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Abstract: Symmetry has long been viewed as a feature of objects that facilitates ease of perception.
Three experiments investigated 4- to 5-month-old infants’ detection and processing of vertical symme-
try, oblique symmetry, and asymmetry in novel patterns and faces. In Experiment 1, infants showed
the fewest shifts in visual fixations to vertical symmetry in patterns and faces, supporting the view
that vertical symmetry is processed more efficiently than oblique symmetry or asymmetry. In Experi-
ment 2, stimulus presentation disallowed more than a single visual fixation, and infants looked longer
at a face that is vertically symmetrical compared to obliquely symmetrical or asymmetrical, and they
looked equally to patterns regardless of symmetry. In Experiment 3, where pattern exposures were
prolonged and inverted faces viewed, infants discriminated vertical symmetry in patterns but lost
the advantage with vertical symmetry in faces. Thus, symmetry in patterns requires more processing
time from infants, and inverting the face costs infants the normal perceptual advantage of symmetry,
even though components of the face remain symmetrical. These findings suggest that infants are
prepared to exploit symmetry in their everyday perceptual worlds.

Keywords: infants; symmetry; eye tracking; perception

1. Introduction

Symmetry is defined as the point-for-point correspondence of pattern elements (enan-
tiomorphs) about an axis. Aristotle [1] and Darwin [2] both noted that people prefer
symmetrical forms. Moreover, a venerable history of psychological research has repeatedly
demonstrated that symmetrical forms are not only preferred but are consistently processed
more efficiently, detected more rapidly, identified more quickly, discriminated more accu-
rately, remembered more veridically, and reproduced more faithfully than asymmetrical
forms. Scholars have offered numerous reasons for the advantages of symmetry: redun-
dancy of information, global encoding strategy, stimulus structure or organization, minimal
required neural circuitry, etc. [3]. Consider several examples. Symmetry in the structure of
forms has long been considered to be a component in pattern “goodness” [4–6], and pattern
“goodness” is thought to ease stimulus encoding. Or, the facility of adults’ processing of
visual symmetry may be attributable to global scans in analyzing visual information [7–9];
Locher and Nodine [10] showed that adult perceivers tended to scan only one-half of
symmetrical shapes but the entirety of asymmetrical ones. Or, symmetry detection in a
shape is effortless, perhaps because the two enantiomorphs have matching parts ([11],
“minima rule”). Not all orientations of symmetry provoke equivalent advantages, however;
vertical symmetry is special. Vertically symmetrical forms are preferred and processed
more efficiently than horizontally or obliquely symmetrical forms even when the amount
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of information is identical across forms. When compared to matched oblique symmetries,
to horizontal symmetries, and to asymmetries, adults prefer vertical symmetries and detect
them more easily, identify them more accurately, and sort them more quickly [12–19]. More-
over, adults better remember vertical symmetry than other types of symmetry in tasks that
rely on recognition [15] or on reproduction [20]. In contrast, the so-called “oblique effect”
documents diminished detection, discrimination, and identification of visual (as well as
other sensory, e.g., haptic) stimuli that deviate from the vertical [21–23]. Thus, vertical
symmetry is perceptually special, and the privileged status of vertical symmetry may be
due to the fact that visual stimuli which are significant in the perceptual life course are
vertically symmetrical—notably, parents, progeny, predators, and prey.

1.1. Infant Perception of Symmetry

How early in life does the advantage with vertical symmetry manifest? Here, we
compared infants’ perceptions of vertical with oblique symmetries (see Figure 1) to address
the question of whether the advantage with symmetry, and particularly vertical symmetry,
arises early in life. There is a growing literature about the early ontogeny of a perceptual
advantage with symmetry, and especially vertical symmetry, but a complete understanding
of infants’ perception of symmetry still eludes us. The three experiments we report aimed to
identify, assess, and compare young infants’ detection and processing of vertical symmetry,
oblique symmetry, and asymmetry in novel patterns and faces. The earliest developmental
salience of symmetry over asymmetry, and of vertical symmetry especially, was established
in studies conducted by Bornstein and colleagues. In the first study [24], 4-month-olds
showed no preference for symmetry, but they habituated faster to vertically symmetrical
patterns than to otherwise equivalent horizontally symmetrical or asymmetrical patterns;
12-month-olds also preferred vertically symmetrical patterns to both horizontal symmet-
rical and asymmetrical patterns. In the second study [25], 4-month-olds were tested in a
habituation–dishabituation paradigm, and they discriminated vertically symmetrical pat-
terns from horizontal symmetrical and from asymmetrical patterns but failed to distinguish
between horizontal symmetrical and asymmetrical or between asymmetrical patterns. In
the third study [26], 4-month-olds’ more sophisticated perceptions of symmetry in visual
patterns were assessed in four experiments. Experiments 1 and 2 evaluated infants’ percep-
tion of the specialty of vertical symmetry by manipulating the structure and orientation
of comparable patterns. Confirming previous research, infants displayed no preferences
among vertical or obliquely symmetrical patterns or patterns that repeated about the verti-
cal axis. However, infants reached a habituation criterion (i.e., a criterion 50% reduction in
looking relative to their baseline level of looking) in fewer trials for vertically symmetrical
patterns than for obliquely symmetrical patterns or patterns that repeated across the vertical
axis. Experiment 3 was designed to determine infants’ capacity to integrate information in
visual patterns distributed in space. The spatial separation of pattern components from
contiguous to discontiguous was manipulated. Infants processed vertically symmetrical
patterns whose components were contiguous or nearly contiguous about the vertical axis
more efficiently than patterns whose components were discontiguous. Infants lost the
advantage with vertical symmetry and, by inference, their holistic perception of the visual
pattern with the spatial separation of components from the vertical meridian. Experiment
4 examined infants’ sensitivity to perceptual organization and synthesis of pattern form
by manipulating the organization of individual components of a vertical pattern. Infants
perceived the symmetrical organization of the pattern above their individual components
in the pattern by discriminating vertically symmetrical patterns from asymmetrical patterns
with a vertical organization. Together, these experiments demonstrated that the detection
and recognition of vertical symmetry precedes more general preferences for symmetry
early in life.
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Figure 1. Stimulus images used in Experiments 1 and 2. (A) Panel A displays the pattern images,
and (B) panel B displays the face images. The left panels show vertically symmetrical stimuli, the
middle panels show obliquely symmetrical stimuli, and the right panels show asymmetrical stimuli.
Note that all stimuli in each row were constructed of the same components.

1.2. Symmetry in Faces

Faces are perhaps the most commonly and earliest experienced vertically symmetrical
objects in the infants’ visual world [27]. A prominent basis for human interaction is reflected
in the recognition and identification of faces, and vital socially significant information is
conveyed in facial features [28]. Much is now known about many general aspects of infant
face processing. For example, neonates look preferably at face-like stimuli over other
patterned stimuli [29–31], and infants look more at upright than at inverted or scrambled
faces [32,33]. Studying 4- to 15-month-old infants, Samuels and colleagues [34] paired
normal faces varying in adult-rated attractiveness with the same faces digitally altered
to appear perfectly symmetric; symmetry did not interact with infants’ preference for
attractive faces. Rhodes and colleagues [35] presented 5- to 8-month-old infants with face
images varying in vertical symmetry and learned that infants look (marginally) longer
at symmetric faces. Neither of the preceding two studies compared infants’ attention
between differing axes of symmetry. Less is known, too, about how infants scan individual
components of a face. Infants tend to look at eye regions of faces more than at mouth
regions [36,37]; however, they scan about equally at eye and mouth regions in dynamic faces
when the speaker attempts to engage the infant’s attention by smiling and uttering simple
vocalizations [27]. Eyes and mouths convey many relevant cues about a social partner, such
as where to look (eyes) and how to decode the speech stream (mouth). Whether innate,
early maturing, or based on extensive experience, the special quality of vertical symmetry
to infants may derive from the importance of the vertically symmetrical face; as Pascal
observed, “our notion of symmetry is derived from the human face” (cited on p. 12 [38]).
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1.3. The Current Study

Symmetry is a pattern characteristic that facilitates perception and cognition. For all the
consensus about the advantages of symmetry, and vertical symmetry, in mature perception,
the extant literature has left unaddressed some significant questions about the infant origins
and early perception of symmetry. Three experiments were designed to address some
of those residual questions: (a) whether and how variation in symmetry affects infants’
visual scanning of patterns or faces, (b) whether and how the detection of pattern or facial
symmetry depends on infants’ visual scanning, and (c) whether and how any advantage
of vertical symmetry in infancy depends on the stimulus orientation or processing time.
To address those questions, we compared the distribution of visual scans of vertically
symmetrical patterns and faces to scans of obliquely symmetrical and asymmetrical ones,
and we examined continuity of scans in the detection of vertical symmetry and the effect
of inversion on the detection of facial symmetry to oblique symmetry and asymmetry.
Based on the extant adult and infant literature, we expected that infants would more
efficiently shift their visual fixations to vertical symmetry in patterns and faces, thereby
giving evidence that they process vertical symmetry more efficiently than oblique symmetry
or asymmetry; that when stimulus presentation disallows more than a single visual fixation,
infants would look longer at a face that is vertically symmetrical compared to one that is
obliquely symmetrical or asymmetrical; that the contiguity of enantiomorphs around the
vertical axis would promote the advantage with vertical symmetry; that when patterns are
exposed for longer durations, infants would discriminate vertical symmetry more easily;
and that when faces are inverted, infants would lose the advantage with the vertical.

2. Materials and Methods
2.1. General Method for the Three Experiments
2.1.1. Infants

Infants between 4 and 5 months of age were recruited through the use of purchased
mailing lists of newborns in a suburban metropolitan area and came from middle- to high-
socioeconomic status families primarily of non-Hispanic European–American descent. All
parents of qualifying infants who expressed interest within recruitment windows for the
experiments were invited to participate. All infants were of term and healthy at birth and
at the time of testing. Attrition rates (4–8 infants per experiment) and reasons (fussiness
or equipment failure) were comparable to other infant eye-tracking and looking-time
studies [39]. All parents signed informed consents before the start of the experiments. In
all three experiments, infants were tested in accordance with the ethical principles of the
Declaration of Helsinki, and the research was approved by the Institutional Review Board
of the NICHD. Power analysis using an estimated effect size of 0.25 revealed that samples
sizes of 28 infants and above were adequate for each of the three experiments [40]. The
sample sizes across the three experiments are ns = 30 (13 females), 45 (24 females), and 32
(14 females), respectively.

2.1.2. Stimuli

Stimuli comprised two different classes: patterns and female faces that were all
novel to the infants (i.e., never seen before). The novel patterns were white on a black
background, and each rendered in three conditions of symmetry: (a) symmetric about
the vertical axis, (b) symmetric about an oblique axis rotated 45º counterclockwise from
vertical, and (c) asymmetric, cut vertically and horizontally then rearranged into different
configurations (see Figure 1). Female faces were also white photographic images on a
black background and rendered in the same three conditions of symmetry (see Figure 1).
The method for constructing these stimuli produced variation in symmetry but constancy
on all other visual properties, for example, luminance, contour, and components [18].
Patterns subtended 6.7º × 7.0º of the visual angle within the background. Faces subtended
7.5º × 10.5º of the visual angle.
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2.1.3. Procedures

Infants were seated in a dimly lit room 60 cm in front of a monitor in an infant
chair, which was situated between the transmission component of the head movement-
tracking system (to the rear) and a monitor on which the stimuli were displayed (in front).
The eye camera was located beneath the stimulus monitor. Stimuli were presented on a
48.26 cm Planar color monitor positioned at the infants’ eye level using specific software
which differed by experiment (described below). Preliminary analyses revealed no effects
of infant gender or of stimulus presentation order, so analyses in all three experiments
collapsed across these variables.

3. Experiment 1

The extant infancy literature indicates that infants process vertical symmetry most
efficiently. This finding led us to hypothesize that infants would (need to) scan vertically
symmetrical patterns and faces less than obliquely symmetrical and asymmetrical patterns
and faces. In Experiment 1, therefore, we asked whether infants process vertical symmetry
in patterns and in faces more efficiently than oblique symmetry or asymmetry based on
shifts in their visual fixations. To this end, infants viewed 12 trials, 6 with novel patterns
that were vertically symmetrical, obliquely symmetrical, and asymmetrical, and 6 faces that
were also vertically symmetrical, obliquely symmetrical, and asymmetrical (see Figure 1).
During each 10 s presentation, we recorded the infants’ eye scans, and later coded the
location (on or off the target) and the number of shifts on the target region. We predicted
that infants would make fewer fixation shifts with vertically symmetrical stimuli (patterns
or faces) compared to asymmetrical stimuli because they would not need to fully explore
both sides of the vertical stimulus. We also predicted that obliquely symmetrical stimuli
would not share the processing advantage of vertically symmetrical stimuli given previous
research using habituation [24,25], resulting in more shifts in fixation to obliquely, compared
to vertically, symmetrical stimuli.

3.1. Experiment 1 Method: Materials and Apparatus

An Applied Science Laboratories (ASL; Bedford, MA, USA) Model 504 infant eye-
tracking system captured infants’ fixations for each stimulus image. The system used
infrared corneal reflection to record fixation coordinates on the stimulus plane continuously
at 60 Hz. An Ascension Technologies (Burlington, VT, USA) electromagnetic motion tracker
corrected camera angles for spontaneous head movements that exceeded the frame limits
of the optical tracking. Infants wore a motion-tracking sensor attached to a headband
throughout the session. Signals from the motion tracker were integrated with the eye
camera control unit and used to guide the camera’s pan/tilt motors when corneal reflections
were lost. GazeTracker (EyeResponse Technologies, Charlottesville, VA, USA) software,
running on a second microprocessor, controlled the stimulus presentation on the stimulus
monitor and synchronized eye movement recordings with stimulus presentations.

3.2. Experiment 1 Method: Procedure

Following Bornstein and colleagues [41,42], the eye-tracking system was calibrated
for each infant individually by presenting a rotating red plus sign (1.27º) in the upper left
and lower right corners of an otherwise uniform white field. Across two trials, the plus
sign appeared. When infants were judged to be fixating the targets, the known locations of
those targets were mapped onto the corneal reflections for each infant using standard ASL
calibration procedures [43]. Infants viewed all 12 stimuli in one of four randomized orders
with the restriction that variants of the same pattern or face did not appear consecutively.
Infants viewed each stimulus once, preventing bias by previous exposures to the same
stimulus. Between trials, a uniform field of 16 black + elements (each 2.54º) on a white
background appeared. This image maintained infant attention toward the stimulus screen
without systematically biasing fixation toward any particular region of the display. Each
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trial began with a key press when the infant was looking toward the display. The duration
of each stimulus presentation was 10 s.

3.3. Experiment 1 Method: Data Analysis

To analyze data from the eye-tracking system, we plotted fixations of 200 ms or
more directly on each stimulus image for each participant using the GazeTracker software
package [41,42]. The analysis options in GazeTracker were set to include gaze point changes
of less than 1º of visual angle as part of the same fixation, and any changes greater than 1º
constituted different fixations. Coders blind to the conditions, parameters, and hypotheses
of the experiment analyzed the scan plots to determine two dependent variables. The first
was the location of fixations. Coders classified fixations as “on target” if their corresponding
markers overlapped the pattern or face, including any part of its outer boundary. The
second variable was the shift in fixations. Coders tallied the number of fixation shifts on the
target region of each stimulus for each trial and averaged them over trials. A second coder
similarly evaluated 15% of the sessions; ratings coincided on 100% of the individual trials.

3.4. Experiment 1 Results

Figure 2 shows mean fixation shifts by stimulus class and symmetry condition.
Planned comparisons for a 3 (symmetry condition) by 2 (stimulus class) ANOVA examined
differences in shift totals between the vertically symmetric and obliquely symmetric condi-
tions and between the vertically symmetric and asymmetric conditions for each stimulus
class. The analyses for pattern stimuli revealed significantly fewer fixation shifts with
vertically symmetric patterns than with obliquely symmetric ones, F (1,29) = 4.22, p = 0.049,
ηp2 = 0.13, and with asymmetric ones, F (1,29) = 8.19, p = 0.008, ηp2 = 0.22 (see means
and standard errors in Figure 2). Analyses for faces also revealed significantly fewer fixa-
tion shifts with vertically symmetric than with obliquely symmetric ones, F (1,29) = 6.89,
p = 0.014, ηp2 = 0.19, and with asymmetric ones, F (1,29) = 4.79, p = 0.037, ηp2 = 0.14 (see
Figure 2). Vertical symmetry reduced the frequency of fixation shifts in infants’ visual
exploration of otherwise equivalent patterns and faces, suggesting that vertical symmetry
engenders reduced processing requirements relative to oblique symmetry and asymmetry.
This finding is consistent with earlier conclusions from other tasks that vertical symmetry
occupies a privileged status in infants’ visual processing [26]. The design of Experiment
1 also constitutes a replication of infant perceptual advantage with vertical symmetry
found in previous studies using overall looking time measures, but here, we used eye
scanning [41,42].

Figure 2. Mean fixation shifts in Experiment 1 by symmetry condition and stimulus class. Error bars
indicate standard error of the mean. * = p < 0.01.

That fixation shifts were significantly fewer for vertical symmetric images raises the
question of whether symmetry detection depends on eye movements and whether form
detection varies with symmetry. Does infants’ detection of vertical symmetry depend on
visual scanning, or can infants detect vertical symmetry within individual fixations? If
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vertical symmetry fosters global (contra local) processing, then we would expect reduced
scanning to vertical vis à vis other symmetrical arrangements. Experiment 2 addressed
this question.

4. Experiment 2

Infants in Experiment 1 processed vertical symmetry with fewer scan shifts than
oblique symmetry and asymmetry. One implication of this finding is that infants might
perceive vertical symmetry holistically. This deduction led us to hypothesize that, were
visual stimuli to be presented in shorter durations than a saccade, infants would retain the
advantage with vertical symmetry. Adult observers rate the degree of symmetry and make
comparative judgments of symmetry in pairs of stimuli in brief (200 ms) presentations [44],
characterize shape symmetry on the basis of information available within a single (25 ms)
fixation [8], and perceive the holistic gist of complex symmetrical stimuli in single (100 ms)
fixations [9]. Another deduction is that the recognition of degraded targets should be
impaired if infants engage in a local, rather than global, visual analysis. In Experiment 2,
therefore, we asked whether infants would show an advantage with vertical symmetry
in novel patterns and faces, where the presentation of the visual stimuli occurred in
durations that disallowed visual scanning. Adults can form robust very short-term memory
representations in 50 ms but require 500 to 1500 ms to form robust visual long-term memory
representations [45,46]. To unambiguously isolate very short-term memory in infants, we
used a single brief exposure to a given stimulus (500 ms) followed by a brief retention
interval (1000 ms). These temporal parameters reflect the time course of fixating an object in
a natural scene and then shifting fixation to another object [47]. This procedure allowed us
to test whether infants’ detection of vertical symmetry depends on coordinated, continuous
scans of visual stimuli, or whether infants could detect vertical symmetry without connected
shifts of fixation. Thus, infants viewed 12 trials of patterns and faces, as in Experiment 1,
except that the stimulus duration was abbreviated to 500 msec, and we measured infants’
attention to each stimulus type across 10 cycles. We predicted that infants would look
longer at the stimuli that do not need continuous fixation or unbroken scanning, and
we further predicted that vertically symmetrical faces, and possibly patterns, would fit
this criterion.

4.1. Experiment 2 Method: Materials and Apparatus

The task was administered with a computer running e-Prime software v1.2 (Psychol-
ogy Software tools, Pittsburgh, PA, USA) which controlled the stimulus presentation on
the stimulus monitor and timing. The inter-trial attention-getting stimulus was a colorful
geometric form. A Sony CCD TRV67 video camera was positioned above the center of the
stimulus monitor screen with its viewfinder trained on the infant’s face. The camera was
connected to a viewing monitor near the experimenter. An additional computer (Apple
Power Mac) running Habit 2000 software [48] was used to code and record infants looking
from the experimenter’s view of the infant’s face on the viewing monitor.

4.2. Experiment 2 Method: Procedure

On each trial, the attention-getting image appeared first, and the experimenter ob-
served the infant’s fixation in a video monitor. The experimenter initiated the presentation
of the first trial after infants were judged to be fixating in the direction of the stimulus. On
each trial, a single stimulus was presented 10 times briefly and in rapid equal-interval suc-
cession. Through each trial, the stimulus alternated with a patterned noise mask at 500 ms
intervals for 10 cycles. Following the 10th presentation cycle, the attention-getting image
reappeared until the initiation of the subsequent trial. The 500 ms interval was chosen
following Hood and Atkinson [49]. That work examined infants’ latencies to shift fixations
from a central target appearing first to a peripheral stimulus presented subsequently. At
6 months, latencies averaged over 1500 ms. The temporal conditions of the present study
thus precluded connected saccades while still enabling selective attention to the stimulus
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as a whole. Fixation time differences between stimuli constitute evidence for stimulus
discrimination. We used a fixed-trial procedure. Every infant viewed twelve 10 s trials,
each involving a different stimulus image. As in Experiment 1, we created four stimulus
orders, randomly assigned across infants. In each 10 s trial, the experimenter coded the
infants’ continuous fixation by depressing a key on the coding computer when the infant
was fixated on the stimulus and releasing the key when the infant looked away. Inter-trial
intervals varied somewhat according to the time required for the infant to re-establish
fixation but generally did not exceed 3 s. A second coder coded the infants’ looking times
in 20% of the sessions. Agreement was high, r = 0.94.

4.3. Experiment 2 Results

Infants’ looking time was analyzed with the same statistical design used in Experiment
1. Planned comparisons examined differences in fixation times between the vertical and
oblique symmetry conditions and between the vertical symmetric and asymmetric condi-
tions for each stimulus class. Analyses for patterns revealed no difference in fixation times
between the vertically symmetric patterns and obliquely symmetric ones, F (1, 44) = 2.45,
p = 0.124, or asymmetric ones, F (1, 44) = 1.26, p = 0.270. Analyses for faces, however, re-
vealed significantly longer fixation times on vertically symmetric than obliquely symmetric
ones, F (1, 44) = 7.97, p = 0.007, ηp2 = 0.15, and asymmetric ones, F (1, 44) = 5.71, p = 0.021,
ηp2 = 0.12 (see means and standard errors in Figure 3). Under experimental conditions that
prevented fixation shifts during image viewing, infants did not fixate on patterns differently
across symmetry conditions, suggesting that the infant detection of vertical symmetry in
patterns may depend on connected eye movements. In contrast, infants discriminated faces
by the symmetry condition: infants looked significantly longer at vertically symmetric faces
than obliquely symmetric or asymmetric faces. Thus, infants detected vertical symmetry in
the face within brief individual fixations. Stimulus structures that do not require unbroken
scanning for detection by observers likely have some information processing advantage
relative to those that do. Given earlier demonstrations that young infants’ attention to
pattern structure reflects more efficient processing of vertical symmetry [24], attention
differences in Experiment 2 appear to reflect differences in processing efficiency.

Figure 3. Mean fixation times in Experiment 2 by symmetry condition and stimulus class. Error bars
indicate standard error of the mean. * = p < 0.05.

In Experiment 2, infants’ perception of symmetrical patterns was disrupted by tem-
poral degradations. In order to perceive the symmetry, infants needed to integrate enan-
tiomorphs across time. Similar disruptions occur under various spatial degradations. For
example, the separation of components of a visual pattern interferes with holistic perception
of the pattern. Adults normally process vertically symmetrical patterns efficiently only
when enantiomorphs (the elements of a symmetrical pattern which correspond about the
axis) are separated across the vertical meridian by less than 4° of the visual angle [7,50,51].
The perceptual advantage of symmetry appears to degrade when enantiomorphs are
separated by 5° or more because symmetry depends on either (a) constraining spatial
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parameters to facilitate point-for-point mirror matching of left–right halves of the pattern
across its vertical meridian, or (b) limiting the visual span of the pattern to foster perception
of the pattern as a whole [7,16,52]. The advantage of symmetry is retained only when
enantiomorphs are narrowly aligned about the vertical meridian. Adults perceive sym-
metrical patterns with discontiguous enantiomorphs as they do for otherwise equivalent
but unstructured asymmetrical patterns; infants do so as well. Thus, the contiguity of
enantiomorphs of a symmetrical pattern about the vertical midline promotes the perception
of a holistic pattern [7,16,50,51]. Experiment 3 in Bornstein and Krinsky [26] assessed
infants’ ability to integrate information in visual patterns that are separated in space by
manipulating the spatial separation of pattern components. Infants processed vertically
symmetrical patterns with enantiomorphs that were contiguous or nearly contiguous about
the vertical axis (0° to 2.5° separations) more efficiently than vertically symmetrical patterns
with discontiguous enantiomorphs (5° and 10° separations). Experiment 4 in Bornstein and
Krinsky [26] assessed infants’ sensitivity to the perceptual organization and synthesis of
the pattern form by manipulating the organization of individual components of a vertical
pattern. Infants demonstrated sensitivity to the symmetrical organization of the pattern
above their perception of components in the pattern when they discriminated between
vertical symmetrical patterns and asymmetrical patterns with a vertical organization. The
results of the present Experiment 2 showed that human infants also lose the advantage
with vertical symmetry when symmetrical patterns are degraded in time as they do when
symmetrical patterns are degraded in space. However, the same was not true for faces. In
Experiment 3, we advanced our investigation into parameters that support or disrupt the
advantage with vertical symmetry in patterns and faces.

5. Experiment 3

Experiment 3 had two purposes. First, infants in Experiment 2 did not discriminate
patterns between symmetry conditions in the absence of connected, continuous scanning,
but it remains possible that they might discriminate patterns with additional time to
construct a representation [46]. We hypothesized that allowing infants longer exposures to
such patterns would restore the relative advantage with vertical symmetry. Second, from
infants’ discrimination of faces by symmetry conditions in Experiment 2, it is not clear
whether their discrimination was based on symmetry alone or if the canonical configuration
of facial features played a determining role in their perception. In adults, early face-
sensitive event-related potential (ERP) components are disrupted by the manipulation
of two structural properties embedded in faces, namely, the canonical up–down featural
arrangement and vertical symmetry [53]. We hypothesized that vertical symmetry in faces
in their canonical configuration lends advantage to symmetry, and so inverting faces would
disrupt that advantage. To address these two issues, in Experiment 3, infants viewed six
vertically symmetrical, obliquely symmetrical, and asymmetrical patterns as shown in
Figure 1, each presented 20 times for 500 ms. Infants also saw six vertically symmetrical,
obliquely symmetrical, and asymmetrical faces, presented 10 times for 500 ms each but
shown inverted. We predicted that increasing the number of opportunities to view each
pattern would allow infants to perceive the symmetry in the symmetrical patterns, thus
inducing a preference for vertical symmetry (shown by longer looking times to these stimuli
than to the other two symmetry types). We also predicted that inverting the faces would
disrupt the advantage with vertical symmetry in faces, even where the components of the
face retain vertical symmetry.

5.1. Experiment 3 Method: Materials, Apparatus, and Procedure

The task was also administered with a computer running e-Prime software, which
controlled the stimulus presentation on the stimulus monitor as well as timing. For patterns,
we extended the trial length used in Experiment 2 from 10 to 20 s; thus, infants saw twenty
500 msec alternations of the stimuli and mask. For faces, we inverted the images and
presented them over ten 500 msec alternations of the stimuli and mask. As in Experiment 1,
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infants viewed 12 trials, 6 of alternating patterns and masks and 6 of alternating inverted
faces and masks.

5.2. Experiment 3 Results and Discussion

The looking time was analyzed using the same statistical design as the previous exper-
iments. Planned comparisons examined differences in fixation times between the vertical
and oblique symmetry conditions and between the vertical symmetry and asymmetry
conditions for each stimulus class. Infants looked less at vertically symmetric patterns
compared to obliquely symmetric ones, F (1, 31) = 4.41, p = 0.044, ηp2 = 0.13, and at vertical
ones compared to asymmetric ones, F (1, 31) = 6.04, p = 0.020, ηp2 = 0.16 (see means and
standard errors in Figure 4). Analyses for faces revealed no differences in fixation times
between vertical symmetric and oblique symmetric faces, F (1, 31) = 1.72, p = 0.200, or
asymmetric faces, F (1, 31) = 2.55, p = 0.120.

Figure 4. Mean fixation times in Experiment 3 by symmetry condition and stimulus class. Error bars
indicate standard error of the mean. * = p < 0.05.

Infants in Experiment 3, having additional exposure time to view the novel patterns,
responded differently between symmetry conditions. Relative to Experiment 2, extending
the durations of rapid exposures restored infants’ advantage with patterns with vertical
symmetry. Despite still relatively brief intervals of visual access, infants differentiated novel
patterns on the basis of symmetry, preferring verticality. When presented with inverted
faces, infants provided no evidence of differentiating the faces by symmetry condition.
Because infants differentiated vertical symmetry from other conditions in both Experiments
1 and 2, these results collectively suggest that the canonical arrangement of facial features
supersedes elements in the processing of vertical symmetry in faces. When attention to
vertical symmetric faces is compared directly between Experiments 2 and 3, infants looked
significantly longer at upright canonical than inverted faces, F(1,75) = 23.72, p < 0.0001,
ηp2 = 0.24.

6. General Discussion

Philosophers, estheticians, and scientists have long regarded symmetry as special.
People prefer symmetry, process symmetry more efficiently, and remember symmetry
better than other comparable visual patterns. However, not all symmetries are the same or
provoke equivalent advantages; ample evidence indicates that vertical symmetry is special
in form perception. In three experiments, we studied several aspects of the perceptual
advantage with vertical symmetry in novel patterns and faces. Specifically, we asked
(a) whether variation in symmetry conditions affect infants’ visual scanning of patterns or
faces, (b) whether the detection of pattern or facial symmetry depends on visual scanning,
and (c) whether the advantage of vertical symmetry depends on orientation or processing
time. In Experiment 1, we measured infants’ scanning of visual stimuli, and exposure to
vertical symmetry resulted in a reduction in the distribution and frequency of fixation shifts
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in infants’ visual exploration of novel patterns and human faces. The simplest explanation
for this reduction is that vertical symmetry demands fewer processing resources. This find-
ing comports with the consensus that symmetric patterns are more readily processed and
with the conclusions from other contexts that vertical symmetry enjoys a privileged status
in infants’ visual form processing [24]. The observation that infants’ visual discrimination
by symmetry is related to their visual scanning raises an additional question of whether
infants’ detection of symmetry in visual stimuli depends on connected scan paths during
viewing (Experiments 2 and 3). When each stimulus was presented over a series of very
brief exposures that disallowed scans, infants discriminated between symmetry conditions
with faces but not patterns. Patterns required more exposure time for discrimination than
did faces. Finally, faces were discriminated by symmetry, but only when presented in their
canonical upright orientation (Experiment 1 versus 3). This finding is consistent with the
large body of literature demonstrating the deleterious consequences of inversion in face
processing [54]. In relation to the finding that vertical symmetry may reduce the perceptual
demands of stimuli, the advantage with faces may be specific to the canonical configuration
of their features and not just the features themselves or verticality. This finding is consistent
with the widely reported sensitivity of the human visual system to the facial structure
from very early in life [28]. Infants are known to discriminate between forms on the basis
of a variety of low-level stimulus variables. The present experiments demonstrated that
particular stimulus organizations, specifically vertical symmetry, also facilitated form dis-
crimination holistically in infants as young as 4 months. Babies discriminated vertically
symmetrical forms from obliquely symmetrical and asymmetrical ones that were equated
on all low-level stimulus dimensions. In the present experiments, infants’ perceptual ad-
vantage with symmetry appears specific to vertical symmetry, and infants in earlier studies
did not discriminate horizontal symmetrical forms from asymmetrical ones [25]. Thus, the
structural organization in horizontal or oblique symmetries appears not to facilitate form
discrimination early in infancy; indeed, for infants, these non-vertically symmetrical orien-
tations might just as well be asymmetrical. The early perceptual advantage with vertical
over horizontal symmetry suggests that infants respond to symmetrical organizations in a
hierarchical manner as do adults [14,19,55,56].

Why does the orientation of the axis of symmetry affect the infant’s response to
stimulus organization? The infants’ advantage with vertical over oblique symmetry is
not simply a preference [24,57]. Rather, the special status of vertical symmetry may result
from an interaction between the orientation and the unique qualities of symmetry. Three
levels of explanation for this effect suggest themselves. One is anatomical: the perceptual
bias for vertical symmetry may be rooted in the bilateral symmetry of the perceiving
visual system [13,16,58,59] and associated orientational anisotropy [60]. A second level
of explanation is motor: symmetry is recognized by matching enantiomorphs across the
meridian of a form [7]. A greater density of infant scanning occurs along the horizontal [61]
and would therefore facilitate an advantage with symmetry along the vertical. But, contra
this motor explanation, we found the detection of vertical symmetry in the absence of
visual scans. A third level of explanation is experiential: the special status of vertical
symmetry could result from infants’ experiences in a visual world dominated by vertically
symmetrical forms. An especially significant symmetrical form for the infant is the human
face. It could be, therefore, that the vertically symmetrical property of the face plays a
singularly important role in the infant’s processing bias for vertical symmetry, or it is equally
plausible that the emergence of sensitivity to the global characteristics of the face is tied to
the infant’s ability to use symmetry as an important organizing stimulus dimension. The
findings of these experiments together suggest that vertical symmetric patterns are possibly
perceived as holistic. Some authorities have contended that infants are more sensitive to
parts of configurations than to the whole [48,61]. That infants scan vertically symmetrical
patterns less indicates that infants do not need to perceive isolated elements that construct
a stimulus, however. Infants appear to be sensitive to the higher-order characteristic of
vertical symmetry, and not just to verticality or to symmetry, a conclusion that accords
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with the extant literature [62–64] that very young infants perceive holistic qualities in some
two-dimensional forms. For somewhat older infants, the global or configural properties of
visual stimuli appear to take precedence in processing as they do in adults [65–67].

7. Limitations and Future Directions

These experiments have some limitations that prompt future directions of study.
First, we used novel never-before-seen patterns and faces in these experiments, which is
an experimental advantage, but we were limited to a discrete set of patterns and faces.
Future studies need to examine the generalizability of these findings with additional
stimuli. Second, we tested only one age group of infants, those at 4 months. To answer the
question of whether infants are born with an advantage with vertical symmetry (as might
be the case) calls for a re-assessment of these findings with newborns. Last, we brought
several different behavioral methods and tasks to bear on uncovering infant visual biases,
but additional work, for example, using functional near infrared spectrometry, could be
designed to determine the neurological bases and locations of these visual information-
processing effects.

8. Conclusions

Symmetry is a feature of objects that facilitates perception. We reported three ex-
periments of 4- to 5-month-old infants’ detection and processing of vertical symmetry,
oblique symmetry, and asymmetry in novel patterns and faces. In Experiment 1, infants
showed the fewest shifts in visual fixations to vertical symmetry in patterns and faces.
These results support the view that vertical symmetry is processed more efficiently than
oblique symmetry or asymmetry. In Experiment 2, the stimulus presentation disallowed
more than a single visual fixation, and infants looked longer at a face that is vertically
symmetrical compared to obliquely symmetrical or asymmetrical ones, and they looked
equally to patterns regardless of symmetry. In Experiment 3, where pattern exposures
were prolonged and inverted faces viewed, infants discriminated vertically symmetry
in patterns but lost the advantage with vertical symmetry in faces. Thus, symmetry in
patterns requires more processing time from infants, and inverting the face costs infants
the normal perceptual advantage of symmetry, even if components of the face remain
symmetrical. Together, our findings suggest that infants are prepared to exploit symmetry
in their everyday perceptions.
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