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1. INTRODUCTION

The sensory systems of all animals have evolved and 
developed to detect the most important events in their 
environment. In many cases, those events are related to 
the presence of other animals. Prey animals have to detect 
predators, such as shown by the special sensitivity of 
rodent behavior and neural responses to looming objects 
that might signal the approach of a predator bird (Li et al., 
2021; Yilmaz & Meister, 2013). The neural systems of pred-
ators are set up to detect and catch prey, illustrated by the 
existence of fly detectors in the frog’s brain (Barlow, 1953) 
and prey-catching behavior in mice (Hoy et  al., 2016). 
Many animals care about processing the behavior of con-
specifics, resulting in elaborate processing of social stimuli 
(Powell et al., 2018; Sliwa & Freiwald, 2017).

In the human visual system, studies have revealed the 
existence of brain regions specialized for socially relevant 

stimuli such as faces and bodies (Downing et al., 2001; 
Kanwisher et al., 1997). These regions display a sensitiv-
ity for the degree of animacy, with a graded selectivity for 
how similar the face and body properties of a particular 
animal are to the human face and body (Ritchie et  al., 
2021). As a result, animacy comes out as a primary 
dimension characterizing object representations in human 
cortex and perception (Bracci & Op de Beeck, 2016; 
Kriegeskorte, Mur, Ruff, et  al., 2008; Mur et  al., 2013;  
Yargholi & Op de Beeck, 2023). In addition to this general 
selectivity for animacy, human visual cortex also shows a 
bias to process nonanimate or ambiguous stimuli as 
being animate. The term “pareidolia” is used for the  
general phenomenon of giving a meaningful interpreta-
tion to a random pattern or shape. Very often, this inter-
pretation is in terms of an animal form or face. Examples 
from daily life are numerous. We see all sorts of shapes, 
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mostly animals, in clouds. We detect faces and human 
forms in rock formations and pizza. In the lab, partici-
pants interpret shape stimuli as complex animate forms 
even when performing simple and boring discrimination 
tasks (e.g., Op de Beeck, 2012; Op de Beeck et al., 2003). 
Perceived curvature might be a particularly important 
mid-level perceptual feature for this perception of ani-
mate forms (Long et al., 2017).

In some cases, the illusory perception of animacy dom-
inates the overall processing of the presented objects in 
visual cortical processing, resulting in an animal appear-
ance bias. Bracci et al. (2019) introduced a stimulus design 
with so-called “zoomorphic” or “lookalike” objects: non-
animate objects that are made to look like an animal, such 
as a cow-shaped mug. It is still easy to interpret the looka-
like objects for what they really are, objects, rather for what 
they appear to be, animals. When judging similarity, human 
observers considered the lookalike objects as somewhere 
in between animals and objects, a bit closer to inanimate 
objects than to animals. Feedforward deep neural net-
works (DNNs) exhibited the same behavior to an even 
greater extent, grouping the lookalike objects with inani-
mate objects. We could refer to this tendency as an object 
bias. Nevertheless, the neural response to these lookalike 
objects as measured through functional magnetic reso-
nance imaging (fMRI) was almost indistinguishable from 
the response to actual animate objects, showing that 
human visual cortex is strongly affected by the appear-
ance of the stimuli as animals. This result was even found 
when subjects were doing a task in which they had to 
group the lookalike objects with objects.

However, it is unclear how this animal appearance 
bias emerges during information processing. By using 
fMRI, Bracci et al. (2019) obtained a time-averaged view 
of representational similarity. Such data cannot distin-
guish different hypotheses about how representations 
evolve over time. A first possibility is that the animal 
appearance of the lookalike objects is detected early on 
in the first feedforward sweep of information processing. 
This would be consistent with the findings from a recent 
study on face pareidolia (Wardle et al., 2020). Stimuli that 
elicit face pareidolia are associated with an increased 
activity in face-selective brain regions and early face- 
selective electrophysiological responses (Wardle et  al., 
2020). Note though that despite the speed of processing 
of illusory faces, early electrophysiological responses to 
an illusory face were still more object-like than face-like, 
as was also the case for the (time-averaged) fMRI 
responses. In contrast, in Bracci et al. (2019), the looka-
like objects are processed as less object-like than ani-

mal-like. This difference complicates the generalization 
between these two phenomena. Furthermore, the very 
stereotypical nature of face templates might speed up 
face detection relative to the detection of animal appear-
ance, which is indeed supported by the earlier emer-
gence of face clusters compared to animate/inanimate 
clusters in cortical representational spaces (Kietzmann 
et al., 2019). As a result of these differences, it is uncer-
tain to which extent early feedforward processing would 
underlie the strong animal bias.

A second hypothesis about the emergence of the 
animal bias is that the processing of the animal-like 
appearance of lookalike objects might be present from 
the start but in addition increases over time. Such 
increase could depend on recurrent processing after the 
initial feedforward sweep of information processing. 
Recently, there have been several reports that feedfor-
ward DNNs cannot fully capture the representational 
dynamics in human visual cortex (Kietzmann et  al., 
2019) and cannot explain human performance in diffi-
cult object recognition tasks (Seijdel et al., 2021; Tang 
et al., 2018). The very different behavior of feedforward 
DNNs (lookalikes processed as objects) and human 
visual cortex (lookalikes processed as animals) might be 
due to the fact that human visual cortex relies upon 
recurrent processing to process the animal-like appear-
ance of these lookalikes. The gradual increase in the 
animacy representation might also explain why the ani-
mal bias measured by Bracci et al. (2019) is much stron-
ger than face pareidolia effects (Wardle et al., 2020).

In this study, we investigated the representational 
dynamics and task dependence of the animal bias for 
lookalike zoomorphic objects using electroencephalog-
raphy and fMRI-EEG fusion. We find that the initially acti-
vated representations to lookalike objects are very similar 
to the representations activated by animal pictures. Neu-
ral responses that reflect the true identity of the looka-
likes as inanimate objects are weaker and appear later. 
Task effects of the relevance of the animal appearance 
versus object identity were relatively minor and confined 
to later time points. In sum, the bias to process lookalike 
objects as if they are animals is particularly strong in the 
initial response to these lookalike objects.

2. METHODS

2.1. Participants

A total of 30 healthy volunteers (23 females; mean age, 
21 years) were recruited online through a university online 
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recruitment system (SONA). The volunteers received 
either course credit or monetary rewards. Most volun-
teers were belonging to the student population of KU 
Leuven, and there was no restriction in terms of gender. 
This study was approved by the KU Leuven Social and 
Societal Ethics Committee (G-2020-2379). All partici-
pant’s data were organized according to the brain imag-
ing data structure (BIDS) (Pernet et al., 2019).

2.2. Stimuli and experimental design

Stimuli consisted of 9 triads, resulting in a total of 27 
stimuli (see Fig. 1). Within these triplets, visual appear-
ance and category information (animacy) were manipu-
lated. Each triplet consists of one animate, one inanimate, 
and one zoomorphic object that looks like the animal and 
is matched to the object (e.g., a cow, a mug, and a cow-
shaped mug). All of the images were gray-scaled and 
used before by Bracci et al. (2019).

Participants performed two tasks: an animacy task 
and an animal appearance task. In the animacy task, par-
ticipants judged animacy (“Does this image depict a liv-
ing animal?”). Participants responded “no” to the objects 
as well as to the zoomorphic objects. In terms of response 
tendency for the zoomorphic objects, this can be 
rephrased as an object bias (lookalikes classified with the 
objects). In the appearance task, participants judged ani-
mal appearance (“Does this image look like an animal?”). 
Participants responded “yes” to the animals as well as to 

the zoomorphic objects, which we refer to as an animal 
(appearance) bias. Both task instructions were the same 
as used in Bracci et al. (2019).

Each task consisted of 7 runs, resulting in a total of 14 
runs. During the whole experiment, the task and fin-
ger-response keys were switched every three to four 
runs, with the order counterbalanced between partici-
pants. The finger-response associations were altered so 
that one association used the left-arrow key for “yes” and 
the right-arrow key for “no” and vice versa in the other 
association.

Each run started and ended with five seconds of a fix-
ation cross in the center of the screen, and consisted of 
108 trials per run. Within each trial, an image was pre-
sented for 500  ms in the screen center followed by a 
blank screen for 700 ms. Participants were required to 
respond as accurately and quickly as possible after the 
stimulus presentation. No matter whether the response 
was made or not, a fixation cross was shown with a ran-
dom intertrial interval ranging between 700  ms and 
1100 ms. Responses were only recorded for the period of 
700 ms after stimulus offset, which happened in 71.3% 
of the trials in the animacy task and 71.4% in the appear-
ance task.

In these recorded responses, accuracy was very high 
for each condition in each task, with similar reaction 
times across conditions. In the animacy task, accuracy, 
and reaction time (relative to stimulus onset) were 95.4% 
and 699 ms for animate, 93.4% and 707 ms for looka-

Fig. 1. Experimental stimuli. The stimulus set consisted of 27 stimuli in three categories (animate, zoomorphic, and 
inanimate objects) and was used in the study of Bracci et al. (2019).
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like, and 97.1% and 699 ms for inanimate. In the appear-
ance task, we found 93.5% and 713  ms for animate, 
91.7% and 724 ms for lookalike, and 95.8% and 710 ms 
for inanimate.

2.3. EEG recording and preprocessing

EEG signals were recorded with a 128-channel active 
electrode system arranged according to the extended 
radial system, using an ActiveTwo amplifier at a sampling 
rate of 1024  Hz (BioSemi, Amsterdam, Netherlands). A 
photosensor tracked the exact onset time of each stimu-
lus by detecting a concurrent change from black to white 
in a corner of the screen.

Participants were around 60  cm away from a BenQ 
XL2411 screen (24  inches, 60  Hz, resolution of 1920  x   
1080 pixels), in a dark room. The stimulus presentation 
was controlled using a script constructed with the Psy-
choPy experiment builder (Peirce et al., 2019). All stimuli 
were presented at a resolution of 324 x 324 pixels, around 
5.84 degrees of visual angle.

Offline preprocessing was conducted using the 
FieldTrip toolbox (Oostenveld et  al., 2011) in MATLAB 
R2020b. To reduce the slow drift noise and the power line 
noise, a 2 Hz high-pass filter and a 50 Hz notch filter were 
used. Traces were demeaned per run (baseline correc-
tion), referenced to the average of all 128 channels, and 
then resampled to 250 Hz.

To remove artifacts for eye movements, muscle, heart-
beats, and the channels containing excessive noise, inde-
pendent component analysis (ICA) was performed using 
EEGLAB (Delorme & Makeig, 2004). Subsequently, the 
components were labeled and removed using ICLabel 
(Pion-Tonachini et  al., 2019). Afterward, the artifact-free 
data were segmented into 700 ms epochs from—200 ms 
to 500 ms relative to stimulus onset. We define stimulus 
onset relatively to the onset of the photosensor, which is 
later than the time at which the stimulus presentation script 
gives the command to flip the screen.

2.4. Category-level decoding analysis

To determine the amount of object category information 
contained in EEG data, decoding analyses were applied 
(for review, see Grootswagers et  al., 2017). A temporal 
searchlight analysis using linear discriminant analysis 
(LDA) classifier was performed, as implemented in the 
CosMoMVPA toolbox (Oosterhof et al., 2016). We imple-
mented this searchlight analysis nine times per participant, 
combining the three pairwise contrasts of the three cate-

gorical distinctions (animal, lookalike, object) with three 
task circumstances: both tasks together (combining data 
from 14 runs), and each task separately (animacy task and 
appearance task). The temporal searchlight analysis 
included the multisensor signal from all 128 sensors. The 
temporal neighborhood consisted of each center time 
point with four neighboring time points (two to either side), 
moving as a sliding window across all time points from—
200  ms to 500  ms. The LDA classifier was trained and 
tested using leaving-one-run-out cross-validation.

2.5. Scalp topography of category-level decoding

A spatiotemporal searchlight analysis was performed 
with a different spatial neighborhood setting in the sensor 
space. For each sensor, the sensor and its nine nearest 
neighboring sensors in the configuration from Biosemi 
128 electrode cap formed a neighborhood. After iterating 
across all 128 sensors and across all time points, and 
averaging across all participants, the resulting maps yield 
the topography of category-level decoding accuracy.

2.6. Category-level decoding across triads

We tested the generalization of category-level decoding 
across triads. To do this, a temporal searchlight analysis 
was used, now with a leave-one-triad-out cross-validation  
approach. A triad consists of an animate, a lookalike, and 
an object, shown in one column in Figure 1. In this study, 
there are nine triads in total. The LDA classifier was 
trained with all (8) triads except one, then tested to dis-
criminate the three categories from the left-out triad. We 
performed this procedure 9 times, each time with another 
triad as the left-out triad. In this analysis, we combined 
both tasks together.

2.7. Representational similarity analysis

Representational similarity analysis was used to evaluate 
the similarity for all individual image pairs over time. We 
again used temporal searchlight analyses including mul-
tisensor patterns from all sensors and each time point 
plus four neighboring time points (two on each side of the 
center time point). For each participant and each task, 
the LDA classifier was trained and tested to discriminate 
between each pair of individual images (27 x 26 pairs), 
using leaving-one-run-out cross-validation. The pairwise 
image decoding accuracy was used as a measure of 
neural dissimilarity. As a result, we obtain a neural dissim-
ilarity matrix for each time point.
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The dissimilarity matrices were compared with other 
data modalities in the so-called “representational similarity  
analyses” (Kriegeskorte, Mur, & Bandettini, 2008). Only 
the upper half of the matrices were used in these analy-
ses. First, the dissimilarity matrices were correlated with 
the predictions from two conceptual models, an animacy 
model and an appearance model (Bracci et al., 2019). For 
the animacy model, the lookalikes were expected to 
evoke similar activation patterns as inanimate objects, in 
accordance with an object bias. For the appearance 
model, the lookalikes were expected to evoke similar 
activation patterns as animate objects, showing an ani-
mal bias. Second, we performed fMRI-EEG fusion. We 
used the fMRI dissimilarity matrices from the three 
regions of interest in Bracci et al. (2019): early visual cor-
tex (EVC), posterior ventro-temporal cortex (pVTC), and 
anterior ventro-temporal cortex (aVTC). The fMRI matri-
ces are averaged across 16 participants and combined 
data from two tasks.

2.8. Statistical inference

Statistical significance was assessed using the thresh-
old-free cluster enhancement procedure (TFCE) (Smith & 
Nichols, 2009) and multiple-comparison correction with 
null distributions created from 1000 bootstrapping itera-
tions, all as implemented in the CoSMoMVPA toolbox. 
For category-level decoding and the decoding difference 
between category pairs, the null hypothesis of no differ-
ence was conducted by a permutation test that shuffled 
the category labels on each participant 100 times. For 
generalization across triads, the null hypothesis of chance 
(33.3%) was set. For individual image pair decoding, the 
null hypothesis of chance (50%) was set. For correlation 
between neural dissimilarity matrices and models and 
their differences, the null hypothesis of zero correlation 
was used. The threshold was set at z > 1.96 and z < -1.96 
(i.e., TFCE corrected p < 0.05, two-tailed).

3. RESULTS

3.1. How are lookalikes processed relative to animals and objects?

We grouped the 27 images in three category-level con-
ditions: Animate (animals), lookalike and inanimate (reg-
ular objects). We trained linear classifiers for the three 
possible pairwise contrasts between these three condi-
tions using all trials from all runs but one, and tested 
these classifiers on the individual trials of the left-out 
run. This procedure was iterated until all runs served as 

left-out run. Figure  2 shows the resulting test perfor-
mance averaged across all participants, taking all runs 
together (panel A), or separately for the two task con-
texts (panels B–C).

We first analyzed the data combined across the two 
behavioral tasks. The decoding across time for the dis-
tinction between animate and inanimate serves as a 
benchmark for the other distinctions (Fig.  2A, orange 
line). This decoding goes up toward a first peak around 
104  ms, increases further to a second peak around 
160 ms, and then gradually decreases toward the end of 
stimulus presentation but remains significant throughout.

We find almost equally high decoding for the distinc-
tion between lookalike and inanimate (Fig. 2A, green line). 
The initial peak around 108  ms virtually has the same 
height as for the distinction between animate and inani-
mate. Afterward decoding performance declines but 
remains high. In comparison, the decoding of lookalikes 
versus animate is much lower (Fig. 2A, blue line), signifi-
cantly lower throughout most of the interval from 80 ms 
to 272 ms (gray area in figures). Summarized, the pair-
wise decoding of the three conditions suggests that 
lookalike objects are mostly represented as if they are 
animals for the first hundreds of milliseconds of the neu-
ral response.

The temporal dynamics and relative decoding 
strengths were very similar in the two task settings, the 
animacy task and the appearance task (Fig.  2B–C). In 
both tasks, we find a decoding of lookalike versus ani-
mate that is much lower than the decoding of lookalike 
versus inanimate. This is particularly striking for the ani-
macy task. In this task, subjects are asked to group the 
lookalikes with the inanimate objects. Nevertheless, 
lookalikes are represented as most similar (lowest decod-
ing) to the animals throughout the early part of the neural 
response. In later parts of the response, the decoding of 
lookalikes is similar for the two contrast conditions, ver-
sus animate and versus inanimate, and this is found in 
each task context.

We performed a spatiotemporal searchlight analysis to 
explore which electrode neighborhoods would provide 
the strongest signal to distinguish the three stimulus con-
ditions in a pairwise manner. EEG is not well suited for 
anatomical localization, but as far as there are differences 
between sensors in how much they allow for catego-
ry-level decoding, we would expect these  sensors to be 
over occipitotemporal cortex where these categorical dif-
ferences are typically reported in fMRI. Indeed, for each 
category-level distinction, we found the highest decoding 
around occipitotemporal electrodes, maybe with a slight 
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bias toward the right (Fig.  3). In addition, these topo-
graphic plots further confirm the overall differences in 
effect size between distinctions, with larger effects for 
animate versus inanimate and for lookalike versus inani-
mate than for lookalike versus animate. However, the 
topographies do not suggest clear differences in the spa-
tial distribution of the diagnostic signals between the 
three pairwise comparisons. Nor is there an obvious 
change in this topography across time beyond the 
expected reduction in amplitude toward later time points.

To further elucidate the information contained in the 
decoding between the conditions of animate, lookalike, 
and inanimate, we performed a one-triad-out three-way 
decoding as also described for fMRI by Bracci et  al. 
(2019). In this analysis, we train a linear classifier for the 

thee-way distinction between animate, lookalike, and 
inanimate using all triads but one, and test the classifier 
on generalization to the left-out triad. This approach 
guarantees that the test performance is not based on 
features that are specific to one or a few of the images 
included in the training, and would force it to rely upon 
more high-level object properties at the category level. 
The findings in Figure 4 reveal that the inanimate exem-
plar from the triads is classified much better than the 
lookalikes and animals. The 3  x  3 confusion matrices 
below show which pattern underlies this overall decoding 
difference: There is a high confusion rate between the 
animal and the lookalike of the triad (blue color in the 
corresponding off-diagonal cell), but a low confusion 
between lookalike and inanimate (white color). Again, the 

Fig. 2. Time course of decoding for condition pairs. The conditionwise decoding accuracies over time are shown for the 
data combined across the two tasks (A), for the animacy task (B), and for the appearance task (C). Different lines show 
the decoding performance for each condition pair: animate against lookalike (blue), lookalike against inanimate (green), 
and animate against inanimate (orange). The light-colored regions above and below the mean lines indicate standard error 
across subjects (n = 30). Marks above the x-axis indicate time points where the decoding performance is significantly 
greater than chance. The vertical gray lines indicate the time points where the decoding difference between the lookalike 
and inanimate (green), and lookalike and animate (blue) is significantly different than zero.



7

C.-Y. Chen, G. Leys, S. Bracci et al. Imaging Neuroscience, Volume 1, 2023

animate and lookalike are hard to distinguish, and this 
pattern is visible as soon as any across-triad generaliza-
tion emerges in the generalization time course.

3.2. Representational similarity in pairwise image differences

When we train classifiers to decode the differences be-
tween the three aforementioned stimulus conditions, we 
lose information about differences among individual imag-
es. This grouping at the level of conditions also increases 
the challenge for the classification, as the classifier can 
only use features that are common to the images in a con-
dition. With this in mind, it might not be a surprise that the 
peak decoding performance is higher when we classify 
individual pairs of images, despite the fact that this classi-
fication is based upon much less training data. This peak 
decoding of individual image classification reaches up to 
60% (Fig. 5A), up from around 57% in the conditionwise 
decoding (Fig.  2). The curve as a function of time now 
shows a more prominent early peak, probably because 
decoding can be based upon more simple features that 
distinguish individual images. The curve has a very similar 
shape in the different task contexts (Fig. 5B–C).

Looking beyond the overall decoding, there is a lot of 
systematic variation between image pairs in decoding 

performance. Figure  6 shows the representational dis-
similarity matrices that contain the decoding of all indi-
vidual image pairs. We have one such matrix for each 
time point. The supplemental information shows all time 
points as a movie. In Figure 6, we illustrate the matrices 
with four time points: stimulus onset at 0  ms, 80  ms, 
decoding peak at 100  ms, and 168  ms. We show the 
matrices for both tasks analyzed together and for the two 
tasks separately. The task-specific figures reveal the rep-
licability of the matrices across tasks. In all tasks, we find 
a blue matrix (overall decoding close to chance) around 
0 ms, which transforms into a green-yellow matrix around 
100 ms. Around time 160 ms there is an obvious quad-
rant structure with a large quadrant in the top left which 
relates to a clustering of lookalikes with animals.

To analyze this pattern more quantitatively, we cor-
related the matrices at each time point with the matrices 
from the two a priori conceptual models: the appearance 
model, in which lookalikes are clustered with animals, 
and the animacy model, in which lookalikes are clustered 
with the inanimate objects. Taking the data from both 
task settings together, we find a significant correlation 
with the appearance model throughout a long-time inter-
val, but much less so with the animacy model (Fig. 7A). 
For part of the time, most prominently around 160–

Fig. 3. Scalp topography of decoding for condition pairs. Scalp plots show the topography of average decoding 
performance in seven 100 ms time intervals for each condition pair: lookalike and animate (blue), lookalike and  
inanimate (green), and animate and inanimate (orange).
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200 ms, the correlation with the appearance model is sig-
nificantly higher than with the animacy model.

Through these correlations with model matrices, we 
also obtain a first clear effect of task setting. In the  
animacy task (Fig.  7B), the later part of the responses 
showed virtually identical correlations with the two mod-
els. In contrast, in the appearance task, there was a sig-
nificantly stronger correlation with the appearance model 
than with the animacy model (Fig. 7C).

3.3. FMRI-EEG fusion

Bracci et  al. (2019) investigated the representational 
similarity with the same stimulus design with fMRI. fMRI 
provides time-averaged data with sufficient spatial res-
olution to distinguish between separate brain areas. The 
dissimilarity matrices at the bottom of Figure  8 repre-
sent their findings for three separate ROIs: early visual 
cortex (EVC), posterior ventro-temporal cortex (pVTC), 
and anterior ventro-temporal cortex (aVTC). Bracci et al. 

Fig. 4. The generalization of three-way classification across triads. The time course is shown for the generalization 
across triads for the three-way decoding of animate, lookalike, and inanimate, computed for all trials combined across the 
two tasks. The top panel shows the percentage of time that the exemplar of the left-out triad of a particular category is 
correctly classified. The matrices at the bottom show the full pattern of confusions among the three categories. The light-
colored regions above and below the mean lines indicate standard error across subjects (n = 30). Marks above the x-axis 
indicate time points where the decoding performance is significantly greater than chance.
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Fig. 5. Time course of decoding for image pairs. The pairwise decoding accuracies over time, averaged across all 
27 x 26 stimulus pairs, are shown for the data combined across the two tasks (A), for the animacy task (B), and for the 
appearance task (C). The shaded regions above and below the mean lines indicate standard error across subjects (n = 30). 
Marks above the x-axis indicate the time points where decoding performance is significantly different from chance.

Fig. 6. The decoding accuracies for all image pairs at 0 ms, 80 ms, 100 ms, and 168 ms. The pairwise decoding 
matrices at selected time points are shown for the data combined across the two tasks, for the animacy task, and for the 
appearance task. The higher decoding accuracy (yellow) corresponds to greater neural dissimilarity. Note that there are no 
data values along the diagonal, these values are pre-set at the bottom end of the color scale.
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Fig. 7. Correlation between decoding accuracy and theoretical models over time. Time course of correlation between 
decoding accuracy and theoretical models is shown for the data combined across the two tasks (A), for the animacy task 
(B), and for the appearance task (C). The shaded regions above and below the mean lines indicate standard error across 
subjects (n = 30) and the marks above the x-axis indicate time points where the correlation is significantly different than 
zero. The vertical gray lines indicate time points where the difference between the appearance model (green) and the 
animacy model (blue) is significantly different than zero.

(2019) found that the fMRI similarity patterns in EVC 
correlated with neither model, while pVTC and aVTC 
showed a significantly stronger correlation with the 
appearance model.

Here, we report how the time-averaged activity in 
these three brain regions is related to the temporal 
dynamics as measured through EEG (Fig. 8A). Consistent 
with our knowledge of the visual processing hierarchy, 
the representational similarity matrix in EVC correlated 
strongly with relatively early time points in the EEG (peak: 
100 ms), pVTC still showed a clear early peak but with 
some sustained correlations, and aVTC correlations were 
initially very weak and increased toward a peak at much 
later time points (first peak around 156 ms). The temporal 
development was qualitatively similar in the two task 
conditions (Fig. 8B–C).

These findings reveal that the early bias to represent 
lookalikes as animals in EEG data cannot be due to aVTC 
only, as this region shows almost no correlation with EEG 
in these early time points. It is interesting to visually com-
pare the EEG conditionwise decoding (Fig. 2) and repre-
sentational similarity analyses (Fig. 7) with the fMRI-EEG 
fusion (Fig. 8). The temporal profile in the first two, sum-
marized as a clear decoding early on but with a compa-
rable peak later on, might be explainable by a combination 
of the pVTC and aVTC results in the fMRI-EEG fusion.

4. DISCUSSION

We investigated the representational dynamics underly-
ing the animal appearance bias in the visual cortical pro-

cessing for zoomorphic objects. The current findings 
demonstrate that the animal appearance bias emerges 
early on in the first feedforward sweep of information pro-
cessing. Early cortical responses tend to process looka-
like objects more like animals than like regular, inanimate 
objects. A first line of evidence is the very strong early 
decoding of the distinction between lookalike objects 
and regular inanimate objects, combined with a much 
weaker decoding of the distinction between lookalike 
objects and animals. A second line of evidence is a strong 
early correlation with the so-called “appearance model” 
in which lookalike objects are clustered with animals. 
These effects persist for at least 200 ms, after which the 
animal appearance bias fades out. In the later responses, 
it depends a bit which task participants are performing. In 
particular, the stronger correlation with the appearance 
model persists into later time points only when partici-
pants are performing an appearance task in which they 
group the lookalikes with animals.

We obtained results that point toward an animal 
appearance bias in a very consistent way. Across both 
tasks together and replicated in each task context sepa-
rately, we find that early responses are very much biased 
toward differentiating lookalike objects from inanimate 
objects, more so than differentiating lookalike objects 
from animals. The strength of this animal appearance 
bias, its relatively long duration, and its resilience to task 
effects is overall consistent with earlier findings obtained 
with fMRI (Bracci et al., 2019). The most important new 
piece of information here is that this bias is present 
already in the initial responses, and it is particularly strong 
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Fig. 8. fMRI-EEG fusion. Time courses of correlation between the EEG pairwise decoding matrices and fMRI similarity 
patterns are shown for the data combined across the two tasks (A), for the animacy task (B), and for the appearance task 
(C). The shaded regions above and below the mean lines indicate standard error across subjects (n = 30) and the marks 
above the x-axis indicate time points where the correlation is significantly different from zero.
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early on. Only toward much later time points, the looka-
likes seem to fall more in the middle between animals and 
inanimate objects. Only in these later time points, there is 
some indication of an effect of task context. The resil-
ience of representational geometry to task context is 
consistent with previous work that showed relatively 
minor task effects in ventral visual cortex that increase 
over time, in combination with strongly task-induced rep-
resentations in parietal and frontal cortex (e.g., Bracci 
et al., 2017; Harel et al., 2014; Hebart et al., 2018).

The spatiotemporal searchlight analyses confirm that 
our analyses mostly pick up selective responses in occip-
itotemporal regions. These analyses suggest similar 
topographies of the diagnostic neural signals across pair-
wise comparisons and across time, so we have no strong 
indications that different brain regions would be involved. 
Broadly speaking, and keeping the low spatial resolution 
of EEG in mind, the different categorical distinctions and 
the decoding at different time points seem to be sup-
ported by the same set of regions (see e.g., Graumann 
et al., 2022). The findings with fMRI/EEG fusion help to 
further specify the anatomical origin of the information in 
the EEG patterns. The fusion results suggest that the 
temporal profile of decoding and representational similar-
ity as measured with EEG is best explained by a combi-
nation of responses from different brain regions as 
measured with fMRI. More specifically, the EEG time 
course seems best explained by a combination of poste-
rior and anterior ventral occipitotemporal regions. This 
combination might also cause the double peak in object 
decoding that has been observed in earlier studies (e.g., 
Fig. 2 in Cichy et al., 2014; Figs. 3 & 5 in Mohsenzadeh 
et  al., 2018; Fig.  2 in Robinson et  al., 2019; Fig.  5 in 
Wardle et al., 2020).

The strong early emergence of an animal appearance 
bias strongly supports the first hypothesis that the pro-
cessing of the animal appearance in lookalike objects is 
carried out in the initial feedforward sweeps of informa-
tion processing. This outcome is consistent with the find-
ings of Wardle et al. (2020) on face pareidolia, in which 
case the similarity of illusory faces to human faces was 
most apparent in the early responses. Note however that 
the nature of the effects is very different. In the case of 
Wardle et al., the object images that induced face parei-
dolia were still mostly processed as objects. In this study, 
the lookalike objects are not at all clustered with objects 
and are processed almost completely as animal-like. The 
object identity of the lookalikes is not reflected strongly in 
the neural responses, not in the current EEG study, and 
also not in the prior fMRI study, despite the strength of 

this object identity processing in deep neural networks. 
Overall, the bias to process lookalike objects as animals 
is surprisingly strong.

One unexpected aspect of our findings is the small but 
significant decoding around time 0 in the Appearance 
task (Fig. 5C), which is also still visible when both tasks 
are taken together (Fig. 5A). The design, randomization of 
stimulus order, and analysis stream were the same in the 
two tasks, thus the absence of this phenomenon in the 
Animacy task rules these factors out as potential expla-
nations. We also have other unpublished data in the lab-
oratory where the pairwise decoding time course is very 
similar to the Animacy task here with the same analysis 
stream. Further, we checked explicitly that this time zero 
decoding is not induced by a particular aspect of our 
analysis stream (e.g., cut-off of high-pass filter, ICA, tem-
poral neighborhood used for the decoding). Given the 
small value of this unstable baseline and the absence of 
obvious explanations, we assume it is a consequence of 
seemingly random noise in the data. Most importantly, 
the early animal appearance bias is very large in compar-
ison and is prominently found in figures in which the 
unstable baseline does not occur (e.g., Fig. 2). Further-
more, a conservative statistical approach that takes the 
decoding performance at time 0 as the reference chance 
performance for testing significance (instead of 50%), 
delays the onset of significance in Figures 5A and 5C, but 
does not change the main findings (e.g., in Fig. 5C the 
decoding would be significantly different from this new 
most conservative baseline from 60 ms to 360 ms after 
stimulus onset).

While our findings are consistent with the first hypoth-
esis in terms of feedforward processing, they contradict 
an explanation in terms of recurrent processing. From 
this perspective, the early emergence of the animal 
appearance bias further deepens the mystery of why 
deep neural networks do not show this animal appear-
ance bias. It was an obvious way out to point to the 
absence of recurrent processing in these artificial net-
works, but this argument is no longer valid now that we 
know that the animal appearance bias in human visual 
cortex emerges in the initial feedforward sweep of infor-
mation processing. Furthermore, a gradual build-up of 
the animal appearance bias over time as recurrent pro-
cessing proceeds was also a possible explanation for 
why the animal appearance bias is so much stronger 
compared to for example face pareidolia.

The current findings will be important for constraining 
further computational studies aimed at understanding 
why the human visual system shows such a strong ani-
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mal appearance bias and why it is already so prominent 
in the early feedforward processing of objects. One 
potential avenue is the implementation of a variety of 
training regimes that have been shown to change infor-
mation processing in feedforward deep convolutional 
neural networks.
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