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ABSTRACT The domain of Speech Emotion Recognition (SER) has experienced a tremendous revolution
due to the outbreak of deep learning, which has contributed, as in many other research areas, to a significant
boost in terms of model accuracy. SER refers to a branch of Human-Computer Interaction (HCI), which
deals with recognizing emotional states from human speech. Although being a thriving field of research,
SER still poses several non-trivial challenges, mainly due to the lack of shared best practices and high-quality
datasets that can make the developed models suitable for their application in real environments. In this paper,
we implement a CNN-based model combined with a Convolutional Attention Block, and conduct a series of
experiments involving a selection of four English datasets popularly used for SER applications: RAVDESS,
TESS, CREMA-D, and IEMOCAP. After testing the proposed pipeline on individual datasets, achieving a
mean accuracy of 83%, 100%, 68% and 63% respectively, we perform an extensive cross-validation between
common emotional classes belonging to single datasets or combinations of them, with the aim to investigate

the generalization abilities of the extracted features.

INDEX TERMS Speech emotion recognition, affective computing, deep learning.

I. INTRODUCTION

Emotions play a central role in human communication:
emotional connotations such as facial expressions, body
movements, and voice tones largely contribute to the way
in which people interact. The possibility of automatically
recognizing the emotional state of a subject is of inter-
est for a number of application fields, especially related
to Human-Computer Interaction (HCI), and in particular,
in areas like robotics [57], mobile services [26], healthcare
[6], as well as autonomous/intelligent systems [75]. Being
vocal expressions one of our primary forms of interaction,
Speech Emotion Recognition (SER) is an area that has
constantly received a considerable amount of attention [3],
[18], methodologically following the evolution of learning
approaches.
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Although deep learning has significantly revolutionized
the way in which we tackle the research problems at hand,
by largely improving the results in most research domains
[45], SER still poses a number of non-trivial issues to be
addressed.

According to the general theory on the subject, emotions
occupy a continuous multidimensional space [51], within
which it is possible to identify a series of pertinent areas
to define a discrete subdivision [66]. The majority of
commonly used datasets adopt this subdivision in terms
of discrete emotional classes, labelled according to basic
emotions. Literature has found evidence for both universal
and culture-specific principles in vocal emotion recognition.
Listeners decode emotion-relevant prosodic cues relying
on similar inference rules across cultures [53]. However,
it is worth noting that a discrete subdivision is prone to
different interpretations, due to cultural [31], subjective [17],
or linguistic [33] reasons. For instance, on the audio portion
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of the RAVDESS dataset (see Section IV-A1), the degree of
accuracy of human validators, with respect to the emotion that
the actors intended to express, is reported to be only 67% [37].

Furthermore, many works (e.g. [9], [20], [35]) indicate
a general lack of suitable datasets to tackle emotion
recognition; moreover, the content of these datasets is often
very specific and difficult to adapt to real-life scenarios,
in which a correct recognition of the emotional content from
raw audio only has proven to be very difficult [29].

As such, we're interested in investigating the generaliza-
tion capabilities of a selection of publicly available datasets
frequently used in SER: RAVDESS, TESS [48], CREMA-D
[16], and IEMOCAP [14]. To this aim, we implement
a classification pipeline based on a Convolutional Neural
Network (CNN) architecture combined with an Attention
module. The proposed solution, which also outperforms the
existing state-of-the-art, has been validated on RAVDESS
to establish our initial benchmark. Next, maintaining the
network architecture unaltered, we define a large set of cross-
validation experiments, considering both single datasets and
combinations of them, to assess the applicability of the
learned models in real-world scenarios.

The paper is structured as follows: in Section II, we provide
an overview of the main features and architectures used in
SER, with specific regard to CNN-based approaches similar
to the one we present in this work. In Section III, we briefly
describe our pipeline and the implementation of the model.
Then, in Section IV, we introduce the four datasets used
for comparison and the conducted experiments; the obtained
results are reported in Section V and discussed in Section VI.
Concluding remarks are drawn in Section (VII).

Il. RELATED WORK

A. SPEECH EMOTION RECOGNITION

The goal of Speech Emotion Recognition (SER) is to inves-
tigate how to automatically detect and identify emotional
content in human speech audio signals [18].

Although some approaches in the literature operate directly
on the raw signal (e.g. [64]), it is more common to
exploit different representations, in order to shrink the data
dimensionality while preserving the relevant features.

2D time-frequency representations, especially Mel-
Spectrogram and MFCCs, are commonly adopted [45], [70],
as well as the use of Chromagram, Zero-Crossing Rate,
Spectral Contrast, and Tonnetz [19], [28].

Originally, SER tasks were accomplished using hand-
crafted features and traditional machine learning, such as
SVMs [41], GMMs [27], or HMMs [44]. In the last decade,
however, deep learning-based approaches have contributed
to this research area, introducing new reference benchmarks,
as in the work by Han et al. [24], who firstly applied a single-
hidden-layered Deep Neural Network (DNN) with many
hidden units to segment-level features (MFCCs, pitch period,
harmonics-to-noise ratio, and their respective delta) extracted
from the IEMOCAP [14] database.
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Several methods and architectures have been tried:
Niu et al. [43] extracted features from spectrograms via
an AlexNet-based model and passed them to a DPARIP
algorithm (a data augmentation technique based on the
principle of retinal imaging and convex lens imaging),
on six classes from IEMOCAP; Li et al. [34] used a
CNN-SSAE on Mel and IMel spectrograms from three
separated datasets; Tripathi et al. [65] implemented a
ResNet supervised by Focal Loss to address the class
imbalance in IEMOCAP; Wang et al. [69] combined a
CNN-BiLSTM model with multiple stacked Transformers
creating well-defined features clusters in the latent space;
Sultana et al. [59] validated a series of CNNs/LSTMs-based
architectures troughout multilungual experiments conducted
on IEMOCAP and SUBESCO [60] (respectively English and
Bangla); Su et al. [58] applied a Graph Attentive GRU to
78-dimensional acoustic descriptors representing four classes
from IEMOCAP and MSP-IMPROV [15]; Latif et al. [32]
proposed a hybrid architecture composed of Dense blocks
and LSTM on spectrograms combining two speech datasets
with real environmental noises from DEMAND [62] in
order to improve noise robustness; Wu et al. [72] utilized
Capsule Network along with recurrent connections also
on IEMOCAP; Sahu et al. [52] passed a complex space
of 1582 features extracted with the OpenSmile toolkit
[21] into an Adversarial AutoEncoder; Mohan et al. [40]
recently achieved remarkable results with a decision-tree-
based ensemble model with a gradient boosting framework
(XG Boosting) using only MFCCs as input features.

B. CONVOLUTIONAL NEURAL NETWORKS AND SER
Convolutional Neural Networks (CNNs) have been widely
applied in SER, both as the main model or as feature
extractors on top of/combined with other architectures (e.g.
[1], [11], [55]). Indeed, as mentioned in Section II-A, the
general trend in SER is to use 2D representations of audio
signals, which contain frequency information over time, for
which CNNs proved to be particularly effective.

Badshah et al. [7] compared the results from a freshly and
pre-trained/fine-tuned AlexNet on spectrograms extracted
from the Berlin dataset [13], which contains stimuli from
four speakers over seven emotional classes. The authors
achieved an accuracy of 84.3% with the freshly trained
model, suggesting that fine-tuning a pre-trained model did not
yield satisfactory results.

Issa et al. [28] tried five different CNN-based models
over three different datasets (RAVDESS [37], EMODB [13],
and IEMOCAP [14]). The models have been fed with a
feature vector containing five different representations of the
same audio: MFCCs, Mel-scaled Spectrogram, Chromagram,
Spectral Contrast, and Tonnetz. The authors achieved top
accuracy of 71.61%, 86.1%, and 64.3% on the three
datasets, respectively, outperforming most existing models
with relatively simple architectures.
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Asiya and Kiran [5] also experimented with 1D CNNs
trained with multiple features (Zero-Crossing Rate, Mel
Spectrogram, Chroma, MFCCs, and Root Mean Square).
In order to achieve better results, they applied data augmen-
tation (noise injection, time shifting, pitching, and stretching)
on the audio signals before extracting the features. This
results in a top accuracy of 68% on RAVDESS, 75%
on RAVDESS with gender recognition, and 89% on joint
RAVDESS and TESS [48] over eight different emotions.

Garcia-Ordds et al. [22] adopted a slightly different
approach, using a Fully-Convolutional Neural Network
(FCN) with no dense layers, allowing them to process
variable-length audio samples. They trained the model
with both Mel-Spectrograms and 100 MFCCs on three
datasets separately (RAVDESS, TESS, EMODB). On all
three datasets, MFCCs outperformed Mel-Spectrograms, and
the authors achieved a mean accuracy of 75.28%, 92.71% and
99.03%, respectively, over five cross-validation folds.

Xu et al. [73] developed a CNN-based model, which
concatenates horizontal and vertical features in the first
layer using two different kernel sizes (10 x 2 and
2% 8), plus an attention mechanism before the fully connected
layer. By using noise injection as data augmentation before
extracting MFCCs, they achieved a weighted accuracy of
71.18% on IEMOCAP and 77.8% on RAVDESS.

ill. METHODOLOGY

A. PREPROCESSING

The human auditory system can perceive frequencies ranging
from ~20 Hz to ~20 kHz, and our ears are traditionally
considered particularly sensitive in the range between
~100 Hz and ~4.5 kHz [56]. Therefore, higher-frequency
components are often considered redundant in speech signals,
and it is a common practice to filter out such components.
Thus, we apply an 8th-order Chebyshev filter [49] at sr/2 in
order to avoid aliasing, and downsample the audio signals to
16 kHz, so as to discard the spectral components over 8 kHz.
Furthermore, in order to feed the audio files to the neural
network, trimming/padding is necessary, making sure that the
files are all of the same length. We fix their length to 3.5 s.

B. DATA AUGMENTATION

Considering the limited size of the available datasets used
for the experiments, data augmentation is applied to the
signals in the training splits of the datasets (see IV-B).
Although more sophisticated techniques could have been
applied, for the purpose of this work we prefer to only
consider basic transformations, so as to not compromise
the feature space significantly. As such, we implement the
following augmentations:

« time shift: the signal is shifted along the x-axis in the
range + 350 ms;

« noise injection: a white noise with absolute amplitude in
the range 0-0.2 is added to the signal.

116640

0

FIGURE 1. An example of the extraction of MFCCs (referred to
RAVDESS/07-01-02-02-01.wav, padded at 3.5 s).

At each iteration and for each file, a single augmentation
along with a random value in the corresponding range is
randomly chosen and applied to the input signals, before
extracting the features.

C. FEATURE EXTRACTION
The literature has shown how Mel-Frequency Cepstral Coef-
ficients (MFCCs) are considered the most robust features for
speech recognition and proved to be efficient for a variety
of tasks, such as speech recognition, speech enhancement,
and blind source separation [54]. As such, they have also
been successfully exploited in SER [12], [42], [45]. In order
to extract the MFCCs, the input signal is framed using
a window size ws = 512 and hop size hs = 256,
resulting in chunks of ~32 ms with a ~16 ms overlap. This
is in line with the recent SER literature, which tends to
prefer a more detailed representation over higher framing
values adopted in most other speech applications (e.g. [50]).
Although the most representative MFCCs for audio are
generally the first 10 [63], and considering that most libraries
for cepstral coefficients extraction use by default 13-20
coefficients, the literature has demonstrated that using a larger
set can be beneficial [22], [23]. Although Patni et al. [47]
reported that using more than 16 coefficients not only was
redundant but even decreased the accuracy performance of
their system, we have not observed this behaviour throughout
our experiments. Therefore, in line with the studies proposed
in [10] and [46], in our implementation, we extract 40 MFCCs
(Figure 1).

As such, the resulting input tensor representing each
sample has a shape of [1 x 40 x 218].

D. BASELINE MODEL

The model architecture is summarized in Figure 2 and
consists of three main components: a set of convolutional
blocks, an attention module, and a linear classifier. Each
Convolutional Block (CB) is composed of a 2D convolutional
layer and batch normalization, followed by an activation
function. Given the small number of samples in the datasets
(see Section IV-A), we chose a GELU activation function [25]
in order to smoothly regularize the output.

The input is passed to the first CB, which aims to shrink the
input dimensionality along the x-axis with learnable weights.
The output is then passed to two parallel CBs with larger
[5 x 5] kernels, one of which has a dilation factor d = 2,
whose purpose is to learn contextual features. The resulting
outputs are concatenated along the channel dimension and
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passed to another CB, followed by an Average Pooling with
[2 x 3] kernel, which returns a [9 x 9] spatial representation
of the learned features. At this point, a Convolutional Block
Attention Module (CBAM) [71] infers attention maps along
channel/spatial dimensions, and multiplies them with the
previous feature map. Then, another CB along with a Max
Pooling further reorganize the features, while the last CB
shrinks their dimensionality. The latent representation is then
sent to the classifier, composed of a Flatten layer and two
Fully Connected layers, each of them composed of a Linear
Layer with ReLLU activation and a Dropout layer with p = 0.4.
The resulting model is therefore quite portable, with a total of
1,409,966 trainable parameters.

IV. EXPERIMENTAL SETUP

A. DATASETS

For the evaluation of our methodology and datasets cross-
validation, we rely on four different datasets, popularly
used for SER applications: RAVDESS, TESS, CREMA-D,
and IEMOCAP. These datasets share similar properties: all
utterances are in English, with a mean duration of ~3-4 s.
Here we report a detailed description of the datasets.

1) RAVDESS

The Ryerson Audio-Visual Database of Emotional Speech
and Song (RAVDESS) [37] dataset, which constitutes our
main baseline, has become a consolidated standard for
SER applications. The dataset is composed of 7356 audio-
video files of 24 professional actors (12 female, 12 male),
vocalizing two lexically-matched statements (*“Kids are
talking by the door” and “Dogs are sitting by the door’) in
a neutral North American accent. The speech part contains
1440 utterances and eight emotion classes, namely neutral,
calm, happiness, sadness, anger, fear, surprise, and disgust.
The files are in.wav format, mono, and sampled at 48 kHz,
16-bit.

2) TESS

The Toronto Emotional Speech Set (TESS) [48] is another
popular dataset used for SER tasks. It is composed of
2800 files spoken by two actresses aged 26 and 64 years,
distributed over seven emotion classes: anger, disgust,
fear, happiness, surprise, sadness, and neutral. Each class
contains 200 stimuli by each actress (400 in total), with
200 different target words spoken in the carrier phrase “Say
the word ...”. The files are in.wav format, mono, and
sampled at 24.414 kHz, 16-bit.

3) CREMA-D

The Crowd-source Emotional Multimodal Actors Dataset
(CREMA-D) [16] is an audio-visual dataset containing
7442 stimuli from 91 actors, 48 males and 43 females from
different ethnicities, aged between 20 and 74 years. The
dataset encompasses six emotional classes, namely anger,
disgust, fear, happiness, neutral and sadness, each of which
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TABLE 1. Samples per class for each of the four datasets considered.

RAVDESS | TESS | CREMA-D | IEMOCAP
Anger 192 400 1271 1477
Happiness | 192 400 1271 2301
Sadness 192 400 1271 1759
Neutral 96 400 1087 2127
Disgust 192 400 1271 /"
Fear 192 400 1271 /"
Surprise 192 400 /" /"
Calm 192 1 1 /"

contains spoke from a selection of 12 sentences with four
different emotion levels. The files are in.wav format, mono,
and sampled at 48 kHz, 16-bit.

4) IEMOCAP
The Interactive Emotional Dyadic Motion Capture (IEMO-
CAP) [14] is a multimodal dataset containing ~12h of
audiovisual data (video, speech, motion capture of face, text
transcriptions), subdivided into 5 sessions, in which two
different actors (male and female) perform both improvised
and scripted dialogues. These are split into sentences,
and their emotional content is categorically annotated by
multiple evaluators. The resulting dataset is then composed
of samples over nine emotional labels: anger, happiness,
excitement, sadness, frustration, fear, surprise, neutral, and
other. The distribution of classes is quite unbalanced, and
the evaluations do not always agree: therefore, according
to existing literature such as [36] and [73], it is a common
trend to (1) drop the poorly represented labels, (2) merge
happiness with excitement (due to their prosodic similarities),
and (3) only consider the samples equally labelled by half
or more evaluators. It is worth noting that the lengths of the
utterances in IEMOCAP are also unbalanced, with respect
to the other datasets considered. As such, similarly to [73],
we preprocessed the dataset by slicing long samples in
smaller segments of 3.5 s with 0.5 s overlapping, keeping
their original label. After filtering, we obtained a database
containing 7664 samples over four emotional classes: anger,
happiness, sadness, and neutral. The files are in.wav format,
mono, and sampled at 22.05 kHz, 16-bit.

The resulting number of samples across different emo-
tional classes with respect to each dataset (possibly after
filtering/merging/slicing) are reported in Table 1.

B. VALIDATION PIPELINE
In our work, we consider four different sets of experiments:
o We first evaluate our model on RAVDESS (8 classes) to
establish an initial benchmark;
o We evaluate our model on the other three datasets in their
entirety for reference purposes;
o We perform a number of cross-experiments involving
RAVDESS, TESS and CREMA-D (common 6 classes)
for further analysis;
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FIGURE 2. The model architecture. On top of each block, the respective output dimensionality is shown. The colour coding denotes the
Convolutional layers (including Batch Normalization and GELU activation) in red, the pooling layers in blue, the Convolutional Block Attention
Module (CBAM) in orange, the Flatten layer in grey, and the Fully Connected layers (including ReLu activation and Dropout) in yellow. The output

of the whole network consists of the probability distribution for each class.

o We evaluate the generalization abilities of the proposed
solution with respect to IEMOCAP and vice-versa,
considering only the 4 common classes of the entire
corpora, and fine-tuning each model on the respective
dataset.

The entire pipeline is implemented in PyTorch. We choose
for training the Categorical Cross-Entropy Loss, optimized
with Adam [30] with a learning rate Ir = le=3 and a batch
size bs = 24, similarly to previous works such as [59]
and [73]. Due to the relatively small number of samples
in the datasets (see Section IV-A), and in order to avoid
overfitting, we introduce two regularization mechanisms:
(1) an early-stopping callback function with the maximum
number of epochs to 500 and a patience value P = 10,
and (2) a learning rate scheduler, with a minimum value of
le™3, a multiplying factor of m = 0.5 and a patience value
P = 4. The relatively high value of P is chosen because of
the observed fluctuations in the validation loss curves (see
Section VI and Figure 5).

The datasets are subdivided considering a random
80%/10%/10% train/validation/test splits, using a 5-fold
validation for training and 3-fold for fine-tuning. In the
case of experiments with multiple datasets, we split each
of them before concatenation, making sure to keep the
same percentage of each dataset. We are aware that some
previous works (e.g. [4]) suggest testing the models in a
speaker/sentence-independent fashion, but this approach does
not apply to our scenarios (for instance, RAVDESS having
only two sentences, TESS only two speakers). Moreover,
being our work primarily focused towards cross-validating
these datasets, we argue that a random split is a fair option
for our purposes.
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Although minor improvements can be achieved on the
single datasets by tuning the network parameters ad-hoc,
for the sake of consistency, all hyperparameters have been
maintained unaltered throughout all the experiments. The
entire pipeline, including sample loading, augmentations and
features extraction, has been implemented in CUDA using
two NVIDIA RTX3090 GPUs. A complete training cycle
lasts approximately between ~5 and ~9 minutes, depending
on the dataset considered and on the number of epochs, while
a single batch of 24 samples takes on average ~5 ms. The
inference forward pass for a single sample takes ~1.5 ms.

Further details of the experiments and the achieved
numerical results are reported in the next section.

V. RESULTS

In this section, we present the results of the experiments
conducted in our research, following the procedure discussed
in Section IV-B, along with a short commentary. For
conciseness, the confusion matrices and loss curves are
always relative to the best fold, while in the tables, mean
values along with the respective standard deviations are
reported.

A. BASELINE MODEL ON RAVDESS
To verify the effectiveness of our pipeline, we first experiment
with RAVDESS, which among the selected datasets is the one
with the largest number of emotional classes.

The model is trained for an average of 84 epochs, achieving
a mean weighted accuracy (WA) of 82.97% (std = 2.49%,
top = 86.04%) and a mean unweighted accuracy (UA)
of 82.38% (std = 2.35%, top = 84.92%). Overall, the
model proved robust in correctly identifying especially the
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FIGURE 3. Training and validation losses on RAVDESS. In our
experiments, the model tends to overfit the training set. Therefore,
early-stopping helps with generalization. Despite a few jumps in the early
stages of the training, probably due to the small number of samples in
the dataset and to the high initial learning rate, we observe a certain
stabilization in the curves after ~40-50 epochs.
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FIGURE 4. Confusion matrix related to the baseline model trained on the
entire RAVDESS dataset. A similar behaviour has been observed in all
folds. KEYS: AN = anger, FE = fear, HA = happiness, DI = disgust, SA =
sadness, SU = surprise, NE = neutral, CA = calm.

emotional classes of anger and neutral; the architecture
tends instead to misclassify samples belonging to calm and
surprise, incorrectly labelling them as neutral and happiness,
respectively. We argue that these results are justified by the
prosodic similarities between those classes.

Our approach outperformed the state-of-the-art regarding
similar architectures (see Section II-B), as summarized
in Table 2. Figure 3 and Figure 4 show representative
training/validation loss curves and confusion matrix related
to the best fold.

B. REFERENCE ON TESS, CREMA-D, IEMOCAP
We now provide the results obtained by appliying the
proposes to the other datasets considered.
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TABLE 2. Accuracy comparison with existing CNN-based models on the
RAVDESS dataset.

Method Year WA % UA %
Baseline Vanilla AlexNet / 67.68 64.9
Issa et al. [28] 2020 71.61 /
Asiya & Kiran [5] 2021 75 74
Garcia-Ordds et al. [22] 2021 75.28 /

Xu et al. [73] 2021 77.8 77.4
Ours 2023 82.97 82.38

TABLE 3. Accuracy results of the model trained on the four datasets
individually and in their entirety.

WA % UA%
Dataset Classes | Mean Top Mean Top
RAVDESS | 8 82.97+2.49 | 86.04 | 82.38+2.35 | 84.92
TESS 7 100.040.0 100 100.040.0 100
CREMA-D | 6 68.3+1.63 70.3 68.22+1.62 | 70.03
IEMOCAP | 4 63.18+1.32 | 64.74 | 64.5+1.21 65.02

With TESS (7 classes), the model is trained for an average
of 52 epochs, achieving a mean WA of 100.0% (std = 0.0%,
top = 100.0%) and a mean UA of 100.0% (std = 0.0%,
top = 100.0%).

With CREMA-D (6 classes), the model is trained for an
average of 82 epochs, achieving a mean WA of 68.3% (std =
1.63%, top = 70.3%) and a mean UA of 68.22% (std =
1.62%, top = 70.03%).

With IEMOCAP (4 classes), the model is trained for an
average of 47 epochs, achieving a mean WA of 63.18%
(std = 1.32%, top = 64.74%) and a mean UA of 64.5%
(std = 1.21%, top = 65.02%).

The obtained results are reported in detail in Table 3, while
Figure 5 and Figure 6 show the respective loss curves and the
confusion matrices of the three datasets.

C. CROSS EXPERIMENTS ON RAVDESS, TESS, CREMA-D
In this set of experiments, we only consider the six common
classes of the three datasets involved: anger, disgust, fear,
happiness, neutral and sadness.

First, we train the model on single datasets, using the
remaining ones as test sets. With these experiments, we want
to verify if the features extracted from the datasets are
somehow comparable. The results obtained in this phase are
in line with our expectations: indeed, the highest WA is 37%,
reached by the model trained on RAVDESS and tested on
TESS, and the worst is 18%, reached by the model trained on
TESS and tested on RAVDESS. Overall, the average accuracy
values barely surpasses 25%.

Then, we repeat the experiment using combinations of
two datasets in the training phase. The achieved results
are similar to the previous tests. The model trained jointly
on RAVDESS+CREMA-D even decreases the accuracy on
TESS with respect to the models trained separately on
RAVDESS and CREMA-D.
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~10 epochs the improvement is minimal. The training loss with CREMA-D is still quite smooth, however, the validation loss seems to reach a plateau

after ~40-50 epochs. Finally, the validation loss with IEMOCAP shows clear jumps, while the decrease in the training loss is overall linear. This suggests
that the model could possibly still improve on IEMOCAP, however at the expense of its generalization capabilities.
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FIGURE 6. Confusion matrices of (left-to-right) TESS; CREMA-D; and IEMOCAP. Every sample in TESS has been classified correctly. In CREMA-D, disgust is
occasionally predicted as sadness. Overall, sadness is the better-classified emotion, while anger and fear always yielding the lowest and highest number
of false positives respectively. In IEMOCAP, the classification is slightly different from fold to fold, but overall, anger still is the less ambiguous class.

KEYS: AN = anger, HA = happiness, SA = sadness, NE = neutral, DI = disgust, FE = fear, SU = surprise.

TABLE 4. Accuracy values of the cross-validation experiments conducted on RAVDESS, TESS and CREMA-D (6 classes). When an entire dataset is used for
testing in a single pass, the standard deviation is not provided.

. Fine-Tuning | Fine-Tuning
Train Test WA % UA % WA% UA%
RAVDESS TESS 36.57 36.55 100+0.0 100+0.0

CREMA-D 24.97 24.81 44.62+0.3 45.240.51
TESS RAVDESS 18.21 16.59 42.714+2.18 37.8+£3.76
CREMA-D 25.86 25.49 46.374+0.92 47.02£1.04
CREMA-D RAVDESS 25.88 24.22 32.30+3.08 31.424-2.87
TESS 34.21 3431 99.74+0.04 98.85+0.04
RAVDESS+TESS RAVDESS+TESS 93.81£2.34 | 93.66+1.45 | // /"
CREMA-D 25.12 24.58 46.3+0.83 46.08+1.33
RAVDESS+CREMA-D RAVDESS+CREMA-D | 66.78+0.96 | 66.84+1.45 | // /"
TESS 29.28 29.29 99.78+0.04 99.6+0.03
TESS+CREMA-D TESS+CREMA-D 75.66£0.5 77.0+£1.28 1 I
RAVDESS 21.55% 19.78% 39.46+£2.99 36+3.13
RAVDESS 76.62+6.68 | 75.62+7.14 | // /"
RAVDESS+TESS+CREMA-D | TESS 99.83£0.22 | 99.83+0.22 | // /"
CREMA-D 64.75£1.05 | 64.76£0.9 " /"

on TESS). With RAVDESS, instead, the accuracy after
fine-tuning tends to improve much less and settle on accuracy
values between 32-43%. The behaviour of TESS is still
different, as its accuracy after fine-tuning improves in all

These has motivated us to add some additional exper-
iments, applying a fine-tuning procedure on the trained
models. This resulted in an improvement in the accuracy of
CREMA-D (from 26% up to 46% with the model trained
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FIGURE 7. Confusion matrices of (left-to-right) RAVDESS; TESS; CREMA-D; and IEMOCAP (4 classes) with respect to the best fold of each individual

dataset. KEYS: AN = anger, HA = happiness, SA = sadness, NE = neutral.

cases until it reaches levels close to 100%. This suggests
that the internal features of each dataset are quite peculiar,
and models trained on some of them struggle to adapt to the
others, the only exception being TESS, which always reaches
top accuracies. Further elaborating on these results, we finally
train and test our model with all three datasets. We observe
similar accuracy values with respect to the model trained
on single datasets (see Table 3), with the sole exception
of RAVDESS, penalized by the smaller number of samples
and by the dropping of the surprise and calm classes. The
corresponding results are summarized in Table 4.

D. FINE-TUNING USING IEMOCAP

We finally propose two additional sets of experiments, both
involving IEMOCAP. We argue that this dataset is the
most challenging in our selection: despite having only four
classes, samples are extremely varied in terms of sentence
length, background noises, and number of different words.
Therefore, we consider this dataset rather disjoint from the
other three considered, as it is closely resembles a real-life
scenario.

According to the outcomes shown in the previous sub-
sections, we conduct cross-experiments by training the
model on the four common classes (anger, happiness,
neutral and sadness). We train the model with RAVDESS,
TESS and CREMA-D and perform fine-tuning on IEMO-
CAP, and vice-versa. Interestingly, the process of fine-tuning
with IEMOCAP yields more stable results, with an average
accuracy of ~50% regardless of the dataset used for training.
The reverse process (training on IEMOCAP and fine-tuning
on the others) also improves the performances with respect
to the single datasets. The results of these experiments are
shown in Table 5.

Lastly, we train the model on the entire datasets corpora.
Besides TESS, which again reaches 100%, with CREMA-D
we obtain a mean accuracy of 76% (higher than the model
trained on just itself), observe a slight improvement with
IEMOCAP, and RAVDESS still achieved a mean accuracy of
77%, despite consisting just of the 4.5% of the entire corpora
(only 672 samples from a total of 14836).

The results are summarized in Table 6, while individual
confusion matrices are shown in Figure 7.
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TABLE 5. Results of the cross-experiments with the model trained on
RAVDESS, TESS and CREMA-D and fine-tuned on IEMOCAP, and vice-versa.

Train Fine Tuning | WA % UA%
RAVDESS 44.0241.45 | 43.324+£3.52
TESS IEMOCAP 51.01£2.02 | 50.96+1.77
CREMA-D 53.3+2.97 52.26£5.12
RAVDESS 50.0£1.65 48.01+4.75
IEMOCAP | TESS 100.0+0.0 100.0=£0.00
CREMA-D 61.93£2.62 | 61.64+3.09

TABLE 6. Results of the model trained on the entire corpora of the
selected datasets an tested on the individual test splits.

Train Test WA % UA %
RAVDESS | 77.4543.06 | 77.03+1.87

ALL DATASETS TESS 100.0+0.0 100.0+0.0
CREMA-D | 76.4+2.24 76.16+£2.33
IEMOCAP | 65.15+2.18 | 65.94+2.12

VI. DISCUSSION
In this section, we provide a short commentary on the results
obtained in our experimental validation.

The purpose of the first two sets of experiments (see
Section IV-B) was to verify the viability of our pipeline,
testing the developed model on all datasets separately.
As for RAVDESS, our approach outperformed the previous
literature adopting similar architectures, with a mean WA of
83% (see Section V-A). Also with TESS, CREMA-D and
IEMOCAP, our pipeline proved to be robust in correctly
classifying the emotions, and the achieved results are in
line with the state-of-the-art, such as [39] and [74], showing
a mean WA of respectively 100%, 68% and 64% (see
Section V-B).

The third and fourth sets of experiments constitutes, in our
view, the main contribution of our work, as we are interested
in investigating the compatibility of the features extracted
from the different datasets. Indeed, many previous works
have used two or more concatenated datasets to train neural
networks (e.g. [38], [61], [67]), or extensively validated
different approaches on the same dataset (e.g. [4]). However,
to the best of our knowledge, none of them has investigated
such cross-compatibility, which, in our opinion, is crucial in
order to deploy these learning models in a real-life scenario.
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As such, a series of cross-validation experiments have been
performed over both single datasets and combinations of
them. The results summarized in Tables 4 and 5 show that
none of the models trained on specific datasets or combi-
nations of them is immediately able to correctly classify
samples belonging to other datasets. Fine-tuning, however,
improves the models’ performance overall. In particular,
we always obtained a significant increase in accuracy after
fine-tuning on TESS. This is also in line with the literature,
which reports how models trained on TESS tend to easily
score almost 100% in accuracy with performances generally
superior to other datasets (e.g. [2], [8], [76]).

To better understand the motivations of such behaviour,
we perform individual Principal Component Analysis (PCA)
on the features extracted by our models trained on the four
datasets used, as shown in Figure 8. The dimensionality
reduction is applied to the feature vector after the flat-
tening layer, of shape [1 x 2048]. It is possible to note
how the RAVDESS (a) and IEMOCAP (d) datapoints are
quite homogeneously distributed within the feature space.
However, the eight classes in RAVDESS are overall more
clustered with respect to the just four in IEMOCAP, and
therefore, it is reasonable that the model struggles in
achieving good performance on the latter. The increase in
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accuracy after fine-tuning with CREMA-D (b) appears to
be justified by a more clustered, albeit overlapping, feature
map. PCA also revealed that TESS (c) presents well-defined
feature islands, which explains the ease of classification
of this dataset. We support the fact that the presence of
stimuli produced by only two actresses makes the tonal
representation obtained through MFCCs much clearer and
more focused on the different emotional classes, making
the classification process easier. To further confirm the
limited complexity of TESS, we also performed t-Distributed
Stochastic Neighbor Embedding (t-SNE) [68] on the features
extracted by our model. The outcome of this analysis, shown
in Figure 9, highlights not only a clear subdivision between
emotional classes, but also two separate and well-defined
groups for each class, referring to the two speakers.

As a final consideration, although it is evident that the
general lack of suitable datasets still hinders a robust and
effective application of SER systems in a real-life scenario
(as also expressed in [9], [20], and [35]), the model trained
on three/four datasets returns an overall acceptable accuracy
and does not seem to penalize certain datasets over others (see
Table 4 and Table 6). As such, we suggest that a concatenation
of datasets is a good starting point to promote the adoption of
such systems in real-world contexts.
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disgust, FE = fear, SU = surprise.

VII. CONCLUSION AND FUTURE WORK

In this paper, we proposed extensive validation of four
popular and publicly available English datasets used in
SER (RAVDESS, TESS, CREMA-D and IEMOCAP), with
the aim of verifying their cross-generalization capabilities.
Following a well-established pipeline, we rely solely on a
CNN-based model, extracting MFCCs as input features.

The preliminary validation on RAVDESS demonstrated
the viability of the proposed solution, outperforming the
existing state-of-the-art. The results achieved on the other
three datasets are also in line with the existing literature.
Despite the model achieving good results on the test split
of the datasets (or combinations of datasets) with which
it was trained, the lower accuracies obtained by testing
it on the remaining ones demonstrates the peculiarity of
the respective stimuli and, consequently, of the extracted
features. The different degree of accuracy with respect to
each dataset is also confirmed by the outcome of the PCA.
However, fine-tuning on target datasets always returned
noticeable improvements in accuracy, showing that the
model’s classifier is still able to adapt, to a certain extent,
to the intrinsic characteristics of new data. Finally, despite
the aforementioned specificity of the employed selection of
datasets, models trained on multiple datasets proved robust
in achieving individual accuracy results similar, or even
slightly superior, to the models trained on single datasets.
This suggests that SER benefits from a high number of
datapoints with diverse characteristics.

As future work, following this comparative approach,
we plan to experiment with other datasets, possibly testing
the performance of our models with natural dialogues.
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