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Abstract

Gaze target detection aims to predict the image location
where the person is looking and the probability that a gaze
is out of the scene. Several works have tackled this task by
regressing a gaze heatmap centered on the gaze location,
however, they overlooked decoding the relationship between
the people and the gazed objects. This paper proposes a
Transformer-based architecture that automatically detects
objects (including heads) in the scene to build associations
between every head and the gazed-head/object, resulting in
a comprehensive, explainable gaze analysis composed of:
gaze target area, gaze pixel point, the class and the image
location of the gazed-object. Upon evaluation of the in-
the-wild benchmarks, our method achieves state-of-the-art
results on all metrics (up to 2.91% gain in AUC, 50% reduc-
tion in gaze distance, and 9% gain in out-of-frame average
precision) for gaze target detection and 11-13% improve-
ment in average precision for the classification and the lo-
calization of the gazed-objects. The code of the proposed
method is publicly available1.

1. Introduction
Gazing is a powerful nonverbal signal, which indicates

the visual attention of a person and allows one to understand
the interest, intention, or (future) action of people [12]. For
this reason, gaze analysis has widely been used in several
disciplines such as human-computer interaction [26, 36],
neuroscience [8, 28], social and organizational psychology
[3, 11], and social robotics [1] to name a few.

Even though human beings have a remarkable capability
to decode the gaze behavior of others, realizing this task au-
tomatically remains a challenging problem [2, 33, 34]. The
computer vision community has tackled the automated gaze
behavior analysis in terms of two tasks: (a) gaze estimation
and (b) gaze target detection. Gaze estimation stands for
predicting the person’s gaze direction (usually in 3D) when
typically a cropped human head image is given as the in-

1https://github.com/francescotonini/
object-aware-gaze-target-detection
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Figure 1: The overall methodology of the existing ap-
proaches and ours.

put [4, 14, 15, 20]. Instead, gaze target detection (also re-
ferred to as gaze-following) is to determine the specific (2D
or 3D) location that a human is looking at in an in-the-wild
scene [7, 13, 18].

Several works utilize head pose features and the saliency
maps of possible gaze targets to perform gaze target detec-
tion. For instance, [6, 22, 29, 30] followed a two-pathway
learning scheme, where one path learns feature embeddings
from the scene image, and the other path models the head
crops belonging to the person whose gaze target is aimed
to be predicted. Chong et al. [7] extend the aforementioned
two-pathway approach to perform spatio-temporal model-
ing to determine the gaze targets in videos. In the same
vein, a few other methods exist: [2, 13, 19, 25, 33]. Among
them, some consider a third path to model the depth map
of the scene image, which is determined by a monocular
depth estimator [13, 19, 25, 33]. Differently, others [2] in-
ject depth maps and 2D-human poses to improve the 3D un-
derstanding of the scenes, resulting in better gaze target de-
tection. The results achieved by these approaches (referred
to as traditional methods throughout the manuscript, see
Fig. 1-top) are highly remarkable since they demonstrated



that gaze target estimation could be directly performed on
images or videos in contrast to using low-intrusive wear-
able eye trackers, which notoriously have several issues in
terms of cost, battery life, and calibration. On the other
hand, traditional methods also have some major drawbacks.
First, both training and inference require carefully human-
annotated head crops. Therefore, to ensure that traditional
methods work well in real-life practical applications, there
is a need for additional and highly accurate head detectors.
Indeed, Tu et al. [34] showed notable performance drops
of traditional methods when head detectors were involved
instead of using manually annotated head locations. A sec-
ond limitation concerns the fact that traditional methods can
perform a single gaze target detection at a time; thus, for
scenes containing multiple people, the models should be
run repeatedly for each person. Besides the computational
complexity such implementation brings in, post-processing
is also needed to combine the detected gaze targets of differ-
ent subjects in the same scene. Tu et al. [34] to some extent
overcome the shortcomings mentioned above by introduc-
ing a Transformer-based architecture that explicitly learns
how to detect and localize the head during gaze target de-
tection (see Fig. 1-middle). However, the contribution of
objects to decipher the human-human/object gazing is com-
pletely omitted in [34].

Several studies show that people typically gaze at liv-
ing or non-living objects in the scene during social and
physical interactions [5, 21, 24, 32, 35, 37, 38]. Moti-
vated by this, we pursue an object-aware gaze target de-
tection, instead of using features extracted from holistic
scene images and head crops as in traditional methods:
[2, 6, 7, 13, 19, 22, 25, 29, 33] or learning how to detect and
localize the head of the person-in-interest (the one whose
gaze target to be detected) as in [34]. Our proposal is not
only able to predict the gaze area (in terms of heatmaps)
that people looking at and determine if the gaze target is in-
side or outside of the scene but also localize the objects and
predicts the objects’ classes (including head) on which the
gaze point is (see Fig. 1-bottom). The further has signifi-
cant practical usage since it brings in an explainable gaze
analysis (see Table 1 for details).

The proposed method is an end-to-end Transformer-
based architecture. Given a scene image, we first extract
all objects, including the ones classified as heads, with an
Object Detector Transformer. Then, for each head, a gaze
vector is predicted. Using this gaze vector, we build a gaze
cone for each person individually, allowing the model to fil-
ter out the objects that are not in a person’s Field of View
(FoV). Subsequently, a masked transformer (called Gaze
Object Transformer) learns the interactions between the de-
tected heads and objects, boosting the gaze target detection
performance in terms of both heatmaps and gaze points (i.e.
a single pixel in the scene). Furthermore, this architecture

Method Wout/ Head Multiple Head Object Object
Loc. Given People Detection Localization Classification

Traditional ✗ ✗ ✗ ✗ ✗
Tu et al. [34] ✓ ✓ ✓ ✗ ✗
Ours ✓ ✓ ✓ ✓ ✓

Table 1: Existing gaze target detection methods compared
to ours. Ours is more explainable since, for every person in
the scene, it can detect the object class and bounding box
location on which the gaze is. It learns the scene objects
(including the head) without using the head locations sup-
plied by datasets.

has a remarkable capability to predict whether a gaze tar-
get point is out of the frame. The extensive evaluations on
two large-scale benchmark datasets show the superior per-
formance of our method w.r.t. state-of-the-art (SOTA) gaze
target detectors. At the same time, our model has addi-
tional competence to accurately predict the gazed objects’
locations and the associated classes as empirically demon-
strated. The ablation study highlights the importance of all
components and specifically the needs for our main techni-
cal contributions, i.e. the Gaze Cone Predictor and the Gaze
Object Transformer.

To summarize: (1) We introduce a novel object-
oriented gaze target detection method. (2) This end-to-end
Transformer-based model automatically detects the heads
and other objects in the scene to build associations be-
tween every head and the gazed-head/object, resulting in
a comprehensive, explainable gaze analysis composed of:
gaze target area, gaze pixel point, the class of gazed-object,
the bounding box of the gazed-object as well as predicting
whether the gazed point is out of the frame. (3) We demon-
strate SOTA results on standard datasets regarding all evalu-
ation metrics for gaze-target detection (up to 2.91% gain in
AUC, 50% reduction in gaze distance, and 9% gain in out-
of-frame AP), gazed-object classification and localization
(11-13% gain in AP) and in case of low/high variance across
gaze annotations. (4) The code of the proposed method is
publicly available. We also release our implementation2 for
[34] since during our private communications with the au-
thors, we are informed that their code at the moment cannot
be shared by them due to their ongoing collaborations with
a company.

2. Related Work
The main focus of this paper is to determine the loca-

tion that a human is looking at in an in-the-wild scene cap-
tured from the third-person view. To this end, Recasens et
al. [29] presented the first relevant dataset called GazeFol-
low, and proposed a two-branch Convolutional Neural Net-
work (CNN) whose first branch estimates the saliency from
scene images and the second branch processes manually an-
notated head crops together with their location information.

2https://github.com/francescotonini/
human-gaze-target-detection-transformer



Figure 2: Proposed method. The encoder (E) and decoder (D) of the Object Detector Transformer operate on the features
extracted by a backbone B to learn rich object features used to detect and localize objects (including heads) in the scene.
Head features are used to build the gaze cone. Objects in the cone are extremely likely to be gaze-interesting. The object
score matrix Σ boosts attention scores in the Gaze Object Transformer (GOT ), whose output features are used to build the
gaze heatmap. If no object lies in the cone, a skip-connection lets the network predict the heatmap from head features only.

Several subsequent works [2, 7, 13, 19, 22, 30, 33] adopted
this two-branch structure and further introduced additional
components. For instance, Chong et al. [6] brought in de-
tecting the gaze targets not-being in the scene (so-called
out-of-frame detection). Later on, the same authors [7] in-
tegrated a CNN-LSTM into their pipeline, modeling the
dynamics of gaze in videos and making frame-based in-
ferences. They also introduced the VideoAttentionTarget
dataset, made of videos. A few studies incorporated the
depth maps obtained from monocular depth estimators in
addition to the embeddings learned from RGB scenes and
head crops [13, 19, 25, 33]. Fang et al. [13] integrated
the precise detection of head pose and the location of eyes.
Jin et al. [19] used two auxiliary networks, one to learn
depth features and the other to compute 3D-gaze orienta-
tion features. However, detecting head pose, eye locations,
etc., are already challenging tasks to perform in-the-wild,
and their inaccurate results can affect gaze target detec-
tion negatively. A better solution could be leveraging the
collaborative learning of scene, depth, and head features,
as shown in [33]. Bao et al. [2] proposed a method tak-
ing an RGB image and a head crop at a time and further
using the depth map and a 2D human body pose detec-
tor to reconstruct the 3D scene with point clouds. Such a
model [2] requires several detectors to be fine-tuned and
therefore increases the computational complexity. Further-
more, it underperforms compared to, e.g., [13, 33] on the
VideoAttentionTarget dataset. Qiaomu et al. [25] used the
same modalities as [33] but also included a temporal atten-
tion model and replaced the in/out prediction encoder of [7]
with a patch distribution prediction module, resulting in ef-
fective performance in case of large annotation variances.

Unlike aforesaid approaches, aka traditional methods, us-
ing pretrained CNN backbones, Tu et al. [34] introduced the
first Transformer-based approach, outperforming the others.
Drastic performance drops for traditional methods were also
demonstrated in [34], when they were evaluated with the
head locations predicted by automated head detectors.

We stand out from the prior art as our method performs
simultaneous gaze target detection of multiple persons in
the scene by mutually learning localization and classifica-
tion of the gazed-objects (including the head) and deter-
mining the head-head/object gaze interactions. Our end-
to-end Transformer-based model explicitly aims to provide
explainable gaze target detection, which has not been ac-
complished before (see Table 1 for comparisons).

3. Method
The proposed method is shown in Fig 2. Given an image,

we first predict the set of objects O = { (cx, cy, w, h, l)}
in it, where (cx, cy, w, h) represent the center coordinates
of a single object and its width and height, respectively,
l ∈ [0, CLS) is an object’s label, and CLS is the number
of classes, including a special no object (∅) class (described
in Sec. 4.2). To this end, after extracting the image features
through a backbone B, we use an Object Detector Trans-
former that reasons on the scene features with the encoder
E and learns relevant object features with the decoder D.
Such features are used to differentiate between heads Oh

and other objects in the scene. For each head Oi
h, we feed

its features to the Gaze Cone Predictor to determine a gaze
vector vi

g that represents the gaze direction of the person.
This gaze vector is used to build a gaze cone with an an-
gle of α corresponding to the Field of View (FoV) and to



selectively maintain the objects that are inside the cone for
each head. The Gaze-Object Transformer (GOT ) models
the relationships between the detected objects and predicts
the probability of them being the gaze target of any person,
with a higher probability for the objects closer to the gaze
vector. The gaze of each person is represented as a Gaus-
sian heatmap Hi centered on the gaze point pi

g , and when
no object is present inside the gaze cone, we use a no cone-
object skip to compute the heatmap directly from the head
features. We also use the head features to predict the prob-
ability of the gaze target being outside the frame. To sum
up, our model consists of three major components: (a) Ob-
ject Detector Transformer, (b) Gaze Cone Predictor, and (c)
Gaze Object Transformer, which are described thoroughly
in the following sections.

3.1. Object Detector Transformer
Given an RGB image x ∈ RC×H×W , we aim to pre-

dict the bounding boxes and labels of objects. We start by
extracting a feature map fb ∈ RCb×Hb×Wb with a convo-
lutional backbone B, and we linearly project the channel
dimension to a lower space Cb′ due to the high channel di-
mensionality. We flatten the spatial dimensions and obtain
f
′

b ∈ RHbWb×C
′
b , which is fed to a transformer encoder E

that enhances the coarse image features extracted by B.
E is designed as a stack of multi-head self-attention

(MHSA) and feed-forward (FFN) layers. The projected out-
put of B, f

′

b, forms the input queries Q, keys K, and values
V of E . To retain the spatial information of the feature map,
we add positional encodings for Q and K. The output of the
encoder, fe, forms the input K and V of the cross-attention
module of the transformer decoder D.

D completes our Object Detector Transformer and intro-
duces a multi-head cross-attention module to obtain object-
relevant features. First, the decoder performs self-attention
on a set of learnable embeddings ed ∈ RN×C

′
b , where N is

the maximum number of objects to be predicted. Similar to
E , we add the learnable embeddings ed with a set of fixed
positional embeddings. The output of the self-attention on
ed is then fed to a multi-head cross-attention module, where
ed are the queries, and fe are the keys and values. The out-
put features fd of the transformer decoder are finally used
by two multi-layer perceptrons (MLP) to predict the object
bounding box (Bbox) and class, respectively.

3.2. Gaze Cone Predictor
The objects predicted by the Object Detector Trans-

former may appear in an area outside the FoV of a person
but inside of another person(s). Since our method performs
multi-person gaze prediction, we must consider the men-
tioned scenario and selectively focus on objects in the FoV
of each individual. To this end, the Gaze Cone Predictor
produces a gaze cone for each head detected and allows the

Figure 3: (a) Our 3D cone construction from the head cen-
ter point; θ and ϕ are the polar and azimuthal angle, respec-
tively. Exploded view computed with the depth map. (b) 3D
gaze cone considers the depth and, in this way, excludes the
objects unrelated to the gaze vector, in this case, the couch
and the bed on the right. Instead, in (c) 2D gaze cone, the
couch is inside it, although common sense would tell that
it should not be. (d) Object score matrix Σ of (c) when the
detected objects are: head, laptop, couch, bed, and bottle
classes.

GOT to focus on only the relevant objects on a person-by-
person basis. For the objects detected as a head, the gaze
cone, which can be either in 2D or 3D, is built based on the
estimated gaze vector. The gaze cone allows us to build an
object score matrix (Σ) based on the relationship between
head-head/objects.

In detail, an MLP takes as input the features of objects
detected as heads Oh and estimates, for each of them, a 3D
gaze vector vi

g = (θi, ϕi, ρi). Each gaze vector uniquely
identifies the orientation of the person’s gaze with θ, ϕ, and
ρ, which are the polar angle, azimuthal angle, and magni-
tude of the vector, respectively. For each gaze vector vi

g ,
we design a 3D cone of angle α and apex (cix, c

i
y, c

i
z) rep-

resenting the FoV of a person, where cix, ciy , and ciz are the
center coordinates of the head. The cone axis has the same
direction as the gaze vector, and the intensity of the cone,
i.e., the point saliency, is calculated as the cosine similar-
ity between vi

g and all vectors inside the cone starting from
(cix, c

i
y, c

i
z). In the 2D case, θ is not available, and we only

have one angle ϕ and the magnitude ρ for the gaze vector,
while the 2D cone is still in the center of the apex but spans
only in 2D instead of 3D. We adopt the discretized space of
the same dimensionality of the predicted heatmap presented
in [16], while we extend it to the 3D case, with x, y, and z
axis corresponding to the width, height, and depth of the
image. For the 2D cone building, we follow the approach



of [16], but we constrain the cone to be a fixed angle α,
which is in line with the FoV of human boundaries [17].

Below, the derivations are given for the 3D gaze cone,
but the corresponding 2D implementation of them is the
same except for not having the depth coordinates as de-
scribed above. Refer to the visual explanation of the 2D
and 3D gaze cone in Fig. 3a-c. Formally, let angle(va, vb)
be the absolute value of the angle between two vectors, and
σ(va,vb) be the cosine similarity between two vectors va

and vb conditioned on the cone angle α:

σ(va,vb) =

{
cos (va,vb) if angle(va,vb) ≤ α

2 ,

0 otherwise
(1)

The projected 3D gaze cone of a person i, CDi
3D, whose

head center coordinates are cix, c
i
y, c

i
z , and predicted gaze

vector vi
g , is defined as:

CDi
3D = {σ(vi

g,v
ijkl
H )}

∀j, k, l ∈ [0, w)× [0, h)× [0, d)
(2)

where w, h, and d are the width, height, and depth of
the space on which the 3D cone is computed, and vi

H in-
dicates the vectors in the discretized space starting from
(cix, c

i
y, c

i
z).

The set of 3D cones CD3D allows us to define the ob-
ject score as a square matrix Σ of size N × N , where N
is the number of objects detected by the Object Detector
Transformer. The object score matrix represents whether
an object is in the visual cone of each person and how close
it is to their predicted gaze vector (see Fig. 3d). Each row
represents an object where the rows of objects not classified
as heads are zero. For rows of head objects, the score for
each other object is equivalent to the value of the gaze cone
picked at the center coordinates of the object. When no
object is in the gaze cone, the corresponding row becomes
zero, and then we exploit the no cone-object skip to com-
pute the gaze heatmap. The object score matrix Σ is used by
GOT as an additive bias in the attention module. The ratio-
nale behind the score matrix Σ is to exploit the strong prior
coming from the gaze vector and constrain the network to
focus on relevant objects in the scene.

3.3. Gaze Object Transformer
Although the information from the predicted gaze vector,

cone, and Σ provides important knowledge for the task at
hand, accurately predicting the gaze direction is fundamen-
tally a hard problem since the precise angle and magnitude
of the vector are highly sensitive and might even introduce
noise for the training procedure (see Sec. 4.4 for empirical
justification). Eventually, an accurate vector estimation re-
quires considering eye position and sight. However, such
elements potentially introduce the need to use auxiliary net-
works, increasing the computational complexity of the over-
all architecture. Instead, our proposal is much simpler but

effective as it does not use the gaze vector to predict the fi-
nal heatmap, but we further process the output of D with the
aid of the object score matrix Σ in GOT , which follows the
same design principle as the decoder D.

First, a stack of MHSA and FFN layers encodes a set of
learnable embeddings eg ∈ RN×C

′
b , where N is the num-

ber of predicted objects. Unlike the object detector trans-
former’s encoder, the multi-head self-attention includes an
additive bias, i.e. our object score matrix Σ. Therefore, the
new attention is defined as:

BiasedAttention(Q,K, V ) = softmax
(QKT +Σ√

dk

)
V (3)

Additionally, we mask the learnable embeddings corre-
sponding to objects not classified as heads. The masked
features of the self-attention of GOT are the inputs to the
cross-attention module. Likewise self-attention, the cross-
attention module exploits the object score matrix as additive
bias and performs binary masking on heads for Q and other
objects for K and V . We also exclude the objects with low
confidence prediction or that are classified as no-object (∅)
(see Sec. 4.2 for details).

The output features of the cross-attention form the input
to the heatmap MLP to predict the gaze heatmap for each
head. However, since we cannot assume that an object is al-
ways present, a second MLP (heatmap no-object in Fig. 2)
predicts the heatmap from head features only when no ob-
ject is inside the visual cone. The outputs of heatmap MLP
and heatmap no-object MLP are fed to a gated operator
that selects the heatmap based on the presence (or absence)
of objects in the cone of each person. Finally, an additional
watch outside MLP, only for head objects, predicts pout, the
probability that the given head gaze lies outside the frame.

3.4. Training objective
As we perform multiple tasks simultaneously (e.g., ob-

ject localization and classification, gaze vector regression,
and gaze heatmap regression), our training objective is de-
fined as a weighted sum of all tasks.

We supervise the object localization with the weighted
difference of L1 distance and Generalized Intersection over
Union (GIoU) [31] of the target box box and predicted box
boxp, respectively, formalized as Lbox = λl1∥box−boxp∥−
λgiouGIoU(box, boxp). Object classification loss Lcls is
the cross-entropy between the ground truth label and the
post-softmax distribution of the predicted class.

The gaze-related tasks involve the use of three losses:
(a) gaze vector loss, (b) gaze heatmap loss, and (c) gaze
watch-outside loss. The gaze vector loss is formulated as
the L2 loss between elements of the predicted and target
vector such that Lvec = ∥vg − vp∥2, with vg being the
ground truth gaze vector and vp the one predicted by our
method. The watch-outside loss is a binary cross-entropy
loss Lout = −

[
out log(pout) + (1 − out) log(1 − pout)

]
,



Method Modalities Multiperson
Gaze

GazeFollow [29] VideoAttentionTarget [7]
Distance ↓ In frame Out of frame

AUC ↑ Avg. Min. AUC ↑ Dist. ↓ AP ↑
Head Real† Head Real† Head Real† Head Real† Head Real† Head Real†

GT GT GT GT GT GT
Random 0.504 0.391 0.484 0.533 0.391 0.487 0.505 0.247 0.458 0.592 0.621 0.349
Center 0.633 0.446 0.313 0.495 0.230 0.371 - - - - - -
Fixed bias - - - - - - 0.728 - 0.326 - 0.624 -
Recasens et al. [29] R ✗ 0.878 0.804 0.190 0.233 0.113 0.124 - - - - - -
Chong et al. [6] R ✗ 0.896 0.807 0.187 0.207 0.112 0.120 0.830 0.791 0.193 0.214 0.705 0.651
Lian et al. [22] R ✗ 0.906 0.881 0.145 0.153 0.081 0.087 0.837 0.784 0.165 0.172 - -
Chong et al. [7] R + T ✗ 0.921 0.902 0.137 0.142 0.077 0.082 0.860 0.812 0.134 0.146 0.853 0.849
Fang et al. [13] R + D ✗ 0.922 - 0,124 - 0.067 - 0.905 - 0.108 - 0.896 -
Bao et al. [2] R + D + P ✗ 0.928 - 0.122 - - - 0.885 - 0.120 - 0.869 -
Jin et al. [19] R + D ✗ 0.920 - 0.118 - 0.063 - 0.900 - 0.104 - 0.895 -
Tonini et al. [33] R + D ✗ 0.927 0.894 0.141 0.165 - - 0.940 0.894 0.129 0.182 - -
Qiaomu et al. [25] R + D + T ✗ 0.934 - 0.123 - 0.065 - 0.917 - 0.109 - 0.908 -
Tu et al. [34] R ✓ - 0.917 - 0.133 - 0.069 - 0.904 - 0.126 - 0.854
Tu et al. [34]⋆ R ✓ - 0.915 - 0.104 - 0.055 - 0.891 - 0.229 - 0.809
Our method R ✓ - 0.922 - 0.072 - 0.033 - 0.923 - 0.102 - 0.944
Our method R + D ✓ - 0.922 - 0.069 - 0.029 - 0.933 - 0.104 - 0.934

Table 2: Evaluation on the GazeFollow [29] and VideoAttentionTarget [7] datasets. Head GT refers to using carefully labeled
ground-truth head crops and head locations in training and testing. Real indicated with † is the implementation of [34], which
applies an additional SOTA head detection network to predict the head location for real-world applications. We produce only
[33]’s Real results (see text for details). ⋆ indicates our implementation. R, D, T , and P stand for RGB, depth, temporal
processing, and 2D-pose, respectively. Refer to Supp. Mat. for Angular Error results.

where out is the ground truth binary annotation of whether
the person is watching outside and pout is the predicted
value. Lastly, the gaze heatmap loss is an L2 loss between
target and predicted heatmap: Lheat = λheat∥H−Hp∥2.

4. Experiments
4.1. Datasets and Evaluation metrics
Datasets. Our model is trained and tested on both Gaze-
Follow [29] and VideoAttentionTarget [7] datasets. Gaze-
Follow [29] is a large-scale image dataset containing over
122K images in total with more than 130K people. The
test images include gaze and head location annotations per-
formed by up to 10 people for a single person in the scene
while the training set contains only one annotator’s judg-
ment indicating gaze and head locations. VideoAttention-
Target [7] is composed of YouTube video clips, each has a
length of up to 80 seconds. It includes 109574 in-frame and
54967 out-of-frame gaze annotations together with the head
locations. Both the training and test sets contain one gaze
annotation per person. Given that we do not use the tempo-
ral information in our model, we randomly select one image
for every 5 consecutive frames, allowing us to avoid overfit-
ting. This setup is the same with SOTA [2, 13, 19, 33, 34].

Evaluation Metrics. We evaluate the performance of the
proposed method in terms of gaze target detection and
object class detection and localization. For the former
task, we use all standard metrics [6, 7] described as follows.
AUC assesses the confidence of the predicted gaze heatmap
w.r.t. the gaze ground-truth. Distance (Dist.) is the L2 be-
tween the ground-truth gaze point and the predicted gaze

location, which is the point with the maximum confidence
on the gaze heatmap. Angular Error (Ang. Err.) is the
angle between predicted and ground-truth gaze vector. In
GazeFollow, it is a standard to declare both the minimum
and average distances. I/O gaze AP is the average precision
used to evaluate the out-of-frame probability of the gaze in
VideoAttentionTarget. We use the standard metric Mean
Average Precision (mAP) for object class detection and lo-
calization. In that case, a prediction is correct if the class
label of the predicted bounding box and the ground truth
bounding box are the same and the Intersection over Union
(IoU ) between them is greater than a threshold value.

4.2. Implementation details
B is a ResNet-50 pretrained on ImageNet [9] and the

Object Detector Transformer follows the DETR [39] ar-
chitecture. We train all our components (Object Detector
Transformer, GOT , Gaze Cone Predictor, and MLPs) with
Adam optimizer and a learning rate of 1 × 10−4 for 80
epochs, then we drop the learning rate by 10 times and train
for 20 epochs. Differently, B has a learning rate 10 times
smaller, i.e. 1 × 10−5. Furthermore, we perform match-
ing between predictions and ground-truth samples as de-
scribed in [34]. The FoV angle of the cone predictor is set to
120°, corresponding to the binocular FoV of humans [17].
GOT keeps only queries of objects classified as heads and
with confidence above 0.5. Conversely, the keys and values
are those of objects (heads included) with the confidence
above 0.5, which are not classified as no-object. The final
loss is the weighted sum of the defined objectives. We set
λgious = 2.5 and λheat = 2. The other losses are summed



up without any weighting. We use a SoTA monocular depth
estimator [27] to obtain depth maps corresponding to each
scene image. Note that we use depth information only for
gaze cone building without learning additional depth fea-
tures. More details are available in Supp. Mat.

4.3. Comparison with State-of-the-Art
The gaze target detection performance of our method is

compared with the SOTA in Table 2. Recalling that the
cropped head images and the head locations are required
for traditional methods (i.e., SOTA except [34]) and these
methods are evaluated when the ground-truth head locations
are granted (referred to as “Head GT”), we proceed with the
evaluation procedure of [34], summarized as follows. Tu et
al. [34] employ additional head detectors to automatically
obtain the heads position, which is given to the traditional
models, providing their real-world application performance.
We inherit the corresponding results from [34] and refer
to them as “Real”. For the methods whose “Real” results
are not provided by [34], we obtain the results using Reti-
naFace [10] to detect heads position. However, we are able
to perform this only for the method whose code is publicly
available: [33].

As we can see from the results, our method only with
RGB data outperforms existing SOTA on all datasets for
all metrics. Such a performance is important to emphasize
since several SOTA perform relatively poorly even though
they use multi-modalities [13, 19] or temporal data [7]. Par-
ticularly, for VideoAttentionTarget [7] dataset, our method
achieves better scores compared to many complex methods
relying on several pretrained task-specific backbones (e.g.,
2D-pose estimation) [2] or leveraging the temporal dimen-
sionality of the data [25] while both utilize RGB and depth
maps. Our better performance w.r.t. Transformer-based
[34] is also conspicuous. Furthermore, when both RGB
and depth are taken into account, our method performance
slightly improves on average. Recalling that we use depth
information only during gaze cone production without re-
quiring additional (pretrained) CNN to learn depth features
as in [19, 33] or needing to detect the eyes as in [13], the cor-
responding results are momentous. Particularly, our mini-
mum and average distance and mAP results are always the
best whether or not others were evaluated within “Head GT”
or “Real” settings. This shows that the proposed method is
notably good at predicting if the gaze is located inside or
outside the frame, the gaze heatmaps, and eventually, a sin-
gle pixel gaze point that our model predicts per person is
much closer to the ground truth-gaze point.

4.4. Ablation Study
The ablation study is performed on both GazeFol-

low [29] and VideoAttentionTarget [7] datasets, whose re-
sults can be found in Table 3.
Gaze Object Transformer. If we do not use GOT , it is

still possible to predict the gaze heatmap using the features
of D. As seen from the results (first row of the ablations
for each dataset), D features alone are insufficient to reach
SOTA results for gaze target detection. Whereas including
GOT boosts the results for all metrics and datasets (second
row of the ablations for each dataset).
Object Masking. By definition, Transformer attention at-
tends to every token in a sequence and tries to learn rela-
tionships between all elements. In our case, this refers to
computing the interaction between every object. Instead,
our design retains only the queries to be of those elements
recognized as heads and keys and values to be those of any
other object/head. In this way, we obtain an improvement
across both datasets for all the metrics (third row of the ab-
lations). Furthermore, we obtain an interpretable attention
matrix of interaction between heads and objects.
Gaze Cone and No cone-object Skip. Gaze cone building
assigns a score into Σ inversely proportional to the distance
from the gaze vector for the objects inside the cone. This
acts similarly to a temperature to skew the softmax opera-
tion inside the attention towards the objects more probable
to be looked at. As seen, the gaze cone alone might not be
sufficient to improve the performance of the method (fourth
row of the table). We attribute this to the cases where we
cannot find a meaningful object inside the gaze cone, mean-
ing that the Σ row corresponding to the face is empty, and
attention does not operate on any feature, hindering the per-
formance of the heatmap MLP. To solve this, we design a no
cone-object skip, which allows building a heatmap starting
from D features. In such cases, a gating mechanism allows
selecting which heatmap to use depending on the presence
of objects in the cone. When we use this mechanism in con-
junction with cone building (fifth row of the table, aka full
proposed method), we obtain the best results consistently
across the datasets, proving the effectiveness of focusing on
relevant objects in the scene.

4.5. Gazed-object class detection and localization
This section reports the evaluations regarding gazed-

object class detection and localization performance. Our
method is notably different from using an auxiliary object
detector accompanying a gaze target detection model. Still,
in order to empirically highlight the difference, we combine
the model of Tu et al. [34] with DETR [39] pretrained on
COCO [23]. To this end, given a produced gaze heatmap
of [34], we use the bounding box proposal of DETR which
contains the highest value of the heatmap (notice that this
is in line with ground-truth gaze heatmap construction [7]).
Similarly, we also combined the results of DETR with our
model’s gaze heatmap predictions. Moreover, we include
[34] in the comparisons by determining a bounding box that
surrounds the gaze heatmaps of [34]. In that case, AP was
calculated only for object locations, discarding the object
class prediction. The corresponding results given in Table 4



GOT OM GC NOCS GazeFollow [29]

AUC ↑ Avg. dist. ↓ Min. dist. ↓
✗ ✗ ✗ ✗ 0.864 0.110 0.061
✓ ✗ ✗ ✗ 0.918 0.075 0.038
✓ ✓ ✗ ✗ 0.919 0.073 0.033
✓ ✓ ✓ ✗ 0.905 0.090 0.051
✓ ✓ ✓ ✓ 0.922 0.072 0.033

GOT OM GC NOCS VideoAttentionTarget [7]

AUC ↑ Dist. ↓ AP ↑
✗ ✗ ✗ ✗ 0.811 0.271 0.77
✓ ✗ ✗ ✗ 0.902 0.125 0.92
✓ ✓ ✗ ✗ 0.907 0.112 0.94
✓ ✓ ✓ ✗ 0.909 0.154 0.94
✓ ✓ ✓ ✓ 0.923 0.101 0.94

Table 3: Ablation study on GazeFollow [29] and VideoAt-
tentionTarget [7]. OM , GC, NCOS stand for object mask-
ing, gaze cone, and no cone-obj skip, respectively.

Method # params. ↓ AP ↑ AP50 ↑ AP75 ↑
Tu et al. [34] 43M 0.01 0.03 0.01
Tu et al. [34] + DETR [39] 84M 0.04 0.12 0.02
Ours + DETR [39] 97M 0.03 0.10 0.01
Ours 54M 0.14 0.22 0.15

Table 4: Gazed-object classification and localization perfor-
mance. The computational complexity is reported in terms
of parameters.

were performed using the COCO-subset of the GazeFollow
dataset [29] providing the ground-truth object class and lo-
cation information. Notice that our model was not particu-
larly trained on COCO ground-truth object classes and lo-
cations but was trained on the full set of the GazeFollow
and its gaze annotations. Instead, DETR was trained on the
full COCO dataset [23]. That setting should rather be ad-
vantageous for DETR since it is aware of all object classes.
Overall, the results show the relative effectiveness of our
model for gazed-object prediction while it is also the most
efficient in terms of the number of parameters.

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Ours 2D 0.980 0.977 0.973 0.970 0.964 0.961 0.958 0.954 0.943 0.922
Ours 3D 0.980 0.977 0.972 0.967 0.961 0.957 0.953 0.950 0.944 0.922
[34] 0.973 0.967 0.964 0.957 0.953 0.948 0.945 0.940 0.932 0.915

Table 5: AUC between our 2D and 3D method and [34]
w.r.t. increasing variance levels.

4.6. The effect of variance in gaze annotations
We compare the AUC of the proposed method with [34]

considering the multiple annotations that the GazeFollow
dataset’s test split provides. In some cases, the annotators’
consensus is low, as highlighted in [25], which motivated us
to evaluate the methods under different levels of variance
across the individual gaze annotations. The calculation of
the annotation variance and extensive discussions are given
in Supp. Mat. The results presented in Table 5 show the

permanent better performance of our model both in 2D and
3D w.r.t. [34] while, as expected, with lower variance all
methods perform better. We speculate that the lower perfor-
mance of Ours-3D w.r.t. Ours-2D can be since the human
annotations were collected on 2D images.

4.7. Qualitative Results
We visualize gaze heatmaps of our method and [34] in

Fig. 4 on the GazeFollow dataset. Our predictions are more
accurate compared to [34] in line with the quantitative re-
sults. Refer to Supp. Mat. for more qualitative results,
including some less accurate performance of the proposed
method w.r.t. the ground-truth.

Figure 4: Qualitative results of our method (bottom) and
Tu et al. [34] (middle) w.r.t. the ground-truth (top). For
simplicity, we show only one person’s gaze.

5. Discussion & Conclusion
We have presented a new end-to-end Transformer-based

gaze target detector simultaneously predicting the object
class and the location of the gazed-object. The latter is
advantageous w.r.t. prior art as it improves explainability.
Extensive experiments validate our approach’s better
performance for gaze behavior understanding, promising
its usefulness in real-world human interaction analysis.
Broader Impacts. We target a human-centric task and con-
sequently, our model, in some cases, might need to process
human faces. This might result in issues regarding privacy
protection, therefore policy review should be considered
when using this model in real-world applications.
Limitations & Future Work. As expected from a
Transformer-based model, our network also has slow
convergence, requiring long training epochs. Future work
will investigate gaze-target detection within the open-set
object detection paradigms.
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Object-aware Gaze Target Detection
Supplementary Material

A. The effect of variance in gaze annotations

Figure 1: An image from the GazeFollow dataset’s [10] test
split which has several annotations for the gaze point with
high annotation variance.

As mentioned in the paper, the GazeFollow dataset [10]
contains a single gaze point annotation for a single person in
a scene in its training split. However, its test splits include
several numbers of annotations with respect to a single per-
son’s gaze. The number of annotations can be varying up to
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Figure 2: Performance of Our model (2D and 3D) and Tu
et al. [12] w.r.t. the variance in the ground-truth annotations
of the GazeFollow dataset [10].

10 different gaze points for each person. Such an annotation
procedure would not present an issue if all the annotators
reached a consensus regarding the gaze point, however, as
also shown in [8] the test split annotations of that dataset
per person can vary remarkably. An example image and the
corresponding gaze points demonstrating the variety across
the annotations are given in Fig. 1.

On the other hand, the standard metric used to make
evaluations on this dataset, aka AUC does not consider the
(possible) varieties across the annotations. For this reason,
herein as well as in the main paper, we present an additional
evaluation procedure, which considers the multiple annota-
tions that GazeFollow test split provides (see Fig. 2). That
evaluation procedure can be described as follows. For each
gaze point annotation corresponding to a single person, we
compute its distance to the corresponding average gaze an-
notation point. We record all the distances for the whole test
split and compose a distribution from them. Then, given
this distribution, we keep the gaze points falling inside a
certain threshold (shown as variance retained in the figure),
and we opt for the deciles for easiness of computation. For
each decile, we compute the AUC and report it in Fig. 2.
As seen, our method is extremely effective when there is
high annotation consensus, i.e. the distance from the aver-
age point falls in the first decile (i.e., 0-10% variance re-



tained in the figure); the performance slightly decreases un-
til the eighth decile (i.e., 70-80% variance retained in the
figure), with the last 20% representing high noise annota-
tions (i.e., 80-100% variance retained in the figure) where
the performance lowers at a faster rate. When we compare
our performance against the state-of-the-art method of [12],
one can observe a consistently higher performance for all
cases both in 2D and 3D versions of our method. We spec-
ulate that the lower performance of Ours-3D w.r.t. Ours-2D
can be since the human annotations were collected on 2D
images.

B. Additional evaluation on GazeFollow [10]
and VideoAttentionTarget [2]

Table 1 reports the Angular Error [10] (i.e. the angle be-
tween predicted and ground-truth gaze vector) results and
compare it with SOTA. Our method produces the best re-
sults out of all, while Ours (3D) is better than Ours (2D).

Ours (2D) Ours (3D) [12]⋆ [11]⋆ [5] [1] [4] [2]⋆ [7] [10]

Min. ↓ 4.0° 3.5° (−12.5%) 6.6° 8.1° — — — 9.1° 8.8° —
Avg. ↓ 7.7° 7.2° (−6.2%) 11.0° 19.5° 14.8° 14.6° 14.9° 20.5° 17.6° 24.0°
Max. ↓ 20.1° 19.3° (−3.9%) 22.5° 37.0° — — — 37.9° — —

Table 1: Angular error on GazeFollow [10] ⋆ means our
implementation. Improvements are w.r.t. “Ours (2D)”.

C. Implementation Details

We implemented our method in PyTorch and relied on
the official code of DETR [13] as the backbone. The heads
of DETR [13], i.e. the two MLPs for object classification
and detection, were replaced by two larger MLPs that al-
low us to predict the location and classification of objects
in the scene including the heads. Therefore, the number
of classes of objects is adapted to accommodate the head
class. We used a SOTA object detector, YOLOv8 [6], to
pseudo-annotate objects in images that lack object annota-
tions. This has been needed since the used datasets (ex-
cept the COCO subset of the GazeFollow dataset) do not
provide object annotations. We finetuned the Object De-
tector Transformer using head locations given in the used
datasets as well as automatically obtained using an addi-
tional head detector, RetinaFace [3], and for other objects
extracted from YOLOv8. RetinaFace was necessary (but
other head detectors can be also adapted as shown in Tu et
al. [12]) as we observed that both Tu et al. [12], and our
method could not converge without head annotations of all
heads in the image. The depth images were obtained by
processing both datasets with a SOTA monocular depth es-
timation method called MIDAS [9].

D. Qualitative Results

In this section, we provide additional qualitative results
of the gaze heatmaps and the head bounding box of the gaze
source (i.e., a person’s head) and demonstrate the improved
performance of our method w.r.t. the current state-of-the-
art (SOTA) for both GazeFollow [10] and VideoAttention-
Target [2] datasets. Furthermore, we discuss some example
cases in which our method has relatively lower performance
(AUC < 70%) w.r.t. ground-truth as well as Tu et al. [12].
Lastly, we compare our methods’ versions in 2D and 3D and
demonstrate the latter’s effectiveness in challenging scenar-
ios.

Comparison with SOTA and ground-truth. Fig. 3 and
Fig. 4 compare our predictions with respect to the ground
truth and the predictions of Tu et al. [12] on both datasets,
GazeFollow [10] and VideoAttentionTarget [2]. As we can
see, our model precisely predicts the gaze in many scenes
where [12] is not able to. More importantly, we can see
that predictions of both our method and Tu et al. [12] are
in the field of view of the person whose gaze is to be pre-
dicted. However, [12] favors image regions closer to the
gaze source (i.e. person’s head).

Relatively low-performing predictions. Fig. 5 presents
example images in which our method relatively performs
worse. Notice that such images are highly challenging and
most of the time also SOTA [12] underperform, e.g. in the
second row of Fig. 5, where the head-pose makes it difficult
to accurately predict the gaze. Conversely, when the face is
not fully visible, e.g., in the third and fifth row of Fig. 5, we
predict scattered heatmaps that cover the gaze point.

The contribution of 3D gaze cone. Fig. 6 demonstrates
the results of our method with the 2D or 3D gaze cone (see
main paper for additional details). This comparison aims
to highlight the importance of the 3D cone particularly in
challenging scenes. As the quantitative results in the main
paper showed, the advantage of the 3D cone is especially
visible in terms of the average and minimum distance be-
tween the ground-truth gaze point and the point of maxi-
mum confidence of the gaze heatmap. The example images
in Fig. 6 demonstrate that in complex scenes, the 3D gaze
vector and the corresponding 3D gaze cone help to decipher
which object the person is looking at. Moreover, when the
predictions with 2D cone are already high (e.g. the first row
of Fig. 6), the 3D cone counterpart further consolidates the
center of the heatmap towards the object, resulting in better
performance.
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Figure 3: Qualitative results of our method (center) and Tu et al. [12] (left) w.r.t. the ground-truth annotations of the
GazeFollow [10] dataset (right). Please note that we only show gaze predictions for the person whose gaze is included in
the ground truth. The green boxes show the person-in-interest for the ground truth while they are the detected head for Our
and Tu et al. [12]. Even though our method can detect the gaze of multiple persons in the scene simultaneously, for better
visualization, we plot the predicted heatmaps and head locations per person.



Figure 4: Qualitative results of our method (center) and Tu et al. [12] (left) w.r.t. the ground-truth annotations of the
VideoAttentionTarget [2] dataset (right). Please note that we only show gaze predictions for the person whose gaze is
included in the ground truth. The green boxes show the person-in-interest for the ground truth while they are the detected
head for Our and Tu et al. [12]. Even though our method can detect the gaze of multiple persons in the scene simultaneously,
for better visualization, we plot a single person’s predicted heatmaps and head location.



Figure 5: Qualitative results in which Our method performs relatively lower since the images are highly challenging due to
several reasons (see text for details). Our method (center) and Tu et al. [12] (left) w.r.t. the ground-truth annotations of the
GazeFollow [10] dataset (right). The green boxes show the person-in-interest for the ground truth while they are the detected
head for Our and Tu et al. [12]. Even though our method can detect the gaze of multiple persons in the scene simultaneously,
for better visualization, we plot a single person’s predicted heatmaps and head location.



Figure 6: Qualitative results of our 2D (left) and 3D (center) method w.r.t. the ground-truth annotations of the GazeFollow
[10] dataset (right), showing the importance of 3D-gaze cone building. Even though our method can detect the gaze of
multiple persons in the scene simultaneously, for better visualization, we plot a single person’s predicted heatmaps and head
location.


