A TEST FOR THE DIVERGENCE OF CERTAIN SERIES WITH POSITIVE TERMS

LUCA GOLDONI

Abstract

In this short note we prove a simple divergent test for certain series with positive terms which are related in some way with the Theory of Dirichlet's series.

1. Introduction

While I was preparing some examples for ordinary Dirichlet series I encountered the following problem: I need to show that the series

$$
\sum_{n=1}^{\infty} \frac{|\sin n|}{n}
$$

is divergent. Since the method I used can be somewhat generalized it seems to me worthwhile to write down this short note.

2. The theorem

Theorem 1. Let be

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{|f(n)|}{n} \tag{1}
\end{equation*}
$$

if
(1) $f: \mathbb{R} \rightarrow \mathbb{R}$ is a bounded function.
(2) There exists a real number c and two bounded functions $g: \mathbb{R} \rightarrow \mathbb{R}, h: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
0<f(c) \leqslant f(n+1) g(n)+h(n) f(n) \quad \forall n \in \mathbb{N} .
$$

then the series (1) diverges.
Proof. Since the functions f, g, h are bounded on \mathbb{R} we can choose a positive constant M so that, for each $n \in \mathbb{N}$ it is
$|f(n)|<M,|g(n)|<M,|h(n)|<M$. From the triangular inequality we have
$0<|f(c)| \leqslant|f(n+1)||g(n)|+|f(n)||h(n)| \leqslant M(|f(n+1)|+|f(n)|)$.
Date: March 30, 2013.
2000 Mathematics Subject Classification. 40A05, 30B50.
Key words and phrases. Infinite series, Divergence tests, Elementary proof.
Dipartimento di Matematica. Università di Trento.
so that

$$
(|f(n+1)|+|f(n)|) \geqslant \frac{M}{f(c)}
$$

Now, since

$$
\frac{|f(n)|}{n}=\left(\frac{|f(n)|-|f(n+1)|}{2 n}\right)+\left(\frac{|f(n)|+|f(n+1)|}{2 n}\right) .
$$

it follows that

$$
\frac{|f(n)|}{n} \geqslant\left(\frac{|f(n)|-|f(n+1)|}{2 n}\right)+\frac{M}{2 f(c)} \frac{1}{n}
$$

Since, for each $k \in \mathbb{N}$ it is

$$
S_{k}=\sum_{n=1}^{k}(|f(n)|-|f(n+1)|)=|f(1)|-|f(k+1)|
$$

we have that

$$
\left|S_{k}\right| \leqslant|f(1)|+M<+\infty
$$

and so the series

$$
\sum_{n=1}^{+\infty} \frac{|f(n)|-|f(n+1)|}{2 n}
$$

converges by Dirichlet's convergence test. Thus
$\lim _{m \rightarrow \infty} \sum_{n=1}^{m} \frac{|f(n)|}{n} \geqslant \lim _{m \rightarrow \infty} \sum_{n=1}^{m} \frac{|f(n)|-|f(n+1)|}{2 n}+\lim _{m \rightarrow \infty} \frac{M}{2 f(c)} \sum_{n=1}^{m} \frac{1}{n}=+\infty$
and the given series is divergent.
Corollary 1. The series

$$
\sum_{n=1}^{\infty} \frac{|\sin (n)|}{n}, \quad \sum_{n=1}^{\infty} \frac{|\cos (n)|}{n}
$$

are divergent.
Proof. It is enough to observe that for the first series we have

$$
0<\sin (1)=\sin (n+1-n)=\sin (n+1) \cos n-\cos (n+1) \sin n
$$

so that

- $c=1$.
- $g(n)=\cos n$ and $h(n)=-\cos (n+1)$.
while, for the second, it is

$$
0<\cos \left(\frac{\pi}{2}-1\right)=\sin (1)=\sin (n+1) \cos n-\cos (n+1) \sin n
$$

so that

- $c=\frac{\pi}{2}-1$.
- $g(n)=\sin (n+1), h(n)=-\sin (n)$.

Corollary 2. The Dirichlet's series

$$
\sum_{n=1}^{\infty} \frac{|\sin n|}{n^{s}}, \quad \sum_{n=1}^{\infty} \frac{|\cos n|}{n^{s}}
$$

have abscissa of convergence $\sigma_{c}=1$.

References

[1] G.H. Hardy "A course in Pure Mathematics" Cambridge University Press, 2004.
[2] C.J. Tranter "Techniques of Mathematical analysis" Hodder and Stoughton, 1976.

Università di Trento, Dipartimento di Matematica, v. Sommarive 14, 56100 Trento, Italy

E-mail address: goldoni@science.unitn.it

