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A significant aspect of computational thinking is as a way of reasoning about the world in terms of data.
This mindset channels number-crunching toward an ambition to discover knowledge through logic, models
and simulations. Here we show how computational cognitive science can be used to reconstruct and analyse
the structure of computational thinking mindsets (forma mentis in Latin) through complex networks. As a
case study, we investigate cognitive networks tied to key concepts of computational thinking provided by
(i) 159 high school students enrolled in a science curriculum and (ii) 59 researchers in complex systems
and simulations. Researchers’ reconstructed knowledge highlighted a positive mindset about scientific
modelling, semantically framing data and simulations as ways of discovering nature. Students correctly
identified different aspects of logic reasoning but perceived ‘computation’ as a distressing, anxiety-eliciting
task, framed with math jargon and lacking links to real-world discovery. Students’ mindsets around ‘data’,
‘model’ and ‘simulations’ critically revealed no awareness of numerical modelling as a way for understand-
ing the world. Our findings provide evidence of a crippled computational thinking mindset in students,
who acquire mathematical skills that are not channelled toward real-world discovery through coding. This
unlinked knowledge ends up being perceived as distressing number-crunching expertise with no relevant
outcome. The virtuous mindset of researchers reported here indicates that computational thinking can be
restored by training students specifically in coding, modelling and simulations in relation to discovering
nature. Our approach opens innovative ways for quantifying computational thinking and enhancing its
development through mindset reconstruction.
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2 M. STELLA ET AL.

Introduction

Important to computational thinking is a way of thinking about the world in terms of data and operations
on those data. This mindset recasts ideas or problems as quantification tasks, in which data, theory, models
and simulations are combined creatively to achieve quantitative answers [1–3]. Computational thinking
skills include (i) defining a quantifiable problem (e.g. how quickly can a virus spread?), (ii) using logic
reasoning for mapping the problem in a computable model of reality (e.g. using data and theory for
simulating how individuals can get infected), (iii) computing the answer (e.g. each infected person can
infect three more, on average) and (iv) interpreting the results (e.g. the virus spreads faster than the flu).
Computational thinking is a challenging way of understanding our world, requiring creativity, expertise,
data availability and knowledge. Computers are not essential for the easier tasks but prove invaluable for
analysing large volumes of data or testing theoretical predictions by coding simulations (e.g. the Event
Horizon Telescope Team’s picture of a black hole required processing 4.5 petabytes of data).

As a way of perceiving and linking different elements of reality, that is, a mindset, a definition of
computational thinking grounded in cognitive science remains an open question. Identifying the presence
of this mindset is key for success in our society, which increasingly depends on data processing [4, 5]
(e.g. for simulating virus spreading) and requires more and more computational skills that are in high
demand in the job market [6, 7].

The attitude toward the subject is an important part of mindsets [8–10]. Studies show that while
mathematical knowledge could be more highly related to short-term outcomes, such as achievement in
a statistics course [11, 12], the attitudes toward statistics are related to long-term outcomes, such as
dissertation grade [13]. However, other studies show that some components of these attitudes have a
strong relationship even with short-term results [14, 15]. More complex models suggest that components
of attitudes, such as interest and value, could affect others, such as effort and expectancy for success,
that, in turn, are directly related to subject achievements [16, 17].

In general, computational thinking is ‘the thought processes involved in formulating a problem and
expressing its solution(s) in such a way that a computer—human or machine—can effectively carry out’
[18]. Additionally, computational thinking is used to generate new knowledge through constructionist
thoughts [2, 19]. In Papert’s definition, computers are a tool for thinking rather than the idea of trying
to think like a computer, like in Wing’s definition, and this different perspective underlines the role of
constructionism and computations in generating knowledge. These two points represent evidence that
there is no consensus about an exact definition of computational thinking. However, all approaches agree
on saying that computational thinking is broader than counting skills and also includes the ability to think
logically and abstractly and use problem-solving skills (see [20, 21]. Computational thinking plays an
important role in the whole of STEM education and beyond [3–5, 8, 22, 23].

This article moves a step forward toward investigating the presence and structure of a computational
thinking mindset by using the framework of forma mentis networks (FMNs), that is, knowledge graphs that
map conceptual knowledge and sentiment as perceived by individuals [24]. In computational cognitive
science, knowledge graphs map conceptual associations [19, 25, 26], including a wide variety of memory
recall or semantic links between concepts and information (e.g. ‘virus’ evoking the memory of ‘disease’,
see [27]). The structure of knowledge graphs has been shown to influence many cognitive processes [28],
such as writing styles [29], stance detection [30] and creativity levels [31]. In education research, maps
of conceptual associations revealed important insights in the way students acquire and structure their
knowledge [1, 32, 33]. In addition to knowledge structure, the positive/negative sentiment attributed to
each concept also plays a fundamental role in thought processes [34]. Forma mentis (Latin for “mindset”)
networks combine these elements in order to reconstruct the semantic frame [35], or meaning, and

D
ow

nloaded from
 https://academ

ic.oup.com
/com

net/article/9/6/cnab020/6424446 by U
niversita' degli studi di Trento - Biblioteca user on 26 January 2023



MAPPING COMPUTATIONAL THINKING MINDSETS 3

emotions attributed by individuals to concepts, thus reconstructing a networked model of their mindset
[24]. Complexity in forma mentis networks rises from the possibility of linking concepts in different
ways, and according to patterns of knowledge reflecting specific experience, expertise and perceptions.
Analogously to map analysis in social psychology [36], forma mentis networks reflect ways of thinking in
terms of conceptual associations, not only enlisting ideas relative to a given semantic sphere (e.g. ‘science’)
but also explicating how individuals shaped up connections in their semantic memory [37] between
concepts relative to such a sphere (e.g. linking ‘maths’ with ‘creativity’ or ‘science’ with ‘discovery’).
Notice that, in addition to semantic links, which were analysed also in previous network approaches to
knowledge modelling, forma mentis networks also provide affective norms, indicating how positively
or negatively concepts are perceived by individuals. The interplay between cognitive associations and
emotional norms enriches the complexity of forma mentis networks in terms of providing a mental
representation of the way individuals tend to associate positive, negative or neutral ideas in their own
minds. We capitalize on this element of novelty in order to introduce forma mentis networks as a suitable
framework for modelling key ways of thinking around computational thinking.

Specifically, in this study, we examine the representation of key concepts of data science and compu-
tational thinking in experts’ and students’ mindsets. Based on the literature, several key concepts were
chosen. Firstly, such general concepts as ‘computer science’ and ‘computers’ were used. Second, one of
the important components of computational thinking—‘logical reasoning’—was considered [20, 23, 24].
Then, based on computational thinking in mathematics and science taxonomy [3], ‘model’, ‘computation’,
‘simulation’, ‘data’ and ‘code’ were highlighted.

Herein, we focus on detecting traces of computational thinking patterns in the mindsets of two
populations (i) 159 high school students enrolled in a STEM-focused curriculum and (ii) 59 STEM
researchers working on modelling complex systems.

STEM experts’ mindset is seen to be fully aligned with key aspects of computational thinking as
identified by previous studies, namely awareness about logic reasoning; a positive attitude toward data,
simulations and models; and the ability to frame coding as a tool for achieving new knowledge. Students’
mindset was quite different. Although they are aware of logic reasoning, students framed ‘model’ as
vaguely related to computing. They also completely missed any link between ‘simulation’ and com-
putation, which was perceived as an anxiety-eliciting construct. We interpret this lack of perception as
a partially undeveloped computational mindset, possessing fundamental tools for logic reasoning but
lacking the ‘sense of purpose’ that psychologically drives computational thinking with a need to solve a
challenge for understanding our world. Restoring this purpose in students, as it is in researchers, is key
for educational policies promoting computational literacy among high school students and teachers.

Methods

The analysis presented here is based on data collected by Stella et al. [11], which included conceptual
associations and positive, negative and neutral labels provided by 159 Italian high school students in
their final school year and by 59 international STEM researchers. Students from three different Italian
high schools located in Southern Italy were involved independently in the data gathering on their school
grades. STEM researchers had extensive training in modelling, simulating and understanding complex
systems. Both samples of students and researchers have the same ratios of male and female participants.

FMNs combine artificial intelligence, cognitive psychology and complex systems to explore both
explicit/conscious and implicit/subconscious knowledge and emotional perception of individuals or
groups of individuals toward a given topic (see [11, 25, 26]. Behavioural forma mentis networks
(BFMNs) represent knowledge as a knowledge graph, that is, a web of concepts interconnected by
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4 M. STELLA ET AL.

knowledge-eliciting links. Unlike WordNet or other knowledge graphs, BFMNs use free associations
from psycholinguistics in order to link concepts [27]. Patterns of conceptual associations are provided
by individuals through a simple form and reflect how people structure their knowledge around specific
concepts. BFMNs are different from textual forma mentis networks (TFMNs). The latter reconstruct
knowledge from text analysis and hence do not pass through behavioural tasks as BFMNs do. Both
BFMNs and TFMNs are forma mentis networks (FMNs), in that they combine conceptual knowledge
and affect patterns. BFMNs include subjective norms for sentiment, as concepts are also rated as ‘posi-
tive’, ‘negative’ or ‘neutral’ by individuals. Combining knowledge structure and affective patterns, forma
mentis networks identify how concepts are perceived in a given set of individuals or populations. By cross-
validation with independent affective norms, words mostly surrounded by negative associates in BFMNs
were also found to correspond to anxiety-eliciting concepts, including STEM anxiety (an increased alert-
ness inspired by facing STEM problems) and test anxiety (a feeling of stress/tension felt before or during
a test/quiz/exam). Notice that the BFMNs constructed in this work explicate cue-target relationships as
provided by students according to their semantic memory. Within a continuous free association game
[27], participants read a cue word (e.g. ‘data’) and were required to associate it with up to 3 target con-
cepts (e.g. ‘analysis’, ‘maths’ and ‘physics’). Participants were then asked to rate words according to
their valence, that is, perceived pleasantness, on a Likert scale with 5 points. The distribution of valence
scores for any concept was compared against the other scores in the dataset. Through a Kruskall–Wallis
test, we labelled concepts as being perceived as negative (lower median valence than the rest of the
sample), positive (higher median valence than the rest of the sample) or neutral (same median valence of
the rest of the sample) by either students or researchers. This sentiment analysis led to the same concept
being potentially perceived in different ways by the two populations considered here (see also the Results
section). By interpreting a network neighbourhood around a concept as the semantic frame of conceptual
associates relative to such concept, we also counted how many positive/negative/neutral concepts inhab-
ited each semantic frame. We called the most frequent sentiment polarity in a frame as the connotation or
aura attributed by students/researchers to a given concept. This interplay between network structure and
sentiment made it possible to identify concepts being not only positive or negative but also surrounded
mainly by positive or negative associations and thus acquiring a further affective aura. For more details,
we refer the interested reader to Stella et al. [24].

For visualization purposes, all plots in this manuscript featured Italian words as translated in English.

Results

Forma mentis networks give structure to the way concepts are semantically framed and perceived. The
following analysis focuses on semantic frames [27], which correspond to the semantic associations
attributed by individuals to a given concept in the free association game. The sentiment data included in
an FMN enable also the identification of positive/negative/neutral perceptions pervading a given semantic
frame and thus altering the connotation or aura attributed to a given concept through its associations.

Figure 1 visualizes how forma mentis networks give structure to conceptual knowledge and affect in
individuals’ minds, that is, a mindset. Figure 1 compares the reconstructed mindset around ‘model’, with
high-schoolers associating it mostly with jargon about fashion, role-models and a few scientific terms.
In their mindset, STEM experts strongly associate ‘model’ with computational thinking, research and
experimenting.

Figure 2 reports students’ perceptions toward these concepts, including methodological aspects such
as ‘code’ and one of the main subjects involved in computing, that is ‘computer science’ (for other
computational sciences we refer the interested reader to Stella et al. [24]).
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MAPPING COMPUTATIONAL THINKING MINDSETS 5

Fig. 1. Forma mentis networks capture and reconstruct mindsets of individuals from different groups. Visual comparison of high
school students’ and STEM experts’ mindsets around ‘model’. Conceptual links indicate memory recall, for example, reading
‘model’ made students think of ‘fashion’. Associations provided by two or more individuals are thicker. Words perceived by
students as positive (negative) are highlighted in cyan (red). Links between positive (positive/negative) words are highlighted in
cyan (purple). Larger font-size indicates higher closeness centrality of a concept.

Students perceived ‘computation’ as a negative concept, surrounded by a negative emotional aura
of negative associates. Negative auras are relative to concentrations of negative valence, which in turn
elicit strong anxiety and stress, such as students’ ‘computation’-elicited anxiety. Taking a closer look,
this negative aura emerges mainly from algorithmic concepts, the perception of which might be dry and
detached from their effective relevance in real-world applications of calculations. This pattern is further
indicated by the only positive associations being examples of real-world systems related to calculations,
that is, brain, power, logic and reasoning. Students also provided a rich number of semantic associations
to ‘computer science’ and ‘code’, which were distinctly perceived as neutral, and thus different from
the mathematical jargon reported in ‘computation’. This sharp emotional difference might indicate that
students perceive ‘code’ to be a different entity compared to dry mathematical jargon.

There are also positive patterns. Students’ reconstructed mindsets around ‘logic reasoning’, a key
component of computational thinking, features positive semantic associations in relation to understanding
the world through reasoning that elicits a sense of openness toward computational thinking. Such positivity
was also found in the reconstructed mindset of STEM experts. However, such a positive/open attitude
in students directly contrasted with some negative associations featuring dry mathematical jargon and
calculation methods.

Computational thinking fundamentally relies on simulations, data and, to a lesser extent, computers
[3]. Figure 3 reports students’ and researchers’ perceptions of these concepts.
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6 M. STELLA ET AL.

Fig. 2. Students’ mindset around prominent data literacy concepts such as ‘code’, ‘computer science’, ‘computation’, ‘logic’
and ‘reasoning’. Notice how ‘computation’ is surrounded by mostly negatively perceived concepts, that is, ‘computation’ elicits
a negative emotional aura. Negative concepts are prominently featured also in the students’ mindset around ‘logic’ and they
consistently deal with mathematics or mathematical jargon.

For students, ‘simulation’ reminds them only of exams, grades and related anxiety-eliciting concepts
(e.g. a simulation of a quiz). This obliviousness to computational concepts indicates a deep lack of
awareness about computer simulations, which by comparison are prominently featured in STEM experts’
mindset.
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MAPPING COMPUTATIONAL THINKING MINDSETS 7

Fig. 3. Reconstructed mindsets for students and STEM experts around ‘simulation’/‘simulate, ‘data and ‘computer’.

As compared with ‘code’, students perceived ‘data’ as a negative entity, mainly linked to statistics, a
concept eliciting statistics anxiety in the sampled student population (see [24]). Notice how in students’
reconstructed mindset, ‘simulation’ was not associated with ‘data’, whereas this was a positive and strong
link in researchers’ networked mindset.

Last but not least, forma mentis networks indicate that students perceived a computer as a technological
device for surfing the web and doing calculations, whereas for researchers a computer was an instrument
for exploring the science of natural systems through models and simulations. The absence of ‘model’
and ‘simulation’ in the students’ mindset suggests a limited perception in students, who see only the
computation aspects of computers, that is, crunching the numbers without understanding their relevance
to the real world.
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Discussion

Characterizing the cognitive footprint of a computational thinking mindset is urgently needed for devising
effective educational policies promoting data literacy skills of relevance for future job prospects [53] and
for fighting ‘functional illiteracy’, a concerning inability for literate people to understand quantitative
information and data (cf. [8, 10, 28]).

Our results show how the newly developed framework of forma mentis networks can tackle this
challenge by offering a transparent reconstruction of how individuals perceive knowledge and sentiment
about computational literacy. Whereas in STEM experts there was a virtuous circle of positive concep-
tual associations linking together models, theory, coding and simulations with understanding nature, in
high school students this computational mindset was only partly developed. The investigated population
of students possessed advanced training in STEM subjects and was trained in basic numerical simula-
tions. Despite this, students’ computational thinking exhibited awareness of the knowledge behind logic
reasoning but it identified ‘computing’ as a negative, anxiety-eliciting concept, and completely missed
any link between ‘simulation’, ‘model’ and computing itself. Students’ semantic frame of ‘computing’
portrayed a perception equivalent to mere number-crunching, without associations linking computing to
understanding the real world. However, these conceptual associations were prominently detected in the
forma mentis network of STEM experts.

Strongly different semantic frames were also found with ‘model’ and ‘simulation’. In researchers,
‘model’ was semantically framed as a key tool for research. In the students’ FMN, ‘model’ was seman-
tically framed mostly as related to role-models or fashion runaways, and it elicited only a few scientific
associations. This difference suggests that a lack of computational thinking might be related to a vague,
abstract and mostly incomplete awareness of the impact that scientific models have for achieving new
knowledge in research. Several studies have reported models as being effective in introducing learning in
a new domain and in exploring different problem situations (cf. [45]). Model-facilitated learning enables
students to gradually explore problems from an active perspective. Aided by a model, students can identify
the structure of a given problem, making it progressively more complicated and tackling the challenge
of determining whether predicted outcomes occur. In this way, models can provide a learning experience
more similar to actual research than that usually found in mainstream classroom teaching and can be
beneficial for fostering computational thinking. Recent approaches such as the one by Sabitzer et al.
[30] identified modelling as a key approach for learning computational skills in primary and secondary
school, integrating computational thinking with everyday situations and challenges. Bridging models to
computational simulations can be done through agent-based computer programming. Tullis and Gold-
stone [31] recently showed how a relatively short 1-week training in simulating complex systems with
an agent-based programming language greatly enhanced students’ ability to interpret complex data and
reason critically even on previously unseen problems or tasks. This ability of generalizing techniques
of problem solving, thus transferring scientific principles across unobserved domain areas, is strictly
related to the ability of gradually re-framing concrete knowledge in more abstract terms, that is, gener-
alization [32]. The interplay between concrete and abstract knowledge is key to computational thinking,
as it is necessary to cast general logic reasoning for concrete, real-world discovery. Multiple studies
across cognitive [33] and educational [32] psychology provide evidence that concreteness facilitates the
acquisition of a concept, that is, showing a battery can be a concrete example facilitating the learning
of electric dipoles. However, considering only concrete concepts can impede generalization [17], that
is, a transfer of knowledge and logic reasoning from concrete examples to more abstract and universal
entities. Goldstone and Son [34] quantitatively showed that simulations can greatly facilitate this transfer
of scientific principles and reasoning from concrete to more abstract ideas. This crucial role of simulations
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MAPPING COMPUTATIONAL THINKING MINDSETS 9

in linking together concrete knowledge and more general ways of thinking underline the need to enhance
the students’ mindset around simulations, potentially by getting inspiration from the researchers’ mindset
outlined in our current results.

In fact, models and simulations enable the exploration of how different choices or initial conditions
influence a certain problem, mainly through computer simulations. The concept of ‘simulation’ fea-
tures the most dramatic differences between students’ and researchers’ FMNs. No association reported
in the students’ FMN framed simulation as a computer experiment. Instead, ‘simulation’ for students
was associated mainly with tests and quizzes and heavily subject to test anxiety (cf. [25, 26]), an
abnormally high level of distress perceived before or during exams that critically impairs academic
performance. We argue that the utter lack of any computational association with ‘simulation’ is an impor-
tant indicator of how students are learning logic reasoning and mathematical skills without learning
the importance of simulating processes or problems. A crippled or missing awareness of simulations
is highly problematic for STEM learning. The principle of problem centeredness in science learning
clearly indicates that learning can be more effective when learners are engaged in solving real-world
problems [32]. Since simulations implement an exploration of real-world problems that cannot be often
achieved by theoretical formulas or equations, preventing students from learning about simulations (and
modelling) can greatly decrease the effectiveness of science learning and thus hamper the development
of computational thinking. Notice that this problem afflicted students’ mindset but not researchers’.
The additional university training undertaken by the latter evidently promoted the knowledge necessary
for bringing simulations, models and logic reasoning together as ways for exploring and understanding
real-world problems, leading to the researchers’ virtuous mindset as represented in their forma mentis
network.

All in all, our cognitive map indicates an incomplete computational thinking mindset in students,
lacking conceptual links between computational tools and knowledge discovery that were identified
here in researchers. The absence of these links suggests a lack of motivation or ‘sense of purpose’ in
the way students perceive computation. Let us briefly focus on this (lack of) motivation. In cognitive
psychology, the concept of ‘sense of purpose’ mostly relates to personal development and indicates an
intention to explore and pursue meaningful achievements that bring satisfaction and fulfilment [35, 36].
In other words, a sense of purpose represents a motivation that drives people to engage with and act upon
their surroundings in order to achieve something meaningful, productive and satisfying. Notice that even
achieving a clearer understanding of how things work represents a satisfying achievement. Maslow’s
theory of motivation clearly indicates that stimulating a sense of purpose in students is one of the most
powerful ways for enhancing learning and skill retention [36]. Endowing students with a sense of purpose
in the context of computational learning means channelling students’ computational skills toward curiosity
for achieving knowledge about their surrounding world. In this way, knowledge represents grounding for
computational curiosity, and the combination of the two can give rise to a fully formed computational
thinking mindset. Although the methodology of forma mentis networks cannot establish a causal link, the
observed lack of motivation could be a cause for the detected negative perception afflicting ‘computation’
and other computing concepts in the students’ mindset. In fact, several studies have shown that a lack
of a ‘sense of purpose’ can give rise to negative perceptions promoting boredom, negativity and even
more extreme consequences such as anxiety (cf. [37, 48]). Analogous psychological mechanisms might
be at work here. Without a sense of purpose that puts the mathematical jargon into the perspective of
exploring the real world, the semantic frame around ‘computation’ would stagnate in abstract concepts,
acquiring a negative, boring and dry connotation [38, 39]. This potential link calls for future research
aimed at identifying a causal relationship between computational thinking development and negative
attitudes toward STEM.
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10 M. STELLA ET AL.

It is important to boost positive attitudes toward computation. In fact, several studies indicate that
positive attitudes toward domain knowledge are related to better academic performance [4, 54–57]. This
study supports this relationship by comparing respondents who have different levels of expertise, that
is, high schoolers and researchers. In both cases, the investigation of the perception of key concepts by
students and experts is important for establishing the role of attitudes in learning. Attitudes are highly
related to individual traits and are rarely subject to drastic changes during learning [54], making it
extremely difficult to reduce or relieve negative perceptions of topics at later learning stages. This puts
an emphasis on the importance of promoting computational thinking by eliciting positive, meaningful
and purposeful framings of computational skills during the early stages of science learning, for example,
during primary school.

Limitations

It has to be stated that the above analysis suffers from some limitations. The most prominent one is related
to the necessity of involving individuals in a cognitive lab experiment, which translates into smaller
population sizes, especially for researchers. The recent development of textual forma mentis networks,
meaning extracting mindsets from texts, could potentially address this limitation while enabling the
analysis of large written corpora extracted from educational forums or textbooks. With the possibility
of improving learners’ experiences through digitally collected data from social forums (cf. [39]), the
detection of computational thinking patterns starting from text would represent an interesting direction
for future research (see also next section). Another limitation of this study is that it measured only semantic
frames and sentiment patterns but it did not measure the concrete proficiency of students in computational
tasks such as coding or simulating models. Exploring the correlation between negative/positive attitudes
toward computational thinking and both coding and simulating models stands as an important direction
for future work.

Conclusions and next steps

To create an invitation to more diverse and equitable participation in computer science and participation
in the data-driven workforce, there is an urgent need to contextualize and make computational thinking
meaningful and purposeful to students throughout their scholastic career in order to have an impact on
their attitudes toward computer science. Helping learners bring meaning to the use of computers, coding,
modelling and data by providing them with opportunities to use these techniques to address problems they
care about and/or are important to their communities and society is going to be essential to overcoming
the stigma of computer science and related subjects in and out of school. Forma mentis networks will
allow controlled trials to get a sense of the impact of meaningful computation programs with students
and teachers and can guide educators, administrators, policymakers and lifelong learners in creating a
computational thinking future without fear.

As the COVID-19 pandemic demonstrates, the need to understand how data are used and interpreted
by researchers and public health officials and are used to inform decisions made at all levels, from personal
to policy, is essential to the security and wellbeing of all. And to achieve this understanding, there must
be a requisite level of computational thinking. Data science—the science of how scientific, social and
economic data are acquired, organized, visualized and analysed—is revolutionizing all sectors of society
while simultaneously affecting equity in the form of data haves and have-nots. The lack of computational
skills, computational thinking and skills in the use of the tools of data science (technologies to gather
data from sources such as surveys, sensors, loggers, social media, GPS, open data sources and economic
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MAPPING COMPUTATIONAL THINKING MINDSETS 11

transactions, and the software and computer systems to analyse and visualize them), and the lack of
understanding issues of equity, security and privacy (how and why personal and social data are gathered,
analysed and distributed), impacts equity in employment and the innovation economy.
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