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Abstract—In this paper, we analyse the problem of simultane-
ous trilateration, i.e. when three ranging sensors retrieve their
distance from a target, and we found that is ill-posed from an
algebraic view-point. Then, we explain this fact using the concept
of “delayed” trilateration, i.e. we consider three ranging sensors
that measure their distance from the agent at three distinct
time steps, while the agent has moved through the environment.
We prove with a counterexample that, in a general case, there
are multiple trajectories that are compliant with the motion of
the target and with the ranging measurements collected by the
anchor of known position. Therefore, we claim here that three
measurements are not sufficient to localise a moving target in
a given environment even in ideal conditions. In particular, we
claim that the classic trilateration problem assumes an additional
implicit information besides the three ranging measurements,
that is that the three measurements are taken with respect to the
same point in space or, in the most general and most probable
case of a moving target, simultaneously.

Index Terms—Positioning, Localisation, Range sensors, Trilat-
eration

I. INTRODUCTION

Finding the position of a (moving) target in an indoor
environment is a problem that has been deeply analysed in
the past years. A natural choice for solving this positioning
problem relies on ranging sensors, given the large number of
sensors capable of measuring the distance between a number
of fixed-frame points and the target. Ranging sensors that
may be employed to this aim are LiDAR systems, Ultra-
Wide Band (UWB) nodes and Wi-Fi nodes measuring the time
elapsed between the signal emission and reception, usually
dubbed Time of Flight (ToF), or measuring some features of
the signal related to the sensed power [1], [2], [3], [4], [5].
A common approach to the positioning problem of a target
through ranging sensors is the trilateration: collecting three or
more ranging measurements from beacons of known locations,
it is possible to uniquely determine the target position on the
R2 plane or in the R3 space [6]. In the rather big technical
literature on the subject, the fixed-frame sensors collecting
the ranging measurements fall under different naming con-
ventions, depending on their nature, physical phenomenon
detected, limitations, etc. Since we are not interested in any
particular type of sensor, but rather on the properties of the
ranging system, in the following, we will refer to the fixed-
frame ranging sensors as “anchors” (with an explicit reference

to UWB systems), but they could be indifferently referred to
as “beacons” or “landmarks”, since they are considered as
synonyms in this paper. Moreover, in the rest of the paper
we will make reference to two classes of targets that can be
considered in this analysis: mobile robots and human beings.

Related work: There is a large variety of technical litera-
ture that deals with the problem of uncertainty minimisation
in trilateration systems, by leveraging different techniques.
For instance, Yi et al. [7] extend the set of measurements
including also the known distance between anchors, and use
these measurements to adapt the range estimation to dynamic
environment conditions. A similar approach, i.e. increasing
the number of measurements, is adopted by Diao et al. [8]
where each of the N beacons retrieves a set of measurements,
and only the three beacons with the lowest standard deviation
in their measurement set are employed for the trilateration
process. With a similar purpose, [9] and [10] define new frame-
works, which are based on Neural Networks, that allow the
system to reduce the position uncertainty. Moreover, Thomas
et al. [11] propose a new framework, specifically conceived for
mobile robots, suitable for a complete and deep analysis on the
effect of noises and disturbances affecting the sensor readings.
A different approach to reduce the positioning uncertainty is
based on the so-called multilateration, where the number of
ranging measurements is greater than 3. This technique can
be obtained through a multi-channel approach [12], on an
increased number of anchors [13] or explicitly using the filter
characteristics [14]. This technique leverages the (nonlinear)
least square solution, which may be directly applied to the
equations of the retrieved distances [15], or on a different set
of algebraic equations descending from the former ones [16].
The positioning problem has been deeply analysed also in the
field of robotics, where the concept of positioning is strictly
related to the concept of localisation. In fact many research
works are not focusing only on reconstructing the position of a
standing target in the environment, but rather on reconstructing
its trajectory assuming the knowledge of its dynamics and of
the sensor readings [17], [18]. In the same setting but with a
reversed perspective, Han et al. [19] uses a moving robot as a
mobile anchor with limited sensing range instead of a target
with unknown position. They propose a path planning strategy
that maximises the amount of space that is dynamically in



sight of at least three anchors with limited sensing range, an
approach similar to [20].

Paper contributions: We consider a target moving in an
environment equipped with an infrastructure of three anchors
of known position and measuring the distances to the target.
Dictated by various actual applications, e.g., limited sensing
range, limited bandwidth in the target-beacon communication
or scalability issues [21], the measurements are retrieved at
different time steps. Contrary to the intuition that a delayed
trilateration should have the same properties of a simultaneous
trilateration (i.e., three measurements are sufficient to localise
the target), we show that in this setting we are not able to
recover the target location, even if an ideal, perfect knowledge
of the manoeuvres performed by the target is available. In the
developments, we additionally prove that this result roots in
an algebraically ill-posed solution of the trilateration.

The rest of the paper is organised as follows: in Section II,
we define the model of the target and of the sensors, and
we discuss the differences between simultaneous and de-
layed trilateration presenting the problem at hand. Section III
presents well-known results on the simultaneous trilateration
and then reports analogies and differences with the delayed
trilateration. In Section IV, we present a numerical example
that supports the conclusions drawn in the previous sections,
while in Section V we derive the final considerations on this
work and present future research directions.

II. MODELS DESCRIPTION AND PROBLEM FORMULATION

In this section we will present the background knowledge
and results that are fundamental to derive the problem we are
tackling in this paper.

A. Dynamical model – continuous-time dynamics

In a previous work [22], Farina et al. presented a dynamical
model able to capture the relevant dynamics of the motion of
a pedestrian. In the same spirit and for the sake of the problem
at hand, we decide to abstract that dynamic model to a pair
of integrators in the plane endowed with the orientation φ.
As depicted in Figure 1, we consider the target having two
independent inputs vx and vy in the target reference frame
〈B〉, which leads to the following dynamics in the fixed inertial
reference frame 〈I〉
〈I〉ẋ = vx cosφ−vy sinφ, 〈I〉ẏ = vx sinφ+vy cosφ. (1)

To simplify the forthcoming analysis, we consider the
system to be sampled at discrete time instants with sampling
time Ts (dictated by the hardware available), thus leading to

〈I〉xk+1 = 〈I〉xk + ∆x, 〈I〉yk+1 = 〈I〉yk + ∆y, (2)

where 〈I〉xk denotes the horizontal position of the target at the
time instant t = kTs and ∆x and ∆y depend on the system
inputs, i.e.

∆x = (vx,k cosφ − vy,k sinφ)Ts,
∆y = (vx,k sinφ + vy,k cosφ)Ts,

(3)

Fig. 1. Figure with the absolute and the relative reference frame.

Fig. 2. Typical trajectories followed by the target. Through the velocity
input sequence, we have an immediate description of the segment lengths
A1 and A2 and their relative orientation δ1. As an example, the anchor B2

is represented together with its distances from the target at three consecutive
time instants.

where vx,k = vx(kTs) and vy,k = vy(kTs). In the following,
we will denote the position of the target at time step k as Pk =
[xk, yk]>, and define Ak as the length of the path travelled by
the target between steps k and k + 1, i.e.

Ak = ‖Pk+1 − Pk‖ =
√

(xk+1 − xk)2 + (yk+1 − yk)2.

Notice that we can compute the value of Ak by using the
discrete-time dynamics (2) of the target, thus yielding

Ak =

√
∆x2 + ∆y2, (4)

which only depends on the relative displacements ∆x and ∆y
in (3).

Moreover, we can express the angular increment δk de-
scribed by the segments connecting Pk to Pk+1, and Pk+1

to Pk+2 as

δk = αk+1 − αk

= arctan2(vy,k+1, vx,k+1)− arctan2(vy,k, vx,k),
(5)

where

αk = arctan2(〈B〉yk+1 − 〈B〉yk,
〈B〉xk+1 − 〈B〉xk) + φ

= arctan2(vy,k, vx,k) + φ.
(6)

This way, the target trajectories can be represented by seg-
ments connecting Pk and the successive points Pk+1 by
using the length Ak and the inclination αk, as represented
in Figure 2.



Remark 1. We assume in this paper that the inputs vx,k, vy,k
are known perfectly (i.e., no measurement uncertainty), and
even in this setting the trilateration problem arises. Moreover,
without the ranging measurements, since we are not aware
of the initial position P0 of the target and of its inclination
φ, given the history of the inputs vx,k, vy,k in any discrete-
time interval [0, 1, . . . , kf ], we are not able to reconstruct the
absolute trajectory in the inertial reference frame 〈I〉, but we
can only reconstruct the “relative geometrical shape” of the
trajectory, i.e. the length of the segments Ak, k ∈ [0, kf ] and
their relative angle δk, k ∈ [0, kf − 1]. This is an immediate
consequence of the knowledge of relative measurements.

B. Sensor model

We assume that the environment is equipped with a set of
anchors, e.g., UWB anchors, Bi = [Xi, Yi]

>, i = 1, . . . , n,
retrieving the distance to the target, i.e. the measurement
output of the systems at time k are the distances ρi,k, such
that

ρ2i,k = (〈I〉xk −Xi)
2 + (〈I〉yk − Yi)2. (7)

C. Problem formulation

It is widely known that the problem of positioning a target
on a plane, i.e., to retrieve its coordinates xk, yk at a certain
time kTs, is solved by means of trilateration, i.e., at time
kTs at least three ranging measurements from non collinear
anchors are available [23]. With respect to (7), it amounts to
collect ρi,k, for i = 1, . . . , 3, i.e., all the measurements come at
the same time instant. In this case, the positioning problem is
statically observable. When, instead, the measurements from
the three anchors come at different time instants, e.g., we have
access to ρ1,k, ρ2,k+1 and ρ3,k+2, the positioning problem
turns to a localisation problem [24], which entails the concept
of dynamic observability, or simply observability. The main
idea is that the notion of the motion model compensates for a
reduced amount of measurements at time k. In this paper, we
will prove that this is counterintuitively: we analyse both the
two different situations: the first is the traditional simultaneous
trilateration problem where the three landmarks retrieve the
distance measurements at the same time, and then we will
analyse the problem of the delayed trilateration, where the
measurements are retrieved at three different time steps. In the
latter case, we will show that three measurements from three
different anchors are not sufficient: in other words, the standard
trilateration does not consider just three measurements, but
four: the last one is the knowledge of the simultaneous mea-
surements. In carrying out the analysis, we are not considering
explicitly the role played by the measurement uncertainties. In
fact, the results here obtained are applicable also in the ideal
case, i.e., perfect measurements.

We would like here to stress that the problem we are dealing
with is associated with the concept of observability, which
depends only on the dynamics of the system, on the model of
the sensors and on the trajectory followed by the system itself.
Therefore, actuation uncertainty and measurement noise play
no role at this level [24].

Fig. 3. Three range sensors measure their distance from the target: whenever
the three anchors are not aligned (i.e. γ213 6= hπ), we have only one
intersection among the three circles, i.e. we know where the target is.

III. TRILATERATION

As aforementioned, the simultaneous trilateration involves
three anchors retrieving the distance ideal measurements from
the target at the same time. To compact the notation, in the
following we will drop the subscript k in (7). We introduce
here the formal definition of trilateration and its proof.

Proposition 1 (Simultaneous trilateration). Let P = [x, y]> ∈
R2 be the position of the target on the plane and let Bi =
[Xi, Yi]

>, i = 1, 2, 3 be the positions of three anchors, each
of them measuring their distance ρi from P . Whenever the
three anchors are not collinear, P is the only point compliant
with the three retrieved distances.

Proof. By taking the differences ρ22−ρ21 and ρ23−ρ21, we come
up with two linear equations in the unknown x, y, reading

M

[
x
y

]
= h, with M =

[
X1 −X2 Y1 − Y2
X1 −X3 Y1 − Y3

]
(8)

which is invertible as soon as M is nonsingular, i.e. detM 6=
0. The determinant of M can be obtained as the only nonzero
element of the cross product between B2 −B1 and B3 −B1 0

0
detM

 =

X2 −X1

Y2 − Y1

0

×

X3 −X1

Y3 − Y1

0

 =

 0
0

d12d13 cos γ213

 ,
(9)

where · × · denotes the cross product between two vectors,
d12 and d13 are the distances between the anchors B1 and
B2, and B1 and B3, respectively, while γ213 is the amplitude
of the angle described by the three anchors, with vertex B1,
as represented in Figure 3. Whenever γ213 = 0, the three
anchors are collinear and we are not able to uniquely identify
the position P of the target.

The widely known geometric interpretation is the following:
for each anchor Bi, we build a circle centred in the anchor
itself, with radius equal to the retrieved distance ρi. The three
circles have two intersection points as soon as the three centres
are aligned, otherwise they only have one unique intersection.

Remark 2. The proof of Proposition 1 is built upon the
differences of the squares of the distances, which ensures that
the solution will correspond to the actual target location.



However, when the distances are not collected from a real
scenario, but the positions of the anchors and their ranges are
fixed upfront, we can still find a point [x, y]> by using (8), but
it will not be a solution to (7).

Although Remark 2 seems to account for a situation that is
never occurring, it turns out to be fundamental: indeed, a so-
lution to the trilateration problem may be wrongly considered
correct even if M is invertible but the circles do not intersect
in a single point. We will explicitly consider this situation
in Section III-A, where we introduce the concept of delayed
trilateration, i.e., the ranging measurements are collected at
different time instants for a target that is moving, which may
lead to the problem discussed in Remark 2.

Remark 3. In the case of simultaneous trilateration, we are
able to reconstruct the position P of a still target indepen-
dently on the orientation angle φ, which has no effect on the
measurements retrieved by the three landmarks, since it does
not appear in the definition of the distances in (7).

A. Delayed trilateration

We address now the case of the delayed trilateration. In
this scenario, the target is assumed to move according to (2)
with unknown initial position P1 = [x1, y1]> and unknown
orientation φ. Assuming that the three measurements in (7)
are given at time instants k1 6= k2 6= k3 and by leveraging on
our knowledge on the system inputs over time (see Remark 1),
we will try to recover the unknown initial condition P1 in order
to reconstruct the entire trajectory (indeed, the system inputs
are assumed to be perfectly known).

In the previous section, we have used the condition of
noncollinearity among the three anchors Bi, in order to
reconstruct the position P of the target. Since in this scenario
the target is moving, we will need a different generalised
noncollinearity condition, as in the following definition.

Definition 1 (Generalised noncollinearity). Given three con-
secutive positions Pk, k = 1, 2, 3 of the target and three
landmarks Bi, i = 1, 2, 3, such that the i-th anchor distance
to the target is retrieved at time ki, the anchors are said non-
collinear if the following holds:

(B̄2 − B̄1)× (B̄3 − B̄1) 6= 0,

where the translated anchors B̄i are defined as

B̄1 = B1, B̄2 = B2−
[
∆x1
∆y1

]
, B̄3 = B3−

[
∆x1 + ∆x2
∆y1 + ∆y2

]
.

From a geometric point of view, the condition expressed in
Definition 1 may be interpreted as follows: we move the pair
anchor–measurement (i.e. the pair Bi–Pi) such that all the
measured points Pi coincide with P1, to recover a scenario
similar to trilateration. The generalised noncollinearity holds
if the three translated anchors B̄i are not collinear.

For the sake of simplicity and without loss of generality,
we assume that k1 = 1, k2 = 2 and k3 = 3 in (7), while
we are interested in the initial position P1 = [x1, y1]> of the
target, together with the inclination φ (see Figure 4). In light of

Fig. 4. Three anchors Bi measure their distance ρi,i from the target, each
of them at time ki = i.

Definition 1, we are ready to prove the following proposition.

Proposition 2. Given the target dynamics (2), the system
inputs vx,k, vy,k, k = 1, 2, the sensor model (7), the mea-
surement outputs ρ1,1, ρ2,2, ρ3,3 and the initial angle φ, we
can reconstruct the initial position P1 of the target only if the
generalised noncollinearity condition holds.

Proof. For the proof of this proposition, we follow the same
rationale as in the proof of Proposition 1, thus we build
the differences ρ22,2 − ρ21,1 and ρ23,3 − ρ21,1. By leveraging on
Definition 1, we compute the i-distance as

ρi,i = ‖Bi − Pi‖ = ‖B̄i − P1‖.

Being P1 constant and common to all the measurement results,
we recover the same structure as in the proof of Proposition 1

M̄

[
x1
y1

]
= h̄, with M̄ =

[
X̄1 − X̄2 Ȳ1 − Ȳ2
X̄1 − X̄3 Ȳ1 − Ȳ3

]
, (10)

where X̄i and Ȳi are such that B̄i = [X̄i, Ȳi]
>, i = 1, 2, 3.

Given the structure of M , we know that the matrix is in-
vertible if B̄1, B̄2 and B̄3 makes the matrix M̄ invertible, thus
compliant with the condition of generalised noncollinearity of
the three anchors B1, B2, B3.

Proposition 2 states that there exists only one trajectory
compliant with the manoeuvres performed by the target, with
its initial inclination φ and with the three measurement re-
trieved by the sensors. However ,we can draw a consideration
that directly descends from Remark 2, which is discussed in
the following remark and turns out to be fundamental.

Remark 4. As in the case of simultaneous trilateration,
the proof of Proposition 2 is based on the differences of
the collected distances. However, in this situation, we use
the measurement collected by the vehicle moving across the
environment, but we fix an arbitrary value of φ, which leads
us to find an initial point P1 according to (10), but we have
no guarantees that P1 is also a solution to (7). Thus solutions
to (7) may be found only fixing some specific (unknown) values
for the inclination angle φ.

The main difference with the case of simultaneous trilat-
eration is the dependence on φ M in (10) for the delayed



trilateration. Therefore, there exist multiple solutions having
the same sequence of manoeuvres and of measurements, but
different values of φ. As a consequence, based on Proposi-
tion 2, we can state that the knowledge of the system inputs,
the model and the measurement is not sufficient to reconstruct
P1. Considering the Remark 2 and the Remark 4, we are now
ready to introduce the main proposition of this paper.

Proposition 3. Given a target moving accordingly to (2) with
known velocity inputs vx,k, vy,k, k = 1, 2, and three fixed-
frame anchors B1, B2, B3, measuring their distance from the
target at time k = 1, 2, 3 respectively, we cannot localise the
target in the environment, i.e. we cannot reconstruct its initial
position P1 in the inertial reference frame.

The main consequence of this proposition is that three
ranging measurements are not sufficient for trilateration, but
the three measurements should be collected simultaneously to
solve the problem, even with the additional perfect knowledge
of the model and the system inputs.

IV. SIMULATION RESULTS

To support our claim, we provide a simulation of the
scenario presented in Proposition 3, with a counterexample
that shows that, despite the assumptions in Proposition 2
hold, there are many trajectories that are compliant with
the manoeuvres performed by the target and with the range
measurements retrieved by the anchors.

Example 1. We assume that the target moves with given
inputs (thus we assume to know the relative displacement
in (3) and the shape of the trajectory) and collects one
measurement from each of the three anchors. We further
assume the following configuration:

Sensor positions:

B1 =

[
0
0

]
, B2 =

[
9
6

]
, B3 =

[
14
3

]
,

Sensor readings:

ρ1,1 = 4, ρ2,2 = 3, ρ3,3 = 2,

Control inputs:

vx,1 = 5, vy,1 = 3, vx,2 = 7, vy,2 = −4,

with sampling time Ts = 1 s.
Figure 5 shows the results obtained in the simulation with

the parameters above, i.e. a set of four trajectories that are
compliant with both the manoeuvres performed by the target
(see Remark 1) and with the readings of the three range sen-
sors. As reported in Table I, where the results obtained with the
four distinct solutions represented in Figure 5 are quantified,
we can notice that: despite the generalised noncollinearity
condition holds (for each trajectory, we can check the gen-
eralised noncollinearity condition by building the matrix M
as in (10) and computing its determinant detM : the last row
of Table I contains only non-zero values), all the four solutions
are compliant with manoeuvres and measurements but are

Fig. 5. Graphical representation of Example 1. In this case, despite the
generalised noncollinearity condition holds, we have (at least) four trajectories
that are compliant with the manoeuvres and the measurements retrieved by
the three anchors, showing that three range measurements are not sufficient
to uniquely identify the trajectory followed by the target.

Solution 1 Solution 2 Solution 3 Solution 4

P1
3.85 2.11 3.91 0.73
−1.10 3.40 −0.82 3.93

P2
7.64 6.35 6.44 6.02
3.32 7.40 4.43 6.37

P3
15.55 14.04 14.49 12.54
1.74 5.00 4.94 1.63

detM −2.76 2.54 −20.43 11.87

TABLE I
NUMERICAL RESULTS OF THE SIMULATION IN EXAMPLE 1 AND DEPICTED

IN FIGURE 5. FOR EACH SOLUTION, WE REPORT THE POSITION OF THE
POINTS Pk REACHED BY THE TARGET AT TIME k AND WHOSE DISTANCE IS

MEASURED BY THE ANCHOR Bk . IN THE LAST ROW WE REPORT THE
DETERMINANT OF MATRIX M BUILT AS IN (10).

all different: one may simply check by using the obtained
numerical results about the positions P1, P2 and P3.

From the analysis carried out on the simultaneous and
delayed trilateration, which are supported by the results ob-
tained in the numerical example, we draw the following
consideration: even though the intuition suggests that with
three measurements we are able to reconstruct the position of
the target on the plane R2, this is not sufficient whenever we
add the dynamics of the system, i.e. whenever the target moves
while the measurements are taken. The problem of finding the
minimum number of measurements needed to find the position
of the target with three simultaneous ranging measurements is
exhaustively addressed in Proposition 1, while Example 1 and
Proposition 3 state that the minimum number of anchors with
delayed measurements to reconstruct the target location is still
open. From a practical point of view, we are considering a
target that is initially unaware of its position and orientation
on the plane. These results imply that, when it collects 3
measurements with a delayed trilateration as in Section III-A,



the target can build a set of positions where it could be located.
Although the actual position of the vehicle is included in this
set, the target cannot retrieve it with only 3 measurements.

With these considerations in mind, we are now ready to
state the main claim of the paper with a clear statement.

Claim 1. Whenever we consider a scenario of simultaneous
trilateration as in Section III, we are collecting three measure-
ments from the ranging sensors, but we are also relying on one
additional information, which is the implicit assumption that
the target is still.

Notice that this assumption is not explicitly used in the
computations and proofs (see proof to Proposition 1), but it
allows us to find the position of the target on the plane. This
claim is supported by Section III-A and by the numerical
simulation in the Example 1, where the implicit assumption
of simultaneous measurements is explicitly removed, i.e. the
target is not still while the measurements are collected, thus
leading to reconstruction failure.

V. CONCLUSIONS

In this paper, we have revisited the well-known results
on trilateration exposing the implicit time requirements, i.e.,
the readings should be collected simultaneously. Irrespective
of the fact that the measurements are collected by a still
agent or not, if the three anchors collecting the ranging
measurements are not collinear, the positioning problem is
solved. By considering for the first time the concept of delayed
trilateration, where the target is moving and the anchors are
collecting the measurements at different time instants, we
have concluded that three measurements are not sufficient to
uniquely determine the trajectory of the target and a larger
number of measurements is needed. Given this mismatch
in the two different scenarios, we have assumed that the
simultaneous trilateration relies on four measurements: three
ranging measurements and a fourth additional and implicit
assumption that the target is still in the environment when
the measurements are taken.

Therefore, we have underlined how three measurements
are not sufficient to reconstruct the state of the agent, i.e.,
localise it in the environment, but we have given no hint on
the minimum number of measurements and anchors needed
to reconstruct the state, i.e., to attain the so-called global
observability. Therefore, we plan to address this problem, by
considering different dynamical models and a more general
setup in the number of measurements retrieved by each
anchor.
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