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Abstract. A property of weak stationarity of a matrix valued differential form at su-
perdensity points of its vanishing set is proved. This result is then applied in the context
of the Maurer-Cartan equation.

1. Introduction

The main result of this work (cf. Theorem 3.1) establishes a property of weak statio-
narity of a matrix valued continuous differential form at the superdensity points of its
vanishing set. To make this statement more understandable, we now recall very briefly
some definitions and properties (referring the reader to Section 2, for a more complete
presentation). Let us consider an M -dimensional Ck manifoldM and recall that a matrix
valued Cp differential h-form on M is a square matrix whose entries are Cp differential
h-forms onM. The classical formalism for differential forms, i.e., wedge product, exterior
differentiation, integration and pullback, extends naturally to matrix valued differential
forms (cf. Section 2.2). In this extended formalism it is easy to introduce a notion of
distributional exterior derivative, which will be denoted by δ (cf. Definition 3.1). We also
recall that, if E is a subset of M, then P ∈ M is said to be an m-density point of E
relative to M if there is a C1 chart (W ,Φ) such that P ∈ W and

LM(Br(Φ(P )) \ Φ(E ∩W)) = o(rm) (as r → 0+),

where LM and Br(Φ(P )) are, respectively, the Lebesgue measure on RM and the ball of
radius r centered at Φ(P ). We observe that this definition does not depend on the choice
of the coordinate chart (cf. Section 2.4).

We are now able to state more precisely than before the result in Theorem 3.1: LetM be
an M-dimensional C2 manifold and let γ be a matrix valued C0 differential form on M
which has the distributional exterior derivative δγ of class C0. Then we have (δγ)Q = 0,
whenever Q is an (M + 1)-density point of {P ∈M| γP = 0}.
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In Section 4, by a simple application of Theorem 3.1, we provide a new proof of the fol-
lowing property in the context of Frobenius theorem about distributions (cf. [5, Theorem
1.3] and [6, Corollary 5.1]): Let D be a non-involutive C1 distribution of rank M on a C2

manifold N . Then, for every M-dimensional C1 open submanifoldM of N , the tangency
set of M with respect to D has no (M + 1)-density points relative to M.

Section 5 presents an application of Theorem 3.1 in the context of Maurer-Cartan equa-
tion. To explain what we are talking about, let us first consider a matrix Lie subgroup G
of Gl(L,R) with Lie algebra g and denote its Maurer-Cartan form by ΓG. Recall that ΓG
is a left-invariant g-valued smooth differential 1-form on G and

dΓG = −ΓG ∧ ΓG.

We have the following well-known theorem, due to Cartan (cf [9, Theorem 1.6.10]): Let
M be a smooth manifold and let φ be a g-valued smooth differential 1-form onM verifying
the Maurer-Cartan equation

dφ = −φ ∧ φ.(1.1)

Then for all P ∈ M there exist a neighborhood U of P and a smooth map f : U → G
such that f ∗ΓG = φ|U .

Relatively to this context, we will provide a structure result for the sets

{P ∈ U | (f ∗ΓG)P = φP}
under the assumption that φ does not verify the Maurer-Cartan equation (1.1). In particu-
lar, let M be an M -dimensional C2 manifold and let φ be a RL×L-valued C1 differential
1-form on M such that (dφ)Q 6= −(φ ∧ φ)Q for all Q ∈ M. Obviously this condition
prevents the possibility of φ being locally a C1 pullback of ΓG (cf. Remark 5.1). More
interesting information on the content of {f ∗ΓG = φ|U} is given in Corollary 5.2, namely:
If U ⊂ M is open and f : U → G is a map of class C1, then U does not contain
(M + 1)-density points of {f ∗ΓG = φ|U}.

2. Basic notation and notions

2.1. Basic notation. The coordinates of RM are denoted by (x1, . . . , xM) so that dx1, . . . ,
dxM is the standard basis of the dual space of RM . For simplicity, we set Di := ∂/∂xi and
dx := dx1 ∧ · · · ∧ dxM . If p is any positive integer not exceeding M , then I(M, p) is the
family of integer multi-indices α = (α1, . . . , αp) such that 1 ≤ α1 < · · · < αp ≤M . Given
a generic map Φ : A→ Rn and v ∈ Rn, we set for simplicity {Φ = v} := {P ∈ A |Φ(P ) =
v}. Let LM and Hs denote, respectively, the Lebesgue measure and the s-dimensional
Hausdorff measure on RM . The open ball of radius r centered at x ∈ RM will be denoted
by Br(x). Let RL×L be the vector space of all L×L real matrices and Gl(L,R) be the Lie
group of nondegenerate matrices in RL×L. The Lie algebra of Gl(L,R) will be denoted

by gl(L,R). Since RL×L ' RL2
we can denote the natural coordinates on Gl(L,R) by the

matrix notation (zij).
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2.2. Manifolds, differential forms. In relation to this topic, we will adopt the notations
commonly used in the main bibliographic references (see, e.g., [10, 12]). We report here,
quickly, just a few of them.

Let M be an M -dimensional Ck manifold. Then a Ck differential h-form (resp. Ck
c

differential h-form, i.e., Ck differential h-form with compact support) on M is a map
ω :M→ ΛhT ∗M with the following property: If∑

α∈I(M,h)

fαdxα (dxα := dxα1 ∧ · · · ∧ dxαh)

is any local representation of ω, then fα is of class Ck (resp. Ck
c , i.e., Ck with compact

support). For any given P ∈ M, we will use the standard notation ωP instead of ω(P ).
As we did for real-valued maps, let us set {ω = 0} := {P ∈ M|ωP = 0} for simplicity.
The set of all Ck differential h-forms (resp. Ck

c differential h-forms) on M is denoted by
CkFh(M) (resp. Ck

cFh(M)).

Let M be a Ck imbedded submanifold of a Ck manifold N and let ι : M ↪→ N be
the inclusion map. If ω ∈ Ck−1Fh(N ), then the Ck−1 differential h-form ι∗ω (i.e., the
restriction of ω to M) will be denoted by ω|M.

We also need matrix-valued differential forms, i.e., matrices whose entries are differential
forms. If M is a Ck manifold and L is a positive integer then MatLC

pFh(M) is the set
of all L× L matrices

(ω(ij)) =


ω(11) · · · ω(1L)

...
. . .

...
ω(L1) · · · ω(LL)

 , with ω(ij) ∈ CpFh(M).

For the sake of convenience, we will sometimes (e.g. in Section 5 below) refer to the
members of MatLC

pFh(M) by simply calling them Cp differential h-forms as well. The
subset of MatLC

pFh(M) whose members have all the entries in Cp
cFh(M) is denoted by

MatLC
p
cFh(M). If ω = (ω(ij)) ∈ MatLC

p
cFh(M) then we set supp(ω) := ∪i,jsupp(ωij).

If ω = (ω(ij)) ∈ MatLC
pFh(M), then we define

ωP := (ω
(ij)
P ), ωP (v1, . . . , vh) := (ω

(ij)
P (v1, . . . , vh))

for all P ∈ M and v1, . . . , vh ∈ TPM. If p ≥ 1, we define the exterior differentiation
d : MatLC

pFh(M)→ MatLC
p−1Fh+1(M) by

d(ω(ij)) := (dω(ij)).

Observe that d is linear and d ◦ d = 0. If N is another Ck manifold and f :M→N is a
Cp map, the pullback

f ∗ : MatLC
pFh(N )→ MatLC

p−1Fh(M)

is defined as follows

f ∗(ω(ij)) := (f ∗ω(ij)).
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The exterior product of of two matrix-valued differential forms

λ = (λ(ij)) ∈ MatLC
pF l(M), µ = (µ(ij)) ∈ MatLC

pFm(M)

is the matrix-valued differential form λ∧µ ∈ MatLC
pF l+m(M) whose entries are defined

by

(λ ∧ µ)(ij) :=
L∑
q=1

λ(iq) ∧ µ(qj).

A trivial computation shows that differentiating the exterior product of matrix-valued
differential forms yields the usual formula (provided k ≥ 1):

d(λ ∧ µ) = dλ ∧ µ+ (−1)lλ ∧ dµ.

A matrix-valued differential form ω = (ω(ij)) ∈ MatLC
0FM(M) is said to be integrable

on M if every ω(ij) is integrable on M. In this case we set∫
M
ω :=

(∫
M
ω(ij)

)
.

Let us recall that a C1 Riemannian manifold (M, g) with the associated Riemannian
distance function is a metric space whose topology coincides to the original manifold
topology, cf. [10, Theorem 13.29]. Hence one can define the corresponding s-dimensional
Hausdorff measure Hs

g, cf. [8, Section 2.10.2], [13, Chapter 12]. The open metric ball of
radius r centered at P ∈M will be denoted by Bg(P, r).

2.3. Hausdorff measure on manifolds. For the convenience of the reader, we recall
the following well-known properties of the Hausdorff measure Hs

g on a C1 Riemannian
manifold (N , g):

• If s = dimN , then Hs
g(B) = Vg(B) for all Borel sets B ⊂ N , where Vg denotes

the standard volume form of (N , g), cf. [8, Section 3.2.46], [13, Proposition 12.6].

• If M is a C1 imbedded submanifold of N and gM denotes the induced metric,
then one has Hs

gM
(B) = Hs

g(B) for all Borel sets B ⊂ M, cf. [13, Proposition
12.7].

• If g denotes the standard Euclidean metric on RN , then one obviously has Hs
g =

Hs. In particular, HN
g is the N -dimensional Lebesgue measure.

Another property which follows readily from [8, Section 3.2.46] is this one.

Proposition 2.1. Let N be a C1 manifold, E ⊂ N and s ∈ [0,+∞). The following are
equivalent:

(1) For every C1 chart (W ,Φ) of N , one has Hs(Φ(W ∩ E)) = 0.

(2) For every C1 Riemannian metric g on N , one has Hs
g(E) = 0.
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(3) There exists a C1 Riemannian metric g on N such that Hs
g(E) = 0.

2.4. Superdensity. Also the following proposition is a consequence of [8, Section 3.2.46],
cf. [5, Proposition 3.3].

Proposition 2.2. Let N be an N-dimensional C1 manifold, E ⊂ N , P ∈ N and m ∈
[N,+∞). The following are equivalent:

(1) There is a C1 chart (W ,Φ) of N such that P ∈ W and

LN(Br(Φ(P )) \ Φ(E ∩W)) = o(rm) (as r → 0+).

(2) For every C1 Riemannian metric g on N , one has

HN
g (Bg(P, r) \ E) = o(rm) (as r → 0+).

(3) There exists a C1 Riemannian metric g on N such that

HN
g (Bg(P, r) \ E) = o(rm) (as r → 0+).

Definition 2.1. If any or, equivalently, all of the conditions of Proposition 2.2 are sat-
isfied, then we say that P is an m-density point of E (relative to N ). The set of all
m-density points of E is denoted by E (m), cf. [5].

Remark 2.1. Let N and E be as in Proposition 2.2. The following facts occur:

• Every interior point of E is an m-density point of E, for all m ∈ [N,+∞). Thus,
whenever E is open, one has E ⊂ E (m) for all m ∈ [N,+∞).
• If N ≤ m1 ≤ m2 < +∞, then E (m2) ⊂ E (m1). In particular, one has E (m) ⊂ E (N)

for all m ∈ [N,+∞).
• Let {Ej}j∈J be any family of subsets of N and m ∈ [N,+∞).

– One has ( ⋂
j∈J
Ej
)(m)

⊂
⋂
j∈J
E (m)
j ;

– If J is finite, then ( ⋂
j∈J
Ej
)(m)

=
⋂
j∈J
E (m)
j ;(2.1)

– If J is countable infinite, then (2.1) can fail to be true, e.g., N = R2 and

Ej := B1/j(O) (j = 1, 2, . . . ).

Remark 2.2. For convenience of the reader, we recall some known results in the special
case when N = RN (which actually could be easily generalized):

• If E ⊂ RN is LN -measurable then: x ∈ E(N) if and only if x is a Lebesgue density
point of E, hence LN(E∆E(N)) = 0. In particular, it follows that (E(N))(N) =
E(N).
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• If E ⊂ RN , then E(m) is LN -measurable, for all m ∈ [N,+∞) (cf. [3, Proposition
3.1]).
• Every open set U ⊂ RN can be approximated in measure by uniformly N-dense

closed subsets of U . More precisely: For all C < LN(U) there exists a closed set
F ⊂ U such that LN(F ) > C and F (m) = ∅ for all m > N (obviously one has
F (N) ⊂ F and LN(F \ F (N)) = 0), cf. [4, Proposition 5.4].
• Let N ≥ 2 and E ⊂ RN be a set of finite perimeter, so that HN−1(∂∗E) <

+∞ (where ∂∗E is the reduced boundary of E, cf. [11, Theorem 15.9]). Then
LN(E \ E(m0)) = 0, with

m0 := N + 1 +
1

N − 1
,

cf. Theorem 1 in [7, Section 6.1.1] (compare also [2, Lemma 4.1]). Moreover,
the number m0 is the maximum order of density common to all sets of finite
perimeter. More precisely, the following property holds (cf. [3, Proposition 4.1]):
For all m > m0 there exists a compact set Fm of finite perimeter in RN such that
LN(Fm) > 0 and F (m)

m = ∅.

3. The main result

Throughout this section M and k will denote an M -dimensional manifold and the regu-
larity class of M, respectively. We will assume k ≥ 1, if not otherwise stated.

Remark 3.1. Let l ≤M and λ ∈ MatLC
0F l(M). Then λ = 0 if and only if∫

M
λ ∧ µ = 0

for all µ ∈ MatLC
k
cFM−l(M).

From Remark 3.1 we get immediately the following proposition.

Proposition 3.1. Let λ ∈ MatLC
0Fh(M), with h ≤ M − 1, satisfy the following

property: there exists µ ∈ MatLC
0Fh+1(M) such that

∫
M λ ∧ dϕ =

∫
M µ ∧ ϕ, for all

ϕ ∈ MatLC
k
cFM−h−1(M). Then µ is uniquely determined.

Definition 3.1. Let the assumptions of Proposition 3.1 be verified. Then we say that
λ has the distributional exterior derivative (DED) in MatLC

0Fh+1(M). The latter is
defined as δλ := (−1)h+1µ, so that∫

M
λ ∧ dϕ = (−1)h+1

∫
M
δλ ∧ ϕ(3.1)

for all ϕ ∈ MatLC
k
cFM−h−1(M).

Remark 3.2. Let l be an integer such that 1 ≤ l ≤ k. Then a standard approximation
argument shows that MatLC

k
cFM−h−1(M) is dense in MatLC

l
cFM−h−1(M), with respect

to the C l topology. Hence in Definition 3.1 we can equivalently assume that (3.1) holds
for all ϕ ∈ MatLC

l
cFM−h−1(M).
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The following propositions state some expected properties. We observe that the first three
are trivial.

Proposition 3.2. If λ ∈ MatLC
0Fh(M) has the DED in MatLC

0Fh+1(M) and U ⊂M
is open, then λ|U has the DED in MatLC

0Fh+1(U) and δ(λ|U) = (δλ)|U .

Proposition 3.3. If λ ∈ MatLC
1Fh(M) then λ has the DED in MatLC

0Fh+1(M) and
δλ = dλ.

Proposition 3.4. Let λ, µ ∈ MatLC
0Fh(M) have the DED in MatLC

0Fh+1(M). Then,
for all a, b ∈ R, the matrix-valued differential form aλ + bµ ∈ MatLC

0Fh(M) has the
DED in MatLC

0Fh+1(M) and δ(aλ+ bµ) = a δλ+ b δµ.

Proposition 3.5. LetM be of class Ck, with k ≥ 2. If λ ∈ MatLC
0Fh(M) has the DED

in MatLC
0Fh+1(M), then δλ has the DED in MatLC

0Fh+2(M) and δ(δλ) = 0.

Proof. Let λ ∈ MatLC
0Fh(M) have the DED in MatLC

0Fh+1(M). Then, by Definition
3.1 and Remark 3.2 (with l = k − 1), we obtain∫

M
δλ ∧ dϕ = (−1)h+1

∫
M
λ ∧ d(dϕ) = 0 = (−1)h+2

∫
M

0 ∧ ϕ

for all ϕ ∈ MatLC
kFM−h−2(M). �

Remark 3.3. Combining Proposition 3.3 and Proposition 3.5, we obtain the following
property: If k ≥ 2 and λ ∈ MatLC

1Fh(M), then dλ has the DED in MatLC
0Fh+2(M)

and δ(dλ) = 0.

Proposition 3.6. Let M be of class Ck, with k ≥ 2. Moreover consider a C2 manifold
N , a C1 map f :M→ N and ω ∈ MatLC

1Fh(N ), with h ≤ M − 1. Then f ∗ω has the
DED in MatLC

0Fh+1(M) and δ(f ∗ω) = f ∗(dω).

Proof. Consider ϕ ∈ MatLC
k
cFM−h−1(M). Then for all x ∈ supp(ϕ) there exists an open

set V(x) ⊂M and a countable family {f (x)
j } ⊂ C2(V(x),N ) such that f

(x)
j → f (as j →∞)

with respect to the C1(V(x),N ) topology. Since supp(ϕ) is compact, there exists a finite
set {x1, . . . , xN} ⊂ supp(ϕ) such that

supp(ϕ) ⊂ V := ∪iV(xi).(3.2)

By [12, Theorem 2.2.14] we can find {η1, . . . , ηN} ⊂ C2(M) such that

ηi ≥ 0, supp(ηi) ⊂ V(xi),
∑
i

ηi|V = 1.

If we extend every f
(xi)
j arbitrarily to all of M and define

fj :=
∑
i

ηif
(xi)
j ∈ C2

c (M,N ) (j = 1, 2, . . . )

then fj|V → f |V (as j →∞) with respect to the C1(V ,N ) topology. Moreover we have∫
V
f ∗j (dω) ∧ ϕ =

∫
V
d(f ∗j ω) ∧ ϕ = (−1)h+1

∫
V
(f ∗j ω) ∧ dϕ.
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Hence, letting j → +∞, we obtain∫
V
f ∗(dω) ∧ ϕ = (−1)h+1

∫
V
(f ∗ω) ∧ dϕ

that is (by (3.2)) ∫
M
f ∗(dω) ∧ ϕ = (−1)h+1

∫
M

(f ∗ω) ∧ dϕ.

The conclusion follows from the arbitrariness of ϕ. �

Let us now state and prove the main result.

Theorem 3.1. Let M be of class Ck, with k ≥ 2. Moreover let h ≤M − 1 and consider
γ ∈ MatLC

0Fh(M) which has the DED in MatLC
0Fh+1(M). If define

Zγ := {P ∈M| γP = 0}

then (δγ)Q = 0 for all Q ∈ Z(M+1)
γ .

Proof. First of all, set for simplicity Br := Br(0) ⊂ RM and let ρ ∈ (0, 1). Then consider
g ∈ C2

c (B1) such that 0 ≤ g ≤ 1, g|Bρ ≡ 1 and

|Dig| ≤
2

1− ρ
(i = 1, . . . ,M).

For r > 0, define gr ∈ C2
c (Br) as

gr(x) := g
(
x

r

)
, x ∈ Br

and observe that (for all x ∈ Br and i = 1, . . . ,M)

|Digr(x)| = 1

r

∣∣∣∣Dig
(
x

r

)∣∣∣∣ ≤ 2

r(1− ρ)
.(3.3)

Now consider an arbitrary Q ∈ Z(M+1)
γ and let (U ,Φ) be a C2 coordinate chart on M

such that Q ∈ U and Φ(Q) = 0 ∈ RM . Observe that

LM(Br \ Φ(Zγ)) = o(rM+1) (as r → 0+)(3.4)

by Definition 2.1.

Now set for simplicity U := Φ(U) and let θ ∈ MatLC
2FM−1−h(U) be chosen arbitrarily.

Obviously there must be (F
(ij)
θ ) ∈ MatLC

0F0(U) such that

[(Φ−1)∗(δγ)] ∧ θ = (F
(ij)
θ dx),(3.5)
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hence, for all i, j, we have (provided r is small enough)∣∣∣∣∫
Br
gr F

(ij)
θ dx

∣∣∣∣ =
∣∣∣∣∫
Br
gr ([(Φ−1)∗(δγ)] ∧ θ)(ij)

∣∣∣∣
=

∣∣∣∣∣
∫

Φ−1(Br)
(gr ◦ Φ) ((δγ) ∧ (Φ∗θ))(ij)

∣∣∣∣∣
=

∣∣∣∣∣
∫

Φ−1(Br)
((δγ) ∧ [(gr ◦ Φ) Φ∗θ])(ij)

∣∣∣∣∣
=

∣∣∣∣∣
∫

Φ−1(Br)
(γ ∧ d[(gr ◦ Φ) Φ∗θ])(ij)

∣∣∣∣∣
≤
∣∣∣∣∣
∫

Φ−1(Br)\Zγ
(γ ∧ d(gr ◦ Φ) ∧ Φ∗θ)(ij)

∣∣∣∣∣
+

∣∣∣∣∣
∫

Φ−1(Br)\Zγ
(gr ◦ Φ) (γ ∧ Φ∗(dθ))(ij)

∣∣∣∣∣
=

∣∣∣∣∣
∫
Br\Φ(Zγ)

([(Φ−1)∗γ] ∧ dgr ∧ θ)(ij)

∣∣∣∣∣
+

∣∣∣∣∣
∫
Br\Φ(Zγ)

gr ([(Φ−1)∗γ] ∧ dθ)(ij)

∣∣∣∣∣ .
Recalling (3.3), we obtain∣∣∣∣∫

Br
gr F

(ij)
θ dx

∣∣∣∣ ≤ C LM(Br \ Φ(Zγ))
(

1

r(1− ρ)
+ 1

)
.

On the other hand, the triangle inequality yields∣∣∣∣∫
Br
gr F

(ij)
θ dx

∣∣∣∣ ≥
∣∣∣∣∣
∫
Bρr

gr F
(ij)
θ dx

∣∣∣∣∣−
∣∣∣∣∣
∫
Br\Bρr

gr F
(ij)
θ dx

∣∣∣∣∣
=

∣∣∣∣∣
∫
Bρr

F
(ij)
θ dx

∣∣∣∣∣−
∣∣∣∣∣
∫
Br\Bρr

gr F
(ij)
θ dx

∣∣∣∣∣ .
It follows that

ρM
∣∣∣∣∣
∫
Bρr

F
(ij)
θ dx

∣∣∣∣∣ ≤ CLM(Br \ Φ(Zγ))
rM

(
1

r(1− ρ)
+ 1

)
+
C(rM − ρMrM)

rM

=
CLM(Br \ Φ(Zγ))

rM+1

(
1

1− ρ
+ r

)
+ C(1− ρM).

Then, by first letting r → 0+ (and recalling (3.4)) and then letting ρ → 1−, we ob-

tain F
(ij)
θ (0) = 0 (for all i, j). The conclusion follows from the identity (3.5) and the

arbitrariness of θ. �

The following simple corollary of Theorem 3.1 will be useful below.
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Corollary 3.1. Let M and N be two C2 manifolds, let f : M → N be a C1 map and
ω ∈ MatLC

1Fh(N ), with h + 1 ≤ M := dimM. Moreover consider µ ∈ MatLC
0Fh(M)

which has the DED in MatLC
0Fh+1(M) and define

Af,ω,µ := {P ∈M|µP = (f ∗ω)P}.

Then (δµ)Q = (f ∗dω)Q, for all Q ∈ A(M+1)
f,ω,µ .

Proof. Define γ := µ− f ∗ω ∈ MatLC
0Fh(M) and observe that Af,ω,µ = Zγ, hence

A(M+1)
f,ω,µ = Z(M+1)

γ .

Moreover, by Proposition 3.4 and Proposition 3.6, the form γ has the distributional ex-
terior derivative in MatLC

0Fh+1(M) and

δγ = δµ− f ∗dω.
The conclusion follows from Theorem 3.1. �

4. Applications I

From Corollary 3.1 we can easily derive [6, Theorem 3.1], which states a low-density
property for the integral set of a submanifold with respect to a non-integrable exterior
differential system. Before showing this application, let us briefly set the context. Con-
sider a C2 manifold N and an arbitrary family O of C1 differential forms on N . Moreover
let f : U ⊂ RM → N (where U is open), be any imbedding of class C1 and define

I(f,O) :=
⋂
ω∈O
{f ∗ω = 0}.

Then [6, Theorem 3.1] states that

U ∩ I(f,O)(M+1) ⊂
⋂
ω∈O
{f ∗dω = 0}.

Now let VM(O)y denote the set of all M -dimensional integral elements of O at y ∈ N (cf.
Definition 1.1 in Section 1 of [1, Chapter III] and the first definition in Section 1 of [14,
Chapter III]) and assume that

For all y ∈ N and Σ ∈ VM(O)y there is ω ∈ O such that (dω)y|Σ 6= 0.(4.1)

We naturally expect that condition (4.1) prevents the existence of interior points in
I(f,O), but the structure of I(f,O) can be described more precisely by using the notion
of superdensity. Indeed in [6, Corollary 3.2], which follows trivially from [6, Theorem 3.1],
we have proved that one has

U ∩ I(f,O)(M+1) = ∅.(4.2)

We can finally apply Corollary 3.1 to prove the following result, which in turn served to
prove [6, Theorem 3.1] very easily.
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Theorem 4.1 (Theorem 3.2 of [6]). Let ω ∈ C1Fh(N ) and f : U ⊂ RM → N (where U
is open) be a C1 map. Then

U ∩ {dλ = f ∗ω}(M+1) ⊂ {f ∗dω = 0}
for every λ ∈ C1Fh−1(U).

Proof. Observe that µ := (dλ) ∈ Mat1C
0Fh(U) has the DED in Mat1C

0Fh+1(U) and
δµ = 0, by Remark 3.3. Hence and by Corollary 3.1 (with L = 1) we get (f ∗dω)Q = 0 for

all Q ∈ A(M+1)
f,(ω),µ = U ∩ {dλ = f ∗ω}(M+1). �

Remark 4.1. If O is a family of linearly independent C1 differential 1-forms defining a
distribution D of rank M on N (cf.[10, Chapter 19]), then, for all y ∈ N , the M-plane
Dy is the only M-dimensional integral element of O at y, i.e., VM(O)y = {Dy}. Hence:

• The set I(f,O) coincides with the tangency set of f(U) with respect to D;
• The condition (4.1) is verified if and only if D is non-involutive at each point of
N , cf. [10, Proposition 19.8].

Thus the structure identity (4.2) proves that if D is non-involutive at each point of N
then the following property holds: For every M-dimensional C1 open submanifold M of
N , the tangency set of M with respect to D has no (M + 1)-density points relative to M,
cf. [5, Theorem 1.3] and [6, Corollary 5.1].

5. Applications II, The context of Maurer-Cartan form

Let us consider any matrix Lie subgroup G of Gl(L,R) with Lie algebra g ⊂ gl(L,R) and
let ι : G→ Gl(L,R) be the inclusion map. Then let γ ∈ MatLC

∞F1(Gl(L,R)) be defined
at z = (zij) ∈ Gl(L,R) as

γz := (zij)
−1(dzij)

and define the Maurer-Cartan form of G as

ΓG := ι∗γ ∈ MatLC
∞F1(G).

Observe that γ is the Maurer-Cartan form of Gl(L,R). Recall that ΓG is left-invariant,
takes values in g and satisfies the Maurer-Cartan equation, that is

dΓG = −ΓG ∧ ΓG,(5.1)

cf. [9, Section 1.6].

Remark 5.1. Consider a C2 manifold M, φ ∈ MatLC
1F1(M) and assume that the

following property holds: For all P ∈M there exist a neighborhood U of P and a C1 map
f : U → G such that f ∗ΓG = φ|U . Then, first of all, φ takes values in g. Moreover, by
Proposition 3.3, Proposition 3.6 and (5.1), one has

d(f ∗ΓG) = δ(f ∗ΓG) = f ∗(dΓG) = −f ∗(ΓG ∧ ΓG) = −(f ∗ΓG) ∧ (f ∗ΓG)
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that is

(dφ)|U = −(φ ∧ φ)|U .
Relative to the opposite implication, it is well known that a g-valued smooth differential
1-form satisfying the Maurer-Cartan equation is always, at least locally, a smooth pullback
of the Maurer-Cartan form. In fact the following theorem holds, cf [9, Theorem 1.6.10].

Theorem 5.1 (Cartan). Let M be a smooth manifold and let φ be a g-valued smooth
differential 1-form on M satisfying the identity dφ = −φ ∧ φ. Then for all P ∈ M
there exist a neighborhood U of P and a smooth map f : U → G such that f ∗ΓG = φ|U .
Moreover, if f1, f2 : U → G are any two smooth maps with this property, then there exists
a ∈ G such that f2(Q) = af1(Q) for all Q ∈ U .

Remark 5.1 shows that, if M is a C2 manifold and φ ∈ MatLC
1F1(M), the occurrence

of condition

(dφ)Q 6= −(φ ∧ φ)Q, for all Q ∈M(5.2)

prevents the possibility of φ being locally a C1 pullback of the Maurer-Cartan form ΓG.
Thus, whatever the choice of C1 map f : U ⊂M→ G, the set {f ∗ΓG = φ|U} cannot have
interior points. In Corollary 5.2 below we provide a structure result for this set, under
assumption (5.2), by using superdensity.

Now we provide an application of Corollary 3.1, which is the natural counterpart in this
context of Theorem 4.1 in Section 4.

Theorem 5.2. Let M be an M-dimensional C2 manifold and let φ ∈ MatLC
0F1(M)

have the DED in MatLC
0F2(M). Moreover, let U ⊂M be open and consider a C1 map

f : U → G. Then (δφ)Q = −(φ ∧ φ)Q for all Q ∈ U ∩ {f ∗ΓG = φ|U}(M+1).

Proof. Let Q ∈ U ∩ {f ∗ΓG = φ|U}(M+1) and observe that

(f ∗ΓG)Q = φQ,(5.3)

by continuity. We observe also that, by Proposition 3.2, φ|U has the DED in MatLC
0F2(U)

and δ(φ|U) = (δφ)|U . If we now apply Corollary 3.1 with

M := U , N := G, ω := ΓG, µ := φ|U ,
then we get

(f ∗dΓG)Q = (δ(φ|U))Q = ((δφ)|U)Q = (δφ)Q.

Hence, by recalling (5.1) and (5.3), it follows that

(δφ)Q = −(f ∗(ΓG ∧ ΓG))Q = −((f ∗ΓG) ∧ (f ∗ΓG))Q = −(φ ∧ φ)Q.

�

Theorem 5.2 and Proposition 3.3 yield immediately the following property.
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Corollary 5.1. Let M be an M-dimensional C2 manifold and let φ ∈ MatLC
1F1(M).

Moreover, let U ⊂M be open and consider a C1 map f : U → G. Then (dφ)Q = −(φ∧φ)Q
for all Q ∈ U ∩ {f ∗ΓG = φ|U}(M+1).

Hence:

Corollary 5.2. Let M be an M-dimensional C2 manifold and let φ ∈ MatLC
1F1(M) be

such that (dφ)P 6= −(φ ∧ φ)P for a certain P ∈ M. Then there exists a neighborhood U
of P such that U ∩ {f ∗ΓG = φ|U}(M+1) = ∅ for all C1 maps f : U → G. In particular, if
condition (5.2) is verified and f : U → G is any C1 map (with U ⊂ M open), then one
has U ∩ {f ∗ΓG = φ|U}(M+1) = ∅.
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