul-
nerability and thus the publication of a CVE. It is important
to underline that this value does not mean that ≈40% of the
campaigns are unpreventable because 1) *-Unknown attacks
can exploit several vulnerabilities17 and 2) many of these

16. Among all the APTs.
17. A famous example is Stuxnet.
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The survival is based on the first time the CVE is exploited in a campaign.
More than half of the vulnerabilities are exploited for the first time within
one month from the publication. However, there is high survivability of
a small set of CVEs (roughly 10%) that are exploited after more than 1
year from the publication. If we consider only Office, Flash Player, Reader,
Air, and JRE the behavior is similar.

Fig. 4: Proportion of survival of CVE from publication
(NVD) for all products and a subset (Office, Flash Player,
Reader, Air, and JRE).

CVEs are exploited multiple times from different APTs after
months from their first exploitation.

If we only consider the vulnerabilities exploited the first
time in KK attacks (as in [76]), we observe that roughly 47%
of them are exploited within 30 days from their publica-
tions18. In contrast with previous results [77], we observed
a long tail for part of the vulnerabilities, one out of 10 CVE
is exploited after one year from its publication, and 1 out of
20 after more than two years.

6.2 Classification of APT campaigns

Each APT campaign exploiting at least one vulnerability fits
into one of these (possibly overlapping) groups:

• Campaigns with at least one Known-Known (KK) attack.
In other words, the campaign exploited at least one
vulnerability (either preventable or unpreventable) that
was already present in the NVD database.

• Campaigns with at least one Known-Unknown (KU)
attack. In other words, the campaign exploited at least
one vulnerability (either preventable or unpreventable)
that was not present in the NVD database but an entry
was already reserved by MITRE.19

• Campaigns with at least one Unknown-Unknown (UU)
attack. In other words, the campaign exploited at least
one vulnerability (either preventable or unpreventable)
that was not even reserved by MITRE.

Out of 352 campaigns, less than half of them
employ at least one vulnerability (Tab. 6). Figure 5
shows the resulting Venn diagram for the 162
campaigns of interest. 119 out of 162 campaigns
employed only vulnerabilities in Known-Known attacks.

18. Bilge et al. [76] observed a similar value of roughly 42%
19. Thus, a small number of people known already some information

about the vulnerability. E.g. vulnerability researchers.
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Campaigns w/ at least one 
Known-Unknown attack

Campaigns w/ at least one 
Unknown-Unknown attack

Campaigns w/ at least one 
Known-Known attack

The majority of campaigns exploited at least one vulnerability in
a KK attack (after publication by NVD and after reservation by
MITRE). Only a few launched UU attacks (both before reserva-
tion by MITRE and before publication by NVD).

Fig. 5: Classification of APT Campaigns.

APTs heavily exploit known CVE to compromise their target.
The prioritization of updates is thus a key factor that can
significantly reduce the impact of APTs campaigns.

6.3 Evaluation of software updates strategies
We now answer RQ2 by applying our methodology (§4)
to compute the overall probability of being compromised
(Eq. 3) in the interval of time [Jan 2008-Jan 2020] with the
updates strategies and update interval presented in §2 for
the software discussed in § 5.4. Tab. 8 summarizes the results
in terms of the number of updates required, the conditional
probability and the odds ratio for the optimistic (Update first)
and pessimistic (APT first) scenarios.

Updating the software as soon as a new release is
available (Immediate strategy) provides the optimal lower-
bound probability of being compromised. Even in this case,
roughly 1 out of 4 campaigns can compromise the target.
Although an immediate update can be applied in some
critical situations, if we consider a more realistic approach in
which the software is updated with some delay in the month
(Immediate with APT first), the odds of being compromised
increases by a factor of 5.

The Planned strategy provides a similar, although slightly
better, probability of being compromised compared to a
strategy that waits for the presence of public vulnerabilities
(Reactive strategy). However, waiting to update when a CVE
is published presents 8x times fewer updates. Thus, if an
enterprise cannot keep up with the updates and need to wait
before deploying them, can consider being simply reactive.
For the Planned strategy the number of updates decreases
with bigger intervals because the updates are shifted outside
of the period of observation. If a longer update interval is
used, the probability of being compromised increases by
a factor of 9 and 20 for 3 months and 7 months update
intervals respectively. Interestingly, for the 7 months delay,
we have that the Reactive and Informed Reactive perform
slightly better than the Planned strategy.

Comparing the Reactive and Informed Reactive strategies,
there is a small advantage in knowing about not publicly
known vulnerabilities only if the update interval is small.

TABLE 8: Optimistic (Update first) and pessimistic (APT
first) overall conditional probability of being compromised
for different update strategies and update interval with the
associated # of updates for the period [01/2008-01/2020]

Update Strategy #Updates Prob. Odds

Interval (Update first — APT first)

/ Immediate 360 22.2-58.3% 1x-4.9x

1 Month

Planned 357 58.3-63.9% 4.9x-6.2x

Reactive 44 61.1-66.7% 5.5x-7.0x

Informed Reactive 44 58.3-66.7% 4.9x-7.0x

3 Months

Planned 350 72.2-75.0% 9.1x-10.5x

Reactive 44 73.6-76.4% 9.8x-11.3x

Informed Reactive 44 73.6-76.4% 9.8x-11.3x

7 Months

Planned 337 86.1-87.5% 21.7x-24.5x

Reactive 44 84.7-86.1% 19.4x-21.7x

Informed Reactive 44 84.7-86.1% 19.4x-21.7x

Once the enterprise waits 3 to 7 months, the vulnerability is
now publicly known and actively exploited by the APTs.

We reported in Fig. 6 the Agresti-Coull Interval for
each update strategy for the different update intervals. The
Planned, Reactive, and Informed Reactive strategies are almost
identical as we see a significant overlap of the CI among
these three strategies. The probability of being compromised
lies within [52%-74%] for the Planned and Informed Reactive
and [55%-77%] for the Reactive in the pessimistic scenario.
In the case of an optimistic Update-first scenario, we observe
that there is a clear difference between the Immediate and
the Planned strategies, while this advantage is lost in the
case of the pessimistic APT-first scenario. To evaluate the
similarity we computed, for each pair of strategies, the
proportion of campaigns that either succeeded or failed
against both strategies. We estimate the Agresti-Coull CI for
the resulting proportions. The results show that the Planned
and Reactive behave in the same way for at least 90% up to
99% of the campaigns for a 1 month update interval, for
88% and up to 98% for a 3 months update interval, and for
92% up to 99% for a 7 months interval. While, the Reactive
and Informed Reactive behave in the same way for 90% and
up to 99% of the campaigns for a 1 months update interval,
and for 94% up to 100% for a 3 and 7 months interval.

Since hackers focus on new versions, a strategy that always
updates to the new version but with a delay gives time to the
APT to target and exploit a vulnerability. In contrast, a reactive
approach that updates rarely might present to attackers an older
version that does not include the new vulnerable code [78]. In
other words, either you update always and immediately to the
new versions or just updating lately has the same risk profile but
cost you a lot more than updating rarely [79].

7 LIMITATIONS

The dataset obtained is based on publicly available reports.
While this is just a small part of existing campaigns, this
paper is the first that tries to aggregate a manually validated
dataset of APTs campaigns, CVE, and vulnerable products
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(a) Update-first (optimist) scenario. There is a difference between the Immediate and the other strategies. However, Planned, Reactive,
and Informed Reactive behave similarly thus updating to each new version with some delay or relying on reserved CVE does not
worth it.
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(b) APT-first (pessimist) scenario. The Immediate and Planned present a similar behavior for the 1 month update interval but differ
with bigger intervals. In the pessimistic scenario the Planned, Reactive, and Informed Reactive behave similarly thus updating to each
new version with some delay or relying on reserved CVE does not worth it.

Fig. 6: Agresti-Coull Interval (CI) for the update strategies with different update intervals

and it is a first step in the direction of an open and extensive
dataset on APT campaigns.

The process to obtain information about campaigns was
semi- automated but required manual effort to analyze and
to extract the key information about campaign dates, CVE,
and attribution. We assume that this type of information
reported by reputable security companies is not deliber-
ately wrong, and our methodology strives to find multiple
sources reporting the same campaign to control for possible
errors. Since keyword-based automated searches (e.g. [25])
present limitations in the number of false associations that
they generate, we decided that a manual approach would
provide a more precise description of the APT ecosystem.
Although the manual extraction of information from re-
ports does not present difficulties, it can include erroneous
matching of APT campaigns. To limit that, the manual
analysis was performed by two researchers independently
and inconsistencies were resolved by a third researcher.

We decided to ignore reports about campaigns where
not enough information about the start and attribution was
available. Thus, it is possible that certain vulnerabilities
discussed in the reports are not included in the dataset.

We applied a conservative approach in extracting infor-
mation from different reports reporting mutually disjoint
CVEs exploited on the same date. Thus, potentially assum-
ing fewer campaigns with a higher number of CVEs each.
The probability of being compromised must be seen as an
upper bound of what APT can achieve. However, the odds
ratio between update strategies remains the same.

We relied on the NVD data as the industry standard but
it is known to contain errors in the list of product names,
CVE publication date [80] and vulnerable versions [81],
[82]. We leave for future work the application of these
approaches to find inconsistencies. We relied on the data
of observation of the campaigns as reported in the reports
we consulted. This information could be wrong and detect

only a more recent campaign. We tried, when possible, to
find multiple resources about the campaign. The collection
of release dates for the software discussed in §5.4 is collected
manually given that vendors’ repositories are not intended
for past versions. Thus, the releases collected and employed
in the evaluation might have errors and this could affect the
Immediate and Planned strategies.

We used a month-based date granularity for the pub-
lication of the CVE, the release of new versions, and the
date of the campaigns because the exact day in a month
in which the campaign started is not known. This decision
has a potential impact on the results. If a campaign for a
CVE published on 29/01/2017 started on 01/02/2017 then
in our case the exploit age is one month, even if the CVE
is exploited a few days after the publication. However,
the results we observed (e.g. exploit age of vulnerabilities)
are coherent with previous observations of attacks in the
wild [76], thus we think that the number of these cases is
minimal and do not affect the results.

The same considerations apply to the results in Tab. 8: if
a release is performed on 15/02/2019 and a campaign ex-
ploiting the software is executed on 03/02/2019, the month
granularity would traduce both actions as performed on
02/2019. We thus considered two complementary scenarios:
an optimistic scenario (Update first) and a pessimistic scenario
(APT first). In the Update first the example above will traduce
in the defender be able to update before the execution of the
campaign. While in the APT first we assumed the opposite.

Finally, those companies that have an update interval
that is less than a month will present a probability of being
compromised that stays between the Immediate Update-first
and the Immediate APT-first scenarios.

We assumed that a campaign will be carried on from
the date when the campaign started up to the end of
the observation (i.e. 2020). This causes an inflation of the
number of campaigns that are active at a given instant of

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on February 16,2023 at 12:54:06 UTC from IEEE Xplore.  Restrictions apply. 



0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2022.3176674, IEEE
Transactions on Software Engineering

13

time in Eq. 2. However, we follow a conservative approach
and assumed that if an APT has access to a vulnerability
it will always be able to employ it given that one is under
attack. We discuss extensions in the §8.

8 CONCLUSIONS AND FUTURE WORK

In this work, we proposed a methodology to quantitatively
investigate the effectiveness and cost of software updates strategies
against APT Campaign. We applied the methodology to build
a database of APT campaigns and presented an analysis of
the attack vectors, vulnerabilities, and software exploited by
86 different APTs in more than 350 campaigns over 12 years.
The database is publicly available on Zenodo [26].

In contrast to expectation, we showed that preventive
mechanisms like updates can influence the probability of
being compromised by APT. However, software updates
based on wrong measures of risk can be counterproductive.
Our analysis shows that a purely Reactive update strategy
(wait until a vulnerability gets out) presents results very
similar to a Planned strategy (always update to the newest
version), but with only 12% of the updates. Furthermore,
the Informed Reactive strategy, where updates are applied
based on reserved information about not publicly known
vulnerabilities (e.g. by paying for information on 0-days),
does not produce significant advantages compared to
the Reactive strategy and it is useless if the enterprise
has several months of delay before applying the update.

In summary, for the broadly used products we analyzed, if you
cannot keep updating always and immediately (e.g. because you
must do regression testing before deploying an update), then
being purely reactive on the publicly known vulnerable releases
has the same risk profile than updating with a delay but costs
significantly less.

Future work can extend the analysis to a more complete
set of software products and evaluate a subset of campaigns
by targeted enterprises, attacker preferences, or network ex-
posure based on IDS alerts [63]. To achieve that, one would
require to have company-specific information to move from
a conditional probability to an absolute probability.

We also plan to extend the evaluation by considering
campaigns as active only for a limited period. Further data
about the lifetime of campaigns in the wild is required.
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