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Abstract: This study aims to assess the effect of hollow glass microspheres of different sizes derived
from glass industry waste on the durability and thermal behavior of waterborne paint. The coatings
were characterized by electron microscopy to investigate the distribution of the spheres and their
influence on the layer morphology. The impact of the various glassy spheres on the mechanical
feature of the coatings was assessed using the Buchholz hardness test and the Scrub abrasion test.
The role of the spheres in altering the durability of the samples was analyzed by the salt spray
exposure test and the electrochemical impedance spectroscopy measurements. Finally, a specific
accelerated degradation test was carried out to explore the evolution of the thermal behavior of the
composite coatings. Ultimately, this work revealed the pros and cons of using hollow glass spheres
as a multifunctional paint filler, highlighting the size of the spheres as a key parameter. For example,
spheres with adequate size (25–44 µm), totally embedded in the polymeric matrix, are able to reduce
the thermal conductivity of the coating avoiding local heat accumulation phenomena.

Keywords: hollow glass microspheres; recycled glass filler; paint thermal behavior; coating durability;
paint mechanical features

1. Introduction

Nowadays, hollow glass microspheres represent a crucial component of lightweight
multifunctional composite materials and are frequently used in aerospace [1], ships [2,3],
flame retardant [4,5], dielectric materials [6,7], and hydrogen storage [8,9], thanks to their
lightweight, low permittivity and low thermal conductivity [4,10]. Their low conductivity
makes these materials highly functional in thermal insulation applications [5,11–13]. From
this point of view, glass microspheres can be easily applied as thermal insulation materials
for energy-saving buildings [14].

Continuous requests for improved life comfort have become the cause of global
warming [15]. The high consumption of fossil fuels like coal, fuel, and natural gas has
created unsustainable issues in our society’s use of energy [16]. Today, 20–30% of the
world’s energy demand is employed to power air conditioners and other refrigeration
equipment [17]. Moreover, In the EU, buildings account for 36% of CO2 emissions and
40% of energy usage [18]. The so-called urban heat island effect (UHI effect) has risen
due to the growing population in cities and the expansion of metropolitan regions [19,20].
Current research demonstrates that for every degree increase in ambient temperature,
the peak electricity demand rises by 0.45% to 4.6%. It translates to a penalty of around
21 ± 10.4 W per person for each degree of temperature increase [21]. Thus, reducing the
energy consumption of refrigeration equipment while guaranteeing good summertime
living comfort is crucial, also because of the dual problem of the actual energy shortage and
a heat island effect. In addition to making substantial use of refrigeration technology, the
construction aspects currently require the most energy. According to statistics, the energy
consumption by a building’s structure due to heat transmission makes up roughly 25% of
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that building’s overall energy use [22]. Hence, increasing the thermal insulation of building
materials is a key strategy to lower a structure’s energy consumption.

Conventional exterior wall thermal insulation materials have the drawbacks of being
expensive, bulky, and having poor heat insulation properties [23]. Conversely, hollow glass
microspheres benefit from low cost, low density, superior mechanical attributes, and good
fluidity [24,25]. Furthermore, the inclusion of these materials in composite structures has
been shown to reduce their heat conductivity [26,27] and flammability [28,29]. Moreover,
several studies have investigated the thermal insulation impact of the glass microspheres
applied as fillers in polymeric matrices [5,30–34]. Therefore, hollow glass microspheres
appear to be excellent candidates as paint fillers for insulating structures.

However, the glass manufacturing sector also significantly impacts the global econ-
omy [35]. The previous linear unsustainable economy contributed to rising raw material
costs, resource depletion, irreversible environmental degradation, and waste accumula-
tion [36]. Hence, a new regenerative economy is emerging to reduce the environmental
impact, built on crucial components like the circular production/consumption system [37].
In this context, the production of microspheres from glass waste are crucial aspects of
the large-scale application of this type of material. Nevertheless, glass recycling is still a
growing industry with several limitations. For example, according to some studies, several
wealthy countries have increased the size of their expected landfills to fit around 200 million
tons of glass garbage annually, with a very poor recycling rate [38].

Consequently, this study wants to solicit the use of microspheres deriving from glass
recycling processes. This work aims to evaluate the impact of hollow glass microspheres
produced by glass waste on the thermal behavior of water-borne paint. Moreover, the
various literature works investigating the applications of glass microspheres mainly focus
on the impact of the filler on the mechanical and insulating properties of the composite
without considering the effect of the microspheres on the durability of the coating. In
fact, in some cases, the addition of filler leads to a reduction in the durability of the paint
due to inhomogeneity in the bulk of the layer [39], agglomeration phenomena [40], decay
of the filler [41] or hydrophilicity features of the additive [42,43]. Thus, this study pays
particular attention to this aspect, exploring the influence of the addition of glassy filler
on the protective features of the polymeric matrix of the paint, considering the effect of
microsphere size as a key parameter.

For this reason, three commercial hollow glass microspheres possessing different
dimensions were employed in the study. The glassy fillers were provided by Chimiglass
(Riccione, RN, Italy) and Poraver GmbH (Schlusselfeld, Germany). They were produced
from recycled glass, binder, and expansion agent, thus possessing highly environmentally
friendly features.

The morphology of the composite coatings was analyzed using an optical microscope
and scanning electron microscope (SEM) observations. The effect of the glass microspheres
on the mechanical characteristics of the layers was assessed by employing the Buchholz
Hardness Indentation test and the Scrub test. Moreover, salt spray chamber exposure
and Electrochemical Impedance Spectroscopy (EIS) measurements were carried out to
examine the protective behavior of the coatings and evaluate the contribution of the
recycled filler. Finally, the durability of the coatings was assessed by subjecting the samples
to a particular accelerated degradation test, studying the evolution of the thermal behavior
of the composite layers, and analyzing the role of the glassy spheres.

2. Materials and Methods
2.1. Materials

The glass hollow spheres called C40 and C15 were provided by Chimiglass (Riccione,
RN, Italy), while the product poraSpheres (called P) were supplied by Poraver GmbH
(Schlusselfeld, Germany). Acetone was purchased from Sigma-Aldrich (St. Louis, MO,
USA) and used as received. The carbon steel substrate (Q-panel type R (0.15 wt.% C-Fe
bal.) −40 mm × 70 mm × 2 mm dimensions) was provided by Q-lab (Westlake, OH,
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USA). The acrylic-based white primer paint ECOFILLER EQW and the polyurethane-
acrylate transparent top-coat paint IDROPUR ZW 01 were supplied by EP Vernici (Solarolo,
RA, Italy).

2.2. Samples Production

The metallic substrates were appropriately pre-treated before painting to increase
the coating’s adherence. First, two minutes of ultrasound treatment in acetone were
used to degrease the metal plates. Next, the mechanical pickling was completed using
a sandblasting procedure with alumina particles (0.2 mm diameter-70 mesh), providing
the steel substrates with a roughness [Ra] of 3.05 ± 0.21 µm. Lastly, a second acetone
degreasing step was carried out to eliminate potential contamination residues.

The spray application method was employed to obtain a primer layer with a thickness
of around 110 µm. Next, the samples were cured in an oven at 60 ◦C for 30 min before
the subsequent top-coat application. Therefore, the polyurethane-acrylate clear top-coat
paint was applied in two steps and allowed to dry in room T for fifteen minutes between
each. Finally, to complete the curing of the topcoat, the samples were heated in an oven at
60 ◦C for 60 min. As a result, the final coatings, which included the primer and the topcoat,
exhibited a thickness of around 210 µm.

Three kinds of hollow glass spheres (1 wt.%) were added to the top-coat paint mixture,
and the three formulations were mixed for 30 min using an ultrasound probe to aid in the
homogenous dispersion of the microspheres. The performance of the polyurethane-acrylate
top-coat layer, free of the recycled glass spheres, was compared with the performance
of the three series of glass microsphere coatings. Table 1 summarizes the samples with
their nomenclature.

Table 1. Samples nomenclature.

Samples Nomenclature Microspheres in the Top-Coat [1 wt.%]

G0 /
G1 C40
G2 C15
G3 P

2.3. Characterization

To investigate the affinity between the polymeric matrix and recycled filler, the mor-
phology of the microspheres and the cross sections of the coatings were observed using
the low vacuum scanning electron microscope SEM JEOL IT 300 (JEOL, Akishima, Tokyo,
Japan). The SEM pictures were examined employing ImageJ software (version 1.53t), to
analyse the size distribution of the spheres. The roughness of the coatings was investigated
with the surface roughness measurement instrument MarSurf PS1 (Carl Mahr Holding
GmbH, Gottingen, Germany).

Using both the Buchholz Hardness Indentation test and the Scrub test, the impact
of the glass microspheres on the mechanical characteristics of the polyurethane-acrylate
topcoat was assessed. During the Buchholz test, the length of the indentation created by the
standardized instrument was measured, following the UNI EN ISO 2815 standard [44]. The
Scrub test was carried out employing an Elcometer 1720 Abrasion and Washability Tester,
following the BS EN ISO 11998 standard [45]. The samples were subjected to 1000 scrub
cycles (37 cycles per minute) in dry mode. The weight loss of the coatings was evaluated
every 250 cycles.

Accelerated degradation tests were used to examine the protective behavior of the
coatings and evaluate the contribution of the recycled filler. To determine how the micro-
spheres would affect the protective performance of the composite layers in a specific hostile
environment, the samples were placed in a salt spray chamber (Ascott Analytical Equip-
ment Limited, Tamworth, UK) for 500 h, according to the ASTM B117-11 standard [46]
(5 wt.% sodium chloride solution). An artificial cut was realized on the surface of the
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samples to assess the adhesion of the coatings, evaluating possible phenomena of coat-
ing detachment and water uptake. Moreover, the protective features of the composite
coatings were investigated by means of Electrochemical Impedance Spectroscopy (EIS)
measurements, carried out with a potentiostat Parstat 2273 (Princeton Applied Research by
AMETEK, Oak Ridge, TN, USA) with the software PowerSuit ZSimpWin (version 2.40) and
applying a signal of about 15 mV (peak-to-peak) amplitude in the 105–10−2 Hz frequency
range. The cell setup comprises an Ag/AgCl reference electrode (+207 mV SHE) and a
platinum counter electrode immersed in the 3.5 wt.% sodium chloride aqueous solution.
The samples were immersed in the test solution for 500 h, with a testing area equal to
6.5 cm2. The measurements were carried out on five samples per series.

Finally, the impact of the microspheres on the thermal behavior of the paint was
evaluated employing the experimental setup depicted in Figure 1 and already optimized
in previous works [47,48]. The thermal behavior of the paint was evaluated considering
the thermal conductivity of the coating and heat transmission within the house model
represented in Figure 1, measuring temperature changes in the system. The measurement
setup consisted of a 150 × 150 × 2 mm3 coated sample located as roof panels on a roofless
box (200 × 270 × 200 mm3) made of polyurethane foam sheets. Each sample was subjected
to a 150 W IR-emitting lamp (Philips IR150R R125, Eindhoven, The Netherlands) located at
a distance of 260 mm. Two thermocouples PT 100 (temperature sensors) were employed
to collect the temperature data: the first placed on the rear part of the coating panel to
evaluate the panel temperature Tsurf, and the other in the middle of the box, at 100 mm
from the coated panel, to measure the small-scale house internal temperature Tint. The
thermocouples were connected to a Delta OHM HD 32.7 RTD (Delta OHM Srl, Selvazzano
Dentro, Italy) data logging instrument for a temperature data recorder every 5 s. DeltaLog 9
software was employed to control the instrument. For each measurement, the temperature
was monitored for 27 min, during which the IR lamps remained on, plus an additional
30 min to allow the samples to return to room temperature.
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Figure 1. Experimental set-up used for the thermal behavior measurements.

Each thermal measurement was interspersed with an accelerated degradation cycle
according to the ISO 20340:2009 standard [49], consisting of the following:

1. 72 h of exposure to UV and water in accordance with ISO 11507:1997 [50], alternat-
ing periods of 4 h exposure to UV-A (340 nm) at (60 ± 3) ◦C and 4 h exposure to
condensation at (50 ± 3) ◦C, employing a UV173 Box Co.Fo.Me.Gra (Co.Fo.Me.Gra,
Milan, Italy);

2. 72 h of exposure to salt spray in accordance with ISO 7253:1996 [51], using a salt spray
chamber (Ascott Analytical Equipment Limited, Tamworth, UK);

3. 24 h at room temperature.
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After each degradation cycle, the samples were characterized by measuring their
thermal performance and appearance properties. In addition, the coatings’ possible degra-
dation was monitored by FTIR infrared spectroscopy measurements and colorimetric
analyses. The FTIR spectra were acquired with a Varian 4100 FTIR Excalibur spectrom-
eter (Varian Inc., Santa Clara, CA, USA) to investigate the chemical modifications of the
polymeric matrix. The colorimetric measurements were carried out by means of a Konica
Minolta CM-2600d spectrophotometer (Konica Minolta, Tokyo, Japan) with a D65/10◦

illuminant/observer configuration in SCI mode.

3. Results and Discussion
3.1. Powders and Coatings Morphology

Figure 2 shows the morphology and size distribution of the three different micro-
spheres. The products C40 and C15 (Figure 2a,b, respectively) possess similar characteris-
tics in terms of high circularity and thickness of about 1µm (analyzed with SEM). While
the powders C40 are particularly small, with an average diameter of about 25 µm, the
dimensional range of the microsphere C15 is wider, with an average value of about 44 µm.
Otherwise, the filler P (Figure 2c) reveals very different characteristics. The circularity of
the spheres is not constant, and the thickness of the walls can even exceed 5 µm.
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Figure 2. Evaluation of the glassy spheres’ dimensions carried out with ImageJ on (a) spheres C40,
(b) spheres C15 and (c) spheres P. The pictures of the spheres were acquired by SEM (scale bar:
400 µm).

Furthermore, their surface is not as smooth as that of the previous two powders but
rather rough. Finally, there is a clear dimensional difference between the powders C40 and
C15: the spheres P have an average size of about 130 µm, but in rare cases, they can even
exceed 200 µm in diameter. This is an aspect of particular importance, as the performance
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of the filler can vary according to the dimensional relationship with the layer in which they
are added.

Thus, the morphology of the coatings containing the recycled spheres was deeply
investigated. Figure 3 reveals the four samples’ appearance in the top view (on the left) and
the cross-section (on the right). The top-view micrographs were acquired with the optical
microscope, while the sections of the coatings obtained by brittle nitrogen fracture were
observed by SEM. The top-view images show a change in the surface morphology of the
coating according to the type of microsphere. The very small powders C40 and C15 are
homogeneously distributed in the coating and can also be observed on the surface of the
layer. This aspect is more evident for the spheres P, whose large size makes them easily
distinguishable within the transparent topcoat. Since the three types of filler have been
added in the same percentage in the topcoat, the larger and heavier P powders appear
sparser in the coating.
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cross-section (on the right) of (a) sample G0, (b) sample G1, (c) sample G2 and (d) sample G3.

The cross-sections of the samples show the spheres tightly adhered within the poly-
meric matrix. During the brittle fracture process in nitrogen, the microspheres undergo
breakage and sectioning but are not expelled from the top-coat bulk. This phenomenon
is representative of the positive affinity between polymer and filler. The compatibility
between the fillers and paint matrix concerns physical and geometric aspects rather than
the adhesion between the polymer and glass. The absence of voids and spaces at the
polymer-glass interface facilitates these compatibility issues, although they don’t neces-
sarily refer to good adhesion. The spherical glass filler is well received and surrounded
by the polymer matrix. The fracture of the coating does not result in the release of the
entire sphere but rather in its fracture into multiple components. The spheres C40 and
C15 possess dimensions compatible with the top-coat thickness: most of the powders are
completely immersed in the polymeric matrix, but many sprout slightly on the surface
of the coating. Otherwise, the powders P are so large that they partially escape from the
polyurethane-acrylate layer. At the same time, their presence leads to a modification of the
morphology of the coating, which tries to accommodate the individual powders, with a
consequent section of the layer that is irregular and full of depressions and prominences.
This phenomenon is highlighted in Figure 4, representing the jagged surface morphology
of coating G3. These bumps are made of coated P spheres, too large to be completely
incorporated into the top-coat thickness.
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Consequently, the presence of the three types of spheres leads to a non-negligible
increase in the surface roughness of the composite coating. Table 2 summarizes the values
of surface roughness [Ra] of the coatings, as the average value of 50 measurements carried
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out on 10 samples per series (5 measurements per single sample). The increase in roughness
is strictly connected to the presence and size of the microspheres: the clear difference
in diameter between the powders C15 and P results in a completely different level of
roughness between the samples G2 and G3.

Table 2. Coatings surface roughness.

Sample Roughness Ra [µm]

G0 0.13 ± 0.01
G1 1.09 ± 0.06
G2 1.12 ± 0.02
G3 2.41 ± 0.12

Ultimately, adding the microspheres involve a significant morphological modification
of the coating, both regarding its internal structure and surface features. The size of the
spheres is a determining factor: too large fillers cause an increase in the roughness of the
coating, as they are not completely covered by the polymeric matrix. However, all three
microspheres demonstrated good compatibility with the polymer matrix, remaining well
incorporated into the composite layer despite destructive stresses such as those introduced
by the brittle fracture process. Consequently, the microspheres are candidates as paint
fillers, provided that the dimensional relationship between the diameter of the sphere and
the thickness of the coating is considered.

3.2. Effect of the Glass Spheres on Paint Mechanical Features
3.2.1. Buchholz Hardness

The Buchholz Hardness Indentation test was employed to assess the influence of the
recycled filler on the hardness of the paint. Figure 5 refers to the average length of the in-
dentations produced by the Buchholz disc indenting tool, with the corresponding Buchholz
hardness value. The result is the outcome of 30 measurements, as 10 measurements were
carried out on 3 different samples for each series of samples (30 measurements in total). The
gauge was placed onto the coating for 30 s. A graduated microscope was used to measure
the length of any consequent indentations in the coating. The units of Buchholz Indentation
Resistance were stated using the scale specified by the UNI EN ISO 2815 standard [44].
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Figure 5. Indentation lengths of the Buchholz test notches, with the corresponding Buchholz hard-
ness values.

Although the walls of the microspheres are very thin, they exhibit a greater hardness
than the pure polymeric matrix, which is particularly soft, as their addition leads to a slight
reduction in the length of the indentation (samples G1 and G2). The filler is so small that it
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can offer good resistance to the indenter; however, the final Buchholz hardness value of the
coating is still very low (<50). The standard deviation of the mean values of samples G1
and G2 is quite significant, a symptom of a certain inhomogeneity in the acquired results.
Conversely, the larger powders of sample G3 do not show such a significant change in
hardness compared to the filler-free coating G0. In this case, as the microspheres are more
scattered on the surface of the coating, as shown in Figure 3d, their contribution is less
significant, while the soft polymeric matrix is predominant. As a result, the hardness values
of samples G0 and G3 are very similar. Also, in this aspect, the size of the filler plays a key
role in influencing different aspects of the composite coating.

3.2.2. Scrub Test

The graph in Figure 6 highlights the results of the Scrub test. The loss of mass due to
the repetitive movement of the abrasive sponge appears to increase due to the presence
of the microspheres. The size of the filler also influences this phenomenon: the larger the
microspheres, the greater the mass loss per unit area measured during the test. For example,
after 1000 cycles, the mass loss of sample G3 is nearly double that of coating G0, free of
filler. Otherwise, the behavior of sample G1 is almost comparable with that of the pure
polymeric matrix.
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The reason for these results is portrayed in the images in Figure 7, acquired by SEM
after 1000 Scrub cycles. The surfaces of the four coatings represent the typical abrasion
lines caused by the Scrub abrasive sponge [52]. The cyclic sliding movement of the sponge
causes the development of shear stresses on the surface of the composite layer. These
shear stresses result in the fracture of the glass microspheres located in the proximity of
the surface. Consequently, the mass loss measured during the Scrub test is associated with
the structural decay of the polymer matrix and with the breakage of the filler, which the
abrasive sponge removes. This phenomenon is more important the more the microspheres
emerge from the bulk of the layer and are subject to shear stresses.

Furthermore, for the same number of spheres destroyed, the loss of mass will be
greater as a function of the size of the filler. Both factors result in sample G3 showing the
greatest mass loss during the test. The microspheres P are the largest (greatest mass) and
consequently are less protected by the coating and undergo greater shear stresses. The
asperities shown in Figure 4 are more subject to abrasion phenomena and, therefore, are
more easily removed from the abrasive sponge. The images in Figure 7 highlight several
circular dark holes on the surfaces of the coatings containing the glass fillers. These events
represent the microspheres, literally sheared in two parts by the sponge: the upper part of
the spheres has been removed, while the lower part is still well adhered to and immersed
in the polymeric matrix. However, some microspheres remain intact: the powders are most
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covered and protected by the polymeric matrix. The smaller the spheres, the more likely
this event will occur.
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Consequently, on the surface of sample G1, it is still possible to appreciate many
intact spheres. This results in an almost negligible increase in mass loss with respect to
the polymeric matrix (sample G0). The number of intact fillers decreases in sample G2,
disappearing almost completely in coating G3.

Ultimately, the size of the microspheres also represents a key factor in the mechanical
performance of the coating. The powders, if small enough to be completely incorporated in
the polymeric matrix, can slightly reduce the indentation phenomena, increasing the overall
hardness of the coating. Otherwise, the most exposed spheres are easily destroyed by the
Buchholz indenter and the abrasive sponge of the Scrub test. The recycled fillers are unable
to influence the mechanical features of the coating significantly but are easily degraded if
exposed to mechanical stress. Spheres with a diameter greater than the thickness of the
polymeric layer are destined for considerable physical degradation. Consequently, this
type of glassy microsphere must be adequately protected by the polymeric matrix.

3.3. Effect of the Glass Spheres on Paint Durability

The recycled filler can significantly alter the morphology of the coating. This aspect is
strictly connected to the protective performance of the composite layer. Therefore, the sam-
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ples were subjected to an accelerated degradation test and electrochemical measurements
to evaluate the impact of the glass microspheres on the durability of the coating.

3.3.1. Salt Spray Test

Figure 8 shows the evolution of the appearance of the samples during exposure to the
salt spray chamber. Sample G0 reveals excellent protective properties, as no phenomena
of water uptake and development of blisters are observed, not even in proximity to the
artificial notch. Recent works [40,53] highlight some protective gaps of waterborne paints,
which easily absorb test solutions and exhibit several blisters. Otherwise, the thickness
of coating G0 in this work is so high as to guarantee a good barrier effect against the
penetration of water and aggressive ions. However, the same behavior was also observed
in the other three samples. The presence of glass microspheres modifies the surface
morphology of the topcoat but does not favor the absorption of test solutions inside the
polymeric matrix. The compatibility between microspheres and polymer is so good that the
interface between filler and matrix does not represent a discontinuity capable of allowing
water penetration and aggressive substances. Consequently, none of the samples shows
blisters on their surface, not even after 500 h of salt spray test exposure.
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At the end of the exposure test, to better observe the damage caused by the artificial
notch, the samples were immersed in a 5 g/L solution of citric acid for 10 min with
ultrasound treatment to remove any corrosion product. After this process, it was possible
to evaluate the extent of the cathodic delamination phenomenon and the detachment of
the coatings near the notch. The appearance of the samples is highlighted on the right
in Figure 8 (post 500 h) after adequate removal of the layer, which has lost adherence to
the metal substrate employing a scalpel. Table 3 expresses the values of the distance of
the coating detachment for the notch, used as a parameter for the adhesion evaluation
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of the composite layers. The values were obtained by observing the samples with the
optical microscope and measuring the length of the detachment of the coating from the
central notch. The standard [46] establishes 1000 µm as the maximum detachment distance
value of the coating from the scratched area. Therefore, the four series of samples do
not possess optimal adhesion values, as they exhibit detachment distances greater than
3000 µm. However, the glass microspheres do not negatively affect this aspect either, as the
results of the four samples are comparable.

Table 3. Coatings detachment distance [µm].

Sample Coating Detachment [µm]

G0 3692 ± 411
G1 3342 ± 672
G2 3742 ± 482
G3 3142 ± 724

In conclusion, the filler-free coating possesses intrinsically good protective proper-
ties and interesting durability, even if its adhesion could be improved by adequate pre-
treatments. Despite the important morphological changes introduced by the glass micro-
spheres, the recycled filler does not seem to affect the performance of the coating negatively.
However, the microspheres do not promote the absorption of test solutions and conse-
quently do not favour cathodic delamination phenomena, reducing the coating adhesion.

3.3.2. Electrochemical Impedance Spectroscopy Measurements

Electrochemical Impedance Spectroscopy (EIS) measurements are often used to evalu-
ate the corrosion resistance properties of organic coatings [42,43], analyzing their defects
or degree of adhesion [41]. The Bode impedance moduli measured at low frequencies
(10−2 Hz), referred to as |Z|(0.01), is a variable that offers a rough quantitative estimate
of the level of protection supplied by the organic layer. In this context, some literature
works [54,55] designate the coatings as ‘protective’ if they possess a |Z|(0.01) value greater
than 106 Ω cm2.

Consequently, the four series of coatings’ protective behavior was determined by
recording the development of their impedance module |Z|(0.01) through time. Figure 9
depicts the parameter |Z|(0.01) changes throughout the samples’ 500-h contact with the
test solution. The test result reveals that the coatings of the four series offer appropriate
protection to the steel substrate since all four samples exhibit |Z|(0.01) values that never
drop below the threshold limit of 106 Ω cm2. This outcome agrees with the results of
salt spray chamber exposure, as all four types of coatings show good protective behavior.
However, the EIS measurements offer more detailed information: sample G0 shows a trend
of |Z|(0.01) values approximately one order of magnitude greater than the three coatings
containing the glassy microspheres. The filler causes the decrease of |Z|(0.01) as the fill
introduces a structural discontinuity in the bulk of the coating, which is ‘felt’ as a defect of
the electrochemical system. This phenomenon was not appreciable from the salt spray test,
but it appears evident from the evolution of |Z|(0.01). Regardless of this aspect, the four
types of samples show a rapid collapse of the impedance modulus during the first hours
of testing, which then slowly increases over time. This phenomenon, already observed in
previous studies [50,56], represents slight absorption processes of test solution inside the
coating, which increases the capacitive contribution of the system.
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The development of the Bode phase spectra is represented in Figure 10 to critically
evaluate the four samples’ behavior and explain the findings in Figure 9. At the beginning
of the test (t = 0 h), sample G0 shows a single asymmetric broad peak corresponding to the
high frequency time constant, which is related to the dissipation events that occur through
the coating [57,58]. However, the phase angle values are relatively high in a wide range
of frequencies, representing a good capacitive and protective contribution of the coating.
Thus, during the first 24 h, the spectrum of sample G0 exhibits a shift to higher frequencies
as a symptom of a reduction in the insulating properties. Subsequently, the spectra show a
typical tendency: the continuous shift of the curves towards lower frequencies due to an
increase in the capacitive contribution of the system due to the continuous absorption of
the test solution. This event confirms the increase in |Z|(0.01) value over time observed in
Figure 9.

The behavior and trend of the three samples containing the recycled filler appear very
similar: a large shift in the curve at high frequencies during the first 24 h, followed by a
continuous movement towards lower frequencies. Apart from the spectrum at t = 0 h, the
curves of the coatings with the microspheres are superimposable at the same time, as the
three coatings provide the same protective behavior. Ultimately, compared with the output
of sample G0, the glass spheres slightly alter the capacitive behavior of the coatings but do
not significantly inhibit the protective performance of the polymeric matrix.

In conclusion, the accelerated degradation test in an aggressive environment does
not allow for highlighting the true impact of the glass microspheres on the protective
properties of the coatings. Only through EIS measurements is it possible to underline a
slight difference in the behavior of the samples due to the presence of fillers. However,
the recycled glass powders do not substantially reduce the coating’s protective features,
regardless of their size. The adequate affinity between the glassy spheres and polymeric
matrix allows these micropowders to be added to coatings and paints without negatively
affecting their durability.
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3.3.3. Accelerated Degradation Test

The accelerated degradation cycles were interspersed with FTIR measurements to
assess the effect of the microspheres on the integrity of the polyurethane-acrylate matrix.
Figure 11 shows the evolution of the FTIR spectra of the samples before and after the
6 cycles of the accelerated degradation test. Before the degradation test (cycle 0), sample
G0, free of filler, exhibits a spectrum with an absorption band between 3400 and 3300 cm−1,
representing the characteristic urethane and urea groups stretching vibration of the NH
bond. Moreover, the stretching region between 3000 to 2800 cm−1 represents the −CH
and −CH2 groups. The two intense peaks at about 1718 cm−1 and 1681 cm−1 refer to the
carbonyl absorption band and the urethane and urea carbonyl groups, respectively [59].
The band at 1529 cm−1 is attributed to the N-H deformations [60], while the signals at
1460 cm−1 and 1375 cm−1 can be assigned to the bending of CH2 aliphatic. The peaks
at 1240 cm−1 and 1138 cm−1 correspond to N-H bending and the coupled C-N and C-O
stretching vibrations. Finally, the peaks at 844 cm−1 and 764 cm−1 are associated with the
C-H stretching and the ester C-O-C symmetric stretching vibration, respectively [61].

The exposure of sample G0 to the degradation cycles does not seem to have caused any
chemical-physical degradation of the polymeric matrix of the coating since the spectrum of
cycle 6 is perfectly superimposable on the initial one. The first of the three stages of any
degradation cycle consist of exposing the samples to UV radiation, which usually leads to
the disruption of the chemical structure of a polymer, resulting in a drop in the polymer’s
molecular weight and a loss of its mechanical properties. “Photo-oxidative degradation”
is the term used to describe this process [62]. Nonetheless, it has been demonstrated that
waterborne polyurethane-acrylate coatings possess good resistance to chemical-physical
deterioration provoked by ultraviolet light [63]. This aspect explains why the FTIR spectra
of sample G0 remain unchanged following the 6 cycles of the degradation test. Moreover,
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the presence of the glass filler is not appreciable by the FTIR spectra, nor does it seem to
influence the durability of the polymeric matrix. The spectra of samples G1, G2 and G3 are
identical to those of coating G0 and do not vary following the degradation test.
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Figure 11. Evolution of the FTIR spectra of the samples before and after the 6 cycles of the accelerated
degradation test.

The results of the colorimetric investigations, however, were substantially different.
Figure 12 reveals the evolution of the color ∆E of the samples as a function of the degra-
dation cycles. The ASTM E308 (2018) standard [64] is followed to compute the total color
variation ∆E, following the equation:

∆E = [(∆L*)2 + (∆a*)2 + (∆b*)2]1/2 (1)

where L*, a*, and b* are the colorimetric coordinates for lightness (0 for black and 100 for
white), the red-green coordinate (positive values are red, negative values are green), and the
yellow-blue coordinate (positive values are yellow, negative values are blue), respectively.
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The graphs in Figure 12 show a clear color change in all samples due to the first
cycle of degradation. The change in the appearance of the four samples can be considered
substantial because the literature classifies a color change ∆E equal to 1 as discernible
even to the human eye [65]. Consequently, the degradation test, consisting of exposure to
UV radiation and a salt spray chamber, involves an effective degradation of the coatings,
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highlighted by a clear and immediate color change, similar for all samples. The color of the
various coatings does not undergo further particular variations following the first cycle,
suggesting a rapid and complete chemical-physical degradation of the surface of the layers.
However, the ∆E appears less significant as the size of the microspheres increases. The
greater the surface covered with glass filler, the less the polymeric matrix is exposed to
degradation; consequently, the accelerated test’s overall color change is less affected. At
the end of the test, sample G3 shows a color change 3 points lower than that of the pure
polymeric matrix (sample G0).

The impact of the microspheres on paint performance is also evident from the results
of the thermal measurements. Figure 13 represents the evolution of the maximum value of
Tsurf and Tint measured with the setup described in Figure 1 when the system stabilizes,
and the temperature reaches a plateau value. The temperature values tend to increase
with the degradation cycles due to the decay of the polymeric matrix. This temperature
increase is more marked near the sample surface (Tsurf), while it grows more slowly inside
the lab-scale house (Tint). The presence of smaller size microspheres (samples G1 and G2)
results in lower measured temperature values. The glass fillers create air gaps in the bulk
of the coating [66]. Since the thermal conductivity of the air is approximately 10 times
lower than that of the polyurethane-acrylic polymers [67], the presence of the microspheres
reduces the coating’s ability to transmit heat. The impact of the filler is greatest on the
temperature measured near the sample, but it also affects and reduces the values of Tint.
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However, this phenomenon is not respected by sample G3, containing the spheres P.
The huge size of the filler P introduces larger air voids into the coating, thus suggesting
better insulating power. Furthermore, the lower surface degradation shown in Figure 12
proposes a better protective behavior of the larger spheres. However, the contribution of the
microspheres P is not as functional as that of the fillers C40 and C15. The temperature values
measured with sample G3 are similar to those of the pure polymer matrix (G0 coating).
The hypothesis for the heat transfer mode through a polymer/hollow glass microspheres
composite coating has been proposed in a recent study [68]: the fillers, homogeneously
distributed inside the coating, realize the so-called ‘thermal insulated islands’, which can
block the heat transfer and prolong the heat transfer path across the polymer matrix. With
the same weight content (1 wt.%), the coating contains a higher number of spheres C40
and C15 than the one P. The smaller-sized microspheres can, therefore, limit the heat flow
through the coating. The top-view image in Figure 3d reveals large filler-free coating spaces
in which the heat flow is not counteracted by the large glass microspheres P. Consequently,
the filler P slows down the heat flow only in localized areas but is not able to significantly
increase the thermal insulation properties of the entire system.
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Furthermore, the sphere P produces two local overheating phenomena, similar to the
greenhouse effect [69], schematically shown in Figure 14. The large spheres P, partially
uncovered by the coating, act as lenses, reflecting a portion of the infrared radiation and
focusing the thermal emission in localized areas. Figure 14a shows the phenomenon of an
intact sphere, with a consequent local increase in the surface temperature of the coating near
the filler. However, some spheres on the surface of the coating can be damaged, causing
the radiation to reflect within it (Figure 14b). This process could lead to a local increase in
temperature within the coating along the surface of the sphere. Both phenomena cause the
reduction in performance observed in the graph in Figure 13.
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Otherwise, at the end of the degradation test (cycle 6), the microspheres C40 and C15
lead to a reduction of Tsurf equal to about 3.5 ◦C and 3.0 ◦C, respectively, compared to
the pure polymeric matrix. Moreover, the temperature Tsurf of the two samples, G1 and
G2, after 5 cycles is even lower than that of sample G0 before the accelerated degradation
test starts.

Also, in this case, the size of the filler plays a key role in influencing the performance
of the polyurethane-acrylic coating. The greater the voids within the coating, the greater
the insulating contribution of the microspheres. However, the microspheres must be
homogeneously dispersed in the coating to increase the heat transfer path across the
polymer matrix to obtain a significant insulating contribution. In this view, very large
fillers, such as the spheres P, are non-functional, even though they introduce large voids
within the bulk of the coating. Moreover, the fill must be completely incorporated in the
bulk of the coating to avoid undesirable phenomena of local heat accumulation, which
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cause an increase in the temperature of the coating. Fillers of adequate size, on the other
hand, can reduce the thermal conductivity of the coating, as in the case of samples G1
and G2.

4. Conclusions

The effect of the size of recycled glass hollow microspheres on the durability and
thermal characteristics of polyurethane-acrylate paint has been evaluated in this work.
The size of the microspheres represents a crucial factor, as it influences the protective and
thermal contribution of the filler, modifying the morphology of the composite coating. In
addition, very large spheres introduce various voids into the polymeric layer and increase
its surface roughness.

The change in morphology is strictly correlated to the coatings’ mechanical features:
the roughness introduced into the coating causes a reduction in resistance to abrasion, as
the glassy powders are easily destroyed by the shear stress to which they are subjected.
Otherwise, the powders, if small enough to be completely incorporated in the polymeric
matrix, can slightly reduce possible indentation phenomena, increasing the overall hardness
of the coating. Consequently, this type of glassy microsphere needs to be adequately
protected by the polymeric matrix to provide a beneficial mechanical contribution.

Differently, recycled glass powders do not substantially reduce the coating protective
features, regardless of their size. The good compatibility between the filler and polymeric
matrix allows these micropowders to be added to coatings and paints without negatively
affecting their durability, as confirmed by the exposure in the salt spray chamber and the
EIS measurements.

Finally, the physicochemical decay of the coatings produced by the accelerated degra-
dation test results in the reduction of the insulating power of the composite paint. However,
fillers of adequate size can reduce the thermal conductivity of the coating, as in the case of
samples G1 and G2. Thus, the microspheres must be completely incorporated in the bulk
of the coating to avoid undesirable phenomena of local heat accumulation, which cause an
increase in the temperature of the coating.

In conclusion, this work highlights the positive and negative effects of glass micro-
spheres made from waste and recycled material, the size of which plays a key role in the
performance of the filler. Microspheres of the appropriate size for the polymeric layer
can improve its mechanical properties but increase the insulating features of the coating.
Therefore, these coatings, in addition to employing recycled materials, appear interesting
for structural applications in which it is necessary to reduce heat absorption by the building
without additional electricity.
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